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Abstract

There is increasing interest to work with user
generated content in social media and espe-
cially textual posts over time. Currently there
is no consistent way of segmenting user posts
into timelines in a meaningful way that can im-
prove the quality and cost of manual annota-
tion. Here we propose a set of methods for
segmenting longitudinal user posts into time-
lines that are likely to contain interesting mo-
ments of change in a user’s behaviour based on
the content they have shared online and their
online activity. We also propose a framework
for evaluating the timelines returned in terms
of containing candidate moments of change in
close proximity to manually annotated time-
lines that are dense in such moments of change.
Finally, we present a discussion of the linguis-
tic content of highly ranked timelines.

1 Introduction

An increasing body of work considers time-aware
models trained on social media data for a number
of different tasks, including personal event identifi-
cation (Li and Cardie, 2014; Li et al., 2014; Chang
et al., 2016a), suicidal ideation and suicide risk de-
tection (Coppersmith et al., 2014, 2018; Cao et al.,
2019; Matero et al., 2019; Sawhney et al., 2020,
2021). For such tasks deriving meaningful time-
lines (i.e. relatively short sequences of posts by in-
dividuals, containing examples of the phenomenon
under study) from large-scale collections, together
with associated annotations, is crucial. This is es-
pecially important for computational approaches
in mental health given surging numbers of those
seeking help online (Neary and Schueller, 2018).
Earlier work on personal life event detection
had considered selecting salient timelines through
topic modelling (Li and Cardie, 2014; Li et al.,
2014) or through a non-parametric generative ap-
proach (Chang et al., 2016a). However, such ap-
proaches are not suitable for identifying changes in

mood or mental health more generally. Specifically,
since timelines are selected based on linguistic con-
tent this introduces a sampling bias for downstream
linguistic analysis and annotation (Olteanu et al.,
2019; Mishra et al., 2019). In recent work on suici-
dal ideation detection, timelines are chosen as the
N most recent posts (Sawhney et al., 2020), which
are not necessarily the most salient for annotation
purposes.

Present Work: We propose a set of methods and
an associated evaluation framework for identifying
salient timelines from the history of social media
users to be annotated for the presence of Moments
of Change (MoC). We define a MoC as a particular
point or set of points in time denoting: (1) a shift
in an individual’s mood from positive-to-negative
or vice versa; (2) gradual mood progression. The
aim is to identify methods which can consistently
select timelines that are rich in MoC for large scale
cost-effective annotation. We follow earlier work
in hypothesising that posting behaviour can be used
as a proxy for changes in mental health (De Choud-
hury et al., 2016). Therefore we present methods
for creating timelines based on time-series of post-
ing frequency, such as change-point and anomaly
detection approaches, and evaluate these against
keyword-based methods and randomly selected
timelines. All candidate timelines are evaluated
against manually annotated MoC. We make the
following contributions:

e We present the first approach to extracting time-
lines from users’ posting history on social me-
dia based on change-point detection methods,
anomaly detection and kernel density estima-
tion (see §3).

e We propose a novel evaluation framework for
assessing the quality of annotated timelines,
and timeline extraction methods, on the basis
of manually annotated MoCs (see §4).

e We provide an insightful linguistic analysis into



highly ranked (dense in MoCs) timelines and
timelines sparse in MoCs (see §5.2).

2 Related Work

2.1 Tracking Changes in Mental Health

Moments of Change (MoC) are an important
concept in work on mental health tracking. Pruk-
sachatkun et al. (2019) identifies a MoC as a posi-
tive change in sentiment for a user with respect to a
particular distressing topic mentioned in a conver-
sation thread. De Choudhury et al. (2016) investi-
gated shifts to suicide ideation by building models
to predict transition of a user posting on a suicide
support forum. We consider a more general defini-
tion of MoC (see §1, “Present Work”™).

Creation of Mental Health Datasets. A large
body of work in creating mental health datasets in-
volves labelling posts for symptoms (Gkotsis et al.,
2017; Loveys et al., 2017; Cheng et al., 2017) or
levels of suicide ideation (Masuda et al., 2013; Cop-
persmith et al., 2016; Shing et al., 2018). While
annotations for some of these datasets are obtained
through proxy signals (e.g., self-disclosure of diag-
noses, posts on support networks) a question arises
as to how to select appropriate data for annotation.
Mishra et al. (2019) use keyword based methods
to identify posts exhibiting the phenomenon un-
der study (e.g. suicidal ideation) but this leads to
sampling biases. An alternative is to consider time-
line extraction approaches agnostic to the linguistic
content, inspired by Timeline Summarisation (TLS)
and Change-Point Detection (CPD).

