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Abstract

There is increasing interest to work with user001
generated content in social media and espe-002
cially textual posts over time. Currently there003
is no consistent way of segmenting user posts004
into timelines in a meaningful way that can im-005
prove the quality and cost of manual annota-006
tion. Here we propose a set of methods for007
segmenting longitudinal user posts into time-008
lines that are likely to contain interesting mo-009
ments of change in a user’s behaviour based on010
the content they have shared online and their011
online activity. We also propose a framework012
for evaluating the timelines returned in terms013
of containing candidate moments of change in014
close proximity to manually annotated time-015
lines that are dense in such moments of change.016
Finally, we present a discussion of the linguis-017
tic content of highly ranked timelines.018

1 Introduction019

An increasing body of work considers time-aware020

models trained on social media data for a number021

of different tasks, including personal event identifi-022

cation (Li and Cardie, 2014; Li et al., 2014; Chang023

et al., 2016a), suicidal ideation and suicide risk de-024

tection (Coppersmith et al., 2014, 2018; Cao et al.,025

2019; Matero et al., 2019; Sawhney et al., 2020,026

2021). For such tasks deriving meaningful time-027

lines (i.e. relatively short sequences of posts by in-028

dividuals, containing examples of the phenomenon029

under study) from large-scale collections, together030

with associated annotations, is crucial. This is es-031

pecially important for computational approaches032

in mental health given surging numbers of those033

seeking help online (Neary and Schueller, 2018).034

Earlier work on personal life event detection035

had considered selecting salient timelines through036

topic modelling (Li and Cardie, 2014; Li et al.,037

2014) or through a non-parametric generative ap-038

proach (Chang et al., 2016a). However, such ap-039

proaches are not suitable for identifying changes in040

mood or mental health more generally. Specifically, 041

since timelines are selected based on linguistic con- 042

tent this introduces a sampling bias for downstream 043

linguistic analysis and annotation (Olteanu et al., 044

2019; Mishra et al., 2019). In recent work on suici- 045

dal ideation detection, timelines are chosen as the 046

N most recent posts (Sawhney et al., 2020), which 047

are not necessarily the most salient for annotation 048

purposes. 049

Present Work: We propose a set of methods and 050

an associated evaluation framework for identifying 051

salient timelines from the history of social media 052

users to be annotated for the presence of Moments 053

of Change (MoC). We define a MoC as a particular 054

point or set of points in time denoting: (1) a shift 055

in an individual’s mood from positive-to-negative 056

or vice versa; (2) gradual mood progression. The 057

aim is to identify methods which can consistently 058

select timelines that are rich in MoC for large scale 059

cost-effective annotation. We follow earlier work 060

in hypothesising that posting behaviour can be used 061

as a proxy for changes in mental health (De Choud- 062

hury et al., 2016). Therefore we present methods 063

for creating timelines based on time-series of post- 064

ing frequency, such as change-point and anomaly 065

detection approaches, and evaluate these against 066

keyword-based methods and randomly selected 067

timelines. All candidate timelines are evaluated 068

against manually annotated MoC. We make the 069

following contributions: 070

• We present the first approach to extracting time- 071

lines from users’ posting history on social me- 072

dia based on change-point detection methods, 073

anomaly detection and kernel density estima- 074

tion (see §3). 075

• We propose a novel evaluation framework for 076

assessing the quality of annotated timelines, 077

and timeline extraction methods, on the basis 078

of manually annotated MoCs (see §4). 079

• We provide an insightful linguistic analysis into 080
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highly ranked (dense in MoCs) timelines and081

