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Abstract

Accurately estimating treatment effects over time is crucial in fields such as precision
medicine, epidemiology, economics, and marketing. Many current methods for estimat-
ing treatment effects over time assume that all confounders are observed or attempt to
infer unobserved ones. In contrast, our approach focuses on unobserved adjustment vari-
ables—variables that specifically have a causal effect on the outcome sequence. Under the
assumption of unconfoundedness, we address estimating Conditional Average Treatment
Effects (CATEs) while accounting for unobserved heterogeneity in response to treatment
due to these unobserved adjustment variables. Our proposed Causal Dynamic Variational
Autoencoder (CDVAE) is grounded in theoretical guarantees concerning the validity of
latent adjustment variables and generalization bounds on CATEs estimation error. Ex-
tensive evaluations on synthetic and real-world datasets show that CDVAE outperforms
existing baselines. Moreover, we demonstrate that state-of-the-art models significantly im-
prove their CATE estimates when augmented with the latent substitutes learned by CD-
VAE—approaching oracle-level performance without direct access to the true adjustment
variables. 1

1 Introduction

Estimating Conditional Average Treatment Effects (CATEs) helps us understand how individuals uniquely
respond to the same treatment, thereby enabling more personalized and effective decision-making. For ex-
ample, in healthcare, two patients receiving the same drug might experience considerably different outcomes
due to underlying genetic or lifestyle differences (Atan et al., 2018; Shalit, 2020; Mueller & Pearl, 2023). The
exact curriculum might yield more remarkable improvement for one student than another in education, de-
pending on background factors like socioeconomic status (Morgan, 2013; Imbens & Rubin, 2015). Likewise,
in marketing, identical promotions might drive purchases in one customer segment but not another (Hair Jr
& Sarstedt, 2021; Fang et al., 2023).

Longitudinal data arise naturally in these domains. Consider, for instance, a medical dataset recording
blood pressure, treatments (e.g., vasopressors), and vitals for each patient at regular intervals. Or a retail
dataset tracking weekly customer purchases following commercial campaigns. Each of these longitudinal data
describes a sequence of treatments, covariates, and responses causally interacting through time. However,
this setting brings unique challenges: (1) Time-dependent confounding: Confounders influenced by past
treatment can impact subsequent treatments and responses (Platt et al., 2009); (2) Selection bias: Time-
varying covariates exhibit imbalanced distributions across treatment regimes which should be accounted
for to estimate treatment effects accurately (Robins et al., 2000; Schisterman et al., 2009; Lim, 2018);

1The implementation is available at https://github.com/moad-lihoconf/cdvae
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(3) Long-term dependencies: A treatment effect may unfold over extended periods, requiring models to
capture complex long-range interactions between covariates, treatments, and responses (Choi et al., 2016;
Pham et al., 2017); (4) Missing covariates: Some variables crucial for predicting outcomes—like genetic
predispositions or environmental exposures—introduce bias and less personalized treatment effect estimation
unless properly accounted for.

Assumptions over Confounders and Existing Approaches The existing literature primarily ad-
dresses the first three challenges under the assumption of sequential ignorability, where all confounders,
whether static or time-varying, are fully observed. Methods such as Marginal Structural Models (MSMs)
(Robins & Hernán, 2009a), Recurrent Marginal Structural Models (RMSM) (Lim, 2018), Counterfactual Re-
current Networks (CRN) (Bica et al., 2020a), G-Net (Li et al., 2021), Causal Transformers (CT) (Melnychuk
et al., 2022), and Causal CPC (Bouchattaoui et al., 2024) have been developed based on this assumption.
When the fourth challenge—missing covariates—is addressed, it is often in the form of missing confounders,
leading to the violation of sequential ignorability. Existing approaches either condition on observed proxies
of confounders to infer a latent representation of the unobserved confounders (Kuroki & Pearl, 2014; Miao
et al., 2016; Louizos et al., 2017; Cheng et al., 2021) or apply the deconfounding technique, which involves
imposing a factor model over the treatment assignment to mitigate hidden confounding (Lopez & Gutman,
2017; Ranganath & Perotte, 2018; Wang & Blei, 2019a; Zhang et al., 2019; Bica et al., 2020b; Hatt &
Feuerriegel, 2024).