2.2 Timeline Summarization (TLS)

TLS aims to provide concise chronologically or-
dered timelines consisting only of the most relevant
information for a given topic or entity, summarizing
the key points in time. While TLS has been most
commonly applied in news topic summarization
(Swan and Allan, 2000; Martschat and Markert,
2017, 2018; Steen and Markert, 2019), there has
been growing interest in applying TLS applied on
social media data (Li and Cardie, 2014; Chen et al.,
2019; Ansah et al., 2019; Wang et al., 2021).

TLS consists of a two-step pipeline, where (1)
date selection is followed by (2) summarisation.
Salient dates to summarize as a timeline are typ-
ically identified using textual content, as well as
time-series frequency information in the history
of an individual / topic. Chang et al. (2016b,a) is

interested in viral buzzes of mentions of celebri-
ties on social media, and as such aims to identify
salient dates by simultaneously modelling linguis-
tic content and frequency based time-series pat-
terns. While CPD has been explored in news TLS
(Hu et al., 2011), it remains under-explored for
social media data.

2.3 Change-point Detection

In §3, we explore using automatically detected
change-points (candidate MoCs) as the salient
dates used to select timelines of users on social
media for annotation.

Change-points (CPs) are typically defined as
points in time where the underlying generative pa-
rameters of a data sequence are predicted to have
changed (van den Burg and Williams, 2020). CPD
approaches, therefore, involve learning a predictive
model of a data sequence. While there are several
continuous models (e.g. a Gaussian model (Adams
and MacKay, 2007)), we are particularly inter-
ested in models suited to discrete event-based time-
stamped data (Knoblauch and Damoulas, 2018) -
such as points in time where a post/comment is
made on social media. In such scenarios Tempo-
ral Point Processes(TPPs) (Daley and Vere-Jones,
2003) are particularly well suited.

Temporal Point Processes (TPPs) TPPs are de-
fined as stochastic processes modelling discrete
events occurring on a continuous time domain.
They are typically characterized by an intensity
function, A > 0, which represents the instanta-
neous rate of event occurrence. TPPs vary in com-
plexity: from the simple homogeneous Poisson
process (a model governed by a constant \), to the
more flexible Hawkes process (Rizoiu et al., 2017)
(which has a conditional A: dependent on both time
and historical events), to the rapidly developing
field of neural temporal point processes (Shchur
et al., 2021; Lin et al., 2021) (where A is modelled
with highly flexible neural networks, such as RNNs
(Du et al., 2016) or more recently models based on
self-attention (Zhang et al., 2020; Zuo et al., 2020)).
In order to use TPPs to model event sequences, and
predict associated changes - certain CPD models,
such as Bayesian Online Change-point Detection
(Adams and MacKay, 2007) require that the TPP
be part of the exponential family of distributions
(e.g. the Gaussian distribution, or the Poisson dis-
tribution). This is so that the intensity A can be
further modelled from a prior conjugate distribu-



tion, making it possible to construct the likelihood
of the chosen predictive model in a closed form.
TPPs part of the exponential family of distribu-
tions, specifically the Poisson-Gamma predictive
model, therefore form a class of computationally in-
expensive models that are scalable to large datasets,
making them particularly attractive for our task.

3 Approach

Task. Our principal aim is to select timelines for
annotation that are rich in MoC. To achieve this,
we test a series of timeline extraction methods pre-
sented in this section, which we then evaluate using
a novel evaluation framework in §4.

Selecting Candidate Timelines. To select time-
lines for annotation, we extract candidate timelines
as a span of timestamps S; ,, from a user’s u history
H,,. To do so we first propose identifying Candi-
date Moments of Change (CMoC), which are dates
predicted to be surrounded by many MoCs (§3.1).
Subsequently, we extract the user’s posts surround-
ing these CMoC within a fixed time window, as
timelines to be returned for annotation (§3.2).

3.1 Identifying Candidate MoCs (CMoC)

We explore different approaches for identifying
CMoC, as detailed below:

(1) Change-point Detection (CPD): In a recent
evaluation involving experiments with both syn-
thetic and real-world change-points, van den Burg
and Williams (2020) showed that Bayesian Online
Change-point Detection (BOCPD) was the best per-
forming model for a variety of CPD tasks. BOCPD
functions by learning a predictive model on a
data sequence, and when changes in the model’s
underlying generative parameters are identified,
a change-point is declared. The models which
BOCPD is typically fit with continuous (e.g. the
Gaussian distribution). However, it is also possi-
ble to use temporal point processes (§2.3) which
are more appropriate for modelling discrete event-
based data (Knoblauch and Damoulas, 2018).
Since we hypothesize that changes in posting
behaviour coincide with changes in mood (see
“Present Work™ in §1), we use BOCPD to iden-
tify changes in individuals’ posting frequency. As
such we consider the daily frequency of posts made
by a user as a Temporal Point Process, and use the
homogeneous Poisson-Gamma (PG) point process
model with BOCPD (Knoblauch and Damoulas,
2018) to fit and identify changes in the daily fre-

quency of posts by a user v from their entire as-
sociated history H,,. Note that we investigate this
hypothesis by evaluating the density of changes in
mood from timelines selected this way in our re-
sults section (§5.2), and also investigate changes in
posting activity coinciding with changes in mood
and sentiment in the same section (table 2).