timelines sparse in MoCs (see §5.2).082

2 Related Work083

2.1 Tracking Changes in Mental Health084

Moments of Change (MoC) are an important085

concept in work on mental health tracking. Pruk-086

sachatkun et al. (2019) identifies a MoC as a posi-087

tive change in sentiment for a user with respect to a088

particular distressing topic mentioned in a conver-089

sation thread. De Choudhury et al. (2016) investi-090

gated shifts to suicide ideation by building models091

to predict transition of a user posting on a suicide092

support forum. We consider a more general defini-093

tion of MoC (see §1, “Present Work”).094

Creation of Mental Health Datasets. A large095

body of work in creating mental health datasets in-096

volves labelling posts for symptoms (Gkotsis et al.,097

2017; Loveys et al., 2017; Cheng et al., 2017) or098

levels of suicide ideation (Masuda et al., 2013; Cop-099

persmith et al., 2016; Shing et al., 2018). While100

annotations for some of these datasets are obtained101

through proxy signals (e.g., self-disclosure of diag-102

noses, posts on support networks) a question arises103

as to how to select appropriate data for annotation.104

Mishra et al. (2019) use keyword based methods105

to identify posts exhibiting the phenomenon un-106

der study (e.g. suicidal ideation) but this leads to107

sampling biases. An alternative is to consider time-108

line extraction approaches agnostic to the linguistic109

content, inspired by Timeline Summarisation (TLS)110

and Change-Point Detection (CPD).111

2.2 Timeline Summarization (TLS)112

TLS aims to provide concise chronologically or-113

dered timelines consisting only of the most relevant114

information for a given topic or entity, summarizing115

the key points in time. While TLS has been most116

commonly applied in news topic summarization117

(Swan and Allan, 2000; Martschat and Markert,118

2017, 2018; Steen and Markert, 2019), there has119

been growing interest in applying TLS applied on120

social media data (Li and Cardie, 2014; Chen et al.,121

2019; Ansah et al., 2019; Wang et al., 2021).122

TLS consists of a two-step pipeline, where (1)123

date selection is followed by (2) summarisation.124

Salient dates to summarize as a timeline are typ-125

ically identified using textual content, as well as126

time-series frequency information in the history127

of an individual / topic. Chang et al. (2016b,a) is128

interested in viral buzzes of mentions of celebri- 129

ties on social media, and as such aims to identify 130

salient dates by simultaneously modelling linguis- 131

tic content and frequency based time-series pat- 132

terns. While CPD has been explored in news TLS 133

(Hu et al., 2011), it remains under-explored for 134

social media data. 135

2.3 Change-point Detection 136

In §3, we explore using automatically detected 137

change-points (candidate MoCs) as the salient 138

dates used to select timelines of users on social 139

media for annotation. 140

Change-points (CPs) are typically defined as 141

points in time where the underlying generative pa- 142

rameters of a data sequence are predicted to have 143

changed (van den Burg and Williams, 2020). CPD 144

approaches, therefore, involve learning a predictive 145

model of a data sequence. While there are several 146

continuous models (e.g. a Gaussian model (Adams 147

and MacKay, 2007)), we are particularly inter- 148

ested in models suited to discrete event-based time- 149

stamped data (Knoblauch and Damoulas, 2018) - 150

such as points in time where a post/comment is 151

made on social media. In such scenarios Tempo- 152

ral Point Processes(TPPs) (Daley and Vere-Jones, 153

2003) are particularly well suited. 154

Temporal Point Processes (TPPs) TPPs are de- 155

fined as stochastic processes modelling discrete 156

events occurring on a continuous time domain. 157

They are typically characterized by an intensity 158

function, λ > 0, which represents the instanta- 159

neous rate of event occurrence. TPPs vary in com- 160

plexity: from the simple homogeneous Poisson 161

process (a model governed by a constant λ), to the 162

more flexible Hawkes process (Rizoiu et al., 2017) 163

(which has a conditional λ: dependent on both time 164

and historical events), to the rapidly developing 165

field of neural temporal point processes (Shchur 166

et al., 2021; Lin et al., 2021) (where λ is modelled 167

with highly flexible neural networks, such as RNNs 168

(Du et al., 2016) or more recently models based on 169

self-attention (Zhang et al., 2020; Zuo et al., 2020)). 170

In order to use TPPs to model event sequences, and 171

predict associated changes - certain CPD models, 172

such as Bayesian Online Change-point Detection 173

(Adams and MacKay, 2007) require that the TPP 174

be part of the exponential family of distributions 175

(e.g. the Gaussian distribution, or the Poisson dis- 176

tribution). This is so that the intensity λ can be 177

further modelled from a prior conjugate distribu- 178
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tion, making it possible to construct the likelihood179

