
Under review as submission to TMLR

Robust Reinforcement Learning in a Sample-Efficient
Setting

Anonymous authors
Paper under double-blind review

Abstract

The performance of reinforcement learning (RL) in real-world applications can be hindered
by the absence of robustness and safety in the learned policies. More specifically, an RL
agent that trains in a certain Markov decision process (MDP) often struggles to perform
well in MDPs that slightly deviate. To address this issue, we employ the framework of
Robust MDPs (RMDPs) in a model-based setting and introduce a novel learned transition
model. Our method specifically incorporates an auxiliary pessimistic model, updated ad-
versarially, to estimate the worst-case MDP within a Kullback-Leibler uncertainty set. In
comparison to several existing works, our method does not impose any additional condi-
tions on the training environment, such as the need for a parametric simulator. To test
the effectiveness of the proposed pessimistic model in enhancing policy robustness, we in-
tegrate it into a practical RL algorithm, called Robust Model-Based Policy Optimization
(RMBPO). Our experimental results indicate a notable improvement in policy robustness
on high-dimensional MuJoCo control tasks, with the auxiliary model enhancing the perfor-
mance of the learned policy in distorted MDPs, while maintaining the data-efficiency of the
base algorithm. Our methodology is also compared against other robust RL approaches. We
further examine how pessimism is achieved by exploring the learned deviation between the
proposed auxiliary world model and the nominal model. By introducing a pessimistic world
model and demonstrating its role in improving policy robustness, our research presents a
general methodology for robust reinforcement learning in a model-based setting.

1 Introduction

Reinforcement learning (RL) has been shown to perform well in many environments. However, the perfor-
mance of a trained RL agent can rapidly decrease when the agent is evaluated in a slightly altered environment
(Christiano et al., 2016; Rusu et al., 2017). This is one of the issues that has limited the adoption of RL in
real-world scenarios, more specifically due to the simulation-to-reality (sim2real) gap and inherent variability
in real control systems. These control systems could for example be robots, where the friction changes over
time due to the oil in the joints. Therefore, there is a need for policies that are robust enough to perform well
in environments that differ from the training environment. Due to this necessity, various approaches tackle
the sim2real issue, often using different problem formulations (Zhao et al., 2020). Some of these approaches
include domain randomization or transfer learning. In our work, however, we aim to maximize the worst-case
performance of the RL agent under bounds on the uncertainty, commonly formalized as a robust Markov
decision process (RMDP). This formalism defines an uncertainty set of multiple Markov decision processes
(MDPs), where the agent is oblivious to which MDP of the set it is acting in. The objective in an RMDP
then becomes to maximize the return in the worst (i.e., lowest cumulative reward) MDP of the uncertainty
set. In previous research, methods that work within the RMDP formalism have demonstrated enhanced
robustness against perturbations between the train and test environment (Gadot et al., 2024; Pinto et al.,
2017). However, these works often impose extra requirements on the training environment, such as the abil-
ity to re-sample a transition multiple times or to have access to a parametric environment during training.
A second challenge for RL in some real-world applications is the sample efficiency, since it is often slow to
perform exploration (e.g., on a physical robot). Model-based reinforcement learning (MBRL) is an approach

1



Under review as submission to TMLR

that has demonstrated significant progress in sample efficiency, such as the work of Janner et al. (2019) for
simulated robotics or the more general work by Hafner et al. (2023) that allows visual state representations.

This paper adopts the RMDP setting and proposes a novel algorithm that improves the robustness of a
learned policy, without placing any additional requirements on the training environment. Importantly, we
work within the MBRL framework and aim to maintain the sample efficiency of these methods. Inspired by
the ideas of Rigter et al. (2022) and Pinto et al. (2017), our approach introduces an auxiliary model that
acts as an adversary to minimize the cumulative reward under the current policy. This auxiliary objective
then defines a two-player Markov game with the policy optimization objective. By sequentially optimizing
these two competing objectives, our algorithm can optimize towards a more robust policy. Our main
contributions are firstly (i), proposing a novel robust MBRL algorithm to improve robustness in an online
setting, while remaining sample efficient. This is achieved by adding an auxiliary model to model-based policy
optimization (MBPO) which learns a pessimistic world model via adversarial updates. Secondly (ii), we
evaluate the empirical performance of our algorithm on high-dimensional Multiple Joint Control (MuJoCo)
benchmarks under both single and double parameter distortions 1 2. Thirdly (iii), we interpret and quantify
how the predictions of the learned robust model differ from the nominal model, demonstrating how the agent
achieves robustness. The remainder of this work will first describe current robust reinforcement learning
research. Then, we will highlight relevant background to our approach. Furthermore, the methodology is
described in detail. Subsequently, the results demonstrate the improvement in robustness that our method
provides to MBPO (Janner et al., 2019) in multiple MuJoCo (Todorov et al., 2012) control environments.
Finally, we draw conclusions and outline future research directions.

2 Background

In this section, we first introduce MBRL within the broader context of MDPs. Secondly, RMDPs are
described and an adversarial framework to tackle them is highlighted. Finally, the Kullback-Leibler (KL)
uncertainty set is defined.

2.1 Model-Based Reinforcement Learning

MBRL (Moerland et al., 2023) operates within the framework of an MDP, defined by the tuple
(S,A, T, r, γ, ρ0), where S and A denote the state and action spaces, T (s′|s, a) is the distribution that
defines the probability of ending up in next state s′ when taking action a in state s. Next, r(s, a) defines
distribution over rewards, γ is the discount factor, and ρ0(s) is the initial state distribution. To condense
notation throughout the paper, we use P (s′, r|s, a) to define the distribution over next states and rewards.
The objective in RL is to identify an optimal policy π∗ that maximizes the expected sum of discounted
rewards:

π∗ = arg max
π

Eπ,ρ0

[
H∑
t=0

γtr(st, at) | s0 ∼ ρ0

]
(1)

In addition, we denote the state visitation distribution of the MDP as dπ, which defines the likelihood of
being in a certain state when following policy π. In MBRL, the agent learns a model of the environment’s
dynamics, represented by pθ(s′, r|s, a), from the data collected through its interactions with the MDP. This
model is then used to simulate future states and rewards, reducing the number of interactions with the real
environment. The expected reward function, r(s, a), is also learned from data. In most MBRL algorithms,
the agent’s policy is updated based on both real experiences and simulated experiences from the learned
model, balancing between exploration for model learning and exploitation of the learned model for policy
improvement. For notational simplicity, we will use s, a and s′ to denote st, at, st+1 respectively, when it is
clear from context.

1Evaluation code and weights available at https://github.com/rmbpo-eval/rmbpo-tmlr
2Recorded examples available at https://sites.google.com/view/rmbpo

2

https://github.com/rmbpo-eval/rmbpo-tmlr
https://sites.google.com/view/rmbpo


Under review as submission to TMLR

2.2 Robust Markov Decision Processes

In a traditional MDP, the agent optimizes its policy in a static transition model P . However, in some
real-world problems, the transition model can change over time. Hence, we can define a Robust MDP
(Wiesemann et al., 2013) where the agent acts in an unknown MDP P ∈ P that is a sample from an
uncertainty set P. The robust objective JP,π can now be defined to maximize an objective function in the
worst-case MDP of a given uncertainty set. This objective is formally stated in Eq. 2.

JP,π = max
π∈Π

min
P∈P

EP,π,ρ0

[
H∑
t=0

γtr(st, at) | s0 ∼ ρ0

]
(2)

The optimal robust policy (π∗
P) now becomes the policy that maximizes JP,π (over the set of achievable

policies Π), this is called the outer-loop problem. Additionally, the algorithm is dependent on knowing the
worst-case MDP at every time step, we call this the inner-loop problem. Following other works, we only
consider SA-rectangular uncertainty sets, as finding the optimal robust policy for general uncertainty sets
is np-hard (Gadot et al., 2024; Zhou et al., 2024; Wiesemann et al., 2013). Under this assumption, for a
small uncertainty set, the inner-loop problem can be solved iteratively evaluating transitions in each MDP
P ∈ P. However, when the uncertainty set becomes very large or continuous, the inner-loop problem can be
challenging. We will follow related works by considering this combined optimization objective as a two-player
zero-sum Markov game (Rigter et al., 2022; Pinto et al., 2017). In this game, one player optimizes the policy,
to maximize the return, whilst the other player tries to find P ∗ ∈ P, which minimizes the return. Both these
players are updated in an alternating manner.

