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Abstract

With the increasing number of time series pre-trained models, designing transfer-
ability evaluation metrics for time series has become an urgent problem to address.
While transferability evaluation has been extensively studied in computer vision,
we aim to address a critical gap by developing tailored metrics for time series
analysis. In this paper, we introduce TEMPLATE, a transferability estimation
framework specifically tailored for versatile time series analysis, comprising three
complementary metrics: (1) Dependency Learning Score quantifies a model’s ca-
pacity to capture temporal dependencies. (2) Pattern Learning Score evaluates the
representation quality in extracting discriminative temporal patterns. (3) Task Adap-
tation Score assesses cross-task generalization capability, enabling versatile time
series analysis. TEMPLATE presents a versatile framework compatible with both
classification and regression paradigms. Through comprehensive benchmarking
across 5 distinct downstream tasks, our method demonstrates superior capability
in identifying optimal pre-trained models from heterogeneous model pools for
transfer learning. Compared to the state-of-the-art method ETran, our approach
improves the weighted Kendall’s τw across 5 downstream tasks by 35%. The code
is available at https://github.com/TEMPLATE.

1 Instroduction

Recently, pre-trained models have drawn increasing attention in the time series domain due to their
exceptional performance in computer vision and natural language processing [1]. These models
have achieved significant success across various time series downstream tasks [2, 3] and are readily
available on platforms like HuggingFace [4] and TensorFlow Hub [5]. However, no single model
consistently outperforms others across all datasets. Therefore, selecting the most suitable pre-trained
time series model for a given target task has become a pressing challenge. A time-consuming
solution is to fine-tune all pre-trained models on the target dataset and then select the best-performing
fine-tuned model. But compared to pre-trained models in computer vision such as ResNet [6] and
MobileNet [7], time-series pre-trained models have much larger parameter scales [8, 9], making direct
brute-force fine-tuning incur enormous time costs and high computational resource requirements
[10], as shown in the left part of Figure 1.

Recent studies propose fast transferability evaluation methods to efficiently rank models and select
the optimal one. Existing methods can generally be categorized into static and dynamic approaches
[11]. Static methods calculate scores directly based on the statistical information of the model, such
as LEEP [12], NLEEP [13], H-score [14] and TMI [15]. In contrast, dynamic methods transform this
statistical information using certain learning frameworks or representation space mapping algorithms
before calculating scores, such as SFDA [16], LogME [17], and ETran [18]. These approaches are
empirically validated as effective metrics for selecting computer vision models.
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Figure 1: Pre-trained models’ fine-tune overhead (left) and transferability metric framework (right).

Nevertheless, existing research primarily focuses on image-based tasks. When applied to time series,
several challenges emerge, as shown in the right part of Figure 1. First, mainstream time series
tasks exhibit significant diversity, encompassing forecasting, classification, imputation, and anomaly
detection, among others. While existing methods predominantly concentrate on classification-
based tasks, achieving cross-task generalization capability remains the primary challenge. Second,
downstream time series datasets frequently exhibit large-scale characteristics, resulting in high-
dimensional computational infeasibility. This consequently imposes stringent requirements on
evaluation metrics, demanding both computational efficiency and measurement accuracy. Last but
not least, computer vision models consistently employ standardized data preprocessing protocols,
consequently maintaining minimal variance in feature dimensionality. But in time series analysis,
the architectural heterogeneity of models and their divergent approaches to processing inter-channel
dependencies lead to substantial discrepancies in feature dimensionality. This consequently induces
feature space mismatch, rendering evaluation metrics that rely on numerical magnitudes such as
intra-class variance [15, 19] or singular value [17] ineffective. Table 1 summarizes the challenges in
developing transferability metrics for time series. Prior to this paper, there is no ideal solution for
pre-trained model selection specially designed to tackle these challenges.

To address these fundamental challenges while accounting for the intrinsic characteristics of time
series, we propose TEMPLATE (TEMPoraL representAtion Transferability Estimation), which
quantitatively assesses the transferability of time series pre-trained models through three comple-
mentary evaluation metrics: Firstly, an effective time series pre-trained model must demonstrate
robust capability in capturing and representing temporal dependencies. Moreover, we empirically
demonstrate that the principal components constitute the most transferable elements within learned
representations. Consequently, we propose the Dependency Learning Score as a quantitative metric to
assess dependency learning capability through comparative analysis of principal components between
original representations and their corresponding representations in trend. Secondly, to assess the
core ability of time series pre-trained models in capturing key temporal patterns, we introduce the
Pattern Learning Score as a quantitative evaluation metric. This score precisely measures the model’s
focus on key temporal patterns through the ratio of the principal component to the overall pattern
complexity. Finally, to ensure adaptability across diverse downstream tasks and enable versatile
time series analysis, we introduce the Task Adaptation Score as a task-specific evaluation metric
for assessing representation quality. For high-level tasks, hierarchical representations are preferred.
Thus we calculate the similarity between the features output by the first and last layers of the encoder.
Through the integration of these three complementary evaluation metrics, we establish a comprehen-
sive framework for assessing time series pre-trained models. Experimental results demonstrate strong
correlation between our proposed metric and actual model transferability, consistently outperforming
existing evaluation methods in benchmark tests across 5 downstream tasks.