Our Focus In contrast to missing confounders, we study for the first time the presence of unobserved static
adjustment variables—factors that affect only the outcome sequence and remain time-invariant. In a medical
context, these could include genetic factors, environmental conditions, or lifestyle attributes that impact
treatment response but are not directly observed (Sadowski et al., 2024). The absence of such variables can
lead to a loss of heterogeneity in the estimated treatment effect. This phenomenon can also be understood
through the lens of population structure, which arises from distinct subgroups within a population that share
characteristics such as geography, socioeconomic status, or cultural practices. Having knowledge of, or being
able to accurately infer, population structure allows for a more precise estimation of CATEs by capturing
variations in treatment responses across subgroups. In genomics (Laird & Lange, 2011; Peter et al., 2020),
for instance, such structure arises due to evolutionary or migration histories. This concept extends beyond
genetics to fields such as economics, healthcare, and education, where differences among subgroups stem
from factors such as socioeconomic conditions or environmental influences. Moreover, population structure
often acts as an effect modifier (Hernán & Robins, 2020), altering treatment effects across subgroups without
directly affecting treatment assignment (Hyun et al., 2024). By accounting for such effect modifiers through
stratified or interaction analyses, treatment effects can be estimated more accurately, even in randomized
trials (Schochet, 2024).

Adjustment Variables vs. Confounders. We distinguish confounders, pre-treatment variables that affect
both treatment and outcome, whose omission biases estimates, from adjustment variables, pre-treatment vari-
ables that affect the outcome and may modify treatment effects but not treatment assignment (Hernán MA,
2020). Adjusting for the latter clarifies further treatment-effect heterogeneity, even when confounding
variables are fully observed. For example, in healthcare, pharmacogenetic variants (VKORC1, CYP2C9)
markedly alter warfarin (a blood thinner) response yet typically do not determine treatment assignment.
Modeling these variants (observed or represented) improves precision and personalization of effects (McClain
et al., 2008; Schwarz et al., 2008). In education, Baseline test scores and socioeconomic indicators are im-
portant adjustment variables and often are effect modifiers. Covariate adjustment in school-level RCTs thus
substantially increases precision and clarifies subgroup treatment effects (Bloom et al., 2007; Steingrimsson
et al., 2017). In online experiments/ marketing, pre-period behavior (preceding the A/B test) consists of
important adjustment variables that do not affect the randomized assignment, yet adjusting for them leads
to faster detection of heterogeneity in treatment effect and even a reduction of the required sample size to
achieve a given statistical power (Deng et al., 2013; Benkeser et al., 2021).

In this work, we specifically address the challenge of missing covariates by focusing on estimating the contem-
poraneous treatment effect—the effect of the current treatment on the subsequent response, given the history
of confounding processes (see Remark 1). We consider the estimation of an Augmented Conditional Average
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Treatment Effect (ACATE) that depends not only on the confounding variables but also on adjustment vari-
ables. We aim to achieve near-oracle performance in treatment effect estimation by leveraging the learned
representation of unobserved adjustment variables. Specifically, we prove that for all baselines satisfying se-
quential ignorability, treatment effect estimation is substantially improved when these models are augmented
with the learned representation of unobserved adjustment variables produced by our model—ultimately de-
livering performance that approaches the oracle scenario, where the true unobserved adjustment variables
are directly fed into the baselines. Extensive experiments on synthetic data and semi-synthetic data derived
from real-world datasets such as MIMIC-III (Johnson et al., 2016) validate our approach.

Our Approach We treat the unobserved adjustment variables as latent variables and leverage a proba-
bilistic modeling approach based on the Dynamic Variational Autoencoder (DVAE) framework (Girin et al.,
2021) to estimate the ACATE, where we augment the CATE with the learned representation of unobserved
adjustment variables, which we term substitutes. We address the covariate imbalance induced by selection
bias in longitudinal data using a weighted empirical risk minimization strategy, where the weights are a
function of the propensity scores. Additionally, we derive a generalization bound for the error in estimating
ACATE and use its approximation as a loss function for our model, which we refer to as Causal DVAE
(CDVAE). To account for potential population structure induced by unobserved adjustment variables, we
define a flexible prior over the latent variables using a learnable Gaussian Mixture Model. We ensure the
causal validity of the learned substitutes by imposing a finite-order Conditional Markov Model (CMM) on
the response series. The causal validity follows from our proof that, once the finite-order CMM holds, the
learned substitutes account for all relevant adjustment variables (Theorem 6) and that the ACATE leveraging
the substitutes is identifiable. To experimentally support the theoretical analysis, we discuss the relevance
of all CDVAE components through an ablation study.