of the chosen predictive model in a closed form.180

TPPs part of the exponential family of distribu-181

tions, specifically the Poisson-Gamma predictive182

model, therefore form a class of computationally in-183

expensive models that are scalable to large datasets,184

making them particularly attractive for our task.185

3 Approach186

Task. Our principal aim is to select timelines for187

annotation that are rich in MoC. To achieve this,188

we test a series of timeline extraction methods pre-189

sented in this section, which we then evaluate using190

a novel evaluation framework in §4.191

Selecting Candidate Timelines. To select time-192

lines for annotation, we extract candidate timelines193

as a span of timestamps Si,u from a user’s u history194

Hu. To do so we first propose identifying Candi-195

date Moments of Change (CMoC), which are dates196

predicted to be surrounded by many MoCs (§3.1).197

Subsequently, we extract the user’s posts surround-198

ing these CMoC within a fixed time window, as199

timelines to be returned for annotation (§3.2).200

3.1 Identifying Candidate MoCs (CMoC)201

We explore different approaches for identifying202

CMoC, as detailed below:203

(1) Change-point Detection (CPD): In a recent204

evaluation involving experiments with both syn-205

thetic and real-world change-points, van den Burg206

and Williams (2020) showed that Bayesian Online207

Change-point Detection (BOCPD) was the best per-208

forming model for a variety of CPD tasks. BOCPD209

functions by learning a predictive model on a210

data sequence, and when changes in the model’s211

underlying generative parameters are identified,212

a change-point is declared. The models which213

BOCPD is typically fit with continuous (e.g. the214

Gaussian distribution). However, it is also possi-215

ble to use temporal point processes (§2.3) which216

are more appropriate for modelling discrete event-217

based data (Knoblauch and Damoulas, 2018).218

Since we hypothesize that changes in posting219

behaviour coincide with changes in mood (see220

“Present Work” in §1), we use BOCPD to iden-221

tify changes in individuals’ posting frequency. As222

such we consider the daily frequency of posts made223

by a user as a Temporal Point Process, and use the224

homogeneous Poisson-Gamma (PG) point process225

model with BOCPD (Knoblauch and Damoulas,226

2018) to fit and identify changes in the daily fre-227

quency of posts by a user u from their entire as- 228

sociated history Hu. Note that we investigate this 229

hypothesis by evaluating the density of changes in 230

mood from timelines selected this way in our re- 231

sults section (§5.2), and also investigate changes in 232

posting activity coinciding with changes in mood 233

and sentiment in the same section (table 2). 234

By using a PG model with BOCPD, we assume 235

that each point in a user’s posting frequency is sam- 236

pled from a Poisson distribution with a discrete 237

intensity λ. Here λ represents the expected num- 238

ber of posts by a user within a given time interval. 239

As we use this conjugate Bayesian model, λ is 240

further assumed to be drawn from a Gamma distri- 241

bution with a set of priors α0 and β0, that act as ini- 242

tial hyper-parameters in our model, where α0/β0, 243

α0/β
2
0 denote the prior mean and variance over the 244

intensity of the time-series of the data. BOCPD has 245

an additional hyper-parameter which is the hazard, 246

h0 where 1/h0 expresses a prior belief about the 247

probability of change-points (CPs) occurring at a 248

given time t, provided that a CP has not recently 249

occurred: a low h0 results in the over-generation 250

of change-points while a large h0 is more conser- 251

vative and returns very few change-points (ideal in 252

our scenario, to ensure that we do not waste anno- 253

tation resources, by avoiding annotating too many 254

timelines generated by noise). 255

Since BOCPD computes a full probability dis- 256

tribution over the location of the CPs, quantifying 257

probable CPs along with their associated uncer- 258

tainty, we use the maximum a posteriori (MAP) seg- 259

mentation of the probability distribution to return 260

exact point estimates for CPs (Fearnhead and Liu, 261

2007; van den Burg and Williams, 2020). These 262

predicted points in time can represent CMoCs. An 263

illustration of identifying CMoCs from a given 264

user’s history in our implementation of BOCPD 265

is provided in Fig. 1. Here change-points define 266

CMoCs. 267

(2) Anomaly Detection (AD): Here we aim at 268

identifying (a) days of abnormally high user ac- 269

tivity and (b) abnormally long time periods of no 270

user activity at all. We hypothesize that such points 271

in time can be used to select salient timelines. We 272

experiment using different features to fit our model, 273

including the daily frequency of a user’s posts and 274

the number of comments they receive for those cor- 275

responding posts by others. Using either activity 276

type, we scan over the user’s entire history. 277

For (a) we explore the use of Kernel Density 278
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Figure 1: Using change-points in an example user’s
posting behaviour to define candidate moments of
changeM (c)

u (dashed red line). Candidate timelines are
then created centred on each M (c)

u , with a radius r=7.

Estimation (KDE) (Rosenblatt, 1956; Scott, 2015)279

to estimate the probability density function of the280

user’s activity. For (b), we focus on time periods281

in the user’s history lasting at least 14 days during282

which the user had no activity (posts/comments) at283

all. If, given the past 90 days of a user’s activity,284

the probability on a particular day of seeing either285

(a) such a high volume of activity or (b) a long286

period of ‘silence’ is lower than .01, then we mark287

the start of this period as an ‘anomaly’. In both (a)288

and (b), we treat detected anomalies as CMoCs.289

(3) Keywords: We further experiment with290

keyword-based methods based on the suicide risk291

severity lexicon (Gaur et al., 2019). Each keyword292

present in the lexicon corresponds to different lev-293

els of suicide risk severity such as “I’m tired of294

this suffering”, and “I’m going to kill myself”. We295

hypothesize that the presence of such phrases in296

a user’s post may be indicative of a MoC. The297

keywords-based methods we evaluate against sim-298

ply return CMoCs for the timestamps of posts by299

a given user that contain a keyword from the full300

lexicon or a sub-lexicon.1301

(4) Random: “Random single day” is a baseline302

method we evaluate against, which selects a single303

date from a uniform distribution over all days in a304

user’s u posting history Hu as the CMoC M
(c)
u .305

“Every day” is another baseline we experiment306

with, which simply returns every day as a CMoC.307

We experiment with it to see how well our methods308

are at avoiding the over-generation of candidate309

timelines. We seek to avoid over-generating time-310

lines as we want to only return timelines with a311

high density of MoC, since this aligns with our312

goal of improving annotation efficiency.313

1Upon inspection of the phrases included in the sub-lexica,
we excluded the “suicidal_indicator” sub-lexicon as it pro-
duced a lot of false positives.