Our contributions are summarized as follows:

• We evaluated the challenges in designing transferability metrics for time series and, from the
model’s dependency learning ability, pattern learning ability, and task adaptation ability, proposed
the TEMPLATE pre-trained model transferability evaluation framework.
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Table 1: Time series design challenges and methods comparison.
Challenges NCE LEEP LogME SFDA NLEEP PACTran TMI ETran NCTI Ours

Cross-task generalization bottleneck ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
High-dimensional infeasibility ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Feature space mismatch ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

• Our proposed framework is highly flexible and generalizable, supporting both classification and
regression tasks. Moreover, the metrics can be applied to 5 mainstream time series analysis tasks,
demonstrating our broad applicability and task-specific adaptability.

• Experiments on 32 datasets across 5 mainstream time-series tasks demonstrate that our method
achieves state-of-the-art (SOTA) performance in evaluating the transferability of time-series pre-
trained models, with an average improvement of 35% compared to previous SOTA methods.

2 Related Work

2.1 Time Series Pre-trained Model

In the image and vision domains, pre-training on large-scale sequence datasets has significantly
advanced modality understanding [20, 21]. Building on this, pre-trained models have been widely
developed in the time series domain [1]. LLM4TS [22] enhances forecasting accuracy by fine-tuning
large language models, while Tempo [23] improves cross-modal alignment using multimodal prompts.
Lag-Llama [24] conducts pre-training on multi-domain time series data and uses lag features as
covariates for probabilistic univariate forecasting. Moment [25] conducts masked reconstruction
pre-training on various time series datasets. Similarly, Timer [9] undergoes autoregressive pre-training
on large-scale collected datasets. UniTS [26] integrates downstream tasks into a single framework
through task tokenization. Time-MOE [27], which combines the mixture-of-experts method, is the
first to scale time series pre-trained models to 2.4 billion parameters. Therefore, as the scale of
time-series pre-trained models continues to grow, how to evaluate the transferability of these models
has become an urgent issue that needs to be addressed.

2.2 Model Transferability Estimation

Model Transferability Estimation (MTE) aims to provide fast and efficient methods for quantifying
a model’s performance on downstream tasks without fine-tuning [11]. Recent MTE advancements
focus on vision models. Early works, such as NCE [28] and LEEP [12], focused on probabilistic
methods based on the expected empirical distribution of target labels. LogME [17] estimates the
maximum marginalized likelihood of labels, while NLEEP [13] extends LEEP by replacing the
output layer with a Gaussian Mixture Model. SFDA [16] projects features into Fisher space and
enhances class separability using physics-inspired models. TMI [15] uses intra-class feature variance
as a performance indicator, assuming that lower variance reflects tighter clustering of class features.
NCTI [19], inspired by the neural collapse phenomenon, develops metrics to measure the distance
between the current state of the pre-trained model and its hypothetical fine-tuned state. ETran [18]
introduces energy scores to quantify whether the target dataset is in-distribution or out-of-distribution
for a candidate model, assuming models with higher in-distribution levels for the target dataset exhibit
greater transferability. Existing studies primarily focus on vision and have not fully considered the
characteristics of time-series data and pre-trained models. Therefore, we propose TEMPLATE, a
transferability evaluation framework specifically designed for time-series pre-trained models.

3 Approach

3.1 Problem Formulation

Given M pretrained models {ϕm}Mm=1 and a target dataset D with N samples, where each model
consists of a backbone f that outputs encoded features, and the target dataset is associated with an
evaluation metric (accuracy, MSE, F-score etc.), we initialize a predictor head on the backbone f and
fine-tune the entire model on the target dataset. The feature extracted by the l-th layer of the pretrained
model ϕm(·) is denoted as Hl, where Hl = ϕm(X) ∈ RN×d and d is the feature dimension. In the
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following, we omit l using H to denote the feature output of the last layer of the model’s encoder.
By performing brute-force fine-tuning on all models, we obtain the true performance {Pm}Mm=1
for the model hub. A practical model selection method should generate a score for each pretrained
model. Ideally, the score should correlate strongly with the actual fine-tuning performance {Pm}Mm=1,
allowing the best-performing pretrained model to be selected based on the evaluation score alone.

3.2 Transferability Assessment through Temporal Representation Transferability Estimation

To effectively evaluate the transferability of time series pre-trained models, it is necessary to address
the dimensional gap in feature matrices caused by the model’s different handling of inter-channel
relationships, as well as the varying requirements of various downstream tasks. Therefore, we
avoid directly using statistical quantities of the feature matrix to measure the transferability of pre-
trained models. Specifically, we propose TEMPLATE, a hybrid transferability metric that includes
Dependency Learning Score, Pattern Learning Score, and Task Adaptation Score, aiming to assess
transferability of the learned representation in pre-trained models from the perspective of temporal
dependency learning, temporal pattern learning and hierarchical features.
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Figure 2: The cosine similarity of feature vectors,
computed based on feature vectors before and after
fine-tuning, on three datasets (sorted in descending
order by singular values): EthanolConcentration
(Left), Handwriting (Middle), and UWaveGesture-
Library (Right).

