
Unified Transferability Metrics for Time Series Foundation Models

Weiyang Zhang¹ Xinyang Chen^{1✉} Xiucheng Li¹ Kehai Chen¹ Weili Guan² Liqiang Nie¹

¹School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen)

²School of Information Science and Technology, Harbin Institute of Technology (Shenzhen)

{zhangweiyang12138, chenxinyang95, nieliqiang}@gmail.com

{lixiucheng, chenkehai, guanweili}@hit.edu.cn

Abstract

With the increasing number of time series pre-trained models, designing transferability evaluation metrics for time series has become an urgent problem to address. While transferability evaluation has been extensively studied in computer vision, we aim to address a critical gap by developing tailored metrics for time series analysis. In this paper, we introduce TEMPLATE, a transferability estimation framework specifically tailored for versatile time series analysis, comprising three complementary metrics: (1) Dependency Learning Score quantifies a model’s capacity to capture temporal dependencies. (2) Pattern Learning Score evaluates the representation quality in extracting discriminative temporal patterns. (3) Task Adaptation Score assesses cross-task generalization capability, enabling versatile time series analysis. TEMPLATE presents a versatile framework compatible with both classification and regression paradigms. Through comprehensive benchmarking across 5 distinct downstream tasks, our method demonstrates superior capability in identifying optimal pre-trained models from heterogeneous model pools for transfer learning. Compared to the state-of-the-art method ETran, our approach improves the weighted Kendall’s τ_w across 5 downstream tasks by 35%. The code is available at <https://github.com/TEMPLATE>.

1 Instroduction

Recently, pre-trained models have drawn increasing attention in the time series domain due to their exceptional performance in computer vision and natural language processing [1]. These models have achieved significant success across various time series downstream tasks [2, 3] and are readily available on platforms like HuggingFace [4] and TensorFlow Hub [5]. However, no single model consistently outperforms others across all datasets. Therefore, selecting the most suitable pre-trained time series model for a given target task has become a pressing challenge. A time-consuming solution is to fine-tune all pre-trained models on the target dataset and then select the best-performing fine-tuned model. But compared to pre-trained models in computer vision such as ResNet [6] and MobileNet [7], time-series pre-trained models have much larger parameter scales [8, 9], making direct brute-force fine-tuning incur enormous time costs and high computational resource requirements [10], as shown in the left part of Figure 1.

Recent studies propose fast transferability evaluation methods to efficiently rank models and select the optimal one. Existing methods can generally be categorized into static and dynamic approaches [11]. Static methods calculate scores directly based on the statistical information of the model, such as LEEP [12], NLEEP [13], H-score [14] and TMI [15]. In contrast, dynamic methods transform this statistical information using certain learning frameworks or representation space mapping algorithms before calculating scores, such as SFDA [16], LogME [17], and ETran [18]. These approaches are empirically validated as effective metrics for selecting computer vision models.

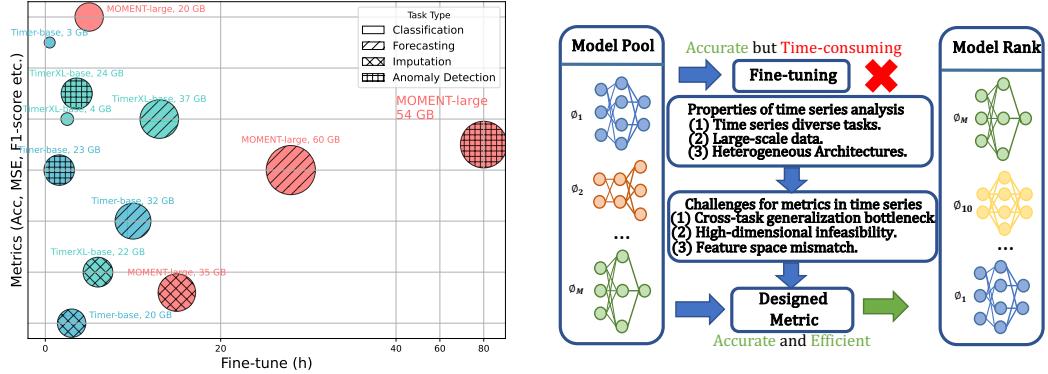


Figure 1: Pre-trained models’ fine-tune overhead (left) and transferability metric framework (right).

Nevertheless, existing research primarily focuses on image-based tasks. When applied to time series, several challenges emerge, as shown in the right part of Figure 1. First, mainstream time series tasks exhibit significant diversity, encompassing forecasting, classification, imputation, and anomaly detection, among others. While existing methods predominantly concentrate on classification-based tasks, achieving cross-task generalization capability remains the primary challenge. Second, downstream time series datasets frequently exhibit large-scale characteristics, resulting in high-dimensional computational infeasibility. This consequently imposes stringent requirements on evaluation metrics, demanding both computational efficiency and measurement accuracy. Last but not least, computer vision models consistently employ standardized data preprocessing protocols, consequently maintaining minimal variance in feature dimensionality. But in time series analysis, the architectural heterogeneity of models and their divergent approaches to processing inter-channel dependencies lead to substantial discrepancies in feature dimensionality. This consequently induces feature space mismatch, rendering evaluation metrics that rely on numerical magnitudes such as intra-class variance [15, 19] or singular value [17] ineffective. Table 1 summarizes the challenges in developing transferability metrics for time series. Prior to this paper, there is no ideal solution for pre-trained model selection specially designed to tackle these challenges.

To address these fundamental challenges while accounting for the intrinsic characteristics of time series, we propose **TEMPLATE** (**TEM**poral **A**lignment **P**attern **E**stimation), which quantitatively assesses the transferability of time series pre-trained models through three complementary evaluation metrics: Firstly, an effective time series pre-trained model must demonstrate robust capability in capturing and representing temporal dependencies. Moreover, we empirically demonstrate that the principal components constitute the most transferable elements within learned representations. Consequently, we propose the Dependency Learning Score as a quantitative metric to assess dependency learning capability through comparative analysis of principal components between original representations and their corresponding representations in trend. Secondly, to assess the core ability of time series pre-trained models in capturing key temporal patterns, we introduce the Pattern Learning Score as a quantitative evaluation metric. This score precisely measures the model’s focus on key temporal patterns through the ratio of the principal component to the overall pattern complexity. Finally, to ensure adaptability across diverse downstream tasks and enable versatile time series analysis, we introduce the Task Adaptation Score as a task-specific evaluation metric for assessing representation quality. For high-level tasks, hierarchical representations are preferred. Thus we calculate the similarity between the features output by the first and last layers of the encoder. Through the integration of these three complementary evaluation metrics, we establish a comprehensive framework for assessing time series pre-trained models. Experimental results demonstrate strong correlation between our proposed metric and actual model transferability, consistently outperforming existing evaluation methods in benchmark tests across 5 downstream tasks.

Our contributions are summarized as follows:

- We evaluated the challenges in designing transferability metrics for time series and, from the model’s dependency learning ability, pattern learning ability, and task adaptation ability, proposed the **TEMPLATE** pre-trained model transferability evaluation framework.

Table 1: Time series design challenges and methods comparison.