3.2 Extracting Posts 314

Once a CMoC, M (c)
u , is found, a span of times- 315

tamps Si,u from the user’s history Hu is then iden- 316

tified within a certain radius r2 around M (c)
u . Sub- 317

sequently, we return the posts that are posted within 318

the resulting time window as the candidate time- 319

line, T (c)
u,i . A candidate timeline therefore consists 320

of the associated sequence of posts, corresponding 321

timestamps and comments within Si,u. 322

4 Evaluation of candidate timelines 323

Objective. We aim to identify the best method for 324

extracting user timelines and also assess how good 325

a given timeline is, while using minimal annota- 326

tion resources. A good timeline is one that would 327

contain a high proportion of posts that would be an- 328

notated as MoC, if manually labelled. As such, we 329

define a good timeline selection method as one that 330

is able to identify CMoC close to dense regions of 331

Ground-Truth MoCs (GTMoCs) in an initial trial 332

set of pre-annotated timelines. 333

4.1 Identifying dense regions in annotated 334

timelines 335

Medoids. To represent the location of dense re- 336

gions of GTMoCs, we propose the use of medoids. 337

A medoid is a timestamp of a post, considered to 338

be the centre of a cluster where the distances of all 339

other timestamps of annotated posts in the timeline 340

are minimal relative to it. In our work, medoids are 341

computed for sets of labelled GTMoCs in annotated 342

timelines. We therefore define a medoid C(g)
u,i as 343

the timestamp in a timeline which is a GTMoC that 344

has a minimal Euclidean distance d(., .) in time to 345

all other annotated GTMoCs M (g)
u,i within the same 346

annotated timeline T (g)
u,i . The location of medoid 347

C
(g)
u,i in an annotated timeline is thus computed as: 348

C
(g)
u,i = argmin

M
(g)
u,i∈T

(g)
u,i

∑
M

(g)
u,j∈T

(g)
u,i

d(M
(g)
u,i ,M

(g)
u,j ) (1) 349

Density of annotated timelines. We aim to fur- 350

ther characterise the locations of dense regions 351

(medoids) by the number of GTMoC they contain. 352

For this purpose we introduce a simple density met- 353

ric which we assign to medoids. The density ρu,i 354

2Here we take r = 7 which gives a manageable amount of
posts while providing context before and after the CMoC.
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for a ground truth timeline is defined as:355

ρu,i =
|M (g)

u,i |
|pu,i|

(2)356

, where |M (g)
u,i | is the sum total number of GTMoCs357

within timeline T (g)
u,i normalized by |pu,i|, the sum358

total of posts within the same timeline.359

In order to weight timelines by how dense they360

are, a medoid C(g)
u,i further inherits the density ρu,i361

of the timeline T (g)
u,i it represents. We transform the362

raw density scores to provide a binary distinction363

between “dense” (+1) and “sparse” (-1) medoids364

as in equation 3:365

ρ
(bin)
u,i

{
+1 if ρu,i ≥ Median(ρu,i∀u, i)
−1 otherwise

(3)366

A good timeline is therefore one that is identified367

as “dense” (+1) in equation 3, and the ideal location368

for a CMoC within it is as close to the medoid369

timestamp, defined in equation 1.370

In an ideal scenario where we have the resources371

to annotate many timelines, sampled from many372

candidate methods – then it would be straightfor-373

ward to compare and rank them based on the num-374

ber of dense timelines or the average resulting den-375

sity scores. This would allow us to directly identify376

the best method to select timelines in the future.377

However, due to the high cost and time-consuming378

process of annotation – we instead propose a few379

additional steps in our evaluation framework that380

allow us to identify alternative timeline selection381

methods without the need to annotate those time-382

lines directly. We do this by proposing a scoring383

system based on distance scores of CMoC relative384

to dense medoids.385

4.2 Scoring timeline selection methods386

To assess how good a given method is for select-387

ing desirable timelines, we make use of the eval-388

uation framework in §4.1 to assess the quality of389

pre-annotated timelines against the CMoC in unan-390

notated candidate timelines.391

Assuming an annotated ground-truth timeline,392

T
(g)
u,i , we aim to assess how close an identified393

CMoC, M (c), is to a dense region of GTMoCs.394

Based on how we have defined good timelines,395

we therefore give preference to methods that iden-396

tify CMoCs in close proximity to medoids that are397

identified to be dense in GTMoC, while penalizing 398

methods that over-generate CMoC. The reason for 399

this is that we want to identify methods that are 400

able to select timelines that will contain a high den- 401

sity of GTMoC when annotated, while avoiding 402

methods that simply annotate the entire history of 403

a user. The latter is infeasible and goes against our 404

original aim of reducing the amount of data needed 405

to be annotated by individuals. 406

Distance Scores To calculate the proximity of 407

CMoCs to medoids, we compute the minimum ab- 408

solute distance dmin
i,m (in days) between all CMoCs 409

detected by a given model m for a user’s u his- 410

tory Hu. Subsequently, we compute the following 411

distance score metric per annotated timeline: 412

d
(score)
i,m = (d

(min)
i,m + ε) ∗ sign(ρ(bin)

u,i ) 413

where ε = 0.001, to preserve the sign of each 414

medoid’s ρ(bin)
u,i in the case that d(min)