To better understand how fine-tuning affects the
representation learned by pre-trained models,
we explore the changes in the components of
feature matrices before and after fine-tuning.
Specifically, we use Singular Value Decompo-
sition (SVD) to analyze this process as it ef-
ficiently decomposes the feature matrix and
analyzes its dominant patterns. We fine-tune
MOMENT-small [25], Timer-small [9], and
UniTS-small [26] on EthanolConcentration [29],
Handwriting [29], and UWaveGestureLibrary
[29] dataset, respectively, and compare the co-
sine similarity of the feature vectors correspond-
ing to singular values before and after fine-
tuning. The results are shown in Figure 2 and it
is observed that the cosine similarity of feature
vectors decreases as their corresponding singular
values decrease. This indicates that larger singu-
lar values encapsulate more knowledge and are
more transferable to downstream tasks.

Dependency Learning Score. The core of time series modeling is to capture temporal dependency.
Time series pre-trained models should be able to capture long-term dependencies, which represent
stable and persistent patterns crucial for effective modeling [30]. To assess this ability, we employ
series decomposition [31] to extract the trend component, which inherently contains long-term
dependencies. This component is fed into the model, yielding a feature matrix T that is focused on
capturing long-term dependencies, as follows:

trend(X) = AvgPool(padding(X)),T = ϕm(trend(X)), (1)
where we use padding to maintain the original series length, and then apply the AvgPool layer for
moving average calculations. A model proficient in learning long-term dependencies should exhibit
a high degree of consistency between the feature matrix H and the feature matrix T of the trend
component. To this end, we propose the Dependency Learning Score Sdl. Specifically, considering
that the largest singular value and its corresponding feature vector demonstrate superior transferability,
we prioritize the use of the feature vectors corresponding to the largest singular values of H and T.
We perform SVD to decompose the features:

H = UhΣhV
T
h ,T = UtΣtV

T
t . (2)

We denote the largest singular values of H and T as σh and σt, and their corresponding feature vectors
as uh and ut, respectively. With the feature vectors, Sdl is formulated to quantify the pre-trained
model’s capability in capturing long-term temporal dependencies through computation of the Pearson
correlation coefficient [32] between the uh and ut, as follows:

Sdl = ρ(uh, ut) =
Cov(uh, ut)

λhλt
, (3)
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where Cov(·) represents the covariance between feature vectors, and λh, λt represents their respective
variances. Since Sdl represents the pre-trained model’s ability to learn long-term dependencies, a
pre-trained model that effectively learns long-term dependencies should achieve a larger Sdl.

Pattern Learning Score. Effective temporal pattern learning is critical for time series pre-trained
models to handle complex, multi-scale behaviors, which allows the model to learn the temporal
dynamics in time series data, thereby achieving superior performance on downstream tasks.

To this end, we propose the Pattern Learning Score Spl to measure the pre-trained model’s ability
to learn the primary temporal patterns. Within the framework of matrix decomposition, singular
values quantitatively characterize the relative significance of distinct patterns embedded in the feature
matrix. The largest singular value typically corresponds to the primary temporal pattern in time series,
reflecting the most significant dynamic behavior captured by the model.

While the dominant singular value provides an intuitive measure of a model’s capacity to capture
primary temporal patterns, the inherent feature space mismatch resulting from heterogeneous inter-
channel relationship processing across pre-trained models may significantly compromise the reliability
of transferability assessment. Therefore, we introduce the nuclear norm as a measure of the overall
importance of the patterns, defined as the sum of all singular values of the matrix. Specifically, we
use the ratio of the largest singular value to the nuclear norm to measure the pre-trained model’s
ability to learn primary temporal patterns. A higher ratio signifies enhanced capability of the pre-
trained model in capturing dominant temporal patterns, whereas a lower ratio potentially indicates
insufficient representation of these critical temporal patterns. Moreover, compared to the raw data,
the temporal patterns of the trend component are simpler, with the primary patterns being more
prominent. Therefore, the ratio of the largest singular value to the nuclear norm using the trend
component provides a more accurate evaluation of the pre-trained model’s ability to learn primary
temporal patterns. The formulation of Spl is as follows:

Spl =
σt

∥T∥∗
, (4)

where σt denotes the largest singular value of the trend component feature matrix, and ∥T∥∗ represents
its nuclear norm. Since Spl represents the pre-trained model’s ability to learn primary temporal
patterns, a pre-trained model that effectively learns these patterns should achieve a larger Spl.