Challenges	NCE	LEEP	LogME	SFDA	NLEEP	PACTran	TMI	ETran	NCTI	Ours
Cross-task generalization bottleneck	✗	✗	✓	✗	✗	✗	✗	✓	✗	✓
High-dimensional infeasibility	✗	✗	✗	✗	✗	✗	✗	✓	✓	✓
Feature space mismatch	✗	✗	✗	✗	✗	✗	✗	✗	✗	✓

- Our proposed framework is highly flexible and generalizable, supporting both classification and regression tasks. Moreover, the metrics can be applied to 5 mainstream time series analysis tasks, demonstrating our broad applicability and task-specific adaptability.
- Experiments on 32 datasets across 5 mainstream time-series tasks demonstrate that our method achieves state-of-the-art (SOTA) performance in evaluating the transferability of time-series pre-trained models, with an average improvement of 35% compared to previous SOTA methods.

2 Related Work

2.1 Time Series Pre-trained Model

In the image and vision domains, pre-training on large-scale sequence datasets has significantly advanced modality understanding [20, 21]. Building on this, pre-trained models have been widely developed in the time series domain [1]. LLM4TS [22] enhances forecasting accuracy by fine-tuning large language models, while Tempo [23] improves cross-modal alignment using multimodal prompts. Lag-Llama [24] conducts pre-training on multi-domain time series data and uses lag features as covariates for probabilistic univariate forecasting. Moment [25] conducts masked reconstruction pre-training on various time series datasets. Similarly, Timer [9] undergoes autoregressive pre-training on large-scale collected datasets. UniTS [26] integrates downstream tasks into a single framework through task tokenization. Time-MOE [27], which combines the mixture-of-experts method, is the first to scale time series pre-trained models to 2.4 billion parameters. Therefore, as the scale of time-series pre-trained models continues to grow, how to evaluate the transferability of these models has become an urgent issue that needs to be addressed.

2.2 Model Transferability Estimation

Model Transferability Estimation (MTE) aims to provide fast and efficient methods for quantifying a model’s performance on downstream tasks without fine-tuning [11]. Recent MTE advancements focus on vision models. Early works, such as NCE [28] and LEEP [12], focused on probabilistic methods based on the expected empirical distribution of target labels. LogME [17] estimates the maximum marginalized likelihood of labels, while NLEEP [13] extends LEEP by replacing the output layer with a Gaussian Mixture Model. SFDA [16] projects features into Fisher space and enhances class separability using physics-inspired models. TMI [15] uses intra-class feature variance as a performance indicator, assuming that lower variance reflects tighter clustering of class features. NCTI [19], inspired by the neural collapse phenomenon, develops metrics to measure the distance between the current state of the pre-trained model and its hypothetical fine-tuned state. ETran [18] introduces energy scores to quantify whether the target dataset is in-distribution or out-of-distribution for a candidate model, assuming models with higher in-distribution levels for the target dataset exhibit greater transferability. Existing studies primarily focus on vision and have not fully considered the characteristics of time-series data and pre-trained models. Therefore, we propose TEMPLATE, a transferability evaluation framework specifically designed for time-series pre-trained models.

3 Approach

3.1 Problem Formulation

Given M pretrained models $\{\phi_m\}_{m=1}^M$ and a target dataset \mathcal{D} with N samples, where each model consists of a backbone f that outputs encoded features, and the target dataset is associated with an evaluation metric (accuracy, MSE, F-score etc.), we initialize a predictor head on the backbone f and fine-tune the entire model on the target dataset. The feature extracted by the l -th layer of the pretrained model $\phi_m(\cdot)$ is denoted as \mathbf{H}^l , where $\mathbf{H}^l = \phi_m(\mathbf{X}) \in \mathbb{R}^{N \times d}$ and d is the feature dimension. In the

following, we omit l using \mathbf{H} to denote the feature output of the last layer of the model’s encoder. By performing brute-force fine-tuning on all models, we obtain the true performance $\{P_m\}_{m=1}^M$ for the model hub. A practical model selection method should generate a score for each pretrained model. Ideally, the score should correlate strongly with the actual fine-tuning performance $\{P_m\}_{m=1}^M$, allowing the best-performing pretrained model to be selected based on the evaluation score alone.

3.2 Transferability Assessment through Temporal Representation Transferability Estimation

To effectively evaluate the transferability of time series pre-trained models, it is necessary to address the dimensional gap in feature matrices caused by the model’s different handling of inter-channel relationships, as well as the varying requirements of various downstream tasks. Therefore, we avoid directly using statistical quantities of the feature matrix to measure the transferability of pre-trained models. Specifically, we propose TEMPLATE, a hybrid transferability metric that includes Dependency Learning Score, Pattern Learning Score, and Task Adaptation Score, aiming to assess transferability of the learned representation in pre-trained models from the perspective of temporal dependency learning, temporal pattern learning and hierarchical features.

To better understand how fine-tuning affects the representation learned by pre-trained models, we explore the changes in the components of feature matrices before and after fine-tuning. Specifically, we use Singular Value Decomposition (SVD) to analyze this process as it efficiently decomposes the feature matrix and analyzes its dominant patterns. We fine-tune MOMENT-small [25], Timer-small [9], and UniTS-small [26] on EthanolConcentration [29], Handwriting [29], and UWaveGestureLibrary [29] dataset, respectively, and compare the cosine similarity of the feature vectors corresponding to singular values before and after fine-tuning. The results are shown in Figure 2 and it is observed that the cosine similarity of feature vectors decreases as their corresponding singular values decrease. This indicates that larger singular values encapsulate more knowledge and are more transferable to downstream tasks.

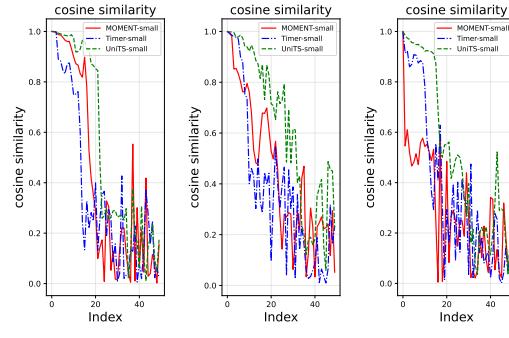


Figure 2: The cosine similarity of feature vectors, computed based on feature vectors before and after fine-tuning, on three datasets (sorted in descending order by singular values): EthanolConcentration (Left), Handwriting (Middle), and UWaveGestureLibrary (Right).