2.3 KL Uncertainty set

Since the "true" uncertainty set is often not known or ill-defined, a common choice is the KL uncertainty set,
denoted as PKL (Hu & Hong, 2013; Gadot et al., 2024; Shi & Chi, 2024). The KL uncertainty set is defined
as:

PKL =
{
P ∈ ∆S×R | DKL(P (s′, r|s, a)||P̄ (s′, r|s, a)) ≤ ϵs,a

}
, (3)

where P̄ is the nominal kernel, i.e., the environment with which the agent interacts during training. ∆S×R
denotes the probability simplex over S × R, note that r ∈ R. Furthermore, DKL(P (s′, r|s, a)||P̄ (s′, r|s, a))
is the KL divergence between the model P and the nominal model P̄ , given a current state and action.
The threshold ϵs,a is chosen as a constant, ϵs,a = ϵ for all s, a. In this definition, the KL uncertainty set
PKL consists of all models of which every transition is within a KL divergence of ϵ from the nominal model
P̄ . A limitation of this uncertainty set is the dependence on a stochastic transition model, since it would
require the (ill-defined) KL-divergence between two Dirac functions in the deterministic setting. However,
this limitation can be circumvented without loss of generality by adding action noise between the agent and
the MDP (Gadot et al., 2024; Zhou et al., 2024).

3 Auxiliary Model Learning

The goal of this section is to tackle the inner-loop problem of the robust objective, as defined by the
minimization problem in Eq. 2, i.e. approximating the worst-case MDP, denoted as P ∗ ∈ P, where we
choose P to be the KL uncertainty set centered around the nominal model P̄ . This choice of uncertainty set
follows a common choice in literature (Gadot et al., 2024; Hu & Hong, 2013). To describe our methodology,
Section 3.1 introduces the auxiliary adversarial model as an addition to traditional world model learning
(e.g. via maximum likelihood estimation (Janner et al., 2019)). The auxiliary model has a well-defined KL
divergence with the approximated nominal model. Secondly (Section 3.3), we introduce the loss function to
train the auxiliary model to maintain a low KL divergence with the nominal transition model, whilst also
learning to be pessimistic (i.e., minimizing the return of the transition).

3



Under review as submission to TMLR

3.1 Auxiliary Model

Since we work within the context of MBRL, we have direct access to a parameterized approximation,
pθ(s′, r|s, a), of the nominal transition model P̄ (s′, r|s, a). However, this does not directly provide us with a
method to approximate DKL(pθ||P̄ ), since we do not have access to the transition probabilities of the train-
ing environment P̄ (·), needed to construct the KL uncertainty set. Hence, we propose to not directly try to
approximate the pessimistic transition model, thus leaving pθ untouched. As an alternative, we propose an
auxiliary parameterized model, gψ, which takes as input the outputs of the learned transition model pθ, in
addition to s and a. Both gψ and pθ are parametrized as neural networks (multilayer perceptrons). Next
states and rewards can now be sampled according to Eq. 4.

s′, r ∼ gψ(· | s, a, pθ(s′, r|s, a)) (4)

Since both pθ and gψ define probability distributions, it is possible to compute DKL(gψ(·)||pθ(·)), which we
will consider as an approximation for DKL(gψ(·)||P̄ (·)). However, this approximation introduces an error if
pθ does not perfectly capture the training distribution. We quantify this error in Section 3.2. In our work,
both pθ and gψ define the mean and covariance matrix of a diagonal multivariate Gaussian distribution, so the
KL divergence can be computed closed-form. In practice, we provide the predicted mean µθ and covariance
matrix Σθ as inputs to the auxiliary model gψ, since a Gaussian is fully defined by these two components.
Strictly speaking, the addition of pθ as an input to the auxiliary model is not necessary, however, this greatly
eases the optimization of gψ, which will be explained in Section 3.3.

3.2 Approximation error introduced by the auxiliary model

As we are considering the KL divergence between the auxiliary model and the approximate model as an
approximation of the divergence with the true MDP, it is important to quantify the possible error that is
introduced by this step. We formally state this relationship below.
Theorem 3.1. Given a state s ∈ S and an action a ∈ A, and assuming that the nominal distribution
P̄ (s, a), the auxiliary distribution gψ(s, a) and the approximate distribution pθ(s, a) share the same support,
the KL divergence between the auxiliary model and the nominal model is given by:

DKL(gψ(s, a)||P̄ (s, a)) = DKL(gψ(s, a)||pθ(s, a)) + E(s′,r)∼gψ(s,a)

[
log

(
pθ(s′, r|s, a)
P̄ (s′, r|s, a)

)]
(5)

Theorem 3.1 demonstrates when the approximation is reasonable. The first insight is that P̄ (s, a) should be
close to pθ(s, a). If they are identical, the approximation error is 0. The second insight, is that if gψ(s, a) =
pθ(s, a), this approximation error reduces to KL(pθ(s, a)||P̄ (s, a)). Note that learning pθ via maximum
likelihood estimation (MLE) decreases KL(pθ(s, a)||P̄ (s, a)). As pθ(s, a) deviates more from gψ(s, a), the
MLE objective does not decrease this term exactly. Therefore, we want to minimize KL(pθ(s, a)||P̄ (s, a)),
and we should not let gψ(s, a) deviate too far from pθ(s, a). This aligns with the objective of bounding the
uncertainty set.

3.3 Training the Auxiliary Model

The goal of the auxiliary model is to minimize the value of each transition under the current policy while
remaining within the desired uncertainty set PKL. As mentioned in the previous section, we will use
DKL(gψ(·)||pθ(·)) as an approximation of DKL(gψ(·)||P̄ (·)), which introduces an error term. Secondly, we
employ an expected uncertainty set E(·) [DKL(gψ(·)||pθ(·))] instead of bounding the element-wise divergence.
This allows us to use common deep learning techniques for optimization. Note that it can be shown with the
Markov inequality that a limited expected KL divergence also limits the probability of high individual KL
divergences (see Appendix F.1). Using this inequality, one could set the bound on expected KL (denoted
by ϵe) in function of an acceptable probability that the element-wise KL (i.e., ϵ) is violated. By applying

4



Under review as submission to TMLR

Lagrangian relaxation to the constraint problem, we can formulate this objective as a dual problem in Eqn.
6. The first term is proposed by Rigter et al. (2022) and forces the auxiliary model to minimize the value
of transitions. V θ,ϕψ denotes the learned value function, parametrized by ϕ, which are the parameters of the
agent used to solve the outer-loop problem. The second term limits the expected KL divergence between
the auxiliary model and the approximate model.

max
λ≥0

min
gψ

[
E(s′,r)∼gψ,s∼dπ

ψ,θ
,a∼π

[
log(gψ(s′, r|s, a, pθ(·|·))(r + γV θ,ϕψ (s′)) + λ(KL(gψ(·)||pθ(·))− ϵe)

]]
(6)

Eqn. 6 can directly be approached by Lagrangian dual descent. However, this method is known to be
unstable and oscillate around the constraint boundary (Stooke et al., 2020; Platt & Barr, 1987). Following
Rigter et al. (2022) and a practice used in other works that theoretically rely on a constrained objective (such
as Higgins et al. (2017)), we choose to fix λ as a static hyperparameter and optimize the linear combination of
the primal objective and the constraint. Therefore, we optimize the auxiliary model using gradient descent,
following the gradient provided in Eqn. 7 (note that the constant λ in the second term can be replaced by
η in the first term, which is equivalent up to a scaling factor).

∇ψJg(ψ) = E(s′,r)∼gψ,s∼dπ
ψ,θ

,a∼π

[
η · (r + γV θ,ϕψ (s′)) · ∇ψ log(gψ(s′, r|s, a, pθ(·|·)) +∇ψKL(gψ(·)||pθ(·))

]
(7)

The hyperparameter η controls the influence of the value function: for a small η, the auxiliary model will be
almost identical to the approximate model and therefore PKL is minimized (up to the approximation error
defined by Eqn. 5). For larger values of η, gψ will grow more pessimistic and therefore PKL can be large.
Values of η that were used in this work can be found in Appendix C. Formal guarantees that the auxiliary
model remains in the uncertainty set are left for future work.

