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Abstract

Human-AI collaboration looks at harnessing the complementary strengths of
both humans and AI. We propose a new method for human-AI collaboration in
Bayesian optimisation where the optimum is mainly pursued by the Bayesian op-
timisation algorithm following complex computation, whilst getting occasional
help from the accompanying expert having a deeper knowledge of the underlying
physical phenomenon. We expect experts to have some understanding of the cor-
relation structures of the experimental system, but not the location of the optimum.
The expert provides feedback by either changing the current recommendation or
providing her belief on the good and bad regions of the search space based on
the current observations. Our proposed method takes such feedback to build a
model that aligns with the expert’s model and then uses it for optimisation. We
provide theoretical underpinning on why such an approach may be more efficient
than the one without expert’s feedback. The empirical results show the robustness
and superiority of our method with promising efficiency gains.

1 Introduction

The deep penetration of AI systems into wider society demonstrates its ability to deal with complex
real-world tasks. However, there still exists a plethora of complicated real-world problems [Roccetti
et al., 2020, Hechler et al., 2020] that AI systems are unable to properly address. In such complex
real-world tasks, human-AI collaborative systems can provide a viable alternative. Through appro-
priate collaboration strategy we can supplement the speed, scalability and quantitative abilities of
AI systems with the reasoning and abstraction ability of human users and make the combination
exceedingly capable [Carroll et al., 2019, Maadi et al., 2021].

Recent studies, mostly proposed in supervised learning setting, used either AI requesting help of
human experts if its prediction lacks confidence [Madras et al., 2017] or as guided by a meta-policy
that focuses on the joint performance [Wilder et al., 2020]. Mozannar and Sontag [2020], De et al.
[2020] considered also the cost associated with human decision making while learning a joint policy.
Bayesian optimisation (BO) [Brochu et al., 2010], an efficient tool for global optimisation that can
potentially play a much bigger role in scientific experimentation and product design, provides a rich
playground for human-AI collaboration paradigm because the nature of applications ensures that
there would be an expert running the optimisation process. There are some works on incorporating
expert’s knowledge in Bayesian optimisation procedure. However, nearly all of the work relies on
expert articulating a static type of knowledge in the beginning of the optimisation process either in
terms of trends [Li et al., 2018, Riihimäki and Vehtari, 2010], shapes of functions [Andersen et al.,
2017, Venkatesh et al., 2019] or suggesting a similar experimental system for transfer learning [Joy
et al., 2016, Shilton et al., 2017]. In reality, most of the time experts may not be able to reveal
knowledge in terms of such explicit specifications. Expert’s knowledge will also more likely evolve
over the course of optimisation process through assimilation of the new data points. Unfortunately,
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Figure 1: (a) Damped oscillator function (b) Hyperparameter distribution obtained using our pro-
posed HAT based BO (blue) and standard BO (green). Red line shows the ground truth lengthscale.

a true collaborative system that takes into account such a fluid knowledge from the human expert
via an intuitive communication interface is so far lacking.

To address this problem, we propose a new Human-AI Teaming (HAT) based Bayesian optimisation
framework that takes expert input during the course of optimisation through one of the two ways:
(i) correction of the current recommendation, or (ii) specification of a good region and bad region
based on the current observation set. We believe these are easier to specify, than say, a global trend or
global shape of a function because an expert may be able to provide reasoning surrounding a small
neighbourhood of a sample point. Once such feedback is given, we incorporate it into Bayesian
optimisation by changing the model selection process that ensures that such relative knowledge that
the corrected recommendation is a more promising one compared to the current recommendation
or the good region is more promising than the bad region are maintained. We use the acquisition
function as the means to compute the promise and use the aforesaid feedback during model selection
via maximum likelihood. The model derived from these constraints is subsequently used for the
next recommendation. Our framework allows an expert to intervene only when they are willing to
intervene and also allows them to evolve their knowledge over the course of optimisation.