Dependency Learning Score. The core of time series modeling is to capture temporal dependency. Time series pre-trained models should be able to capture long-term dependencies, which represent stable and persistent patterns crucial for effective modeling [30]. To assess this ability, we employ series decomposition [31] to extract the trend component, which inherently contains long-term dependencies. This component is fed into the model, yielding a feature matrix \mathbf{T} that is focused on capturing long-term dependencies, as follows:

$$\text{trend}(\mathbf{X}) = \text{AvgPool}(\text{padding}(\mathbf{X})), \mathbf{T} = \phi_m(\text{trend}(\mathbf{X})), \quad (1)$$

where we use padding to maintain the original series length, and then apply the AvgPool layer for moving average calculations. A model proficient in learning long-term dependencies should exhibit a high degree of consistency between the feature matrix \mathbf{H} and the feature matrix \mathbf{T} of the trend component. To this end, we propose the Dependency Learning Score S_{dl} . Specifically, considering that the largest singular value and its corresponding feature vector demonstrate superior transferability, we prioritize the use of the feature vectors corresponding to the largest singular values of \mathbf{H} and \mathbf{T} . We perform SVD to decompose the features:

$$\mathbf{H} = \mathbf{U}_h \Sigma_h \mathbf{V}_h^T, \mathbf{T} = \mathbf{U}_t \Sigma_t \mathbf{V}_t^T. \quad (2)$$

We denote the largest singular values of \mathbf{H} and \mathbf{T} as σ_h and σ_t , and their corresponding feature vectors as u_h and u_t , respectively. With the feature vectors, S_{dl} is formulated to quantify the pre-trained model’s capability in capturing long-term temporal dependencies through computation of the Pearson correlation coefficient [32] between the u_h and u_t , as follows:

$$S_{dl} = \rho(u_h, u_t) = \frac{\text{Cov}(u_h, u_t)}{\lambda_h \lambda_t}, \quad (3)$$

where $\text{Cov}(\cdot)$ represents the covariance between feature vectors, and λ_h, λ_t represents their respective variances. Since S_{dl} represents the pre-trained model's ability to learn long-term dependencies, a pre-trained model that effectively learns long-term dependencies should achieve a larger S_{dl} .

Pattern Learning Score. Effective temporal pattern learning is critical for time series pre-trained models to handle complex, multi-scale behaviors, which allows the model to learn the temporal dynamics in time series data, thereby achieving superior performance on downstream tasks.

To this end, we propose the Pattern Learning Score S_{pl} to measure the pre-trained model's ability to learn the primary temporal patterns. Within the framework of matrix decomposition, singular values quantitatively characterize the relative significance of distinct patterns embedded in the feature matrix. The largest singular value typically corresponds to the primary temporal pattern in time series, reflecting the most significant dynamic behavior captured by the model.

While the dominant singular value provides an intuitive measure of a model's capacity to capture primary temporal patterns, the inherent feature space mismatch resulting from heterogeneous inter-channel relationship processing across pre-trained models may significantly compromise the reliability of transferability assessment. Therefore, we introduce the nuclear norm as a measure of the overall importance of the patterns, defined as the sum of all singular values of the matrix. Specifically, we use the ratio of the largest singular value to the nuclear norm to measure the pre-trained model's ability to learn primary temporal patterns. A higher ratio signifies enhanced capability of the pre-trained model in capturing dominant temporal patterns, whereas a lower ratio potentially indicates insufficient representation of these critical temporal patterns. Moreover, compared to the raw data, the temporal patterns of the trend component are simpler, with the primary patterns being more prominent. Therefore, the ratio of the largest singular value to the nuclear norm using the trend component provides a more accurate evaluation of the pre-trained model's ability to learn primary temporal patterns. The formulation of S_{pl} is as follows:

$$S_{pl} = \frac{\sigma_t}{\|\mathbf{T}\|_*}, \quad (4)$$

where σ_t denotes the largest singular value of the trend component feature matrix, and $\|\mathbf{T}\|_*$ represents its nuclear norm. Since S_{pl} represents the pre-trained model's ability to learn primary temporal patterns, a pre-trained model that effectively learns these patterns should achieve a larger S_{pl} .

Task Adaptation Score. Time series downstream tasks exhibit substantial heterogeneity, with distinct tasks imposing markedly divergent requirements on feature representations [33]. Classification tasks require high-level semantics, and imputation tasks require the model to learn from missing data. Consequently, hierarchical representations become essential. In contrast, forecasting tasks and anomaly detection tasks place more emphasis on the precise extraction of low-level features from the raw data itself, focusing on local patterns and temporal dependencies [34, 33]. Consequently, an effectively designed pre-trained model should demonstrate the capability to learn task-adaptive representations that dynamically adjust to varying downstream task requirements. [35]. Moreover, due to the diverse designs of time-series pre-trained models and the significant differences in network architectures, it is necessary to consider the overall evolution of features. We measure the task adaptation ability of the pretrained model by calculating the similarity between the output features \mathbf{H}^1 from the first layer of the encoder and the output features \mathbf{H} from the last layer. A simple approach is to directly compute the dot product-based similarity [36] between them:

$$\langle \text{vec}(\mathbf{H}^1(\mathbf{H}^1)^T), \text{vec}(\mathbf{H}\mathbf{H}^T) \rangle = \text{tr}(\mathbf{H}^1(\mathbf{H}^1)^T \mathbf{H}\mathbf{H}^T) = \|\mathbf{H}^T \mathbf{H}^1\|_F^2, \quad (5)$$

Due to the differences in how time series pre-trained models handle inter-channel relationships, there is a significant gap in feature matrix dimensions across different pre-trained models. Directly calculating squared dot product can lead to inaccurate estimates of model's transferability. Therefore, we use centered kernel alignment [37, 38, 36] to measure similarity, which further optimizes dot product-based similarity. Specifically, Equation 5 means that, for the centered \mathbf{H}^1 and \mathbf{H} :

$$\frac{1}{(n-1)^2} \text{tr}(\mathbf{H}^1(\mathbf{H}^1)^T \mathbf{H}\mathbf{H}^T) = \|\text{cov}((\mathbf{H}^1)^T, \mathbf{H}^T)\|_F^2, \quad (6)$$

The Hilbert-Schmidt Independence Criterion [39] generalizes Equations 5 and 6 to inner products from reproducing kernel Hilbert spaces, where the squared Frobenius norm of the cross-covariance matrix

becomes the squared Hilbert-Schmidt norm of the cross-covariance operator. Let $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ and $L_{ij} = l(\mathbf{y}_i, \mathbf{y}_j)$ where k and l are two kernels. The empirical estimator of HSIC is:

$$\text{HSIC}(K, L) = \frac{1}{(n-1)^2} \text{tr}(K \mathbf{Q} L \mathbf{Q}), \quad (7)$$

where \mathbf{Q} is the centering matrix $\mathbf{Q}_n = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^T$. Finally, we normalize the HSIC to obtain our score function, S_{ta} :

$$S_{ta} = \frac{\text{HSIC}(K, L)}{\sqrt{\text{HSIC}(K, K) \text{HSIC}(L, L)}}, \quad (8)$$

where we use the RBF kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2/(2\gamma^2))$ for mapping, with several possible strategies for selecting the bandwidth. This strategy controls the extent to which similarity at small distances is emphasized over large distances. We set γ to the median distance between samples. For classification and imputation task, it is essential for the model to learn hierarchical representations, making a lower S_{ta} more desirable. In contrast, for forecasting and anomaly detection task, the model needs to focus on capturing fundamental features, making a higher S_{ta} more appropriate.