By using a PG model with BOCPD, we assume
that each point in a user’s posting frequency is sam-
pled from a Poisson distribution with a discrete
intensity A. Here \ represents the expected num-
ber of posts by a user within a given time interval.
As we use this conjugate Bayesian model, X is
further assumed to be drawn from a Gamma distri-
bution with a set of priors oy and [y, that act as ini-
tial hyper-parameters in our model, where oy /o,
ap/ ﬁg denote the prior mean and variance over the
intensity of the time-series of the data. BOCPD has
an additional hyper-parameter which is the hazard,
ho where 1/hg expresses a prior belief about the
probability of change-points (CPs) occurring at a
given time ¢, provided that a CP has not recently
occurred: a low hg results in the over-generation
of change-points while a large hg is more conser-
vative and returns very few change-points (ideal in
our scenario, to ensure that we do not waste anno-
tation resources, by avoiding annotating too many
timelines generated by noise).

Since BOCPD computes a full probability dis-
tribution over the location of the CPs, quantifying
probable CPs along with their associated uncer-
tainty, we use the maximum a posteriori (MAP) seg-
mentation of the probability distribution to return
exact point estimates for CPs (Fearnhead and Liu,
2007; van den Burg and Williams, 2020). These
predicted points in time can represent CMoCs. An
illustration of identifying CMoCs from a given
user’s history in our implementation of BOCPD
is provided in Fig. 1. Here change-points define
CMoCs.

(2) Anomaly Detection (AD): Here we aim at
identifying (a) days of abnormally high user ac-
tivity and (b) abnormally long time periods of no
user activity at all. We hypothesize that such points
in time can be used to select salient timelines. We
experiment using different features to fit our model,
including the daily frequency of a user’s posts and
the number of comments they receive for those cor-
responding posts by others. Using either activity
type, we scan over the user’s entire history.

For (a) we explore the use of Kernel Density
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Figure 1: Using change-points in an example user’s

posting behaviour to define candidate moments of
change M (dashed red line). Candidate timelines are

then created centred on each MI(L ), with a radius r=7.

Estimation (KDE) (Rosenblatt, 1956; Scott, 2015)
to estimate the probability density function of the
user’s activity. For (b), we focus on time periods
in the user’s history lasting at least 14 days during
which the user had no activity (posts/comments) at
all. If, given the past 90 days of a user’s activity,
the probability on a particular day of seeing either
(a) such a high volume of activity or (b) a long
period of ‘silence’ is lower than .01, then we mark
the start of this period as an ‘anomaly’. In both (a)
and (b), we treat detected anomalies as CMoCs.

(3) Keywords: We further experiment with
keyword-based methods based on the suicide risk
severity lexicon (Gaur et al., 2019). Each keyword
present in the lexicon corresponds to different lev-
els of suicide risk severity such as “I’'m tired of
this suffering”, and “I’m going to kill myself”. We
hypothesize that the presence of such phrases in
a user’s post may be indicative of a MoC. The
keywords-based methods we evaluate against sim-
ply return CMoCs for the timestamps of posts by
a given user that contain a keyword from the full
lexicon or a sub-lexicon.!

(4) Random: “Random single day” is a baseline
method we evaluate against, which selects a single
date from a uniform distribution over all days in a

user’s u posting history H,, as the CMoC Ml(f).

“Every day” is another baseline we experiment
with, which simply returns every day as a CMoC.
We experiment with it to see how well our methods
are at avoiding the over-generation of candidate
timelines. We seek to avoid over-generating time-
lines as we want to only return timelines with a
high density of MoC, since this aligns with our
goal of improving annotation efficiency.

"Upon inspection of the phrases included in the sub-lexica,
we excluded the “suicidal_indicator” sub-lexicon as it pro-
duced a lot of false positives.

3.2 Extracting Posts

Once a CMoC, Ml(f), is found, a span of times-
tamps S; ,, from the user’s history H,, is then iden-

tified within a certain radius 2 around ngc). Sub-
sequently, we return the posts that are posted within
the resulting time window as the candidate time-
line, Tqﬁ). A candidate timeline therefore consists
of the associated sequence of posts, corresponding
timestamps and comments within S ,,.