Theoretically, we show that when Gaussian process is used to model the function, this extra channel
of information narrows the space of functions. We characterise such narrower distributions in terms
of Sobolev spaces [Tartar, 2007] and show how it admits tighter upper bound of the total regret
when an appropriate trade-off factor is used in the acquisition function. Further, we show in Figure
1a and 1b, a case of HAT framework vs standard likelihood based model selection of lengthscales
of a Squared Exponential (SE) kernel. For a particular dimension (x2) we observe that the HAT
framework with an expert having ground truth knowledge infers models that are distributed more
narrowly than the standard one, inducing a smaller function space. We evaluate the performance of
our proposed methods on both synthetic benchmark functions and real-world datasets. We tune the
hyperparameters of the Support Vector Machine (SVM) classifier [Burges, 1998, Christmann and
Steinwart, 2008] operating on publicly available multi-dimensional real-world datasets. We com-
pare the optimisation performance of our proposed Human-AI Teaming (HAT) framework against
different variations of the Bayesian optimisation algorithm. The empirical results prove the effi-
cacy of our proposed framework. We also provide a small-scale real-user study to demonstrate the
superiority of our proposed Human-AI Teaming approach over AI only approach.

2 Background

Notations. R for Reals. X is an index set and x ∈ X. Nn = {1, 2, · · · , n}. ∪ for the set union.
| · | is the determinant. We use lower case bold fonts v for vectors. vi for ith element in a vector v.
vᵀ for the transpose of a vector v. We use upper case bold fonts M (and bold Greek symbols) for
matrices and Mij for the element in ithrow and jth column of M. abs(·) for the absolute value.

2



2.1 Gaussian Process

Gaussian Process (GP) [Williams and Rasmussen, 2006] is a non-parametric model, that provides
a flexible framework for placing prior on functions. GP defines a distribution over the set of possi-
ble functions given observations. Though there are other popular surrogate models such as Wiener
process [Kushner, 1964] and Student-t process [Shah et al., 2014], GP is still the preferred model be-
cause of its simplicity. A GP is completely specified by a mean function µ(x) and a kernel function
k(x,x′). The unknown objective function f(x) is modelled using GP as f(x) ∼ GP(µ(x), k(x,x′)).
If D1:t = {x1:t,y1:t} denotes the set of t observations, then according to the properties of the
Gaussian process, a new observation (xt+1, yt+1) and the set of previously observed data samples
D1:t are jointly Gaussian. Therefore, the posterior distribution for the new observation yt+1 is com-
puted as P(yt+1|D1:t,xt+1) = N (µ(xt+1), σ2(xt+1)), where µ(xt+1) = kᵀ[K + σ2

GNI]−1y,
σ2(xt+1) = k(xt+1,xt+1) − kᵀ[K + σ2

GNI]−1k, k = [k(x1,xt+1), · · · , k(xt,xt+1)], Kij =
k(xi,xj) ∀i,∀j ∈ Nt and σ2

GN is the variance of the white Gaussian noise.

The kernel (covariance) function k : X × X → R used in Gaussian process plays a crucial role
in modelling the Gaussian process surrogates. The kernel function incorporates our prior belief
about the unknown objective function f . The kernel hyperparameters θ are usually estimated by
maximising the marginal likelihood given as L = p(y | X, θ) =

∫
p(y | f) p(f | X, θ) df . The

closed-form formulation of Gaussian process log-likelihood is given as:

logL = −1
2(yᵀ(K + σ2

GNI)−1y)− 1
2 log |K + σ2

GNI | − t2 log(2π) (1)

2.2 Bayesian Optimisation

Bayesian optimisation (BO) [Shahriari et al., 2015, Frazier, 2018] has proliferated into many do-
mains, including sensor networks [Garnett et al., 2010, Zhang et al., 2018], robotics [Martinez-
Cantin et al., 2007, Bossens and Tarapore, 2021], intelligent environmental monitoring [Marchant
and Ramos, 2012], and information retrieval [Wang et al., 2014]. BO offers an efficient framework
for the global optimisation of an expensive and noisy black-box function f(x), represented as:

x∗ = argmaxx∈Xf(x) (2)

where X corresponds to a compact search space. The observations of the objective function f(x) are
assumed to be corrupted with a white Gaussian noise i.e., yt = f(xt) + εt, where εt ∼ N (0, σ2

GN).
Bayesian optimisation models the objective function f by placing a prior distribution over the space
of unknown objective functions and then use it to determine the next best locations to sample.
Specifically it consists of two main components: (i) a Gaussian process model [Williams and Ras-
mussen, 2006], and (ii) an acquisition function [Kushner, 1964, Wilson et al., 2018]. The GP pre-
dictive distribution obtained is used to select the next sampling location with the high promise of
finding the optima. The acquisition function guides the search for optima by suitably balancing the
exploration-exploitation trade-off. Srinivas et al. [2012] have discussed the Gaussian Process-Upper
Confidence Bound (GP-UCB) acquisition function using the upper confidence bound selection cri-
terion. A GP-UCB acquisition function at tth iteration is given by:

αGP-UCB(x) = µ(x) +
√
βt σ(x) (3)

where βt is a trade-off parameter that balances between the exploitation and exploration. Chowdhury
and Gopalan [2017] have discussed the possible choices for βt and their implications on the overall
regret. In general, to achieve a faster convergence rate βt is increased with O(log t). An iterative
algorithm for the standard Bayesian optimisation is provided in the supplementary material (A.1).