Overall Score Function. In this paper, we expect pre-trained models to learn valuable temporal dependencies and patterns from the time series data and output task adaptive ability tailored to different downstream tasks, enabling versatile time series analysis. To this end, we design three score functions: S_{dl} , S_{pl} , and S_{ta} . S_{dl} and S_{pl} measure the dependency learning ability of the model and primary temporal pattern learning, respectively. S_{ta} evaluates the task-adaptive ability of the pre-trained model to various downstream tasks. Since time series often involves large-scale datasets, directly applying SVD can result in high computational costs. To accelerate the computation, we use the power iteration method [40, 41] to approximate the largest singular value of the model and its corresponding eigenvector. For detailed information about the power iteration method, please refer to Appendix C.4. Secondly, we quickly calculate the nuclear norm using equation 9, as shown below:

$$\|\mathbf{T}\|_* = \text{tr} \left(\sqrt{(\mathbf{T})^T \mathbf{T}} \right). \quad (9)$$

By employing these two methods, we avoid the high computational cost associated with SVD, enabling a fast evaluation of the transferability of pre-trained models. In addition, since the score functions have different scales, directly summing these scores may negatively impact the performance of transferability evaluation. Therefore, we normalize each score to a unit range (0 to 1) instead of manually defining hyperparameters to balance the contributions of each score, as follows:

$$S_{al} \leftarrow \frac{S_{dl} - \min(S_{dl})}{\max(S_{dl}) - \min(S_{dl})}. \quad (10)$$

Similarly, we can obtain the normalized scores $S_{pl}(\mathbf{T})$ and $S_{ta}(\mathbf{H}^1, \mathbf{H})$. By combining these three scores, we derive the final transferability evaluation metric:

$$S_{total} = S_{dl}(\mathbf{H}, \mathbf{T}) + S_{pl}(\mathbf{T}) + \lambda S_{ta}(\mathbf{H}^1, \mathbf{H}), \quad (11)$$

where λ is determined by the downstream task type. When evaluating on classification task and imputation task, λ is set to -1. For forecasting task and anomaly detection task, λ is set to 1. Note that the three scores are equally weighted, and λ acts as a sign function determined by the task type, without requiring fine-tuning for specific downstream dataset. The pre-trained model with a higher overall score S_{total} indicates better transferability within the model pool for the target dataset \mathcal{D} .

4 Experiments

In this section, we examine the effectiveness of TEMPLATE in assessing the transfer learning performance of pretrained models across 5 mainstream downstream time series tasks, including classification, short- and long-term forecasting, imputation, and anomaly detection.

Implementation Details. To quantify the correlation between estimated assessment scores and actual fine-tuning results, we employ the weighted Kendall's τ_w (see Appendix C.3), which measures ranking agreement with higher weights for higher ranks. More details about the dataset and experiment implementation can be found in Appendix C.

Table 2: Comparison of SOTA Rate and Relative Improvement for Different Methods.

Method	GBC [42]	CC-FV [43]	NCTI [19]	ETran [18]	Ours
SOTA Rate in Original Paper	37%	36%	40%	45%	46%
Improvement (vs Previous SOTA)	20%	9%	21%	18%	35%

Pre-trained Models. We select 10 pre-trained models from 4 model families to form the pre-trained model pool, including MOMENT-small [25], MOMENT-base [25], MOMENT-large [25], Timer-small [9], Timer-base [9], TimerXL-small [44], TimerXL-base [44], UniTS-small [26], UniTS-base [26], and UniTS-large [26]. We fine-tune all source models on the target dataset to obtain the actual ranking. More details about the pre-trained model pool can be found in the Appendix C.2.

4.1 Main Results.

As a transferability evaluation metric designed for pre-trained models in time series, TEMPLATE achieves consistently state-of-the-art accuracy across 5 mainstream analytical tasks, as shown in Figure 3. Notably, no method has achieved SOTA on all dataset, and as illustrated in Table 2, our method attains a remarkably high SOTA rate. We show more experimental results in Appendix D to further demonstrate the effectiveness of the method.

4.2 Classification

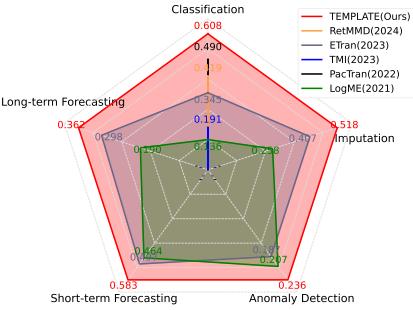


Figure 3: Performance comparison.

Setup. Time series classification can be applied to tasks such as recognition and medical diagnosis [45]. Specifically, We verify all methods on 9 multivariate datasets from the UEA classification archive [29], covering gesture, audio recognition, etc., across multiple task categories. We preprocess the datasets according to [46], where different subsets have varying sequence lengths.

Table 3: Classification Benchmark: Performance (Weighted Kendall’s τ_w) of different methods. The best results are highlighted in **bold** while the second best are underlined.

Datasets	LogME (2021)	NLEEP (2022)	SFDA (2022)	PACTran (2022)	TMI (2023)	NCTI (2023)	ETran (2023)	RetMMD (2024)	TEMPLATE (Ours)
EthanolConcentration	0.567	0.432	0.120	0.488	-0.430	-0.32	<u>0.686</u>	0.512	0.724
FaceDetection	-0.203	0.092	0.598	0.306	-0.600	0.109	<u>-0.359</u>	0.310	<u>0.597</u>
Handwriting	-0.445	-0.104	0.314	0.596	<u>0.768</u>	0.700	0.478	0.365	0.822
JapaneseVowels	0.231	0.213	0.021	0.306	0.302	0.340	-0.196	0.654	0.447
PEMS-SF	-0.472	-0.612	-0.312	0.306	-0.300	0.053	0.076	0.520	0.470
SelfRegulationSCP1	0.356	0.529	0.459	<u>0.619</u>	0.300	0.310	0.651	0.450	0.484
SelfRegulationSCP2	0.268	0.241	-0.198	0.457	0.455	0.450	0.667	0.397	0.551
SpokenArabicDigits	0.342	0.321	-0.367	0.744	<u>0.647</u>	-0.210	0.479	0.201	0.637
UWaveGestureLibrary	0.584	0.127	0.440	0.592	<u>0.576</u>	0.245	<u>0.624</u>	0.362	0.719
Average	0.136	0.138	0.119	<u>0.490</u>	0.191	0.186	0.345	0.419	0.608

Performance Comparison. We compare our method with existing transferability evaluation metrics, including LogME [17], NLEEP [13], SFDA [16], PACTran [47], TMI [15], NCTI [19], ETran [18] and RetMMD [48]. Table 3 shows the results of our method compared to previous work on classification benchmarks. Our method outperforms all previous methods, achieving a state-of-the-art (SOTA) τ_w of 0.608, which is 24% ahead of the second-best method. Due to the different ways models handle inter-channel relationships, feature-statistics-based methods, such as LogME [17], TMI [15], and NCTI [19], generally perform poorly on datasets with a large number of channels, like FaceDetection and PEMS-SF. In contrast, our method achieves outstanding results on these two datasets, with τ_w of 0.597 and 0.470, respectively. These results highlight the effectiveness of our approach in evaluating pre-trained time series models for transfer learning.