i,m = 0. The 415

d
(score)
i,m is then used to denote the proximity of 416

CMoCs generated by method m (in days) to a 417

ground truth medoid C(g)
u,i with density ρ(bin)

u,i . 418

Since we want to generate timelines that are 419

close to regions that are dense in terms of GTMoC, 420

we aim for low positive scores of d(score)
i,m . 421

Voting procedure. We aim to reward methods that 422

identify CMoC in close proximity to a "dense" 423

ground-truth medoid (low positive d(score)
i,m ), and 424

penalize methods which over-generate CMoC - for 425

example in locations that contain a low density of 426

GTMoC. We thus assign votes to each method, to 427

assess how well we achieve this objective. 428

Votes are assigned to each method, m for each 429

computed distance score, d(score)
i,m , as follows: 430

vm,i =

{
+1 if 0 ≤ d(score)

i,m ≤ t+
0 otherwise

431

where t+ is a threshold set to 10 days after exper- 432

imentation This score gives a positive vote to a 433

method generating a CMoC that falls within a mar- 434

gin of t+ days to a ground truth timeline. Setting a 435

threshold is common in the field of change point de- 436

tection (van den Burg and Williams, 2020). Votes, 437

v, are then normalized per timeline and method: 438

v
(scaled)
m,i =

vm,i

|M (c)
u,i |

439
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where |M (c)
u,i | is the total number of CMoCs gener-440

ated by method m.441

Scoring of methods. Timeline selection meth-442

ods are subsequently scored and ranked by sum-443

ming the votes v(scaled)
m,i for each method m over all444

ground truth timelines, as shown in the results of445

table 1. The minimum score a given method can446

receive is 0, and scores can only be positive - while447

the maximum score is the total number of "dense"448

(+1) medoids in the dataset (190 in our case).449

Comparison to Previous Work. Our evaluation450

of timeline selection methods differs from previous451

work on evaluating change-point detection meth-452

ods, as we aim to compare distances to regions of453

changes (represented as medoids), rather than dis-454

tances to exact change points (van den Burg and455

Williams, 2020). Typical measures for evaluating456

the identification of change points include: clus-457

tering metrics - such as the segmentation covering458

metric (used traditionally in image segmentation459

(Everingham et al., 2010; Arbelaez et al., 2010)),460

and classification metrics such as F1 scores as de-461

scribed in (van den Burg and Williams, 2020). Sim-462

ilar to our proposed approach, these metrics capture463

whether the distance of a predicted change-point to464

a ground-truth change-point falls within a certain465

threshold (van den Burg and Williams, 2020).466

Our evaluation framework depends on a set of467

timelines manually annotated with GTMoC. The468

manually annotated timelines were selected on the469

basis of a particular method (here BOCPD). While470

including the method that selected the timelines471

for manual annotation in the evaluation of meth-472

ods for generating CMoC and new timelines may473

appear biased, note that it is theoretically possible474

for another method to get a higher score. This is475

because the criteria for manual annotation of GT-476

Moc are different to the assignment of CMoC by477

the methods. As a result not all annotated time-478

lines are "dense". If a candidate selection method479

would only return CMoC close to regions where480

the manually annotated timelines had a high den-481

sity of GTMoC, it would receive better distance482

scores and more votes than the method which orig-483

inally selected the timelines for annotation. This484

is because the method which originally generated485

the timelines for annotation would be penalized486

for predicting a CMoC close to an sparse timeline,487

annotated with very few GTMoC.488

Another advantage of our evaluation setting is489

that if an alternative method identifies a CMoC490

towards the end, or slightly outside, a manually 491

annotated timeline - there is the potential that the 492

resulting candidate timeline will contain a higher 493

density of GTMoC if annotated. In such a scenario 494

the alternative method has the potential to receive 495

better distance scores as it may select a timeline 496

closer to a dense region of GTMoC, if this exists 497

near the edges of the originally manually annotated 498

timeline. Thus our distance scores can potentially 499

help us identify better methods for timeline extrac- 500

tion than the method originally used to select the 501

timelines for manual annotation. 502

5 Experiments 503

We empirically evaluate our proposed timeline se- 504

lection methods (§3), using our proposed evalua- 505

tion framework (§4) based on ground-truth human 506

annotated data. 507

5.1 Dataset 508

We licensed a de-identified dataset from TalkLife3 509

consisting of 1.1 million users, resulting in 12.3 510

million posts between August 2011 to August 2020, 511

of which we sampled from based on methods de- 512

scribed in §3 to create timelines. 513

Due to high variance in posting frequency of 514

users, we chose to annotate only timelines that 515

had between 10 and 150 posts - so that there was 516

sufficient amount of context to annotators to as- 517

sess whether a change had occurred, and that the 518

timelines were not impractically long. The final 519

annotated dataset includes 500 timelines from 500 520

separate TalkLife users, consisting of 18,702 posts 521

in total where the mean number of posts per time- 522

line is µ = 35 ± 22. The 500 timelines were 523

selected using a BOCPD Poisson-Gamma model, 524

where the parameters (α0:.01; β0:10; h0:103) were 525

fixed on the basis of improved model performance 526

compared to 70 initial manually annotated valida- 527

tion timelines which had been generated using the 528

anomaly detection (high activity: posts) method 529

(§3). All timelines within this dataset were manu- 530

ally inspected and filtered according to the details 531

in appendix A.1. 532

TalkLife is a free-to-use global peer-support social 533

network platform operating primarily as a mobile 534

app. Users are mainly English speakers, where 70% 535

of them are in the age range of 15 to 24 (Sharma 536

et al., 2020a). We chose data from TalkLife for 537

3https://www.talklife.com
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this work since the content across the entire plat-538