2.3 Reproducing Kernel Hilbert Spaces (RKHS)

The kernel function used in GP surrogate modelling is associated with a unique Reproducing Kernel
Hilbert Space (RKHS). Let k be a symmetric positive definite kernel on Rd and set kx(t) = k(t−x).
For a given compact space X ⊆ Rd, let φ(X) be the space of functions with the mapping X → R,
spanned by the kernel kx. If φ(X) is provided with the inner product represented as 〈kx, kx′〉 =
k(x− x′), then the completion of φ(x) is the reproducing kernel Hilbert spaceHk(X) of k on X.
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3 Framework

We propose a Human-AI Teaming (HAT) based BO framework to involve the human experts in the
optimisation loop to accelerate the optimisation by utilising their knowledge in the surrogate mod-
elling. First, we discuss the additional knowledge accessible to human experts and then we provide
two variants of the HAT framework differing mainly on how the expert knowledge is communicated.
The optimisation problem is same as that of the standard BO described in the Background section.

3.1 Human Experimenter Knowledge

In many real-world applications, we can expect the human experts to have knowledge about the
correlations structure in the underlying function but not about the shape of the function or about the
location of the optima. With such knowledge, expert may be able to provide a better recommenda-
tion, at least in the beginning. We use those expert suggestions at different stages of the optimisation
process to assess the deviations of the current AI model and correct them accordingly. The inherent
knowledge about the correlations structure of the objective function can take the form of full or par-
tial knowledge of the kernel function, e.g., function is smoother along one dimension than the other.
In either case, the expert can provide input regarding the relative difference between two locations
in the search space in terms of their utility as the next sample point based on her cognitive model
and the selection criteria. For example, if the expert knowledge of the kernel says that the objective
function along one dimension is smoothly varying then an expert may be able to adjust the current
recommendation by “pushing” that variable further in the direction that takes it away from the ex-
isting observations. If the expert has full knowledge of the kernel then she may be able to perform
such rectifications along all the input variables. We also assume that the expert is running a form
of Bayesian optimisation strategy as it has been demonstrated that human active search typically
mimics Bayesian optimisation [Borji and Itti, 2013]. Next, we discuss two ways of giving feedback.

3.2 Rectifying Current Recommendation

In this approach, we propose to correct the previously suggested AI model’s observations XA in
the light of human expert knowledge. The human expert knowledge is represented using a set of
observations XE generated using her cognitive model reflecting full or partial knowledge of the
kernel function. At each iteration t, the kernel hyperparameters Θ∗ ∈ Rd of the AI model (i.e., the
BO process) are tuned by maximising the log-likelihood mentioned in Eq. (1). Using this tuned
GP surrogate, the AI model suggests the next potential candidate (xAt+1) for the function evaluation.
In the iterations (t ∈ H) that involve the expert rectification of the current AI recommendation,
expert suggests the next potential candidate (xEt+1) based on her cognitive model. Then, based on
such previous expert recommendations we add constraints on the model selection via acquisition
functions (uGP-UCB) such that the next potential candidate suggested by the AI model has to take into
account the corrections enforced by the expert observations xEi ∀i ∈ H collected in XE . Here we
assume that a human expert is also using a form of BO strategy but with a better model. We should
note that the expert does not necessarily need to provide the optimal point according to the correct
formulation. The expert needs to only provide a more promising location than what the machine
recommended. Hence, the constraints take the form as acquisition function (uGP-UCB) at xE is better
than the acquisition function at xA. The resulting constrained model selection problem is given as:

Θ∗ = argmax
Θ

log L s.t uGP-UCB(xE
i |Di−1) > uGP-UCB(xA

i |Di−1) ∀ xA
i ∈ XA, xE

i ∈ XE , i ∈ H (4)

where D corresponds to the set of all observations {(x, y = f(x))} accumulated by the AI model,
xAi corresponds to the ith observation suggested by the AI model collected in XA. These constraints
(collected in a set C) are enforced in the model selection process in the next round. The intuition
behind this constraint set is to restrict ourselves to the hyperparameter distribution that make the AI
acquisition function more closely resemble the human acquisition function.