Task Adaptation Score. Time series downstream tasks exhibit substantial heterogeneity, with dis-
tinct tasks imposing markedly divergent requirements on feature representations [33]. Classification
tasks require high-level semantics, and imputation tasks require the model to learn from missing
data. Consequently, hierarchical representations become essential. In contrast, forecasting tasks and
anomaly detection tasks place more emphasis on the precise extraction of low-level features from
the raw data itself, focusing on local patterns and temporal dependencies [34, 33]. Consequently,
an effectively designed pre-trained model should demonstrate the capability to learn task-adaptive
representations that dynamically adjust to varying downstream task requirements. [35]. Moreover,
due to the diverse designs of time-series pre-trained models and the significant differences in network
architectures, it is necessary to consider the overall evolution of features. We measure the task
adaptation ability of the pretrained model by calculating the similarity between the output features H1

from the first layer of the encoder and the output features H from the last layer. A simple approach is
to directly compute the dot product-based similarity [36] between them:

⟨vec(H1(H1)T ), vec(HHT )⟩ = tr(H1(H1)THHT ) = ∥HTH1∥2F , (5)

Due to the differences in how time series pre-trained models handle inter-channel relationships,
there is a significant gap in feature matrix dimensions across different pre-trained models. Directly
calculating squared dot product can lead to inaccurate estimates of model’s transferability. Therefore,
we use centered kernel alignment [37, 38, 36] to measure similarity, which further optimizes dot
product-based similarity. Specifically, Equation 5 means that, for the centered H1 and H:

1

(n− 1)2
tr(H1(H1)THHT ) = ∥cov((H1)T , HT )∥2F , (6)

The Hilbert-Schmidt Independence Criterion [39] generalizes Equations 5 and 6 to inner products from
reproducing kernel Hilbert spaces, where the squared Frobenius norm of the cross-covariance matrix
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becomes the squared Hilbert-Schmidt norm of the cross-covariance operator. Let Kij = k(xi,xj)
and Lij = l(yi,yj) where k and l are two kernels. The empirical estimator of HSIC is:

HSIC(K,L) =
1

(n− 1)2
tr(KQLQ), (7)

where Q is the centering matrix Qn = In − 1
n11

T. Finally, we normalize the HSIC to obtain our
score function, Sra:

Sta =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (8)

where we use the RBF kernel k(xi,xj) = exp(−||xi − xj ||22/(2γ2)) for mapping, with several
possible strategies for selecting the bandwidth. This strategy controls the extent to which similarity at
small distances is emphasized over large distances. We set γ to the median distance between samples.
For classification and imputation task, it is essential for the model to learn hierarchical representations,
making a lower Sta more desirable. In contrast, for forecasting and anomaly detection task, the model
needs to focus on capturing fundamental features, making a higher Sta more appropriate.

Overall Score Function. In this paper, we expect pre-trained models to learn valuable temporal
dependencies and patterns from the time series data and output task adaptive ability tailored to
different downstream tasks, enabling versatile time series analysis. To this end, we design three
score functions: Sdl, Spl, and Sta. Sdl and Spl measure the dependency learning ability of the model
and primary temporal pattern learning, respectively. Sta evaluates the task-adaptive ability of the
pre-trained model to various downstream tasks. Since time series often involves large-scale datasets,
directly applying SVD can result in high computational costs. To accelerate the computation, we use
the power iteration method [40, 41] to approximate the largest singular value of the model and its
corresponding eigenvector. For detailed information about the power iteration method, please refer to
Appendix C.4. Secondly, we quickly calculate the nuclear norm using equation 9, as shown below:

∥T∥∗ = tr

(√
(T)TT

)
. (9)

By employing these two methods, we avoid the high computational cost associated with SVD,
enabling a fast evaluation of the transferability of pre-trained models. In addition, since the score
functions have different scales, directly summing these scores may negatively impact the performance
of transferability evaluation. Therefore, we normalize each score to a unit range (0 to 1) instead of
manually defining hyperparameters to balance the contributions of each score, as follows:

Sdl ←
Sdl −min(Sdl)

max(Sdl)−min(Sdl)
. (10)

Similarly, we can obtain the normalized scores Spl(T) and Sta(H
1,H). By combining these three

scores, we derive the final transferability evaluation metric:

Stotal = Sdl(H,T) + Spl(T) + λSta(H
1,H), (11)

where λ is determined by the downstream task type. When evaluating on classification task and
imputation task, λ is set to -1. For forecasting task and anomaly detection task, λ is set to 1. Note
that the three scores are equally weighted, and λ acts as a sign function determined by the task type,
without requiring fine-tuning for specific downstream dataset. The pre-trained model with a higher
overall score Stotal indicates better transferability within the model pool for the target dataset D.

4 Experiments

In this section, we examine the effectiveness of TEMPLATE in assessing the transfer learning
performance of pretrained models across 5 mainstream downstream time series tasks, including
classification, short- and long-term forecasting, imputation, and anomaly detection.

Implementation Details. To quantify the correlation between estimated assessment scores and
actual fine-tuning results, we employ the weighted Kendall’s τw (see Appendix C.3), which measures
ranking agreement with higher weights for higher ranks. More details about the dataset and experiment
implementation can be found in Appendix C.
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Table 2: Comparison of SOTA Rate and Relative Improvement for Different Methods.