4 Evaluation of candidate timelines

Objective. We aim to identify the best method for
extracting user timelines and also assess how good
a given timeline is, while using minimal annota-
tion resources. A good timeline is one that would
contain a high proportion of posts that would be an-
notated as MoC, if manually labelled. As such, we
define a good timeline selection method as one that
is able to identify CMoC close to dense regions of
Ground-Truth MoCs (GTMoCs) in an initial trial
set of pre-annotated timelines.

4.1 Identifying dense regions in annotated
timelines

Medoids. To represent the location of dense re-
gions of GTMoCs, we propose the use of medoids.
A medoid is a timestamp of a post, considered to
be the centre of a cluster where the distances of all
other timestamps of annotated posts in the timeline
are minimal relative to it. In our work, medoids are

computed for sets of labelled GTMoCs in annotated
)

timelines. We therefore define a medoid nggz‘ as
the timestamp in a timeline which is a GTMoC that
has a minimal Euclidean distance d(., .) in time to

all other annotated GTMoCs M. 1592 within the same
(9)

annotated timeline 7',°/. The location of medoid

C’L(Lgi) in an annotated timeline is thus computed as:

c) — arg min Z d(M(g) M(g)) €))

U, wu,e ?
M) erl) MOer®)

Density of annotated timelines. We aim to fur-
ther characterise the locations of dense regions
(medoids) by the number of GTMoC they contain.
For this purpose we introduce a simple density met-
ric which we assign to medoids. The density p ;

Here we take r = 7 which gives a manageable amount of
posts while providing context before and after the CMoC.



for a ground truth timeline is defined as:

(
‘pu,i|

, where | M 15%) | is the sum total number of GTMoCs

within timeline qugi) normalized by |p,;|, the sum
total of posts within the same timeline.
In order to weight timelines by how dense they

are, a medoid Cqsgi) further inherits the density p, ;
of the timeline Tégi) it represents. We transform the
raw density scores to provide a binary distinction
between “dense” (+1) and “sparse” (-1) medoids

as in equation 3:

3)

U, b

(in) | +1 if pu s > Median(py ;Vu, 1)
—1 otherwise

A good timeline is therefore one that is identified
as “dense” (+1) in equation 3, and the ideal location
for a CMoC within it is as close to the medoid
timestamp, defined in equation 1.

In an ideal scenario where we have the resources
to annotate many timelines, sampled from many
candidate methods — then it would be straightfor-
ward to compare and rank them based on the num-
ber of dense timelines or the average resulting den-
sity scores. This would allow us to directly identify
the best method to select timelines in the future.
However, due to the high cost and time-consuming
process of annotation — we instead propose a few
additional steps in our evaluation framework that
allow us to identify alternative timeline selection
methods without the need to annotate those time-
lines directly. We do this by proposing a scoring
system based on distance scores of CMoC relative
to dense medoids.

4.2 Scoring timeline selection methods

To assess how good a given method is for select-
ing desirable timelines, we make use of the eval-
uation framework in §4.1 to assess the quality of
pre-annotated timelines against the CMoC in unan-
notated candidate timelines.

Assuming an annotated ground-truth timeline,
Tfi), we aim to assess how close an identified
CMoC, M9, is to a dense region of GTMoCs.
Based on how we have defined good timelines,
we therefore give preference to methods that iden-
tify CMoCs in close proximity to medoids that are

identified to be dense in GTMoC, while penalizing
methods that over-generate CMoC. The reason for
this is that we want to identify methods that are
able to select timelines that will contain a high den-
sity of GTMoC when annotated, while avoiding
methods that simply annotate the entire history of
a user. The latter is infeasible and goes against our
original aim of reducing the amount of data needed
to be annotated by individuals.

Distance Scores To calculate the proximity of
CMoCs to medoids, we compute the minimum ab-
solute distance d;n;g (in days) between all CMoCs
detected by a given model m for a user’s u his-
tory H,. Subsequently, we compute the following

distance score metric per annotated timeline:

dl(f::re) = (dl(»j;iln) +€) * sign(pgiin))

where € = 0.001, to preserve the sign of each
medoid’s p"™ in the case that dgffr‘f) = 0. The

i
dE’S:r(L)l'C) is then used to denote the proximity of
CMoCs generated by method m (in days) to a
ground truth medoid 01592 with density pib;n)
Since we want to génerate timelines that are

close to regions that are dense in terms of GTMoC,
. .. (score)

we aim for low positive scores of d;
Voting procedure. We aim to reward methods that

identify CMoC in close proximity to a "dense"
ground-truth medoid (low positive dgf;fre)), and
penalize methods which over-generate CMoC - for
example in locations that contain a low density of
GTMoC. We thus assign votes to each method, to
assess how well we achieve this objective.