One may wonder (i) why a human expert would behave like a BO algorithm?, and (ii) why humans
themselves cannot perform the optimisation?. To answer the former we refer to the work of Borji
and Itti [2013], where they showed that when humans are presented with a search problem they
often tend to behave like a BO strategy, i.e., we tend to mix a bit of exploitation and exploration
when sampling for the next point. Here we assume that the strategy is like the GP-UCB strategy.
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Algorithm 1 HAT - Rectifying Recommendations (HAT-RR)
Input: Initial observations Dt′ = {(x1:t′ , y1:t′)}, Sampling budget T

1. Initialise expert suggestionsXE = ∅, AI suggestionsXA = ∅, Expert suggestion iterations
H = ∅, Constraints list C = ∅

2. for iterations t = t′, · · · , T do
3. Optimise Θ∗ = argmax

Θ
log L, such that constraints in C are satisfied

if expert inputs are available i.e., XE 6= ∅, then

Add constraint uGP-UCB (xEi |Di−1) > uGP-UCB(xAi |Di−1) to C

∀ xAi ∈ XA,xEi ∈ XE ,∀i ∈ H
4. Find the next query point xAt+1 = argmax

X
uGP-UCB(x)

5. XA = XA ∪ (xAt+1)
6. if human expert wants to intervene, then
7. Obtain expert input xEt+1

8. XE = XE ∪ (xEt+1), xt+1 = xEt+1, H = H ∪ {t}
9. else xt+1 = xAt+1

10. Query the objective function f(x) to find yt+1 = f(xt+1) + εt+1

11. Augment data D1:t+1 = D1:t ∪ {(xt+1, yt+1)}
12. end for

However, as we will see in the experiment, even if a human expert uses a noisy version of the GP-
UCB strategy, our proposed method can still be robust to that. To answer the latter, we say that
while human may possibly get to the optima, it may be extremely taxing for her to do so at every
iteration, and also when the number of observations are high. Here, we do not need the expert to
specify the optima of their acquisition function, but to suggest a better location than xA. We believe
as humans we may be able to do that more easily than say running the actual BO which involves
solving the global optimisation of the acquisition function. The complete procedure for Human-AI
Teaming (HAT) with experts rectifying recommendations (HAT-RR) is given in Algorithm 1.

3.3 Good Regions vs Bad Regions

In contrast to the aforesaid approach, the expert can suggest a good region and a bad region to
sample next. A good region is defined by a set of candidate points that promise high probability
of finding the optima i.e., a set of points that have similar utilities to be the next sampling location.
Further, such good candidate points can be seen as the locations suggested by maximising expert’s
acquisition functions. On the other hand, a bad region corresponds to the portion of the input space
that has very low probability to further improve the current solution. A bad region can be visualised
as a set of points that have a very low utility to be the next sampling location as indicated by the low
values of the acquisition function. To keep the presentation simple, we formulate our problem based
on a good point and a bad point. The algorithm can be generalised to the case of region by adding
constraint per pair of samples from those regions.

The expert suggestions about the good point (xg) and the bad point (xb) is used to fine-tune the AI
model by replacing its current optimal hyperparameters (Θ∗) with a hyperparameter set (Θ+) that is
more aligned with the expert’s cognitive model, in addition to achieving good likelihood. To accom-
plish this we construct a co-objective that maximises the value difference between the acquisition
function of the good point and the bad point. The co-objective is mathematically represented as:

Θ+ = argmax
start←Θ∗

∑
i∈H

(uGP-UCB(xgi |Di−1)− uGP-UCB(xbi |Di−1)), s.t (log L)Θ+ ≥ ∆(log L)Θ∗ (5)

where D corresponds to the set of all observations accumulated by the AI model. The bi-objective
problem is solved in two steps: (i) first, the pure maximum likelihood (Eq. (4)) based hyperpa-
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Algorithm 2 Human-AI Teaming: Good Vs Bad Regions (HAT-DM)
Input: Initial observations Dt′ = {(x1:t′ , y1:t′)}, Sampling budget T , Threshold ∆

1. Initialise expert suggestions XE = ∅, Human suggestion iterations H = ∅
2. for iterations t = t′, · · · , T do
3. if human expert wants to intervene, then