3.4 A Supervised Toy Experiment

Before moving to a RL algorithm in the next section, we set up a supervised toy problem, this will allow
us to choose some hand-crafted value functions and interpret their effect on the pessimistic model learning
visually. We create a dataset with samples of a standard normal distribution. This dataset represents
samples of the transition model, given a single state and action. As a next step we learn nominal parameters
θ = {µnominal, σnominal} that define the approximated nominal distribution. In the final step, we follow the
methodology of Sec. 3.3 to learn the parameters ψ = {µpessimistic, σpessimistic}, which define the pessimistic
auxiliary distribution. Note that it is not strictly necessary to approximate θ, and we could just provide
the ground truth nominal model to compute the KL-divergence. However, we wanted to remain as close as
possible to the setting of Section 4.

The following three value functions are used: v1(x) = x, v2(x) = −x and v3(x) = x2. For v1, we expect the
pessimistic model to biased towards lower values of x, since there is a linear correlation between x and the
value of x. For v2 we make an analogous reasoning for a bias towards higher values of x. Lastly, we expect an
unbiased, distribution for v3, however the standard deviation is expected to be smaller. This follows from the
fact that the normal distribution is already centered around the point where the value function is minimized,
i.e. x = 0. The results of these experiments are shown in Fig. 1, which confirms that the auxiliary model
is biased towards low-value points, and that this bias scales with η. We also performed experiments when
learning a categorical distribution instead of a Gaussian, these can be found in Appendix B, together with
a summary of the supervised algorithm that was used.

4 Robust Policy Learning

We propose robust model-based policy optimization (RMBPO), a RL algorithm that incorporates the aux-
iliary model to improve the robustness of the learned policy. Furthermore, we discuss the implications of
RMBPO on the performance bound of MBPO, where we motivate the choice for the KL uncertainty set.

5



Under review as submission to TMLR

5.0 2.5 0.0 2.5 5.0
x

0.0

0.1

0.2

0.3

0.4
v1(x) = x

5.0 2.5 0.0 2.5 5.0
x

0.0

0.1

0.2

0.3

0.4
v2(x) = x

5.0 2.5 0.0 2.5 5.0
x

0.0

0.2

0.4

v3(x) = x2
De

ns
ity

Nominal Kernel  = 0.25  = 1.0

Figure 1: A toy experiment where we learn a pessimistic auxiliary model. The nominal model is a standard
Gaussian, the associated value function is highlighted on each plot.

4.1 Proposed Reinforcement Learning Algorithm

To improve policy robustness, we combine the auxiliary model with MBPO (Janner et al., 2019) to create
RMBPO. MBPO approximates the training environment by maximizing the log likelihood of experienced
transitions under its learned model pθ. This model is a neural network that predicts a mean and covariance
matrix over the next states and rewards, conditioned on the current state and action. On-policy rollouts
are then performed on the learned model. Finally, the unrolled data is used to update a policy via Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). We modify MBPO by training an auxiliary model in addition
to the existing model, via Eq. 7. Since these two models are trained separately, the auxiliary model learning
does not hinder the accuracy or precision of pθ. During the model unroll, we pass the current state through
the learned model pθ, after which we use the output of that model (µθ,Σθ) as input to the auxiliary model.
The auxiliary model will then predict a modified (µψ,Σψ) as an approximation to the worst-case transition
model in PKL. Relating to Section 2.2, the auxiliary model tries to solve the inner-loop problem, while SAC
tries to maximize the outer-loop problem. These two components act as two players in a zero-sum Markov
game (see Eqn. 2). This procedure is fully described in Algorithm 1, where our additions are highlighted in
blue. Following other works (Gadot et al., 2024; Zhou et al., 2024), we add a small amount of action noise to
the environment, otherwise, the uncertainty set would not be well-defined. More details on the action noise
are provided in Appendix D.

4.2 Implications on the performance bound

Letting the auxiliary model minimize the value of transitions, is a direct application of the definition of an
RMDP. However, we also want to limit the difference in returns in the nominal MDP. This section will
motivate that bounding the KL divergence is a way to limit this loss in episode returns. By starting from
the theoretical insights, provided by Janner et al. (2019), we can see that a certain policy has a bounded
difference between the returns under the real model (environment) and the learned model (pθ). The data
collecting policy is defined as πD. If the expected total variation (TV) distance between two transition
distributions is bounded at each time step by ϵm = maxtEs∼D,t[DTV (P̄ (s, a)||pθ(s, a))] and the policy
divergence be bounded by ϵπ ≥ maxs[DTV (π(s)||πD(s))], then the difference between the true returns and
the approximate model returns is bounded, this bound is restated by Eqn. 8. The true return G[π] denotes
the expected return of a policy in the nominal environment. The model return Ĝ[π] denotes the expected
return of a policy in the approximate model pθ.

G[π] ≥ Ĝ[π]−
[

2γrmax(ϵm + 2ϵπ)
(1− γ)2 + 4rmaxϵπ

(1− γ)

]
(8)

We can employ this insight to bound the difference in returns of the optimal policy on the learned model
and the auxiliary model, as the learned model serves as the data-generating "environment" for the auxiliary

6



Under review as submission to TMLR

Algorithm 1 RMBPO (Additions in blue)
1: Initialize policy πϕ, predictive model pθ , auxiliary model gψ,
2: environment dataset Denv, model dataset Dmodel
3: for N epochs do
4: while improving on holdout set do
5: Update model parameters θ on environment data Denv via maximum likelihood
6: end while
7: while improving on holdout set do
8: Update auxiliary model parameters ψ according to Eq. 7: ψ ← ψ − λa∇̂ψJg(ψ,Denv, pθ, πϕ)
9: end while

10: for E steps do
11: Take action in environment according to πϕ; add to Denv
12: for M model rollouts do
13: Sample st uniformly from Denv
14: On-policy rollout according to Eq. 4 starting from st using policy πϕ; add to Dmodel
15: end for
16: Perform (soft) actor-critic updates on ϕ using samples from Dmodel.
17: end for
18: end for

model. I.e., we are interested in lower bounding the return under pθ, given the return under gψ. This would
mean that improving the policy under the auxiliary model also improves the policy under the nominal learned
model, which provides a lower bound on the performance in the real training environment. Therefore, we
define ϵmaux = maxtEs∼π,t[DTV (gψ(s′, r|s, a)||pθ(s′, r|s, a))] as the expected maximum TV distance between
the auxiliary model and the learned model. Let Ĝaux[π] be defined as the expected return of a policy under
the auxiliary model. Furthermore, because the two models are unrolled under the same policy, we know that
the policy divergence ϵπaux is 0. Employing Eqn. 8 in this setting provides Eqn. 9.

Ĝ[π] ≥ Ĝaux[π]− 2γrmax(ϵmaux)
(1− γ)2 (9)

We can combine Eqn. 8 and Eqn. 9 to become:

G[π] ≥ Ĝaux[π]−
[

2γrmax(ϵm + 2ϵπ + ϵmaux)
(1− γ)2 + 4rmaxϵπ

(1− γ)

]
(10)

This makes intuitive sense, if gψ is very different from pθ, our agent will perform poorly in the training
environment. If gψ is (almost) identical to pθ, the RL agent learns from a model that is identical to
the nominal MBPO model, and the performance bound becomes identical. Since ϵmaux denotes the TV
distance, and we know from Pinkster’s inequality that the KL-divergence bounds the TV distance, we know
that minimizing the KL divergence will lower-bound the performance in the nominal environment (Pinsker,
1964). With a very small η, the auxiliary model will focus on minimizing the KL divergence, and hence the
TV distance. The more η is increased, the less the loss function will focus on the KL divergence compared to
value minimization, hence becoming more pessimistic, but losing performance in the nominal environment
(and probably everywhere). This trade-off between adversarial robustness and optimality is well studied in
literature. Empirical results on the relation between η and the KL divergence can be found in Appendix
A.2.