4.3 Short- and Long-term Forecasting

Setup. Time series forecasting plays a crucial role in areas such as weather forecasting, traffic management, and energy consumption. To thoroughly evaluate the generalizability of our approach in forecasting, we employ two types of benchmarks: long-term forecasting and short-term forecasting. For long-term forecasting, we use seven widely recognized long-term time series forecasting datasets [31], covering practical applications across various domains. For short-term forecasting, we adopt the M4 dataset [49], which includes univariate marketing data collected annually, quarterly, and monthly.

Table 4: Long-term Forecasting Benchmark: All the results are averaged from 4 different prediction lengths. ‘-’ means out of memory. See Table 12 in Appendix for the full results.

Methods	ETTh1	ETTh2	ETTm1	ETTm2	Weather	Electricity	Traffic	Average
LogME	0.215	0.167	0.400	0.565	0.114	-0.130	-	0.190
ETran	0.138	0.212	0.189	0.351	0.474	0.302	0.192	0.265
Ours	0.240	-0.003	0.518	0.576	0.412	0.361	0.432	0.362

Performance Comparison. Tables 4 and 11 present the experimental results of our method in long-term and short-term forecasting scenarios. We compare our method with existing transferability evaluation metrics for regression tasks, including LogME [17] and ETran [18]. The core of long-term forecasting task lies in the model’s ability to effectively capture complex temporal dependencies and long-term trend. By contrast, short-term forecasting task focus more on the precise capture of fine-grained temporal patterns. Overall, our method demonstrates outstanding performance across both scenarios. Notably, LogME performs poorly on multi-channel datasets like Electricity and cannot evaluate the performance of pre-trained models on Traffic due to out of memory issues. In contrast, our method achieves excellent results on both datasets. These results further validate the effectiveness of our method in assessing time series pre-trained models for transfer learning.

4.4 Imputation

Setup. Real-time systems are continuously operating and monitored by automated observation devices. However, due to failures, the collected time series may be partially missing, makes downstream analysis challenging. Therefore, imputation has become widely used in practical applications. In this paper, we select datasets from electricity, weather, and traffic scenarios as benchmarks.

Table 5: Imputation Benchmark: All results are averaged from 4 mask ratios. ‘-’ means out of memory. See Table 13 in Appendix for the full results.

Methods	ETTh1	ETTh2	ETTm1	ETTm2	Weather	Electricity	Traffic	Average
LogME	0.322	0.238	0.607	0.388	0.312	-0.061	-	0.258
ETran	0.324	0.419	0.254	0.310	0.441	0.456	0.398	0.372
Ours	0.406	0.317	0.664	0.650	0.645	0.412	0.529	0.518

Performance Comparison. Effective time series imputation places high demands on the model’s ability to capture temporal dependencies and understand contextual information. Specifically, when imputing missing values, the model needs to utilize the implicit temporal patterns within data, including modeling dynamic relationships between time points and accurately inferring both the overall trends and local features of time series. Table 5 presents the experimental results of our method in the time series imputation scenario. In the experiments, we evaluate the model’s performance under different missing ratios. The results show that, whether in scenarios with a low or high proportion of missing data, our method demonstrates a high level of model transferability evaluation accuracy.

4.5 Anomaly Detection

Setup. Anomaly detection in sensor data is crucial for industrial maintenance, as anomalies are often hidden within large-scale datasets, making data labeling challenging. We compare 5 widely used anomaly detection benchmarks: SMD [50], MSL [51], SMAP [51], SWaT [52], and PSM [53], covering applications in service monitoring, spatial data, earth exploration, and water treatment.

Table 6: Anomaly Detection Benchmark: Performance (Weighted Kendall’s τ_w) of different methods. The best results are highlighted in **bold** and ‘-’ means out of memory.

Methods	PSM	MSL	SMAP	SMD	SWaT	Average
LogME	0.230	0.468	0.340	-	-	0.207
ETran	0.433	-0.024	0.121	0.126	0.277	0.187
Ours	0.142	0.515	0.431	-0.08	0.173	0.236

Performance Comparison. Effective time series anomaly detection requires the model to identify normal and abnormal patterns in the data and accurately distinguish between the two. Table 6 presents the results of our method in the time series anomaly detection scenario. The experimental results show that our method effectively evaluates the model’s transferability in anomaly detection scenarios.

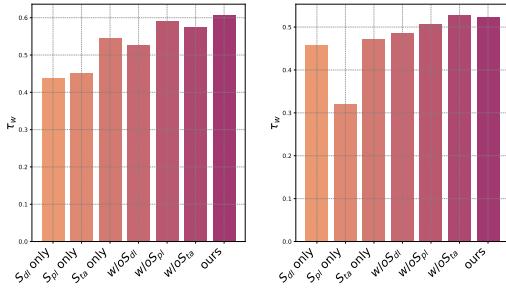


Figure 4: Effectiveness of component in TEM-PLATE on Classification and Imputation task.

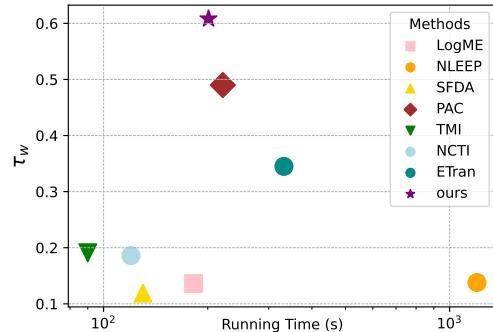


Figure 5: Time complexity analysis.

4.6 Analysis

Ablation Study. Our TEMPLATE consists of three sub-items designed to evaluate the performance of pre-trained models on downstream tasks. To explore the individual contribution of each sub-item to the final metric and analyze its impact on overall performance, we conduct an ablation study. Figure 4 presents the results of the ablation study on the classification and imputation task, with the complete results available in Appendix D.2. It can be observed that all three metrics achieve positive ranking correlations, and their combination yields the highest average ranking correlation, indicating that the three metrics complement each other and can comprehensively measure the performance of pre-trained models.

Time Complexity. In the Figure 5, we present a comparison of the average runtime and τ_w on the classification task across 9 datasets using different model selection metrics. While NCTI [19] and TMI [15] are fast, they perform poorly in evaluating the transferability of time series pre-trained models due to their reliance on statistical metrics of feature matrices. LogME [17] is efficient, but it cannot be applied to large datasets like Traffic and SMD because it relies on the magnitude of singular values. In contrast, our method uses the power iteration method to avoid high computational costs and enabling its application to large datasets. Although ETran [18] efficiently obtains the S_{en} score, the LDA-based score calculation incurs significant time costs, resulting in slower overall speed.

5 Conclusion

In this paper, we propose TEMPLATE, a pre-trained model evaluation framework specifically designed for time series. We are the first to design a transferability evaluation metric tailored for time series. TEMPLATE consists of three scores, aimed at measuring the transferability of pre-trained models from two perspectives: dependency and pattern learning, and task adaptation. Our approach has been successfully applied to 5 mainstream time series downstream tasks. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) performance in evaluating time series pre-trained models for transfer learning.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62306085, 62206074, 62476071, U23B2055, U24A20328), Shenzhen College Stability Support Plan (GXWD20231130151329002, GXWD20220811173233001), CCF-ALIMAMA TECH Kangaroo Fund (CCF-ALIMAMA OF 2025001), Guangdong Basic and Applied Basic Research Foundation (2025A1515012932, 2025A1515011732), Shenzhen Science and Technology Program (KQTD20240729102154066, ZDSYS20230626091203008).