4. Obtain good and bad points xgt , xbt from the expert

XE = XE ∪ (xgt ,xbt), H = H ∪ {t}
5. Optimise hyperparameters: Θ∗ = argmax

Θ
log L

6. if expert suggestions are available i.e., XE 6= ∅, then

Θ+ = argmax
start←Θ∗

∑
i∈H

(uGP-UCB(xgi |Di−1)− uGP-UCB(xbi |Di−1))

such that (log L)Θ+ ≥ ∆ (log L)Θ∗

7. Find the next query point xt+1 = argmax
X

uGP-UCB(x)

8. Query the objective function f(x) to find yt+1 = f(xt+1) + εt+1

9. Augment data D1:t+1 = D1:t ∪ {(xt+1, yt+1)}
10. end for

rameter estimation (Θ∗ = argmax
Θ

log L) is performed, and then (ii) the co-objective (Eq. (5))

is solved by constraining the likelihood to be ∆-close (threshold) to the likelihood obtained in the
previous step. The overall algorithm for the HAT framework with the aforementioned difference
maximisation strategy (HAT-DM) is provided in Algorithm 2.

4 Theoretical Analysis

Our theoretical analysis relies on the notion of Sobolev spaces [Tartar, 2007] and its extension to
Hilbert spaces. We start with the preliminary results required for the theoretical analysis of our
proposed method. Chowdhury and Gopalan [2017] have discussed the regret bounds of a variant of
the GP-UCB algorithm in terms of the norm bounds defined on the objective function f .

Lemma 1: Let f : X → R, where X ⊂ Rd and d is the number of dimensions. Let Hk be
the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel function k(·, ·) such
that the RKHS norm is bounded in the ball of radius R i.e., ‖f‖k ≤ BR. Then there exists
a sequence of trade-off factors βt(R, δ) such that it holds with probability at least 1 − δ that
|f(x)− µt(x)| ≤

√
βtσt(x), ∀x ∈ X.

Lemma 1 states that f is highly probable to be contained in the confidence intervals induced by the
GP predictions (µt(·) and σt(·)) using kernel k : X× X → R with the appropriate scaling induced
by βt as discussed in Chowdhury and Gopalan [2017]. As k defines the size of the function space,
the RKHS norm ‖f‖k =

√
〈f, f〉k measures the complexity of functions f ∈ Hk. By considering

larger norm-balls, we account for more complex functions in the given input space.

In the Human-AI Teaming (HAT) framework, the kernel hyperparameters ΘHAT are tuned in the
light of additional channel of information provided by the human experts. The expert suggestions
incorporated in the modelling process have a significant impact on the resultant hyperparameter
distribution (see Figure 1a and 1b) and thus, the latent function space. Our HAT framework
disregards some portions of the hyperparameter distribution that violate the constraints added in the
modelling process and restricts itself to the (narrower) feasible regions. Further, the search for a
better hyperparameter set that is more aligned with the expert’s cognitive model in the vicinity of
the optimal hyperparameter set obtained by maximising the log-likelihood also results in a narrower
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distribution (governed by the threshold ∆). Thus, our proposed framework deals with a narrower
distribution of functions controlled by the modelling constraints enforced in the optimisation
process. Such narrower distributions are spanned by the RKHS HkΘHAT

. We characterise the RKHS
HkΘHAT

of our framework using the Sobolev spaces [Tartar, 2007]. Sobolev Hilbert space Hs
is a special case of Sobolev spaces obtained by restricting the RKHS associated with the kernel
function kΘ. With mild regularity assumptions on the boundary conditions and the smoothness of
Sobolev Hilbert spaces, we draw similarities between the underlying constraints in Sobolev Hilbert
spaces and the constraints enforced to construct RKHS HkΘHAT

in the HAT framework. We use
the mathematical formulations of the RKHS norm in Sobolev Hilbert spaces to characterise the
RKHS norm of the HAT framework. We refer to the supplementary material for the definition of
Sobolev spaces. The following theorem establishes the relation between the RKHS norms of the
HAT framework and the standard Bayesian optimisation framework.