5 Main Results

The following section aims to answer three main research questions: (i) "Can the auxiliary model make a
learned policy more robust?", (ii) "How does RMBPO compare against other robust RL approaches?" and (iii)

7



Under review as submission to TMLR

"How does the auxiliary model learn pessimistic state transitions?". The first two questions are investigated
in Section 5.1 and Section 5.2, where we investigate the effect of the auxiliary model, after which RMBPO
is compared against SAC and robust natural actor-critic (RNAC) (Zhou et al., 2024). The final question
is investigated in Section 5.3, where we perform a limited case study on the Hopper-v4 environment to
examine which changes are made by the auxiliary model. For all our results, each algorithm is trained five
times using different initial seeds. In accordance with Agarwal et al. (2021), we employ bootstrapped 95%
confidence intervals as our metric of confidence. However, in contrast to reporting the interquartile mean
(IQM), we report the average performance. The outlier rejection associated with IQM can yield overly
optimistic results, which could make it a flawed metric when evaluating robustness.

5.1 Effect of the auxiliary model

We evaluate the hypothesis that our proposed auxiliary model aids MBRL algorithms in being more robust.
The results under a single distortion are presented in Fig. 2, which compares the trained agents in Hopper-
v4, Walker2d-v4 and HalfCheetah-v4. The plots represent a sweep over distortions of a single simulation
parameter. Following Pinto et al. (2017), the torso mass and friction are distorted in all environments.
Additionaly, we follow Zhou et al. (2024) by distorting the leg joint stiffness in Hopper-v4 and the foot joint
stiffness in Walker2d-v4. The plots indicate that our method can improve the robustness of MBPO, since
the robustness of RMBPO is either better or matches that of MBPO everywhere.

Additionally, we evaluate RMBPO under two simultaneous distortions. We again follow Pinto et al. (2017)
and perform a sensitivity analysis on the combination of torso mass and friction distortions. The results are
displayed in Fig. 4. In all three tested environments, it is clear that RMBPO is more robust than MBPO,
confirming that the auxiliary model also aids the robustness in this setting. Using the data displayed in
Fig. 4, we make a cumulative proportion plot in Fig. 5. This figure demonstrates a significant reduction
in the number of distortion combinations that deliver a (very) low return. The improvement in robustness
can be related to a decrease in optimality in the nominal environment, as can be seen in our experiments in
HalfCheetah-v4. The trade-off between nominal optimality and robustness is controlled by the hyperparam-
eter η. This relates to the theory in Section 4.2 and is a well-known trade-off that is affirmed by previous
work (Lee et al., 2024; Gadot et al., 2024). It can be seen in the results that we choose a significantly higher
value of η for Hopper-v4, compared to the other environments. This is related to a much lower variance
on state transitions in the Hopper environment, we provide more details on this in Appendix G. Additional
results on the magnitude of η can be found in Appendix A.1.

5.2 Comparing with robust RL approaches

In this section, the robustness of RMBPO will be compared with two other algorithms. Importantly, we
should note that SAC uses 1M environment samples and RNAC uses 3M samples in all experiments, as
described in their original papers. RMBPO only uses 125k samples for Hopper-v4, 300k for Walker2d-v4 and
400k for HalfCheetah-v4, leaving the data-efficient setting of MBPO unaltered. For the most direct compar-
ison, we compare against the integral probability metric (IPM) version of RNAC, since this version produces
the strongest results. To compare the algorithms, our first experiment evaluates the mean performance in
two environments, under a range of distortions. As shown in Fig. 3, RMBPO is the most robust algorithm in
Hopper-v4 and HalfCheetah-v4, under all evaluated distortions. Furthermore, RMBPO outperforms RNAC
on Walker2d-v4, while achieving similar (arguably slightly worse) results to SAC in this environment. In a
second experiment, we compare RMBPO against the other approaches when dealing with a combination of
two distortions. As visible in Fig. 4, the observations remain similar to the single-distortion experiments.
RMBPO is again the most robust algorithm on Hopper-v4 and HalfCheetah-v4, while it slightly underper-
forms to SAC in Walker2d-v4. These results align with the notion that SAC is an adversarially robust
algorithm for some problems, but not all (Eysenbach & Levine, 2022; Zhou et al., 2024). Furthermore, in all
of our experiments, RMBPO was more robust than RNAC.

8



Under review as submission to TMLR

3 4 5 6
Parameter Value

0

1000

2000

3000

4000

Ev
al

ua
tio

n 
M

ea
n 

Re
tu

rn Torso Mass

0.50 0.25 0.00 0.25 0.50
Parameter Value

0

1000

2000

3000

4000 Friction

0 200 400 600
Parameter Value

0

1000

2000

3000

4000 Leg Joint Stiffness

RMBPO (  = 4) MBPO

(a) Hopper-v4

0.0 2.5 5.0 7.5 10.0
Parameter Value

0

1000

2000

3000

4000

5000

Ev
al

ua
tio

n 
M

ea
n 

Re
tu

rn

Torso Mass

1 0 1 2
Parameter Value

0

1000

2000

3000

4000

5000 Friction

0 10 20 30 40
Parameter Value

0

1000

2000

3000

4000

5000 Foot Joint Stiffness

RMBPO (  = 0.5) MBPO

(b) Walker2d-v4

5 10 15
Parameter Value

0

2500

5000

7500

10000

12500

Ev
al

ua
tio

n 
M

ea
n 

Re
tu

rn

Torso Mass

1 0 1 2
Parameter Value

0

2500

5000

7500

10000

12500
Friction

0 50 100
Parameter Value

0

2500

5000

7500

10000

12500
Back Foot Joint Stiffness

RMBPO (  = 0.25) MBPO

(c) HalfCheetah-v4

Figure 2: Influence of the auxiliary model on policy robustness under a single distortion. The vertical dotted
line indicates the nominal value of the parameter, used during training.

9



Under review as submission to TMLR

3 4 5 6
Parameter Value

0

1000

2000

3000

4000

Ev
al

ua
tio

n 
M

ea
n 

Re
tu

rn

Torso Mass

0.50 0.25 0.00 0.25 0.50
Parameter Value

0

1000

2000

3000

4000 Friction

0 20 40
Parameter Value

0

1000

2000

3000

4000 Leg Joint Stiffness

RMBPO (  = 4) SAC RNAC

(a) Hopper-v4

0.0 2.5 5.0 7.5 10.0
Parameter Value

0

1000

2000

3000

4000

5000

Ev
al

ua
tio

n 
M

ea
n 

Re
tu

rn

Torso Mass

1 0 1 2
Parameter Value

0

1000

2000

3000

4000

5000
Friction

0 10 20 30 40
Parameter Value

0

1000

2000

3000

4000

5000
Foot Joint Stiffness

RMBPO (  = 0.5) SAC RNAC

(b) Walker2d-v4

5 10 15
Parameter Value

0

2500

5000

7500

10000

12500

Ev
al

ua
tio

n 
M

ea
n 

Re
tu

rn

Torso Mass

1 0 1 2
Parameter Value

0

2500

5000

7500

10000

12500
Friction

0 50 100
Parameter Value

0

2500

5000

7500

10000

12500
Back Foot Joint Stiffness

RMBPO (  = 0.25) SAC

(c) HalfCheetah-v4

Figure 3: Comparing RNAC, SAC and RMBPO (ours) under a single distortion. The vertical dotted line
indicates the nominal value of the parameter, used during training.

10



Under review as submission to TMLR

0.4 0.2 0.0 0.2 0.4
2.5

3.0

3.5

4.0

4.5

MBPO

0.4 0.2 0.0 0.2 0.4

RNAC

0.4 0.2 0.0 0.2 0.4

SAC

0.4 0.2 0.0 0.2 0.4

RMBPO (  = 4)

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

Relative Normalized Friction

To
rs

o 
M

as
s

(a) Hopper-v4

0.5 0.0 0.5 1.0

2

4

6

8
MBPO

0.5 0.0 0.5 1.0

RNAC

0.5 0.0 0.5 1.0

SAC

0.5 0.0 0.5 1.0

RMBPO (  = 0.5)

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

Relative Normalized Friction

To
rs

o 
M

as
s

(b) Walker2d-v4

0 1 2

4

6

8

MBPO

0 1 2

SAC

0 1 2

RMBPO (  = 0.5)

0
2000
4000
6000
8000
10000
12000

Relative Normalized Friction

To
rs

o 
M

as
s

(c) HalfCheetah-v4

Figure 4: Comparing MBPO, RNAC, SAC and RMBPO (ours) under two distortions. The nominal values
of the individual parameters can be found in Fig. 3.