Method GBC [42] CC-FV [43] NCTI [19] ETran [18] Ours
SOTA Rate in Original Paper 37% 36% 40% 45% 46%

Improvement (vs Previous SOTA) 20% 9% 21% 18% 35%

Pre-trained Models. We select 10 pre-trained models from 4 model families to form the pre-trained
model pool, including MOMENT-small [25], MOMENT-base [25], MOMENT-large [25], Timer-
small [9], Timer-base [9], TimerXL-small [44], TimerXL-base [44], UniTS-small [26], UniTS-base
[26], and UniTS-large [26]. We fine-tune all source models on the target dataset to obtain the actual
ranking. More details about the pre-trained model pool can be found in the AppendixC.2.

4.1 Main Results.
Classification

Long-term Forecasting

Short-term Forecasting Anomaly Detection

Imputation

0.608

0.362

0.583 0.236

0.518

0.490

-
- -

-

0.419

-
- -

-

0.345

0.298

0.497 0.187

0.407
0.191

-
- -

-
0.1360.190

0.464
0.207

0.258

TEMPLATE(Ours)
RetMMD(2024)
ETran(2023)
TMI(2023)
PacTran(2022)
LogME(2021)

Figure 3: Performance comparison.

As a transferability evaluation metric designed for pre-
trained models in time series, TEMPLATE achieves con-
sistently state-of-the-art accuracy across 5 mainstream
analytical tasks, as shown in Figure 3. Notably, no method
has achieved SOTA on all dataset, and as illustrated in
Table 2, our method attains a remarkably high SOTA rate.
We show more experimental results in Appendix D to
further demonstrate the effectiveness of the method.

4.2 Classification

Setup. Time series classification can be applied to tasks such as recognition and medical diagnosis
[45]. Specifically, We verify all methods on 9 multivariate datasets from the UEA classification
archive [29], covering gesture, audio recognition, etc., across multiple task categories. We preprocess
the datasets according to [46], where different subsets have varying sequence lengths.

Table 3: Classification Benchmark: Performance (Weighted Kendall’s τw) of different methods. The
best results are highlighted in bold while the second best are underlined.

Datasets LogME
(2021)

NLEEP
(2022)

SFDA
(2022)

PACTran
(2022)

TMI
(2023)

NCTI
(2023)

ETran
(2023)

RetMMD
(2024)

TEMPLATE
(Ours)

EthanolConcentration 0.567 0.432 0.120 0.488 -0.430 -0.32 0.686 0.512 0.724
FaceDetection -0.203 0.092 0.598 0.306 -0.600 0.109 -0.359 0.310 0.597
Handwriting -0.445 -0.104 0.314 0.596 0.768 0.700 0.478 0.365 0.822
JapaneseVowels 0.231 0.213 0.021 0.306 0.302 0.340 -0.196 0.654 0.447
PEMS-SF -0.472 -0.612 -0.312 0.306 -0.300 0.053 0.076 0.520 0.470
SelfRegulationSCP1 0.356 0.529 0.459 0.619 0.300 0.310 0.651 0.450 0.484
SelfRegulationSCP2 0.268 0.241 -0.198 0.457 0.455 0.450 0.667 0.397 0.551
SpokenArabicDigits 0.342 0.321 -0.367 0.744 0.647 -0.210 0.479 0.201 0.637
UWaveGestureLibrary 0.584 0.127 0.440 0.592 0.576 0.245 0.624 0.362 0.719

Average 0.136 0.138 0.119 0.490 0.191 0.186 0.345 0.419 0.608

Performance Comparison. We compare our method with existing transferability evaluation met-
rics, including LogME [17], NLEEP [13], SFDA [16], PACTran [47], TMI [15], NCTI [19], ETran
[18] and RetMMD [48]. Table 3 shows the results of our method compared to previous work on
classification benchmarks. Our method outperforms all previous methods, achieving a state-of-the-art
(SOTA) τw of 0.608, which is 24% ahead of the second-best method. Due to the different ways
models handle inter-channel relationships, feature-statistics-based methods, such as LogME [17],
TMI [15], and NCTI [19], generally perform poorly on datasets with a large number of channels,
like FaceDetection and PEMS-SF. In contrast, our method achieves outstanding results on these two
datasets, with τw of 0.597 and 0.470, respectively. These results highlight the effectiveness of our
approach in evaluating pre-trained time series models for transfer learning.
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4.3 Short- and Long-term Forecasting

Setup. Time series forecasting plays a crucial role in areas such as weather forecasting, traffic
management, and energy consumption. To thoroughly evaluate the generalizability of our approach in
forecasting, we employ two types of benchmarks: long-term forecasting and short-term forecasting.
For long-term forecasting, we use seven widely recognized long-term time series forecasting datasets
[31], covering practical applications across various domains. For short-term forecasting, we adopt the
M4 dataset [49], which includes univariate marketing data collected annually, quarterly, and monthly.

Table 4: Long-term Forecasting Benchmark: All the results are averaged from 4 different prediction
lengths. ‘-’ means out of memory. See Table 12 in Appendix for the full results.