Theorem 1: Let H(Rd) be the space of real continuous functions fk ∈ L2(Rd). Let kΘHAT

be the kernel function with hyperparameters ΘHAT used in the HAT framework. Let BRHAT be the
norm-ball of radiusRHAT induced in HAT based BO and let BRSTD be the norm-ball for the standard
BO. If HkΘHAT

(X) is the reproducing Hilbert space of functions fk = g|X associated with the kernel
kΘHAT , then with high certainty it holds ‖f‖kΘHAT

≤ BRHAT and BRHAT ≤ BRSTD .

The proof of Theorem 1 is provided in the supplementary material. With the results established in
Theorem 1, we conclude that the additional channel of human experimenter knowledge enforced as
constraints results in a narrower distribution for f and thus significantly reducing the radius (RHAT)
of the norm ball i.e., BRHAT ≤ BRSTD . Now, we discuss the implications of the induced norm bounds
on the overall regret of the algorithm.

Corollary 1: Pick δ ∈ (0, 1). Let βt(R, δ) = BR + ε
√

2(γt−1 + 1 + ln 1
δ ) where γt−1 is

the associated information gain [Chowdhury and Gopalan, 2017] after t − 1 rounds and ε is the
white Gaussian noise. Let ‖f‖k ≤ BR. If BRHAT ≤ BRSTD , then the following holds with the
probability at least 1− δ,

P{RHAT
T ≤ RSTD

T ∀T ≥ 1} ≥ 1− δ

where RT is the cumulative regret given by RT =
∑T
t=1 rt and rt is the instantaneous regret given

by rt = f(x∗)− f(xt).

Proof: As discussed in Lemma 1, the RKHS norm associated with a kernel function k(·, ·)
is bounded within the ball of radius R i.e., ‖f‖k ≤ BR. Further, it states that with high
probability |f(x) − µt(x)| ≤

√
βtσt(x) is satisfied if βt’s are appropriately chosen. If

|f(x) − µt(x)| ≤
√
βtσt(x) holds, then the instantaneous regret is upper bounded by 2

√
βtσt(x)

(see Lemma 5 in Srinivas et al. [2012]). Therefore, the instantaneous regret rt is greatly influ-

enced by the choice of βt. By setting the value of βt as βt = BR + ε
√

2(γt−1 + 1 + ln 1
δ )

[Chowdhury and Gopalan, 2017], we can impose a tighter bounds on the cumulative regret
RT . The results of Theorem 1 state that, our proposed method places a tighter bound on the
RKHS norm ball such that BRHAT ≤ BRSTD . Such restrictions forces smaller values for βt in our
proposed method, thereby reducing the instantaneous regret rt significantly. As a consequence,
the overall cumulative regret RHAT

T =
∑T
t=1 rt is also tightly bounded and grows at most as

O
(
BRHATT

√
γT +

√
TγT (γT + ln 1

δ )
)
, where γT is the kernel associated maximum information

gain [Srinivas et al., 2012] after T iterations. Thus the result stated above follows.

5 Experiments

We evaluate the optimisation performance of our proposed methods on various synthetic functions
and several real-world datasets. First, we validate our methods by demonstrating its sample effi-
ciency in the global optimisation of synthetic benchmark functions. Next, we tune the hyperpa-
rameters of the Support Vector Machine (SVM) classifier operating on publicly available real-world
datasets. We compare the performance against different variations of the BO algorithm. The empir-
ical results demonstrate the superiority of our proposed framework.
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5.1 Emulating Human Experts

The human expert is expected to know the underlying structures of the given input space. Here
we assume that the expert is aware of the optimal ground truth kernel hyperparameters (ΘGT). We
are motivated from the findings in Borji and Itti [2013] that the intelligent search strategy used by
humans closely resembles Bayesian optimisation. Therefore, we run a separate GP-UCB based
BO algorithm with the ground truth kernel (kGT) for emulating human experts behaviour in our
proposed framework. The knowledge about the (ground truth) kernel function is obtained apriori
from a large number of random samples of the objective function under consideration. Further, the
human experts are given an option to intervene at any stage. In this work, we have assumed that a
human expert intervenes at every third iteration of the optimisation process.

We consider the following variants of standard BO and HAT based BO in our experiments.

• HAT-RR: Human-AI Teaming framework with recommendation correction as mentioned
in Algorithm 1. The SE kernel is used as the ground truth kernel (kGT ) for this baseline.

• HAT-RR (KFO): Similar to HAT-RR, except that the ground truth kernel is chosen to be
the kernel tuned from a Kernel Functional Optimisation (KFO) procedure [Venkatesh et al.,
2021], a more expressive form of kernel than the Squared Exponential (SE) kernel.