500 1000 1500 2000 2500 3000 3500
Mean Return

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Be

lo
w 

M
ea

n 
Re

tu
rn Hopper-v4

RMBPO
MBPO

0 1000 2000 3000 4000
Mean Return

Walker2d-v4
RMBPO
MBPO

2000 4000 6000 8000 10000 12000
Mean Return

HalfCheetah-v4
RMBPO
MBPO

Figure 5: Cumulative proportion of samples below a certain mean return. RMBPO successfully reduces the
number of low-return episodes. Samples are combined distortions, identical to Fig. 4.

11



Under review as submission to TMLR

Table 1: The difference in transition predictions between gψ and pθ. Values indicate angular velocity (ω) or
lateral velocity (v). Expressed in rad/s and m/s respectively.

Torso (ω) Thigh Hinge (ω) Leg Hinge (ω) x-Coordinate Torso (v)

η = 0.25 0.0004288 0.0003017 0.0001197 2.895e-05
η = 0.5 0.001006 0.0005101 0.0002834 0.0002111
η = 1.0 0.001391 0.001138 0.000416 0.0002015
η = 2.0 0.003162 0.001393 0.00122 0.0003127
η = 4.0 0.004079 0.002171 0.001793 0.0008305

5.3 What is the model learning (in Hopper-v4)?

Figure 6: A render of Hopper-v4, an-
notated with the four largest modifi-
cations of the auxiliary model. An in-
crease in (angular) velocity is denoted
with ’++’, a decrease with ’- -’.

In addition to the quantitative results in this section, we perform a
limited case study on how gψ modifies the state transitions compared
to the approximated nominal model pθ. In Hopper-v4, the observa-
tion space consists of 11 values describing the angles and angular
velocities of the joints in the robot and the position and (angular)
velocity of the top of the robot. For an exhaustive list, the reader is
deferred to Todorov et al. (2012). The goal of the environment is to
use three rotors (in the foot, leg, and thigh) to make the robot move
forward as fast as possible, without falling. Therefore, we would
expect the auxiliary model to modify the transitions in such a way
that the robot moves forward more slowly and becomes more prone
to falling. To examine the learned model, we display the four largest
modifications that are made by the auxiliary model in Table 1. It
can be seen that increasing η consistently increases the distance of
the robust predictions from the predictions of the nominal model.
The four state variables that are the most influenced by the adver-
sarial updates are the angular velocity of the torso, the thigh hinge,
the leg hinge and the x-velocity. More importantly, it is shown that
the robust model increases the angular velocity of the torso, whilst
it decreases the other two angular velocities. This aligns with the
intuition of the system, since higher mobility of the torso makes the
Hopper harder to control and therefore increases the probability of
it falling. The results also demonstrate a lower angular velocity on
the actuated parts (such as the leg and thigh). Since these limbs are used to control the robot, this makes
the system harder to control. Finally, the lateral velocity of the robot is lowered, which directly reduces the
step-wise reward of the environment. All these transition modifications are visually illustrated in Fig. 6.

6 Related Works

Many works focus on robust reinforcement learning in a tabular setting. These works include a robust
policy gradient (Wang & Zou, 2022; Kumar et al., 2024) and a tractable approach to tackle non-rectangular
RMDPs (Goyal & Grand-Clement, 2023). In a step towards generality, Wang & Zou (2021) and Morimoto &
Doya (2005) consider robust reinforcement learning with function approximation on the inverted pendulum
problem. Recently, Wang et al. (2024) provide a robust RL algorithm with sample complexity analysis. As
many works exist that consider tabular robust RL, the reader is referred to Moos et al. (2022) for more
information on the topic.

In the context of high-dimensional state and action spaces, Pinto et al. (2017) propose adversarial RL for
robustness. They show that an adversarial approach can make RL robust towards differences between the
training and evaluation environment. In contrast to our work, the adversary in their methodology has access

12



Under review as submission to TMLR

to parameters of the simulator during training. Gadot et al. (2024) propose a methodology where multiple
next states are sampled at each time step from a stochastic transition model. Subsequently, a single next
state is resampled with an importance weight, based on the value of that state. Similar to this work, the KL
uncertainty set is considered, however, their methodology requires a simulator where multiple next states
can be sampled at any time step. Rajeswaran et al. (2017) investigate an approach that, similar to ours,
makes use of MBRL with ensemble world models. However their methodology explicitly requires training
randomization over the distortion parameter that is evaluated. Rigter et al. (2022) propose an approach
similar to ours, with the goal of being robust to out-of-distribution data in offline RL. More recently, Zhou
et al. (2024) provide a model-free alternative to our work. Improved robustness against transition dynamics
is demonstrated in the MuJoCo environment, in addition to exhaustive theoretical motivation. We compare
against this work in the results section. Recently, Liu et al. (2024) introduce a robust RL algorithm, with
theoretical guarantees on the robustness and sample complexity of their approach. However, their work is
restricted to an action robust setting. Additionally, the work of Rigter et al. (2024) demonstrates the benefit
of adversarial robustness in a reward-free RL setting. Queeney et al. (2024) introduce a novel uncertainty
set, called Optimal Transport Perturbations, and demonstrate its effectiveness in improving robustness and
safety in a simulated robotics setting. Finally, Queeney & Benosman (2024) consider model-free robust RL
to improve the safety of a learned policy.

7 Conclusion and Future Works

This work proposed a novel approach for robust adversarial RL in an online, high-dimensional setting.
We have motivated the use of an auxiliary model to tackle the inner-loop optimization problem of the
RMDP formulation and provided a version of this auxiliary model, based on the KL uncertainty set. This
pessimistic auxiliary model was then implemented in a practical MBRL algorithmm, called RMBPO. Our
experiments demonstrate that the auxiliary model improves the robustness of MBRL, while remaining in
the same data-efficient setting. Secondly, our method was compared to other recent model-free robust RL
approaches. RMBPO matched or outperformed the robustness of these algorithms using significantly less
data. Finally, we performed a limited case study which interprets the way in which the auxiliary model
helps policy robustness. A limitation of our work is the introduction of the approximation error, as stated
in Theorem 3.1, since this might limit maximum size of the uncertainty set more than necessary, to still get
a good nominal performance. Another limitation is the fixed Lagrangian hyperparameter, which does not
tackle the constrained problem as a hard constraint. We believe that improved Lagrangian methods such as
the modified method of differential multipliers (MDMM) might be an interesting research direction (Platt
& Barr, 1987).

As future work, we want to tackle the setting of very noisy nominal MDPs, such as explored in Gadot et al.
(2024). Other interesting areas for future work could include policy mixing between a traditional and a
robust policy, to limit the potential downside of not exploiting the environment optimally. Furthermore, it
might be interesting to look at a way to formally ensure that the auxiliary model remains within the desired
uncertainty set, combined with theoretical guarantees on the robustness of the policy, as we believe that this
is a vital step towards RL in industrial applications.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304–29320, 2021.

Thomas Ahle and Nathaniel Virgo. Substitute for triangle inequality for kullback-leibler divergence. Math-
ematics Stack Exchange. URL https://math.stackexchange.com/q/3613688.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American Mathe-
matical Soc., 2000.

13

https://math.stackexchange.com/q/3613688


Under review as submission to TMLR

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel,
and Wojciech Zaremba. Transfer from simulation to real world through learning deep inverse dynamics
model. arXiv preprint arXiv:1610.03518, 2016.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL problems.
In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=PtSAD3caaA2.

Xu Feng. Unstable baselines. https://github.com/x35f/unstable_baselines, 2021.

Uri Gadot, Kaixin Wang, Navdeep Kumar, Kfir Yehuda Levy, and Shie Mannor. Bring your own (Non-robust)
algorithm to solve robust MDPs by estimating the worst kernel. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 14408–
14432. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/gadot24a.html.

Vineet Goyal and Julien Grand-Clement. Robust markov decision processes: Beyond rectangularity. Math-
ematics of Operations Research, 48(1):203–226, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104, 2023.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae learning basic visual concepts with a constrained variational
framework. In International conference on learning representations, 2017.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust optimization.
Available at Optimization Online, 1(2):9, 2013.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Y Levy, and Shie Mannor. Policy gradient for
rectangular robust markov decision processes. Advances in Neural Information Processing Systems, 36,
2024.