Votes are assigned to each method, m for each
(score)

computed distance score, d; ", as follows:

+1if0 < d™ <ty
Um,i = 7
0 otherwise

where ¢ is a threshold set to 10 days after exper-
imentation This score gives a positive vote to a
method generating a CMoC that falls within a mar-
gin of ¢ days to a ground truth timeline. Setting a
threshold is common in the field of change point de-
tection (van den Burg and Williams, 2020). Votes,
v, are then normalized per timeline and method:

Um,i

M)

U,

led
U(scae )

m,i -



where | M 1(;:2 | is the total number of CMoCs gener-
ated by method m.

Scoring of methods. Timeline selection meth-

ods are subsequently scored and ranked by sum-

ming the votes Uf;c? ) for each method m over all

ground truth timelines, as shown in the results of
table 1. The minimum score a given method can
receive is 0, and scores can only be positive - while
the maximum score is the total number of "dense"
(+1) medoids in the dataset (190 in our case).

Comparison to Previous Work. Our evaluation
of timeline selection methods differs from previous
work on evaluating change-point detection meth-
ods, as we aim to compare distances to regions of
changes (represented as medoids), rather than dis-
tances to exact change points (van den Burg and
Williams, 2020). Typical measures for evaluating
the identification of change points include: clus-
tering metrics - such as the segmentation covering
metric (used traditionally in image segmentation
(Everingham et al., 2010; Arbelaez et al., 2010)),
and classification metrics such as F1 scores as de-
scribed in (van den Burg and Williams, 2020). Sim-
ilar to our proposed approach, these metrics capture
whether the distance of a predicted change-point to
a ground-truth change-point falls within a certain
threshold (van den Burg and Williams, 2020).

Our evaluation framework depends on a set of
timelines manually annotated with GTMoC. The
manually annotated timelines were selected on the
basis of a particular method (here BOCPD). While
including the method that selected the timelines
for manual annotation in the evaluation of meth-
ods for generating CMoC and new timelines may
appear biased, note that it is theoretically possible
for another method to get a higher score. This is
because the criteria for manual annotation of GT-
Moc are different to the assignment of CMoC by
the methods. As a result not all annotated time-
lines are "dense". If a candidate selection method
would only return CMoC close to regions where
the manually annotated timelines had a high den-
sity of GTMoC, it would receive better distance
scores and more votes than the method which orig-
inally selected the timelines for annotation. This
is because the method which originally generated
the timelines for annotation would be penalized
for predicting a CMoC close to an sparse timeline,
annotated with very few GTMoC.

Another advantage of our evaluation setting is
that if an alternative method identifies a CMoC

towards the end, or slightly outside, a manually
annotated timeline - there is the potential that the
resulting candidate timeline will contain a higher
density of GTMoC if annotated. In such a scenario
the alternative method has the potential to receive
better distance scores as it may select a timeline
closer to a dense region of GTMoC, if this exists
near the edges of the originally manually annotated
timeline. Thus our distance scores can potentially
help us identify better methods for timeline extrac-
tion than the method originally used to select the
timelines for manual annotation.

S Experiments

We empirically evaluate our proposed timeline se-
lection methods (§3), using our proposed evalua-
tion framework (§4) based on ground-truth human
annotated data.

5.1 Dataset

We licensed a de-identified dataset from TalkLife?
consisting of 1.1 million users, resulting in 12.3
million posts between August 2011 to August 2020,
of which we sampled from based on methods de-
scribed in §3 to create timelines.

Due to high variance in posting frequency of
users, we chose to annotate only timelines that
had between 10 and 150 posts - so that there was
sufficient amount of context to annotators to as-
sess whether a change had occurred, and that the
timelines were not impractically long. The final
annotated dataset includes 500 timelines from 500
separate TalkLife users, consisting of 18,702 posts
in total where the mean number of posts per time-
line is p = 35 £ 22. The 500 timelines were
selected using a BOCPD Poisson-Gamma model,
where the parameters (a:.01; 3:10; h:10%) were
fixed on the basis of improved model performance
compared to 70 initial manually annotated valida-
tion timelines which had been generated using the
anomaly detection (high activity: posts) method
(83). All timelines within this dataset were manu-
ally inspected and filtered according to the details
in appendix A.1.

TalkLife is a free-to-use global peer-support social
network platform operating primarily as a mobile
app. Users are mainly English speakers, where 70%
of them are in the age range of 15 to 24 (Sharma
et al., 2020a). We chose data from TalkLife for

*https://www.talklife.com
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this work since the content across the entire plat-
form is focused on conversations around mental-
health and daily-life issues and feelings. It is thus
suited to identifying MoC, and is complementary
to recent work which uses TalkLife data for compu-
tationally analysing mental health (Pruksachatkun
etal., 2019; Sharma et al., 2020b; Saha and Sharma,
2020; Kim et al., 2021).