• HAT-DM (KFO): HAT framework with the expert feedback about good and bad regions
(mentioned in Algorithm 2) and the kernel being tuned with KFO procedure.

• STD-BO: A standard Bayesian optimisation algorithm mentioned in the supplementary
material.

• STD-BO (MOD): Another variant of standard Bayesian optimisation procedure but naively
considers the suggestions provided by human experts in its observation model.

In the aforesaid methods, we have used SE kernel (kSE) for fitting GP surrogate models. The length-
scale parameter of kSE is tuned in the interval [0.1, 1]. We standardise the function output, and thus
use unit signal variance for kSE. We follow the guidelines mentioned in the Kernel Functional Op-
timisation (KFO) framework [Venkatesh et al., 2021] for the hyperparameter selection of both the
SE kernel (kSE) and hyperkernel (κ) used in the KFO framework. The hyperparameters of kSE i.e.,
the lengthscale (l) and the signal variance (σ2

f ) are tuned in the interval [0.1, 1], as the bounds are
always normalised. The hyperparameters λ̃h and l of the hyperkernel κ used in the KFO framework
are tuned in the interval (0, 1] and (0, 1], respectively. We refer to the supplementary material for
the additional details of the KFO framework used. We use t′ = d + 2 initial observations for a
d−dimensional problem. The threshold (∆) used in Algorithm 2 is set at 95%.

5.2 Synthetic Experiments

First, we evaluate our approach by finding the global optima of a benchmark function (Oscillator 2D,
see Figure 1a). The objective function considered has varying smoothness across its input dimen-
sions. The expert is assumed to be aware of this smoothness information (lengthscale) via a ground
truth kernel i.e., a kernel with the optimal hyperparameter set tuned in the light of numerous data
points. The initial observations are chosen to be in the smoother regions of the objective function
such that the methods have not much prior information about the input space. Comparing the kernel
learning performances revealed that our approach encouraged larger lengthscale for x2 and shorter
lengthscale for x1. The hyperparameter distribution along x2 is depicted in Figure 1b.

Furthermore, we evaluate our proposed methods with the following multi-dimensional benchmark
functions [Surjanovic and Bingham, 2017] with multiple local optima: (i) Ackley 1D, (ii) Gramacy
& Lee 1D, (iii) Branin 2D, (iv) Oscillator 2D, (v) Hartmann 3D, and (vi) Hartmann 6D. We compare
the performance of our methods against the baselines by plotting the simple regret (r̂+

t ) given by:

r̂+
t = f(x∗)− max

xt∈D1:t
f(xt) (6)

where f(x∗) is the true optima of the objective function. We plot the simple regret for 10 × d + 5
iterations, for a given d−dimensional problem. The convergence results obtained for the synthetic
experiments after 10 random repeated runs are shown in Figure 2. It is evident from the results that
our proposed method has outperformed the baselines with KFO being better than the SE kernel.
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Figure 2: Simple regret vs iterations for various benchmark functions. We plot the mean regret along
with its standard error obtained. The experimental results are after 10 random repeated runs.

5.3 Real-world Experiments

We evaluate our proposed method in tuning the hyperparameters of Support Vector Machine (SVM)
classifier operating on real-world datasets. In our experiments, we consider multi-dimensional real-
world datasets publicly available in the UCI repository [Dua and Graff, 2017]. The real-world
datasets used are randomly split into a training set containing 80% of the total instances and a test
set consisting of the remaining 20% of the total instances.

We use C-SVM with Radial Basis Function (RBF) kernel to minimise the test classification error
(Er). We tune the SVM hyperparameters i.e., the cost parameter and the RBF kernel width in the
exponent space of [−3, 3] and [−5, 1], respectively. The minimum classification error (in %) ob-
tained for the test set averaged over 10 random repeated runs are shown in Table 1. We italicise
the best results of our HAT-RR framework to demonstrate that our proposed method outperforms
the standard Bayesian optimisation algorithm even if the ground truth kernel (squared exponential
kernel) used is not very expressive of the given input space. It is even better when more expressive
kernel (KFO tuned kernel) is used. Further, we believe that the superior performance of HAT-RR
framework against the HAT-DM framework is because HAT-RR directly incorporates the sugges-
tions from the human expert for function evaluation, whereas HAT-DM assesses and corrects the
deviations in the current model by maximising the distance between good and bad regions.