Bruce D Lee, Thomas TCK Zhang, Hamed Hassani, and Nikolai Matni. Performance-robustness tradeoffs
in adversarially robust control and estimation. IEEE Transactions on Automatic Control, 2024.

Guanlin Liu, Zhihan Zhou, Han Liu, and Lifeng Lai. Efficient action robust reinforcement learning with
probabilistic policy execution uncertainty. Transactions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?id=9sZsjfZV3q.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and Knowledge
Extraction, 4(1):276–315, 2022.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335–359, 2005.

Mark S Pinsker. Information and information stability of random variables and processes. Holden-Day, 1964.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforcement
learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR, 2017.

14

https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2
https://github.com/x35f/unstable_baselines
https://proceedings.mlr.press/v235/gadot24a.html
https://openreview.net/forum?id=9sZsjfZV3q


Under review as submission to TMLR

John Platt and Alan Barr. Constrained differential optimization. In D. Anderson (ed.), Neural Information
Processing Systems, volume 0. American Institute of Physics, 1987. URL https://proceedings.neurips.
cc/paper_files/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf.

James Queeney and Mouhacine Benosman. Risk-averse model uncertainty for distributionally robust safe
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

James Queeney, Erhan Can Ozcan, Ioannis Paschalidis, and Christos Cassandras. Optimal transport per-
turbations for safe reinforcement learning with robustness guarantees. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=cgSXpAR4Gl.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. EPOpt: Learning robust
neural network policies using model ensembles. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=SyWvgP5el.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline reinforce-
ment learning. Advances in neural information processing systems, 35:16082–16097, 2022.

Marc Rigter, Minqi Jiang, and Ingmar Posner. Reward-free curricula for training robust world models. In
The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=eCGpNGDeNu.

Andrei A Rusu, Matej Večerík, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell. Sim-
to-real robot learning from pixels with progressive nets. In Conference on robot learning, pp. 262–270.
PMLR, 2017.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with near-
optimal sample complexity. Journal of Machine Learning Research, 25(200):1–91, 2024.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143. PMLR, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Yudan Wang, Shaofeng Zou, and Yue Wang. Model-free robust reinforcement learning with sample com-
plexity analysis. In Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, UAI
’24, 2024.

Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. Advances in
Neural Information Processing Systems, 34:7193–7206, 2021.

Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In International
conference on machine learning, pp. 23484–23526. PMLR, 2022.

15

https://proceedings.neurips.cc/paper_files/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://openreview.net/forum?id=cgSXpAR4Gl
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=SyWvgP5el
https://openreview.net/forum?id=eCGpNGDeNu
https://openreview.net/forum?id=eCGpNGDeNu


Under review as submission to TMLR

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement
learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI), pp.
737–744. IEEE, 2020.

Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-critic for
robust reinforcement learning with function approximation. Advances in neural information processing
systems, 36, 2024.

16



Under review as submission to TMLR

A Additional Results

A.1 Effect of η on robustness

0.2 0.0 0.2 0.4
2.5

3.0

3.5

4.0

4.5

MBPO

0.2 0.0 0.2 0.4

RMBPO (  = 0.04)

0.2 0.0 0.2 0.4

RMBPO (  = 4)

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

Relative Normalized Friction

To
rs

o 
M

as
s

(a) Hopper-v4

0.5 0.0 0.5 1.0

2

4

6

8
MBPO

0.5 0.0 0.5 1.0

RMBPO (  = 0.25)

0.5 0.0 0.5 1.0

RMBPO (  = 0.5)

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

Relative Normalized Friction

To
rs

o 
M

as
s

(b) Walker2d-v4

0 1 2

4

6

8

MBPO

0 1 2

RMBPO (  = 0.25)

0 1 2

RMBPO (  = 0.5)

0
2000
4000
6000
8000
10000
12000

Relative Normalized Friction

To
rs

o 
M

as
s

(c) HalfCheetah-v4

Figure 7: Influence of auxiliary model on policy robustness under two distortions. All experiments demon-
strate that larger η increases robustness, possibly at the cost of optimality.

17



Under review as submission to TMLR

500 1000 1500 2000 2500 3000 3500
Mean Return

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Be

lo
w 

M
ea

n 
Re

tu
rn Hopper-v4

 = 0.5
 = 0.25
 = 0.0

0 1000 2000 3000 4000
Mean Return

Walker2d-v4
 = 0.5
 = 0.25
 = 0.0

2000 4000 6000 8000 10000 12000
Mean Return

HalfCheetah-v4
 = 0.5
 = 0.25
 = 0.0

Figure 8: Cumulative proportion of samples below a certain mean return. A higher η value successfully
reduces more low-return episodes. Samples are combined distortions, identical to Fig. 7.

A.2 Emperical effect of η on KL divergence

0 1 2 3 4 5 6 7 8
 Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

KL
 D

iv
er

ge
nc

e

Hopper-v4
Data points
Linear fit

(a) Hopper-v4

0.0 0.1 0.2 0.3 0.4 0.5
 Value

0.00

0.01

0.02

0.03

0.04

0.05
KL

 D
iv

er
ge

nc
e

Walker2d-v4
Data points
Linear fit

(b) Walker2d-v4

Figure 9: The KL divergence between the approximated nominal model and the auxiliary model, in function
of η. Linear fit included for visual reference.

18



Under review as submission to TMLR

A.3 Learning Curves

0 20000 40000 60000 80000 100000 120000
Timesteps

500

1000

1500

2000

2500

3000

3500

Ev
al

ua
tio

n 
Re

tu
rn

IQM Return
95% CI's

(a) Hopper-v4 (η = 4)

0 50000 100000 150000 200000 250000 300000
Timesteps

0

1000

2000

3000

4000

Ev
al

ua
tio

n 
Re

tu
rn

IQM Return
95% CI's

(b) Walker2d-v4 (η = 0.5)

0 100000 200000 300000 400000
Timesteps

0

2000

4000

6000

8000

10000

12000

Ev
al

ua
tio

n 
Re

tu
rn

IQM Return
95% CI's

(c) HalfCheetah-v4 (η = 0.25)

0 100000 200000 300000 400000
Timesteps

0

2000

4000

6000

8000

10000

12000
Ev

al
ua

tio
n 

Re
tu

rn
IQM Return
95% CI's

(d) HalfCheetah-v4 (η = 0.5)

Figure 10: Evaluation curves of RMBPO. IQM with 95% confidence intervals over 5 training runs with
different seeds. Timesteps denote the number of interactions with the training environment.

B Toy Experiment Details

A summary of the algorithm that was used in the toy experiments is provided in Algorithm 2.

Algorithm 2 Supervised Pessimistic Distribution Learning with an Auxiliary Model
1: Choose an arbitrary value function v : Rn → Rn
2: Initialize dataset D with samples from the training distribution
3: Initialize nominal parameters θ
4: Initialize pessimistic parameters ψ
5: while improving do
6: Update model parameters θ on environment data: θ ← θ − λp∇̂θJp(θ,D)
7: end while
8: while improving do
9: Update model parameters ψ according to Eq. 7: ψ ← ψ − λa∇̂ψJg(ψ,D, pθ, v)

10: end while

19



Under review as submission to TMLR

0 2 4 6 8
Category

0.00

0.05

0.10

0.15

0.20
 = 0.0

0 2 4 6 8
Category

 = 0.2

0 2 4 6 8
Category

 = 0.7
Pr

ob
ab

ilit
y

Nominal Auxiliary

(a) Value function rewards even categories (0, 2, 4, 8).

0 2 4 6 8
Category

0.00

0.05

0.10

0.15

0.20
 = 0.0

0 2 4 6 8
Category

 = 0.05

0 2 4 6 8
Category

 = 0.2

Pr
ob

ab
ilit

y

Nominal Auxiliary

(b) Value function is equal to the label of the category (1, 2, 3, ...).

Figure 11: Difference between nominal categorical model and pessimistic categorical model.