Methods ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic Average

LogME 0.215 0.167 0.400 0.565 0.114 -0.130 - 0.190
ETran 0.138 0.212 0.189 0.351 0.474 0.302 0.192 0.265

Ours 0.240 -0.003 0.518 0.576 0.412 0.361 0.432 0.362

Performance Comparison. Tables 4 and 11 present the experimental results of our method in
long-term and short-term forecasting scenarios. We compare our method with existing transferability
evaluation metrics for regression tasks, including LogME [17] and ETran [18]. The core of long-term
forecasting task lies in the model’s ability to effectively capture complex temporal dependencies
and long-term trend. By contrast, short-term forecasting task focus more on the precise capture of
fine-grained temporal patterns. Overall, our method demonstrates outstanding performance across
both scenarios. Notably, LogME performs poorly on multi-channel datasets like Electricity and
cannot evaluate the performance of pre-trained models on Traffic due to out of memory issues. In
contrast, our method achieves excellent results on both datasets. These results further validate the
effectiveness of our method in assessing time series pre-trained models for transfer learning.

4.4 Imputation

Setup. Real-time systems are continuously operating and monitored by automated observation
devices. However, due to failures, the collected time series may be partially missing, makes down-
stream analysis challenging. Therefore, imputation has become widely used in practical applications.
In this paper, we select datasets from electricity, weather, and traffic scenarios as benchmarks.

Table 5: Imputation Benchmark: All results are averaged from 4 mask ratios. ‘-’ means out of
memory. See Table 13 in Appendix for the full results.

Methods ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Traffic Average

LogME 0.322 0.238 0.607 0.388 0.312 -0.061 - 0.258
ETran 0.324 0.419 0.254 0.310 0.441 0.456 0.398 0.372

Ours 0.406 0.317 0.664 0.650 0.645 0.412 0.529 0.518

Performance Comparison. Effective time series imputation places high demands on the model’s
ability to capture temporal dependencies and understand contextual information. Specifically, when
imputing missing values, the model needs to utilize the implicit temporal patterns within data,
including modeling dynamic relationships between time points and accurately inferring both the
overall trends and local features of time series. Table 5 presents the experimental results of our method
in the time series imputation scenario. In the experiments, we evaluate the model’s performance under
different missing ratios. The results show that, whether in scenarios with a low or high proportion of
missing data, our method demonstrates a high level of model transferability evaluation accuracy.

4.5 Anomaly Detection

Setup. Anomaly detection in sensor data is crucial for industrial maintenance, as anomalies are
often hidden within large-scale datasets, making data labeling challenging. We compare 5 widely
used anomaly detection benchmarks: SMD [50], MSL [51], SMAP [51], SWaT [52], and PSM [53],
covering applications in service monitoring, spatial data, earth exploration, and water treatment.
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Table 6: Anomaly Detection Benchmark: Performance (Weighted Kendall’s τw) of different methods.
The best results are highlighted in bold and ‘-’ means out of memory.

Methods PSM MSL SMAP SMD SWaT Average

LogME 0.230 0.468 0.340 - - 0.207
ETran 0.433 -0.024 0.121 0.126 0.277 0.187

Ours 0.142 0.515 0.431 -0.08 0.173 0.236

Performance Comparison. Effective time series anomaly detection requires the model to identify
normal and abnormal patterns in the data and accurately distinguish between the two. Table 6 presents
the results of our method in the time series anomaly detection scenario. The experimental results
show that our method effectively evaluates the model’s transferability in anomaly detection scenarios.
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Figure 4: Effectiveness of component in TEM-
PLATE on Classification and Imputation task.
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Figure 5: Time complexity analysis.

4.6 Analysis

Ablation Study. Our TEMPLATE consists of three sub-items designed to evaluate the performance
of pre-trained models on downstream tasks. To explore the individual contribution of each sub-item
to the final metric and analyze its impact on overall performance, we conduct an ablation study.
Figure 4 presents the results of the ablation study on the classification and imputation task, with the
complete results available in Appendix D.2. It can be observed that all three metrics achieve positive
ranking correlations, and their combination yields the highest average ranking correlation, indicating
that the three metrics complement each other and can comprehensively measure the performance of
pre-trained models.

Time Complexity. In the Figure 5, we present a comparison of the average runtime and τw on the
classification task across 9 datasets using different model selection metrics. While NCTI [19] and
TMI [15] are fast, they perform poorly in evaluating the transferability of time series pre-trained
models due to their reliance on statistical metrics of feature matrices. LogME [17] is efficient, but it
cannot be applied to large datasets like Traffic and SMD because it relies on the magnitude of singular
values. In contrast, our method uses the power iteration method to avoid high computational costs
and enabling its application to large datasets. Although ETran [18] efficiently obtains the Sen score,
the LDA-based score calculation incurs significant time costs, resulting in slower overall speed.