TalkLife users make textual posts and others on
the platform may comment on them. While there
are several features available from TalkLife, we
propose to select timelines on the basis of only the
frequency of posts made by users and frequency
of associated comments received, all of which are
timestamped. The context of the posts is only used
in the manual annotation of selected timelines with
GTMOoC, used for evaluation. As such, the methods
proposed in this paper are transferable to other
popular platforms such as Twitter and Reddit for
creating timelines for dataset annotation.

5.1.1 Annotation Guidelines for GTMoC

After extracting timelines (§3) from TalkLife, these
were annotated by 3 English speaking, university
educated annotators (one of them being a native
speaker). Annotation was performed using guide-
lines and an associated annotation interface pro-
posed by (anonymous). The process is described
briefly in this subsection.

Annotators were provided with timelines, con-
taining sequences of time-stamped posts by users
along with comments made on those posts. Annota-
tors were asked to label posts containing a "Switch"
(sudden change in mood) or an "Escalation” (grad-
ual mood progression). A label of "None", the
default, is assigned to posts with no MoC. Specif-
ically, a "Switch" is defined in the guidelines as
"a drastic change in mood, in comparison with the
recent past”, and the annotator is tasked to label
the first post which has a clearly different mood
compared to previous posts. They are also asked to
specify the duration of the change in mood in terms
of the associated range of posts. An "Escalation"
on the other-hand is defined as "a gradual change in
mood, which should last for a few posts". Annota-
tions are provided for the peak of the escalation and
the range of associated posts (both before and after
the identified peak in mood change). For this paper
we consider all labels of "Switch", "Escalation”,
and their corresponding ranges as GTMoC. For the
annotation of GTMoC, posts within timelines were
displayed on a longitudinal basis, thus providing
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Figure 2: Histogram showing the density of GTMoCs
per timeline. All 500 timelines were selected using
BOCPD PG («vg:.01; 8o:10; ho:103).

annotators with access to both previous and future
context around each post in the timeline.

To obtain GTMoC for our evaluation we aggre-
gate the annotations across all annotators per time-
line as described in (anonymous). The percent of
inter-annotator agreement for the labels "None",
"Switch" and "Escalation" were 0.89, 0.30, and
0.50 respectively based on majority agreement.

5.2 Results & Discussion

We identify CMoC from the timeline selection
methods in §3.1 on the 500 users for whom we
have GTMoCs, and evaluate these using our ap-
proach in 4. To compare different methods, we
also round all CMoC to the nearest day removing
duplicate predicted dates per method.

Density scores of annotated timelines. The den-
sity of the final annotated timelines, selected by
our best performing selection method are presented
in Fig. 2. With a mean density of 0.159, this is
comparatively high considering that GTMoCs are
rare events and that many timelines typically do
not contain any GTMoC when annotated.

Ranking of timeline selection methods. Table 1
shows that BOCPD with a high hg and low /5
produces overall timelines closest to the GTMoCs.
Thus this model, which is confident about a low
number of CMoCs, will generate fewer CMoCs and
corresponding timelines. BOCPD is followed by
a standard approach to selecting timelines, which
is to impose a linguistic bias on the user posts and
therefore produce annotated datasets (and hence,
models) based on the presence of certain keywords.
Note that these methods achieve less than half the
top score of BOCPD. Even with a low hgy and
ao/Po = 1 (more likely to over-generate CMoCs)



the BOCPD still outperforms most of the anomaly
detection methods and the random timeline genera-
tion, where a day is chosen at random in a user’s
timeline with seven days around it. The anomaly
detection method which identifies CMoCs at points
of high activity of posts performs similarly to the
keyword based methods. All other anomaly detec-
tion methods seem to over-generate CMoCs with
ones identifying anomalies on low user activity per-
forming worse than the random timeline generation.
The floor score for over-generation of CMoCs is
provided by considering every day as a CMoC.

‘ Method ‘ Score ‘
BOCPD PG (aq: .01; By : 10; ho: 10%) | 27.34
Keywords (three categories) 13.79
Keywords (all) 12.35
AD (high activity: posts) 10.09
BOCPD PG (ag: 1; Bo: 1; ho: 10) 9.83
AD (high & low activity: posts) 8.20

AD (high activity: comments received) | 5.21
AD (high & low activity: comments | 4.92

received)

Random single day 4.00
AD (low activity: comments received) 3.49
AD (low activity: posts) 3.28
Every day 0.25

Table 1: Methods (proposed in §3) ranked in descend-
ing order by their ability to generate desired timelines,
using our evaluation framework in §4.