form is focused on conversations around mental-539

health and daily-life issues and feelings. It is thus540

suited to identifying MoC, and is complementary541

to recent work which uses TalkLife data for compu-542

tationally analysing mental health (Pruksachatkun543

et al., 2019; Sharma et al., 2020b; Saha and Sharma,544

2020; Kim et al., 2021).545

TalkLife users make textual posts and others on546

the platform may comment on them. While there547

are several features available from TalkLife, we548

propose to select timelines on the basis of only the549

frequency of posts made by users and frequency550

of associated comments received, all of which are551

timestamped. The context of the posts is only used552

in the manual annotation of selected timelines with553

GTMoC, used for evaluation. As such, the methods554

proposed in this paper are transferable to other555

popular platforms such as Twitter and Reddit for556

creating timelines for dataset annotation.557

5.1.1 Annotation Guidelines for GTMoC558

After extracting timelines (§3) from TalkLife, these559

were annotated by 3 English speaking, university560

educated annotators (one of them being a native561

speaker). Annotation was performed using guide-562

lines and an associated annotation interface pro-563

posed by (anonymous). The process is described564

briefly in this subsection.565

Annotators were provided with timelines, con-566

taining sequences of time-stamped posts by users567

along with comments made on those posts. Annota-568

tors were asked to label posts containing a "Switch"569

(sudden change in mood) or an "Escalation" (grad-570

ual mood progression). A label of "None", the571

default, is assigned to posts with no MoC. Specif-572

ically, a "Switch" is defined in the guidelines as573

"a drastic change in mood, in comparison with the574

recent past", and the annotator is tasked to label575

the first post which has a clearly different mood576

compared to previous posts. They are also asked to577

specify the duration of the change in mood in terms578

of the associated range of posts. An "Escalation"579

on the other-hand is defined as "a gradual change in580

mood, which should last for a few posts". Annota-581

tions are provided for the peak of the escalation and582

the range of associated posts (both before and after583

the identified peak in mood change). For this paper584

we consider all labels of "Switch", "Escalation",585

and their corresponding ranges as GTMoC. For the586

annotation of GTMoC, posts within timelines were587

displayed on a longitudinal basis, thus providing588

Figure 2: Histogram showing the density of GTMoCs
per timeline. All 500 timelines were selected using
BOCPD PG (α0:.01; β0:10; h0:103).

annotators with access to both previous and future 589

context around each post in the timeline. 590

To obtain GTMoC for our evaluation we aggre- 591

gate the annotations across all annotators per time- 592

line as described in (anonymous). The percent of 593

inter-annotator agreement for the labels "None", 594

"Switch" and "Escalation" were 0.89, 0.30, and 595

0.50 respectively based on majority agreement. 596

5.2 Results & Discussion 597

We identify CMoC from the timeline selection 598

methods in §3.1 on the 500 users for whom we 599

have GTMoCs, and evaluate these using our ap- 600

proach in 4. To compare different methods, we 601

also round all CMoC to the nearest day removing 602

duplicate predicted dates per method. 603

Density scores of annotated timelines. The den- 604

sity of the final annotated timelines, selected by 605

our best performing selection method are presented 606

in Fig. 2. With a mean density of 0.159, this is 607

comparatively high considering that GTMoCs are 608

rare events and that many timelines typically do 609

not contain any GTMoC when annotated. 610

Ranking of timeline selection methods. Table 1 611

shows that BOCPD with a high h0 and low α0/β0 612

produces overall timelines closest to the GTMoCs. 613

Thus this model, which is confident about a low 614

number of CMoCs, will generate fewer CMoCs and 615

corresponding timelines. BOCPD is followed by 616

a standard approach to selecting timelines, which 617

is to impose a linguistic bias on the user posts and 618

therefore produce annotated datasets (and hence, 619

models) based on the presence of certain keywords. 620

Note that these methods achieve less than half the 621

top score of BOCPD. Even with a low h0 and 622

α0/β0 = 1 (more likely to over-generate CMoCs) 623
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the BOCPD still outperforms most of the anomaly624

detection methods and the random timeline genera-625

tion, where a day is chosen at random in a user’s626

timeline with seven days around it. The anomaly627

detection method which identifies CMoCs at points628

of high activity of posts performs similarly to the629

keyword based methods. All other anomaly detec-630

tion methods seem to over-generate CMoCs with631

ones identifying anomalies on low user activity per-632

forming worse than the random timeline generation.633

The floor score for over-generation of CMoCs is634

provided by considering every day as a CMoC.635

Method Score
BOCPD PG (α0: .01; β0 : 10; h0: 103) 27.34
Keywords (three categories) 13.79
Keywords (all) 12.35
AD (high activity: posts) 10.09
BOCPD PG (α0: 1; β0: 1; h0: 10) 9.83
AD (high & low activity: posts) 8.20
AD (high activity: comments received) 5.21
AD (high & low activity: comments
received)

4.92

Random single day 4.00
AD (low activity: comments received) 3.49
AD (low activity: posts) 3.28
Every day 0.25

Table 1: Methods (proposed in §3) ranked in descend-
ing order by their ability to generate desired timelines,
using our evaluation framework in §4.