5 Conclusion

In this paper, we propose TEMPLATE, a pre-trained model evaluation framework specifically
designed for time series. We are the first to design a transferability evaluation metric tailored for time
series. TEMPLATE consists of three scores, aimed at measuring the transferability of pre-trained
models from two perspectives: dependency and pattern learning, and task adaptation. Our approach
has been successfully applied to 5 mainstream time series downstream tasks. Extensive experiments
demonstrate that our method achieves state-of-the-art (SOTA) performance in evaluating time series
pre-trained models for transfer learning.
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A Limitations

Our method may perform poorly on some datasets with severe distribution shifts or structural breaks,
as the results on the training set cannot accurately reflect the model’s performance on the test set.
This remains a challenging problem, and no existing method has effectively addressed it yet.

B Broader impacts

The work in this paper contributes to facilitating the evaluation of transfer capability for time series
pre-trained models, thereby further saving time and training resources and enabling the rapid selection
of suitable time series pre-trained models for downstream tasks.

C Experiment Details

C.1 Implement Details

We provide detailed descriptions of the datasets in Tables 8. For all 5 downstream tasks, we follow
the experimental setup of [34]. To compute the transfer performance values, we carefully fine-tuned
the pre-trained models through hyperparameter grid search. As [54] highlighted, learning rate and
weight decay are the two most critical parameters. Therefore, we performed grid search over learning
rates and weight decay values (6 learning rates ranging from 10−3 to 10−5 , and 3 weight decay
values from 10−3 to 10−5) to select the optimal hyperparameters. The fine-tuning experiments of the
pre-trained models were conducted on an NVIDIA H20 GPU with 96GB of memory. It is important
to note that we only fine-tuned the pre-trained models to validate the effectiveness of the proposed
method; the method itself does not require fine-tuning of the pre-trained models. All the results of
pre-trained model transferability evaluation metrics were obtained on an AMD EPYC 7513 32-Core
CPU.

C.2 Model Pool Details

We selected 10 pre-trained models from four model families to form the model pool, including
MOMENT-small [25], MOMENT-base [25], MOMENT-large [25], Timer-small [9], Timer-base
[9], TimerXL-small [44], TimerXL-base [44], UniTS-small [26], UniTS-base [26], and UniTS-large
[26]. As shown in Table 7, the selected pre-trained models differ in structure, model parameters,
and the scale of pre-training. The MOMENT models were reconstructed and trained on the large
hybrid dataset Time-series Pile; Timer-small and TimerXL-small were pre-trained on the ERA5
dataset, while Timer-base and TimerXL-base were pre-trained on the large dataset UTSD; the UniTS
series models were pre-trained on a multi-domain hybrid dataset for time series. This highlights the
differences between the models and further demonstrates that the proposed method is sufficient to
support general transferability.

Table 7: The Architecture, Model size, and Scale of the pre-trained data of the model pool.

Method Timer Timer-XL MOMENT UniTS
Architecture Decoder Decoder Encoder Encoder

Model size 11M∼67M 14M∼69M 40M∼380M 3M∼8.4M

Pre-training Scale 0.5B, 28B 0.5B, 28B 1.13B 0.5B

C.3 Evaluation Metric

To evaluate the effectiveness of the proposed method, we refer to previous work [17, 18] and use
Kendall’s τ [55] to measure the correlation between the estimated evaluation scores and the ground-
truth ranking scores. This metric assesses ranking consistency, where a larger τ value indicates
greater effectiveness in ranking models. It is defined as the number of concordant pairs minus the
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number of discordant pairs, divided by the overall number of pairs
(
M
2

)
, as follows:

τ =
2

M(M − 1)

∑
1≤i<j≤M

sgn(Gi −Gj).sgn(Ti − Tj). (12)

Furthermore, we adopt a weighted version of Kendall’s τ [56], denoted as τw, to assign higher
weights to models ranked higher, to quantify this correlation.

C.4 Power Iteration

Due to the limited space in the main text, we show the detailed procedure of the power iteration
method here, as shown in Algorithm 1:

Algorithm 1 Power Iteration

Input: Matrix H, initial vector v0, number of iterations k, here we set 10.
Output: Dominant eigenvalue λmax, corresponding eigenvector vk
Initialize v0 randomly
for i = 1 to k do
vi+1 = Hvi
Normalize vi+1 to unit length

end for
Estimate the dominant eigenvalue λmax =

vT
k Hvk
vT
k vk

D More Experimental Results

D.1 Statistical Significance Testing

To validate the effectiveness of TEMPLATE over ETran, we conducted a statistical significance
test. The results show that the mean of TEMPLATE (0.483) is significantly higher than that of
ETran (0.359), with a mean difference of 0.124, which is statistically significant (T_statistic = 2.679,
P_value = 0.012). Therefore, TEMPLATE demonstrates significantly better performance across all
tasks compared to ETran, confirming its effectiveness improvement.

D.2 Ablation Study
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(a) Classification.
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(b) Imputation.
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(c) Forecasting.
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(d) anomaly detection.