Linguistic analysis of timelines. To gain some
insights into the characteristics of ‘dense’ (high
number of GTMoCs) vs ‘sparse’ timelines (low
number of GTMoCs), we employ VADER (Hutto
and Gilbert, 2014) for sentiment and ‘Twitter-
RoBERTa-emotion’ (Barbieri et al., 2020) for emo-
tion recognition * on the post-level of 250 timelines,
equally split between ‘dense’ (density score py ;
is in upper-quartile of all timelines) and ‘sparse’
(bottom-quartile). The distribution of sentiment
scores across these timelines are shown in Fig. 3.
For each timeline we extract statistical features
(avg, std, min, max) for each emotion/sentiment
dimension of the posts within it, and the same sta-
tistical features based on their difference across two
consecutive posts within the timeline. Using these
features, we train a Logistic Regression aiming at
predicting ‘dense’ vs ‘sparse’ timelines and extract
the coefficients with the highest/lowest values.
Table 2 suggests that sparse timelines frequently

“We use the compound sentiment score from VADER,
assigning a single sentiment score to each post; Twitter-
RoBERTa-emotion assigns one score per emotion: joy, anger,
sadness, optimism.

consist of positive posts in sentiment and mood.
On the other hand, sadness- and variance-based fea-
tures have the most positive relationship with pre-
dicting a timeline containing many MoCs — a find-
ing that was also empirically confirmed via manual
inspection of the most dense timelines. This sug-
gests that future work could also employ methods
based on mood or sentiment for extracting user
timelines (with the cost of introducing linguistic
bias), while highlighting the importance for consid-
ering the variation of a user’s mood and sentiment.

Sentiment Distribution

dense
sparse Feature Coef
0.8 sadness (avg) 2.29
206 sadness (std) 1.45
2 sentiment (std) 1.00
80.4 sentiment (avg) | -1.23
optimism (avg) | -1.25
0.2 sentiment (min) | -1.31
joy (avg) -1.58
0075 0 2
Sentiment score Table 2:
Coefficients of
Figure 3: Distribution of Logistic Regression

sentiment scores of ‘dense’
vs ‘sparse’ timelines (medians:
—.949 & .970, respectively).

trained to classify a
timeline as ‘dense’
(1) or ‘sparse’ (-1).

6 Conclusions & Future work

We have introduced methods and an evaluation
framework for identifying timelines with many
Moments of Change (MoC) in a user’s posting be-
haviour on social media. Our aim is to use changes
in posting behaviour as a proxy for changes in
mood, to facilitate the process and maximise the
effectiveness of annotation of longitudinal user con-
tent. Our methods have been manually evaluated
against ground truth MoCs (GTMoCs). Bayesian
Online Change Point Dection (BOCPD) with a
Poisson-Gamma model shows promise in detecting
candidate MoCs close to GTMoCs.

In future work we will explore the incorporation
of textual content in the BOCPD Poisson-Gamma
model for the distinction between different types
of GTMoC. We find that resulting timelines dense
in GTMoCs are characterised by a high deviation
in sentiment from one post to the next, suggesting
that such deviations may be a useful feature for
distinguishing between different types of GTMoC.

We expect that the methods proposed in our work
will benefit researchers interested in creating lon-
gitudinally annotated textual datasets consisting of
user posts, particularly when annotating Moments
of Change.



7 Ethics Statement

Ethics IRB approval was obtained from the corre-
sponding ethics board of the host University prior
to engaging in this research study. Our work in-
volves ethical considerations around the analysis
of user generated content shared on a peer sup-
port network (TalkLife). A license was obtained
to work with the user data from TalkLife and a
project proposal was submitted to them in order
to embark on the project. The current paper fo-
cuses on the identification of periods of interest
within the user history, in terms of moments of
change. The work on annotation of moments of
change (MoC) is separate to this paper but consid-
ers sudden shifts in mood (switches or escalations).
Annotators were given contracts and paid fairly in
line with University pay-scales. They were alerted
about potentially encountering disturbing content
and advised to take breaks during annotation. The
annotations are used to evaluate the work of the
current paper, which aims to meaningfully segment
timelines in terms of containing likely moments of
change. Potential risks from the application of our
work in being able to identify moments of change
in individuals’ timelines are akin to the identifi-
cation of those in earlier work on personal event
identification from social media and the detection
of suicidal ideation. Potential mitigation strategies
include restricting access to the code base and an-
notation labels used for evaluation. No data can
be shared without permission from the platform
or significantly paraphrased. Any examples used
from the users’ history are anonymised and para-
phrased.
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A Appendix

A.1 Creating Ground-truth Timelines, by
Retaining a Subset of Representative
Candidate Timelines