Table 2: Hyperparameters

Hyperparameter Hopper-v4 Walker2d-v4 HalfCheetah-v4

η 4 0.5 0.25 / 0.5
λa 1e-4 1e-4 1e-4
Total environment steps 125k 300k 400k

Furthermore, to demonstrate that the methodology is not exclusive to Gaussians, we also perform exper-
iments on categorical distributions. A dataset was generated by sampling from a categorical distribution
with 10 categories, with the following (randomly generated) probabilities: [0.0364, 0.1024, 0.1335, 0.1107,
0.0668, 0.1367, 0.0558, 0.1067, 0.0981, 0.1529]. Identical to the Gaussian experiments, we follow Algorithm 2
to learn a nominal and an auxiliary model from this data. Instead of parametrizing a mean and variance, we
now parametrize the 10 logits. We perform experiments with two value functions. The first value function
provides a value of 1 for even categories (0, 2, ...) and −1 for odd categories, the results are shown in Fig.
11a. The second value function just returns the number of the category (e.g. category 4 has a value of 4),
these results are shown in Fig. 11b.

C Hyperparamters

We "tune" η by performing a sweep and taking the largest value for which we still find an adequate nominal
performance. Note that this hyperparameter is actually more of a design choice, since it trades optimality
for robustness. The desired magnitude of η is influenced by the variance on transitions of the nominal
environment. Namely, a large transition variance already allows for meaningful pessimism introduced by gψ
at lower η values. Environments with less variance need a higher η (and therefore a higher KL) to introduce

20



Under review as submission to TMLR

pessimism. For more details on this, see Appendix G. The pessimistic model learning rate (λa) is set to 1
10

of the normal MBPO model learning rate, this significantly reduces variance on the return during training.
Note that we use the same amount of environment steps as MBPO in all environments.

All other hyperparameters remain identical to MBPO (Janner et al., 2019), the auxiliary model gψ also has
the same architecture as a single model of the the MBPO ensemble world model.

D Implementation details and reproducibility

Following related work (Zhou et al., 2024), we add uniform noise to the action: at ← at + U(5e− 3). Since
this action noise is invisible to the agent, it introduces stochasticity in the MDP. Inspired by the existing
MBPO world model, we standardize the outputs of pθ before providing them as inputs to gψ, this showed
incremental stability improvements in some training runs. As proposed in appendix A.1 of Rigter et al.
(2022), we subtract V θ,ψϕ (s) as a baseline from the return in Eq. 7, this does not influence the expectation
of the gradient but significantly reduces its variance. Note that MBPO/RMBPO does not employ a value
network directly, however, we can approximate this with on-policy samples from the Q-value network. We
want to highlight that pθ is an ensemble of seven neural networks in MBPO and RMBPO, in contrast, gψ is
a single neural network. This provides two advantages. First, the computational effort is only increased by
a small fraction (not doubled). Secondly, the ability pθ to capture the epistemic uncertainty during training
is maintained by including samples of the ensemble as input to gψ.

Our implementation is based upon the Unstable Baselines Python library (Feng, 2021). We preferred this
implementation because of its clarity, however, we experimentally verified that Unstable Baselines reached
the same performance as the original open-source MBPO code. For calculating the bootstrapped confidence
intervals, we used the implementation provided by SciPy (Virtanen et al., 2020). Experiments were run on
a Ubuntu20.04 (Docker) machine with a single NVIDIA Quadro RTX4000 GPU, two CPU cores, and 10GB
of memory. For the RNAC baseline, we used the original code, provided by the authors. For SAC, we made
use of the implementation provided by the Stable Baselines 3 framework (Raffin et al., 2021).

We provide the trained weights of the learned policies as supplementary materials, together with the modified
environments and an evaluation script 3. This allows for a clear comparison with our research. We choose
to distort the same model parameters as Pinto et al. (2017) and Zhou et al. (2024) to add perspective to the
results and ease future benchmarking in the community, also, this avoids cherry-picking the best conditions
for RMBPO. To ease implementation, we also release the source code of the toy experiment. The authors
are not able to release source code of RMBPO at the time of submission of this paper, however, the reader
is encouraged to contact the first author of this work with any related questions.

E Proof of theorem 3.1

E.1 Usefull lemma

We first restate a known lemma about the approximate triangle inequality for the KL-divergence. We also
restate its proof, since the authors could not find it published in full anywhere.

Lemma E.1. (Amari & Nagaoka, 2000)

DKL(R||P ) = DKL(R||Q) +DKL(Q||P )−
∫

X
(Q(x)−R(x)) log

(
Q(x)
P (x)

)
dx (11)

Proof. (Amari & Nagaoka, 2000; Ahle & Virgo) By adding and subtracting with DKL(R||P ), we can state:

DKL(R||Q) +DKL(Q||P ) = DKL(R||P ) +DKL(R||Q) +DKL(Q||P )−DKL(R||P ). (12)

3https://github.com/rmbpo-eval/rmbpo-tmlr

21

https://github.com/rmbpo-eval/rmbpo-tmlr


Under review as submission to TMLR

By using the definition of the Kullback-Leibler divergence and simplifying, we get:

DKL(R||Q) +DKL(Q||P )−DKL(R||P ) =
∫

X
R(x) log

(
R(x)
Q(x)

)
dx+

∫
X
Q(x) log

(
Q(x)
P (x)

)
dx

−
∫

X
R(x) log

(
R(x)
P (x)

)
dx

=
∫

X
[R(x) log(R(x))−R(x) log(Q(x)) +Q(x) log(Q(x))

−Q(x) log(P (x))−R(x) log(R(x)) +R(x) log(P (x))] dx

=
∫

X
[(Q(x)−R(x)) log(Q(x)) + (R(x)−Q(x)) log(P (x))] dx

=
∫

X
(Q(x)−R(x)) log

(
Q(x)
P (x)

)
dx

Combining this with Eqn. 12, we get the desired result.

E.2 Proving Theorem 3.1

We first restate the equation of Theorem 3.1.

DKL(gψ(s, a)||P̄ (s, a)) = DKL(gψ(s, a)||pθ(s, a)) + E(s′,r)∼gψ(s,a)

[
log

(
pθ(s′, r|s, a)
P̄ (s′, r|s, a)

)]
(13)

Proof. By Lemma E.1, we have:

DKL(gψ(s, a)||P̄ (s, a)) = DKL(gψ(s, a)||pθ(s, a)) +DKL(pθ(s, a)||P̄ (s, a))

−
∫

S×R
(pθ(s′, r|s, a)− gψ(s′, r|s, a)) log

(
pθ(s′, r|s, a)
P̄ (s′, r|s, a)

)
d(s′, r),

where the integral is taken over every state-reward combination. By linearity of the integral and the definition
of the KL-divergence, we have:

DKL(gψ(s, a)||P̄ (s, a)) = DKL(gψ(s, a)||pθ(s, a)) +
∫

S×R
gψ(s′, r|s, a) log

(
pθ(s′, r|s, a)
P̄ (s′, r|s, a)

)
d(s′, r),

which proves the result, using the definition of the expected value.

F Probability bound on KL divergence

In this section, we explore the relationship between the expected approximate uncertainty set and the
approximate uncertainty set. We begin by employing the Markov inequality as a worst-case bound, which
provides a probabilistic limit on the size of the approximate uncertainty set. This analysis is followed by
empirical measurements that demonstrate how minimizing the expected divergence can effectively bound
KL(gψ(s, a)||pθ(s, a)) with a certain confidence.

F.1 Applying the Markov Inequality as a worst-case bound

The well-known Markov inequality states that for a nonnegative random variable X and a real number t > 0:

P(X ≥ t) ≤ E [X]
t

.

22



Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10
t

0.00

0.05

0.10

0.15

0.20

0.25

(K
L s

,a
t*

[K
L]

) 23.6%

10.3%

3.3% 1.8% 1.2% 0.9%

Hopper-v4

1 2 3 4 5 6 7 8 9 10
t

0.00

0.05

0.10

0.15

0.20
16.7%

11.5%

6.2%
3.6%

2.4% 1.7%

Walker2D-v4

1 2 3 4 5 6 7 8 9 10
t

0.00

0.05

0.10

0.15
15.4%

11.3%

5.9%

3.1%
1.9% 1.4%

HalfCheetah-v4

Measured Markov Inequality Bound (1
t
)

Figure 12: Probability of encountering values larger than a factor of the expected divergence. The η values of
4, 0.5 and 0.5 were used for Hopper-v4, Walker2d-v4 and HalfCheetah-v4 respectively. We used P(KLs,a ≥
t̃ ∗ E[KL]) as a shorthand notation for P(KL(gψ(s, a)||pθ(s, a)) ≥ t̃ · Es∼d,a∼π[KL(gψ(s, a)||pθ(s, a))]).