5.4 Robustness to Imprecision in Human Knowledge

In addition to the experiments discussed above, we further evaluate our proposed method to show its
robustness in model learning against the noisy human expert inputs. In this experiment, we emulate
human errors by corrupting the human inputs by adding suitable noise to the (i) kernel parame-
ters, and (ii) the trade-off factor βt. In order to add noise in the kernel parameters, we use Multi
Kernel Learning (MKL) [Aiolli and Donini, 2015] - a weighted combination of SE kernel (kSE),
linear kernel (kLIN) and polynomial kernel (kPOL) i.e., k(x,x′) = w1 kSE(x,x′) +w2 kLIN(x,x′) +
w3 kPOL(x,x′) for the ground truth kernel. We add a white Gaussian noise to the weights w i.e.,
wi ∼ N (wi, σ̂2

GN) to emulate the human expert error in understanding the ground truth knowledge.
To account for the human error in providing suggestions, we add noise to the trade-off factor βt
using a Gamma distribution (Γ) i.e., βt = Γ( β

2
t

σ̂2
GN
,
σ̂2

GN
βt

). In all our experiments, we have set the noise

variance σ̂2
GN = 0.1. We evaluate our proposed method supplemented with the imprecise human

knowledge using the following synthetic functions: (i) Levy 2D, (ii) Shubert 2D, and (iii) Egg 2D.
We compare the convergence results with the standard Bayesian optimisation algorithm. The results
obtained for the aforesaid synthetic functions are shown in Figure 3. It is evident from the results
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Table 1: SVM classification error rates obtained for the real-world datasets using different algo-
rithms. Each cell value signifies the mean test classification error and its standard deviation obtained
after 10 random repeated runs. Bold values indicates the best performance among all the columns.
Lower the better. We italicise the best results of our HAT-RR framework to emphasise its superiority
against the standard BO even when a standard unexpressive (SE kernel) is used.

Dataset HAT-RR HAT-RR (KFO) HAT-DM (KFO) STD-BO STD-BO (MOD)

WDBC 0.98±0.2 0.60 ± 0.75 0.95± 0.45 1.5± 0.5 1.24± 0.2
Ionosphere 5.15±0.4 5.25± 0.10 6.21± 0.81 8.9± 0.2 6.02± 0.6

Sonar 6.46±0.3 6.11 ± 0.37 6.84± 0.92 8.21± 0.9 8.44± 0.2
Heart 10.2±0.3 10.25 ± 0.41 10.97± 0.75 11.7± 0.9 11.10± 1.4
Seeds 2.8±0.14 2.51 ± 0.65 2.63± 0.47 3.3± 0.4 2.58± 0.8
Wine 0 0 0 0 0
Credit 12.7±1.3 12.42 ± 0.60 12.95± 0.78 18.1± 1.3 14.52± 0.6
Biodeg 13.4±0.2 13.88± 0.42 14.09± 1.83 16.8± 1.9 15.05± 0.6

Car 0.21±0.1 0.35± 0.17 0.30 ± 0.53 1.9± 0.5 0.39± 0.7
Ecoli 1.67±0.2 1.21 ± 0.38 1.94± 0.64 2.1± 0.6 2.01± 0.3

that our method performs on par with standard BO even when the expert knowledge is imprecise, as
we try to incorporate expert knowledge to further improve the existing log-likelihood estimates.
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Figure 3: Simple regret plot for (i) Levy 2D function, (ii) Shubert 2D function, and (iii) Egg 2D func-
tion obtained using noisy HAT-RR algorithm, noisy HAT-DM algorithm, and standard BO (STD-
BO). We plot the mean regret along with its standard error computed after 10 random repeated runs.

To further validate our proposed Human-AI collaborative Bayesian optimisation framework, we
have conducted a study with real human experts. We have provided the additional experimental
results in the supplementary material (A.3). The code base used for the experiments mentioned
above is available at https://github.com/mailtoarunkumarav/HumanAITeaming.

6 Conclusion

We propose a novel Bayesian optimisation framework to accelerate the optimisation process by
incorporating additional information available from human experts. We present two different expert
intervention strategies. In the first strategy, we let the expert to correct the current recommendation.
In the second, we seek expert’s hunch on good region vs bad region for the selection of next sample
based on the current observation set. We then incorporate such feedback as constraints in the model
selection. We theoretically analyse our framework to show that expert’s knowledge can improve
sample efficiency. The experimental results show that our method outperforms other baselines.
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