References

- [1] Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T Kwok. A survey on time-series pre-trained models. *IEEE Transactions on Knowledge and Data Engineering*, 2024.
- [2] Luca Benfenati, Daniele Jahier Pagliari, Luca Zanatta, Yhorman Alexander Bedoya Velez, Andrea Acquaviva, Massimo Poncino, Enrico Macii, Luca Benini, and Alessio Burrello. Foundation models for structural health monitoring. *arXiv preprint arXiv:2404.02944*, 2024.
- [3] Weijie Xia, Gao Peng, Chenguang Wang, Peter Palensky, Eric Pauwels, and Pedro P Vergara. An efficient and explainable transformer-based few-shot learning for modeling electricity consumption profiles across thousands of domains. *arXiv preprint arXiv:2408.08399*, 2024.
- [4] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.
- [5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous systems, 2015.
- [6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [7] Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.
- [8] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pages 6105–6114. PMLR, 2019.
- [9] Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer: Generative pre-trained transformers are large time series models. In *Forty-first International Conference on Machine Learning*, 2024.
- [10] Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam Nguyen, Wesley M Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained models for enhanced zero/few-shot forecasting of multivariate time series. *Advances in Neural Information Processing Systems*, 37:74147–74181, 2024.
- [11] Yuhe Ding, Bo Jiang, Aijing Yu, Aihua Zheng, and Jian Liang. Which model to transfer? a survey on transferability estimation. *arXiv preprint arXiv:2402.15231*, 2024.
- [12] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. Leep: A new measure to evaluate transferability of learned representations. In *International Conference on Machine Learning*, pages 7294–7305. PMLR, 2020.
- [13] Yandong Li, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang, and Boqing Gong. Ranking neural checkpoints. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2663–2673, 2021.
- [14] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Zamir, and Leonidas Guibas. An information-theoretic approach to transferability in task transfer learning. In *2019 IEEE international conference on image processing (ICIP)*, pages 2309–2313. IEEE, 2019.

- [15] Huiwen Xu and U Kang. Fast and accurate transferability measurement by evaluating intra-class feature variance. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 11474–11482, 2023.
- [16] Wenqi Shao, Xun Zhao, Yixiao Ge, Zhaoyang Zhang, Lei Yang, Xiaogang Wang, Ying Shan, and Ping Luo. Not all models are equal: Predicting model transferability in a self-challenging fisher space. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIV*, pages 286–302. Springer, 2022.
- [17] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-trained models for transfer learning. In *International Conference on Machine Learning*, pages 12133–12143. PMLR, 2021.
- [18] Mohsen Gholami, Mohammad Akbari, Xinglu Wang, Behnam Kamranian, and Yong Zhang. Etran: Energy-based transferability estimation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 18613–18622, 2023.
- [19] Zijian Wang, Yadan Luo, Liang Zheng, Zi Huang, and Mahsa Baktashmotagh. How far pre-trained models are from neural collapse on the target dataset informs their transferability. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 5549–5558, 2023.
- [20] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding and generation. *Advances in neural information processing systems*, 32, 2019.
- [21] Javier Selva, Anders S Johansen, Sergio Escalera, Kamal Nasrollahi, Thomas B Moeslund, and Albert Clapés. Video transformers: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(11):12922–12943, 2023.
- [22] Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series forecasting with pre-trained llms. *arXiv preprint arXiv:2308.08469*, 2023.
- [23] Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo: Prompt-based generative pre-trained transformer for time series forecasting. *arXiv preprint arXiv:2310.04948*, 2023.
- [24] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos, Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Hassen, Anderson Schneider, et al. Lag-llama: Towards foundation models for time series forecasting. In *R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation Models*, 2023.
- [25] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Moment: A family of open time-series foundation models. In *Forty-first International Conference on Machine Learning*, 2024.
- [26] Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and Marinka Zitnik. Units: A unified multi-task time series model. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [27] Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-moe: Billion-scale time series foundation models with mixture of experts. *arXiv preprint arXiv:2409.16040*, 2024.
- [28] Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transferability and hardness of supervised classification tasks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 1395–1405, 2019.
- [29] Anthony J. Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron George Bostrom, Paul Southam, and Eamonn J. Keogh. The uea multivariate time series classification archive, 2018. *arXiv preprint arXiv:1811.00075*, 2018.

- [30] Jiexi Liu and Songcan Chen. Timesurl: Self-supervised contrastive learning for universal time series representation learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 13918–13926, 2024.
- [31] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with Auto-Correlation for long-term series forecasting. In *NeurIPS*, 2021.
- [32] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. *Noise reduction in speech processing*, pages 1–4, 2009.
- [33] Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive analysis. *arXiv preprint arXiv:2410.16032*, 2024.
- [34] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*, 2022.
- [35] Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm: A simple pre-training framework for masked time-series modeling. *Advances in Neural Information Processing Systems*, 36, 2024.
- [36] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network representations revisited. In *International conference on machine learning*, pages 3519–3529. PMLR, 2019.
- [37] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on centered alignment. *The Journal of Machine Learning Research*, 13:795–828, 2012.
- [38] Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz Kandola. On kernel-target alignment. *Advances in neural information processing systems*, 14, 2001.
- [39] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical dependence with hilbert-schmidt norms. In *International conference on algorithmic learning theory*, pages 63–77. Springer, 2005.
- [40] Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.
- [41] Gene H Golub and Henk A Van der Vorst. Eigenvalue computation in the 20th century. *Journal of Computational and Applied Mathematics*, 123(1-2):35–65, 2000.
- [42] Michal Pándy, Andrea Agostinelli, Jasper Uijlings, Vittorio Ferrari, and Thomas Mensink. Transferability estimation using bhattacharyya class separability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9172–9182, 2022.
- [43] Yuncheng Yang, Meng Wei, Junjun He, Jie Yang, Jin Ye, and Yun Gu. Pick the best pre-trained model: Towards transferability estimation for medical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 674–683. Springer, 2023.
- [44] Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Timer-xl: Long-context transformers for unified time series forecasting. *arXiv preprint arXiv:2410.04803*, 2024.
- [45] George B. Moody, Roger G. Mark, and Ary L. Goldberger. Physionet: Physiologic signals, time series and related open source software for basic, clinical, and applied research. *EMBC*, 2011.
- [46] G. Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. A transformer-based framework for multivariate time series representation learning. *KDD*, 2021.