Linguistic analysis of timelines. To gain some636

insights into the characteristics of ‘dense’ (high637

number of GTMoCs) vs ‘sparse’ timelines (low638

number of GTMoCs), we employ VADER (Hutto639

and Gilbert, 2014) for sentiment and ‘Twitter-640

RoBERTa-emotion’ (Barbieri et al., 2020) for emo-641

tion recognition 4 on the post-level of 250 timelines,642

equally split between ‘dense’ (density score ρu,i643

is in upper-quartile of all timelines) and ‘sparse’644

(bottom-quartile). The distribution of sentiment645

scores across these timelines are shown in Fig. 3.646

For each timeline we extract statistical features647

(avg, std, min, max) for each emotion/sentiment648

dimension of the posts within it, and the same sta-649

tistical features based on their difference across two650

consecutive posts within the timeline. Using these651

features, we train a Logistic Regression aiming at652

predicting ‘dense’ vs ‘sparse’ timelines and extract653

the coefficients with the highest/lowest values.654

Table 2 suggests that sparse timelines frequently655

4We use the compound sentiment score from VADER,
assigning a single sentiment score to each post; Twitter-
RoBERTa-emotion assigns one score per emotion: joy, anger,
sadness, optimism.

consist of positive posts in sentiment and mood. 656

On the other hand, sadness- and variance-based fea- 657

tures have the most positive relationship with pre- 658

dicting a timeline containing many MoCs – a find- 659

ing that was also empirically confirmed via manual 660

inspection of the most dense timelines. This sug- 661

gests that future work could also employ methods 662

based on mood or sentiment for extracting user 663

timelines (with the cost of introducing linguistic 664

bias), while highlighting the importance for consid- 665

ering the variation of a user’s mood and sentiment. 666

Figure 3: Distribution of
sentiment scores of ‘dense’
vs ‘sparse’ timelines (medians:
−.949 & .970, respectively).

Feature Coef
sadness (avg) 2.29
sadness (std) 1.45
sentiment (std) 1.00
sentiment (avg) -1.23
optimism (avg) -1.25
sentiment (min) -1.31
joy (avg) -1.58

Table 2:
Coefficients of
Logistic Regression
trained to classify a
timeline as ‘dense’
(1) or ‘sparse’ (-1).

667

668

6 Conclusions & Future work 669

We have introduced methods and an evaluation 670

framework for identifying timelines with many 671

Moments of Change (MoC) in a user’s posting be- 672

haviour on social media. Our aim is to use changes 673

in posting behaviour as a proxy for changes in 674

mood, to facilitate the process and maximise the 675

effectiveness of annotation of longitudinal user con- 676

tent. Our methods have been manually evaluated 677

against ground truth MoCs (GTMoCs). Bayesian 678

Online Change Point Dection (BOCPD) with a 679

Poisson-Gamma model shows promise in detecting 680

candidate MoCs close to GTMoCs. 681

In future work we will explore the incorporation 682

of textual content in the BOCPD Poisson-Gamma 683

model for the distinction between different types 684

of GTMoC. We find that resulting timelines dense 685

in GTMoCs are characterised by a high deviation 686

in sentiment from one post to the next, suggesting 687

that such deviations may be a useful feature for 688

distinguishing between different types of GTMoC. 689

We expect that the methods proposed in our work 690

will benefit researchers interested in creating lon- 691

gitudinally annotated textual datasets consisting of 692

user posts, particularly when annotating Moments 693

of Change. 694
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7 Ethics Statement695