Figure 6: Effectiveness of each individual component in TEMPLATE. We use the three terms
individually or remove them one at a time from the full system. The results are averaged across all
datasets.
Due to space limitations, we have included the complete ablation experiment results in Figure 6.
The experimental results show that, compared to the three individual metrics, TEMPLATE achieves
the best performance, demonstrating the effectiveness of TEMPLATE. Additionally, we have also
validated the effectiveness of combining these metrics in pairs. The combination of Sdl and Spl

outperforms each metric individually, proving their complementary nature. This demonstrates that
evaluating the pre-trained model’s ability for time series semantic learning from the perspectives of
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Table 8: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 96 (18317, 2633, 5261) Electricity (15 mins)

Traffic 862 96 (12185, 1757, 3509) Transportation (Hourly)

Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

dependency learning and pattern learning is an effective and reasonable approach. Although Sta did
not achieve the best correlation in the anomaly detection task, compared to W/O Sta, TEMPLATE
showed an 8% average improvement in tw across 5 downstream tasks, effectively proving the validity
of Sta.

Additionally, it is important to note that TEMPLATE is a very robust method. We conducted
additional ablation experiments to explore the specific implementation methods for the scores. For
Sdl, the main idea is to measure the alignment of the eigenvector corresponding to the largest singular
value between the trend component and the original sequence. In the table, we also implemented
Sdl based on Euclidean distance, and it can be seen that Sdl based on Euclidean distance achieves a
positive transferability evaluation. For Sta, the main idea is to measure the similarity between features
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Table 9: Ablation study on the specific implementation methods of Sdl and Sta.
Method EthanolConcentration Handwriting PEMS - SF FaceDetection
Sdl(euclidean_distance) 0.332 0.597 0.370 0.361
Sdl(pearsonr) 0.349 0.608 0.381 0.366
Sta(dot product ) 0.421 0.654 0.276 0.450
Sta(HSIC) 0.436 0.698 0.350 0.453

to meet the requirements of different task types for features. In the following table, we implemented
St based on squared dot product, and it can be observed that Sta based on squared dot product also
achieves positive transferability evaluation. HSIC maps the features to a higher-dimensional space
and then computes the similarity. The method of measuring feature similarity has good properties
[36]. Therefore, we use HSIC to measure similarity. The experimental results in the table further
demonstrate the effectiveness and robustness of TEMPLATE.

Table 10: Ablation Experiment on the Sensitivity of Hyperparameter λ.
λ EthanolConcentration Handwriting PEMS - SF SelfRegulationSCP2
-0.6 0.716 0.822 0.461 0.551
-0.8 0.724 0.822 0.461 0.551
-1 0.724 0.822 0.470 0.551

Finally, we note that the three scores in the final score are equally important, and λ is only related to
the task type rather than the specific downstream task dataset. To demonstrate the robustness of our
method, we add a parameter sensitivity experiment for λ in Table 10. The experimental results show
that on specific downstream datasets, there is no need to fine-tune λ.

Table 11: Short-Term Benchmark: Performance (Weighted Kendall’s τw) of different methods. The
best results are highlighted in bold.

Datasets Yearly Quarterly Monthly Others Average

LogME 0.492 0.332 0.562 0.468 0.464
ETran 0.235 0.763 0.624 0.318 0.485

Ours 0.534 0.667 0.712 0.417 0.583

D.3 Full Result

Due to space limitations in the main text, we have included the results of the short-term forecasting,
long-term forecasting and imputation in Tables 11, Tables 12 and 13. The experimental results
demonstrate that compared to LogME and ETran, TEMPLATE achieves the best average performance.

Table 12: The full result for forecasting task.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 weather ECL Traffic

Length 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

LogME 0.169 0.375 0.198 0.121 0.103 0.234 0.132 0.199 0.596 0.232 0.364 0.411 0.522 0.516 0.700 0.522 0.310 0.021 -0.110 0.233 0.031 -0.332 0.060 -0.280 - - - -
ETran -0.007 0.276 0.282 0.001 0.321 0.003 0.180 0.345 0.473 0.126 0.314 -0.154 0.210 0.393 0.312 0.489 0.531 0.642 0.384 0.341 0.461 0.184 0.296 0.268 0.102 0.168 0.314 0.184

Ours 0.234 0.309 0.243 0.175 -0.012 0.076 0.131 -0.199 0.746 0.317 0.670 0.340 0.438 0.598 0.680 0.589 0.496 0.523 0.342 0.291 0.180 0.346 0.458 0.458 0.642 0.334 0.395 0.361

Table 13: The full result for imputation task.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 weather ECL Traffic

Mask Ratio 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50%

LogME 0.193 0.441 0.251 0.405 0.214 0.242 0.196 0.301 0.342 0.613 0.658 0.815 0.417 0.365 0.423 0.348 0.402 0.195 0.297 0.351 0.0390 -0.150 -0.091 -0.051 - - - -
ETran 0.287 0.384 0.340 0.283 0.383 0.391 0.451 0.451 0.190 0.266 0.169 0.392 0.255 0.305 0.245 0.436 0.414 0.432 0.556 0.360 0.580 0.345 0.298 0.601 0.284 0.497 0.309 0.501

Ours 0.323 0.340 0.477 0.485 0.283 0.291 0.408 0.287 0.606 0.536 0.774 0.741 0.645 0.479 0.543 0.935 0.596 0.645 0.678 0.662 0.368 0.319 0.611 0.351 0.428 0.623 0.471 0.593
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