In addition to the details provided in section 3,
for selecting candidate timelines, we provide some
additional details inline below. As multiple time-
lines will typically be returned for each user using
methods in 3 and annotating all of these can be
time-consuming, in order to keep the 500 anno-
tated ground-truth timelines relatively diverse in
terms of the types of users - only a single timeline
was returned per user to be annotated. Therefore,
for each user only a single timeline was randomly
sampled per user and these were presented visu-
ally in turn to the first author of this paper, with
multiple time-scales limiting the x-axis of the visu-
alization returned: (1) the time-scale of the whole
user’s history, (2) a radius of 200 days surround-
ing the CMoC and (3) a radius of 31 days around
the CMoC. This was to ensure that the candidate
timelines could be inspected in close detail (3), and
also observing the timeline in context of the full
time-series (1) for that user. These three multiple
time-scales for a single user are presented visually
in figure 4. A manual binary decision was then
made on whether to discard this timeline or retain
it to be annotated and thereby create a ground-truth
timeline using it. This decision was based on a
time-series visualization of the frequency of daily
posts for that user and highlighting the location
of the timeline to be either retained or discarded.
The decision to discard a timeline was based on
two criteria: whether the timeline (1) was primarily
sparse over the full 15 days of the timelines, or
to a lesser degree (2) whether it appeared that the
CMoC was generated by noise. It was chosen to
discard timelines that were (1) primarily sparse, to
ensure that we allow sufficient amount of time to
pass between posts such that moments of change
can occur. Timelines that appeared to be (2) gener-
ated by noise, were discarded such that the ground-
truth timelines were representative of timelines that
would be generated by a change-point detection
algorithm with well chosen hyper-parameters - as
the retained timelines were thus timelines that ap-
peared to be generated by realistic change-points.
Figure 5 presents a visualisation of a timeline that
was discarded as described above, and figure 4 de-
scribes a timeline that was included to be annotated
as a ground-truth timeline.
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Figure 4: A timeline that was retained, out of the 1,220
timelines manually observed. It was retained as it (1)
was not primarily sparse as it contains posts distributed
well over the timeline, and (2) appeared to be generated
by a plausible change-point rather than noise. Time-
lines were visualized on 3 time-scales, as shown in this
figure, to allow for closer inspection and to compare in
context of the full time-series.
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Figure 5: A timeline that was discarded, out of the
1,220 timelines manually observed. It was discarded
as it (1) was primarily sparse containing only posts on
a few days in the timeline, and (2) appeared to be gen-
erated by noise rather than by a realistic change-point.

This process of visually deciding whether a ran-
domly sampled candidate timeline should be re-
tained to be converted into a ground-truth timeline
was repeated until 500 candidate timelines were
retained. This process thus lasted until 1,220 ran-
domly sampled timelines were observed and thus
720 timelines were discarded.
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From the annotated timelines, medoids are re-
turned as the medoid timestamp of the annotated
GTMoC after annotations were union aggregated
across all annotators as described in (anonymous).

defined "optimal® timeline

annotations we desire to capture

Figure 6: Identifying the position of the medoid, from
the timestamps of posts annotated as GTMoCs.

A.2 Annotation Guidelines

The annotation task proposed by (anonymous) was
to assign annotators to identify changes in mood,
by reading through the posts in chronological order
included within the generated timeline of an indi-
vidual - and annotating the posts which contain a
change in the user’s mood compared to the recent
past.

An example illustrating both a switch, and an
escalation are displayed in figure 7. Note, that the
example shown in this figure will be paraphrased
before the work is published - to further preserve
anonymity of this user.



3.3, fool good today i stopped d now i P

o
Friday, 14 Feb 2020
4.1 can' sieep.
Type?
o [Switch

Post range/info:

4144

4.2, Hate myself so much for not having the will to even get up of of my bed this day cause | feal like fucking burden

4.3.For the people who don't have a valentine date and are sad just buy chocolate and flowers for yourselfu fucking deserve it

Goodnight

4.4.1m skipping school tomorrow I'm paying money but  think i wil feel worse i i go i haven't even done my home works 5o I'm leaning towards skipping

Saturday, 15 Feb 2020

5.1.1m useless and a disappointment

Type?

. [Escalation

Post rangs/info:

BET]
5.2.1m feeling prety shity those days

Figure 7: An example of the annotation interface, dis-
playing a sequence of posts in a timeline shown to an
annotator. For these sequence of posts, the annotator
annotated a single post as a "switch" and another post
as an "escalation". The user has a "switch" at 4.1, dras-
tically changing from a positive mood to a negative
mood - where this changed mood persists until 4.4. The
"escalation" begins and is at its peak (in this case be-
coming increasingly negative) at 5.1, and de-escalates
up to the post at 5.2."
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