- [47] Nan Ding, Xi Chen, Tomer Levinboim, Soravit Changpinyo, and Radu Soricut. Pactran: Pac-bayesian metrics for estimating the transferability of pretrained models to classification tasks. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIV*, pages 252–268. Springer, 2022.
- [48] Mengyu Dai, Amir Hossein Raffiee, Aashish Jain, and Joshua Correa. Evaluating transferability in retrieval tasks: An approach using mmd and kernel methods. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22390–22400, 2024.
- [49] Spyros Makridakis. M4 dataset, 2018. URL <https://github.com/M4Competition/M4-methods/tree/master/Dataset>.
- [50] Ya Su, Y. Zhao, Chenhao Niu, Rong Liu, W. Sun, and Dan Pei. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. *KDD*, 2019.
- [51] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Söderström. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. *KDD*, 2018.
- [52] Aditya P. Mathur and Nils Ole Tippenhauer. Swat: a water treatment testbed for research and training on ICS security. In *CySWATER*, 2016.
- [53] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous multivariate time series anomaly detection and localization. *KDD*, 2021.
- [54] Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. Rethinking the hyperparameters for fine-tuning. *arXiv preprint arXiv:2002.11770*, 2020.
- [55] Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1/2):81–93, 1938.
- [56] Grace S Shieh. A weighted kendall’s tau statistic. *Statistics & probability letters*, 39(1):17–24, 1998.

A Limitations

Our method may perform poorly on some datasets with severe distribution shifts or structural breaks, as the results on the training set cannot accurately reflect the model’s performance on the test set. This remains a challenging problem, and no existing method has effectively addressed it yet.

B Broader impacts

The work in this paper contributes to facilitating the evaluation of transfer capability for time series pre-trained models, thereby further saving time and training resources and enabling the rapid selection of suitable time series pre-trained models for downstream tasks.

C Experiment Details

C.1 Implement Details

We provide detailed descriptions of the datasets in Tables 8. For all 5 downstream tasks, we follow the experimental setup of [34]. To compute the transfer performance values, we carefully fine-tuned the pre-trained models through hyperparameter grid search. As [54] highlighted, learning rate and weight decay are the two most critical parameters. Therefore, we performed grid search over learning rates and weight decay values (6 learning rates ranging from 10^{-3} to 10^{-5} , and 3 weight decay values from 10^{-3} to 10^{-5}) to select the optimal hyperparameters. The fine-tuning experiments of the pre-trained models were conducted on an NVIDIA H20 GPU with 96GB of memory. It is important to note that we only fine-tuned the pre-trained models to validate the effectiveness of the proposed method; the method itself does not require fine-tuning of the pre-trained models. All the results of pre-trained model transferability evaluation metrics were obtained on an AMD EPYC 7513 32-Core CPU.

C.2 Model Pool Details

We selected 10 pre-trained models from four model families to form the model pool, including MOMENT-small [25], MOMENT-base [25], MOMENT-large [25], Timer-small [9], Timer-base [9], TimerXL-small [44], TimerXL-base [44], UniTS-small [26], UniTS-base [26], and UniTS-large [26]. As shown in Table 7, the selected pre-trained models differ in structure, model parameters, and the scale of pre-training. The MOMENT models were reconstructed and trained on the large hybrid dataset Time-series Pile; Timer-small and TimerXL-small were pre-trained on the ERA5 dataset, while Timer-base and TimerXL-base were pre-trained on the large dataset UTSD; the UniTS series models were pre-trained on a multi-domain hybrid dataset for time series. This highlights the differences between the models and further demonstrates that the proposed method is sufficient to support general transferability.

Table 7: The Architecture, Model size, and Scale of the pre-trained data of the model pool.

Method	Timer	Timer-XL	MOMENT	UniTS
Architecture	Decoder	Decoder	Encoder	Encoder
Model size	11M~67M	14M~69M	40M~380M	3M~8.4M
Pre-training Scale	0.5B, 28B	0.5B, 28B	1.13B	0.5B

C.3 Evaluation Metric

To evaluate the effectiveness of the proposed method, we refer to previous work [17, 18] and use Kendall’s τ [55] to measure the correlation between the estimated evaluation scores and the ground-truth ranking scores. This metric assesses ranking consistency, where a larger τ value indicates greater effectiveness in ranking models. It is defined as the number of concordant pairs minus the

number of discordant pairs, divided by the overall number of pairs $\binom{M}{2}$, as follows:

$$\tau = \frac{2}{M(M-1)} \sum_{1 \leq i < j \leq M} \text{sgn}(G_i - G_j) \cdot \text{sgn}(T_i - T_j). \quad (12)$$

Furthermore, we adopt a weighted version of Kendall's τ [56], denoted as τ_w , to assign higher weights to models ranked higher, to quantify this correlation.

C.4 Power Iteration

Due to the limited space in the main text, we show the detailed procedure of the power iteration method here, as shown in Algorithm 1:

Algorithm 1 Power Iteration

```

Input: Matrix  $\mathbf{H}$ , initial vector  $v_0$ , number of iterations  $k$ , here we set 10.
Output: Dominant eigenvalue  $\lambda_{\max}$ , corresponding eigenvector  $v_k$ 
Initialize  $v_0$  randomly
for  $i = 1$  to  $k$  do
     $v_{i+1} = \mathbf{H}v_i$ 
    Normalize  $v_{i+1}$  to unit length
end for
Estimate the dominant eigenvalue  $\lambda_{\max} = \frac{v_k^T \mathbf{H} v_k}{v_k^T v_k}$ 

```

D More Experimental Results

D.1 Statistical Significance Testing

To validate the effectiveness of TEMPLATE over ETran, we conducted a statistical significance test. The results show that the mean of TEMPLATE (0.483) is significantly higher than that of ETran (0.359), with a mean difference of 0.124, which is statistically significant ($T_{\text{statistic}} = 2.679$, $P_{\text{value}} = 0.012$). Therefore, TEMPLATE demonstrates significantly better performance across all tasks compared to ETran, confirming its effectiveness improvement.

D.2 Ablation Study

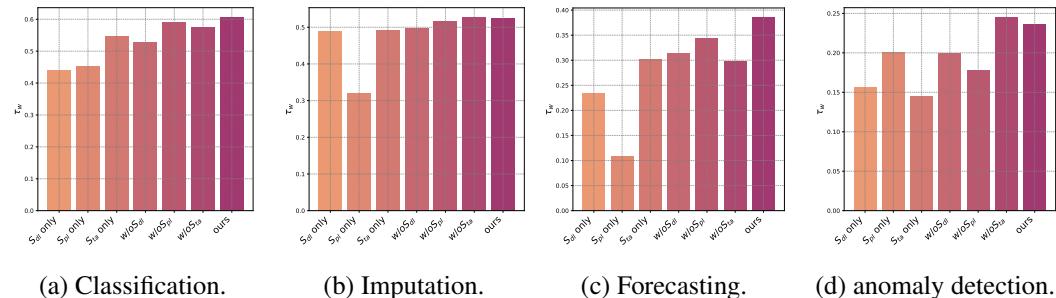


Figure 6: Effectiveness of each individual component in TEMPLATE. We use the three terms individually or remove them one at a time from the full system. The results are averaged across all datasets.