Ethics IRB approval was obtained from the corre-696

sponding ethics board of the host University prior697

to engaging in this research study. Our work in-698

volves ethical considerations around the analysis699

of user generated content shared on a peer sup-700

port network (TalkLife). A license was obtained701

to work with the user data from TalkLife and a702

project proposal was submitted to them in order703

to embark on the project. The current paper fo-704

cuses on the identification of periods of interest705

within the user history, in terms of moments of706

change. The work on annotation of moments of707

change (MoC) is separate to this paper but consid-708

ers sudden shifts in mood (switches or escalations).709

Annotators were given contracts and paid fairly in710

line with University pay-scales. They were alerted711

about potentially encountering disturbing content712

and advised to take breaks during annotation. The713

annotations are used to evaluate the work of the714

current paper, which aims to meaningfully segment715

timelines in terms of containing likely moments of716

change. Potential risks from the application of our717

work in being able to identify moments of change718

in individuals’ timelines are akin to the identifi-719

cation of those in earlier work on personal event720

identification from social media and the detection721

of suicidal ideation. Potential mitigation strategies722

include restricting access to the code base and an-723

notation labels used for evaluation. No data can724

be shared without permission from the platform725

or significantly paraphrased. Any examples used726

from the users’ history are anonymised and para-727

phrased.728
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A Appendix 988

A.1 Creating Ground-truth Timelines, by 989

Retaining a Subset of Representative 990

Candidate Timelines 991

In addition to the details provided in section 3, 992

for selecting candidate timelines, we provide some 993

additional details inline below. As multiple time- 994

lines will typically be returned for each user using 995

methods in 3 and annotating all of these can be 996

time-consuming, in order to keep the 500 anno- 997

tated ground-truth timelines relatively diverse in 998

terms of the types of users - only a single timeline 999

was returned per user to be annotated. Therefore, 1000

for each user only a single timeline was randomly 1001

sampled per user and these were presented visu- 1002

ally in turn to the first author of this paper, with 1003

multiple time-scales limiting the x-axis of the visu- 1004

alization returned: (1) the time-scale of the whole 1005

user’s history, (2) a radius of 200 days surround- 1006

ing the CMoC and (3) a radius of 31 days around 1007

the CMoC. This was to ensure that the candidate 1008

timelines could be inspected in close detail (3), and 1009

also observing the timeline in context of the full 1010

time-series (1) for that user. These three multiple 1011

time-scales for a single user are presented visually 1012

in figure 4. A manual binary decision was then 1013

made on whether to discard this timeline or retain 1014

it to be annotated and thereby create a ground-truth 1015

timeline using it. This decision was based on a 1016

time-series visualization of the frequency of daily 1017

posts for that user and highlighting the location 1018

of the timeline to be either retained or discarded. 1019

The decision to discard a timeline was based on 1020

two criteria: whether the timeline (1) was primarily 1021

sparse over the full 15 days of the timelines, or 1022

to a lesser degree (2) whether it appeared that the 1023

CMoC was generated by noise. It was chosen to 1024

discard timelines that were (1) primarily sparse, to 1025

ensure that we allow sufficient amount of time to 1026

pass between posts such that moments of change 1027

can occur. Timelines that appeared to be (2) gener- 1028

ated by noise, were discarded such that the ground- 1029

truth timelines were representative of timelines that 1030

would be generated by a change-point detection 1031

algorithm with well chosen hyper-parameters - as 1032

the retained timelines were thus timelines that ap- 1033

peared to be generated by realistic change-points. 1034

Figure 5 presents a visualisation of a timeline that 1035

was discarded as described above, and figure 4 de- 1036

scribes a timeline that was included to be annotated 1037

as a ground-truth timeline. 1038
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Figure 4: A timeline that was retained, out of the 1,220
timelines manually observed. It was retained as it (1)
was not primarily sparse as it contains posts distributed
well over the timeline, and (2) appeared to be generated
by a plausible change-point rather than noise. Time-
lines were visualized on 3 time-scales, as shown in this
figure, to allow for closer inspection and to compare in
context of the full time-series.

Figure 5: A timeline that was discarded, out of the
1,220 timelines manually observed. It was discarded
as it (1) was primarily sparse containing only posts on
a few days in the timeline, and (2) appeared to be gen-
erated by noise rather than by a realistic change-point.

This process of visually deciding whether a ran-1039

domly sampled candidate timeline should be re-1040

tained to be converted into a ground-truth timeline1041

was repeated until 500 candidate timelines were1042

retained. This process thus lasted until 1,220 ran-1043

domly sampled timelines were observed and thus1044

720 timelines were discarded.1045

From the annotated timelines, medoids are re- 1046

turned as the medoid timestamp of the annotated 1047

GTMoC after annotations were union aggregated 1048

across all annotators as described in (anonymous). 1049

Figure 6: Identifying the position of the medoid, from
the timestamps of posts annotated as GTMoCs.

A.2 Annotation Guidelines 1050

The annotation task proposed by (anonymous) was 1051

to assign annotators to identify changes in mood, 1052

by reading through the posts in chronological order 1053

included within the generated timeline of an indi- 1054

vidual - and annotating the posts which contain a 1055

change in the user’s mood compared to the recent 1056

past. 1057

An example illustrating both a switch, and an 1058

escalation are displayed in figure 7. Note, that the 1059

example shown in this figure will be paraphrased 1060

before the work is published - to further preserve 1061

anonymity of this user. 1062
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Figure 7: An example of the annotation interface, dis-
playing a sequence of posts in a timeline shown to an
annotator. For these sequence of posts, the annotator
annotated a single post as a "switch" and another post
as an "escalation". The user has a "switch" at 4.1, dras-
tically changing from a positive mood to a negative
mood - where this changed mood persists until 4.4. The
"escalation" begins and is at its peak (in this case be-
coming increasingly negative) at 5.1, and de-escalates
up to the post at 5.2."
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