To apply this to the auxiliary model loss function, we note that the KL term of Eq. 6 (and Eq. 7) does not
depend on s′ or r, therefore we have:

E(s′,r)∼gψ(s,a),s∼dπ
ψ,θ

,a∼π [KL(gψ(s, a)||pθ(s, a))] = Es∼dπ
ψ,θ

,a∼π [KL(gψ(s, a)||pθ(s, a))] .

As the KL divergence is defined between two continuous distributions, it is nonnegative everywhere. This
means that we can apply the Markov inequality, for any t > 0:

P(KL(gψ(s, a)||pθ(s, a)) ≥ t) ≤
Es∼dπ

ψ,θ
,a∼π [KL(gψ(s, a)||pθ(s, a))]

t
, (14)

which provides us with a bound that limits the probability (defined by P(.)) of encountering states outside
of the desired (approximate) uncertainty set. Another known form of the Markov inequality can be stated
by setting t̃ = t/(Es∼dπ

ψ,θ
,a∼π [KL(gψ(s, a)||pθ(s, a))]), this allows us to rewrite Eqn. 14 as follows:

P
(
KL(gψ(s, a)||pθ(s, a)) ≥ t̃ · Es∼dπ

ψ,θ
,a∼π [KL(gψ(s, a)||pθ(s, a))]

)
≤ 1
t̃
. (15)

The form in Eqn. 15 is useful, since it can compare how well algorithms fit the expected uncertainty set,
regardless of the size of that expected uncertainty set.

F.2 Empirical Measurements

We now measure the empirical performance of RMBPO. Figure 12 shows the relationship between the
expected KL divergence and the probability of encountering larger KL divergences for specific (s, a)-samples.
Note that the probabilities remain significantly below the Markov inequality bound in all environments. The
probability of encountering a value that is larger than double the measured expectation is already lower than
10%. Additionally, for Hopper-v4, we measure this quantity for a large array of η values in Figure 13. Again,
for all measured η values, the probabilities remain significantly below the Markov inequality bound and the
probability of encountering double the expectation remains below 10%. For visual clarity, all plots are shown
in function of t̃ instead of t, however, we also include Table 3, that contains all unscaled KL values.

23



Under review as submission to TMLR

1 2 3 4
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(K
L s

,a
t*

[K
L]

)
Markov Inequality Bound (1

t
)

= 0.25
= 0.5
= 1.0

1 2 3 4
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Markov Inequality Bound (1
t
)

= 1.0
= 2.0
= 4.0

Figure 13: Hopper-v4, multiple η values. The probability of encountering values larger than a factor of the
expected divergence. We used P(KLs,a ≥ t̃ ∗E[KL]) as a shorthand notation for P(KL(gψ(s, a)||pθ(s, a)) ≥
t̃ · Es∼d,a∼π[KL(gψ(s, a)||pθ(s, a))]).

Table 3: The expected KL divergence and the maximum KL divergence between pθ and gψ. Note that higher
η values monotonically increase the KL divergence in all our measurements. Measurements are computed
on a holdout set during training, values are reported as the average over the final 10% of training.

Min KL Expected KL Max KL

Hopper-v4 η = 0.25 7.53e-04 1.77e-02 1.06e-01
Hopper-v4 η = 0.5 3.13e-03 3.92e-02 1.33e+00
Hopper-v4 η = 1.0 6.81e-03 9.07e-02 6.52e+00
Hopper-v4 η = 2.0 1.73e-02 2.69e-01 7.80e+00
Hopper-v4 η = 4.0 5.55e-02 7.84e-01 3.29e+01

Walker2d-v4 η = 0.25 4.87e-04 1.32e-02 1.09e+00
Walker2d-v4 η = 0.5 1.25e-03 4.91e-02 3.35e+00

HalfCheetah-v4 η = 0.25 3.95e-04 1.08e-02 1.30e+00
HalfCheetah-v4 η = 0.5 1.49e-03 3.73e-02 4.58e+00

G More details on the hyperparameter η

A natural question that arises from the results of this work is why the hyperparameter η is set at a significantly
higher value for Hopper-v4 than Walker2d-v4 or HalfCheetah-v4. This arises from the significantly lower
variance on state transitions in Hopper-v4 compared to the other two environments, as shown in Table
4. The KL divergence between two distributions increases much faster for low-variance distributions than
high-variance distributions, given a certain difference in their means. This means that, to allow significant
average changes between the approximate model and the auxiliary model, η should be set higher in Hopper-
v4. We quantify this reasoning in Table 5, which confirms that Hopper-v4 needs relatively larger η values
to allow a certain average difference on state transitions, compared to Walker2d-v4 or HalfCheetah-v4. The
assumption that a larger η setting allows for larger KL divergences was already confirmed in Table 3.

24



Under review as submission to TMLR

Table 4: The measured variance of the training environment P and the predicted variances of the approximate
model pθ and the auxiliary model gψ. The variance is defined over next states and rewards, given the same
current state and action (for on-policy rollouts). Variance is calculated independently per state dimension,
average over dimensions is reported.

P pθ gψ

Hopper-v4 4.67e-06 2.57e-06 2.58e-06
Walker2d-v4 2.39e-04 2.68e-04 2.69e-04
HalfCheetah-v4 2.51e-04 8.19e-04 8.22e-04

Table 5: The average absolute differences of predictions between gψ and pθ (measured). The five state
dimensions with the largest average absolute differences are shown per environment. Note the significantly
lower values of Hopper-v4 than the other environments, at the same η levels. Differences are measured over
holdout set during training, reported metrics are averaged over the final 10% of training.

Avg. diff. 1 Avg. diff. 2 Avg. diff. 3 Avg. diff. 4 Avg. diff. 5

Hopper-v4 η = 0.25 4.29e-04 3.02e-04 1.20e-04 2.89e-05 2.53e-05
Hopper-v4 η = 0.5 1.01e-03 5.10e-04 2.83e-04 2.11e-04 1.41e-04
Hopper-v4 η = 1.0 1.39e-03 1.14e-03 4.16e-04 2.02e-04 1.48e-04
Hopper-v4 η = 2.0 3.16e-03 1.39e-03 1.22e-03 3.13e-04 3.11e-04
Hopper-v4 η = 4.0 4.08e-03 2.17e-03 1.79e-03 8.31e-04 3.19e-04

Walker2d-v4 η = 0.25 9.92e-03 5.16e-03 2.29e-03 1.63e-03 1.12e-03
Walker2d-v4 η = 0.5 2.39e-02 1.13e-02 5.08e-03 4.06e-03 2.71e-03

HalfCheetah-v4 η = 0.25 4.65e-04 4.60e-04 4.50e-04 2.91e-04 1.51e-04
HalfCheetah-v4 η = 0.5 1.26e-02 8.69e-03 7.34e-03 4.39e-03 2.14e-03

25


	Introduction
	Background
	Model-Based Reinforcement Learning
	Robust Markov Decision Processes
	KL Uncertainty set

	Auxiliary Model Learning
	Auxiliary Model
	Approximation error introduced by the auxiliary model
	Training the Auxiliary Model
	A Supervised Toy Experiment

	Robust Policy Learning
	Proposed Reinforcement Learning Algorithm
	Implications on the performance bound

	Main Results
	Effect of the auxiliary model
	Comparing with robust RL approaches
	What is the model learning (in Hopper-v4)?

	Related Works
	Conclusion and Future Works
	Additional Results
	Effect of TEXT on robustness
	Emperical effect of TEXT on KL divergence
	Learning Curves

	Toy Experiment Details
	Hyperparamters
	Implementation details and reproducibility
	Proof of theorem 3.1
	Usefull lemma
	Proving Theorem 3.1

	Probability bound on KL divergence
	Applying the Markov Inequality as a worst-case bound
	Empirical Measurements

	More details on the hyperparameter TEXT