Due to space limitations, we have included the complete ablation experiment results in Figure 6. The experimental results show that, compared to the three individual metrics, TEMPLATE achieves the best performance, demonstrating the effectiveness of TEMPLATE. Additionally, we have also validated the effectiveness of combining these metrics in pairs. The combination of S_{dt} and S_{pl} outperforms each metric individually, proving their complementary nature. This demonstrates that evaluating the pre-trained model's ability for time series semantic learning from the perspectives of

Table 8: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks	Dataset	Dim	Series Length	Dataset Size	Information (Frequency)
Forecasting (Long-term)	ETTm1, ETTm2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	Electricity (15 mins)
	ETTh1, ETTh2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	Electricity (15 mins)
	Electricity	321	{96, 192, 336, 720}	(18317, 2633, 5261)	Electricity (Hourly)
	Traffic	862	{96, 192, 336, 720}	(12185, 1757, 3509)	Transportation (Hourly)
	Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	Weather (10 mins)
Forecasting (short-term)	M4-Yearly	1	6	(23000, 0, 23000)	Demographic
	M4-Quarterly	1	8	(24000, 0, 24000)	Finance
	M4-Monthly	1	18	(48000, 0, 48000)	Industry
	M4-Weekly	1	13	(359, 0, 359)	Macro
	M4-Daily	1	14	(4227, 0, 4227)	Micro
	M4-Hourly	1	48	(414, 0, 414)	Other
Imputation	ETTm1, ETTm2	7	96	(34465, 11521, 11521)	Electricity (15 mins)
	ETTh1, ETTh2	7	96	(8545, 2881, 2881)	Electricity (15 mins)
	Electricity	321	96	(18317, 2633, 5261)	Electricity (15 mins)
	Traffic	862	96	(12185, 1757, 3509)	Transportation (Hourly)
	Weather	21	96	(36792, 5271, 10540)	Weather (10 mins)
Classification (UEA)	EthanolConcentration	3	1751	(261, 0, 263)	Alcohol Industry
	FaceDetection	144	62	(5890, 0, 3524)	Face (250Hz)
	Handwriting	3	152	(150, 0, 850)	Handwriting
	JapaneseVowels	12	29	(270, 0, 370)	Voice
	PEMS-SF	963	144	(267, 0, 173)	Transportation (Daily)
	SelfRegulationSCP1	6	896	(268, 0, 293)	Health (256Hz)
	SelfRegulationSCP2	7	1152	(200, 0, 180)	Health (256Hz)
	SpokenArabicDigits	13	93	(6599, 0, 2199)	Voice (11025Hz)
Anomaly Detection	UWaveGestureLibrary	3	315	(120, 0, 320)	Gesture
	SMD	38	100	(566724, 141681, 708420)	Server Machine
	MSL	55	100	(44653, 11664, 73729)	Spacecraft
	SMAP	25	100	(108146, 27037, 427617)	Spacecraft
	SWaT	51	100	(396000, 99000, 449919)	Infrastructure
	PSM	25	100	(105984, 26497, 87841)	Server Machine

dependency learning and pattern learning is an effective and reasonable approach. Although S_{ta} did not achieve the best correlation in the anomaly detection task, compared to W/O S_{ta} , TEMPLATE showed an 8% average improvement in t_w across 5 downstream tasks, effectively proving the validity of S_{ta} .

Additionally, it is important to note that TEMPLATE is a very robust method. We conducted additional ablation experiments to explore the specific implementation methods for the scores. For S_{dl} , the main idea is to measure the alignment of the eigenvector corresponding to the largest singular value between the trend component and the original sequence. In the table, we also implemented S_{dl} based on Euclidean distance, and it can be seen that S_{dl} based on Euclidean distance achieves a positive transferability evaluation. For S_{ta} , the main idea is to measure the similarity between features

Table 9: Ablation study on the specific implementation methods of S_{dl} and S_{ta} .

Method	Ethanol	Concentration	Handwriting	PEMS - SF	FaceDetection
S_{dl} (euclidean_distance)	0.332		0.597	0.370	0.361
S_{dl} (pearsonr)	0.349		0.608	0.381	0.366
S_{ta} (dot product)	0.421		0.654	0.276	0.450
S_{ta} (HSIC)	0.436		0.698	0.350	0.453

to meet the requirements of different task types for features. In the following table, we implemented S_t based on squared dot product, and it can be observed that S_{ta} based on squared dot product also achieves positive transferability evaluation. HSIC maps the features to a higher-dimensional space and then computes the similarity. The method of measuring feature similarity has good properties [36]. Therefore, we use HSIC to measure similarity. The experimental results in the table further demonstrate the effectiveness and robustness of TEMPLATE.

Table 10: Ablation Experiment on the Sensitivity of Hyperparameter λ .

λ	Ethanol	Concentration	Handwriting	PEMS - SF	SelfRegulationSCP2
-0.6	0.716		0.822	0.461	0.551
-0.8	0.724		0.822	0.461	0.551
-1	0.724		0.822	0.470	0.551

Finally, we note that the three scores in the final score are equally important, and λ is only related to the task type rather than the specific downstream task dataset. To demonstrate the robustness of our method, we add a parameter sensitivity experiment for λ in Table 10. The experimental results show that on specific downstream datasets, there is no need to fine-tune λ .

Table 11: Short-Term Benchmark: Performance (Weighted Kendall's τ_w) of different methods. The best results are highlighted in **bold**.

Datasets	Yearly	Quarterly	Monthly	Others	Average
LogME	0.492	0.332	0.562	0.468	0.464
ETran	0.235	0.763	0.624	0.318	0.485
Ours	0.534	0.667	0.712	0.417	0.583

D.3 Full Result

Due to space limitations in the main text, we have included the results of the short-term forecasting, long-term forecasting and imputation in Tables 11, Tables 12 and 13. The experimental results demonstrate that compared to LogME and ETran, TEMPLATE achieves the best average performance.

Table 12: The full result for forecasting task.

Datasets	ETTh1	ETTh2	ETTm1	ETTm2	weather	ECL	Traffic	
Length	96	192	336	720	96	192	336	720
LogME	0.169	0.375	0.198	0.121	0.103	0.234	0.132	0.199
ETran	-0.007	0.276	0.282	0.001	0.321	0.003	0.180	0.345
Ours	0.234	0.309	0.243	0.175	-0.012	0.076	0.131	-0.199

Table 13: The full result for imputation task.

Datasets	ETTh1	ETTh2	ETTm1	ETTm2	weather	ECL	Traffic	
Mask Ratio	12.5%	25%	37.5%	50%	12.5%	25%	37.5%	50%
LogME	0.193	0.441	0.251	0.405	0.214	0.242	0.196	0.301
ETran	0.287	0.384	0.340	0.283	0.383	0.391	0.451	0.451
Ours	0.323	0.340	0.477	0.485	0.283	0.291	0.408	0.287

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: We include detailed information in Section 1.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The limitations are included in Appendix A.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: We have no relevant theory to prove the need.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: We include the detailed experimental settings in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The anonymous code link is available at: <https://anonymous.4open.science/r/TEMPLATE-AOAA/>.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: We include the detailed experimental settings in appendix C and main text.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: We conducted statistical tests to demonstrate the effectiveness of the method.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We detail the computing resources used in Appendix C.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: In every respect in the paper, we follow the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We include the impact statement in Appendix B.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: **[Yes]**

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: **[Yes]**

Justification: All data, model, and code in the paper respect the license.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper did not use LLM in method research.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.