Furthermore, since we adopt a probabilistic approach, we represent the substitute for unobserved adjust-
ment variables as a stochastic latent variable. Consequently, the choice of the substitute given individual
longitudinal data is not unique. As a novel contribution, we study Causal DVAE in the near-deterministic
regime, where we reduce the variance of the responses (outputs of the Causal DVAE) to near zero. This
process indirectly pushes the covariance matrix of the substitutes toward zero, preventing their distribution
from becoming overly diffuse. An intuitive consequence of this approach is that any sampled substitute of
the adjustment variables yields the same treatment effect as the mean substitute. We demonstrate that
as the response variance approaches zero, the treatment effect remains consistent regardless of the specific
instance of the substitutes. The near-deterministic regime of VAEs has not been previously explored in the
context of causal inference, making this a novel contribution. To draw an analogy, in the deconfounding
literature (Lopez & Gutman, 2017; Ranganath & Perotte, 2018; Wang & Blei, 2019a; Zhang et al., 2019;
Bica et al., 2020b; Hatt & Feuerriegel, 2024), substitutes—referring to learned representations of missing
confounders—are theoretically assumed to follow a Dirac posterior. This enables deterministic selection
and facilitates treatment effect identifiability. However, the training of these models is based on a non-
degenerate posterior, creating a disconnect between theoretical assumptions and practical implementation.
Our approach bridges this gap by achieving near-deterministic behavior while maintaining a probabilistic
framework.

Contributions Our contributions can be summarized as follows: (1) We propose a principled approach to
infer a latent representation of unobserved adjustment variables (§ 4).(2) We prove the theoretical validity
of the learned adjustment variables by modeling the response series as a finite-order conditional Markov
process, ensuring that ACATEs conditioned on learned substitutes are identifiable (§ 4.1). (3) We study for
the first time the near-deterministic regime of VAEs for causal inference and show that reducing the variance
of response predictions enforces consistency in treatment effect estimation under stochastic modeling of
adjustment variables (§ 4.3). (4) Numerical experiments confirm the effectiveness of CDVAE in estimating
ACATEs, showing that our method consistently outperforms state-of-the-art (SOTA) baselines (§ 5), as
further analyzed through an ablation study. (5) We show that for SOTA baselines, augmenting their input
covariates with the inferred representation of adjustment variables given by CDVAE substantially enhances
their accuracy in estimating ACATEs (§ 5) and even provides near-oracle performances.
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2 Related Work

Causal Inference in Time-Varying Settings Assuming sequential ignorability, MSMs (Robins et al.,
2000) are widely used to adjust for time-varying confounders in causal inference, employing inverse probability
of treatment weighting (Robins & Hernán, 2009a) to balance covariates by estimating treatment probabilities
based on past treatment and confounders. However, MSMs often yield high-variance estimates, and their
effectiveness heavily relies on the accurate specification of the treatment assignment mechanism—a challenge
in complex, high-dimensional settings. Recent neural network-based models address some of these challenges.
The RMSM (Lim, 2018) uses Recurrent Neural Networks (RNNs) in propensity and outcome modeling for
multi-step outcome forecasting and outperforms traditional MSMs. Furthermore, the CRN (Bica et al.,
2020a) uses adversarial domain training to learn a treatment-invariant representation space to mitigate bias
from time-varying confounders. G-Net (Li et al., 2021) combines g-computation (Vansteelandt & Joffe, 2014)
with sequential deep models for multi-timestep counterfactual prediction. Causal Transformer (Melnychuk
et al., 2022) employs self-attention to capture temporal dynamics and to learn treatment-invariant repre-
sentations using an adversarial approach, similar to Bica et al. (2020a). G-Transformer (Xiong et al., 2024)
extends g-computation by using a Transformer to model covariate dynamics and Monte-Carlo rollouts for
counterfactuals under dynamic regimes and is thus conceptually a combination of Causal Transformer and G-
Net. Additionally, Causal CPC (Bouchattaoui et al., 2024) leverages temporal dynamics through contrastive
predictive coding and information maximization and learns a balanced representation using an adversarial
training strategy. Our approach enhances these SOTA baselines by augmenting their input covariates with
our inferred substitute of adjustment variables, achieving a more accurate estimation of ACATEs.

Combining Weighting and Representation Learning Representation learning in causal inference
helps correct covariate imbalance in high-dimensional settings by balancing learned features and reducing
covariate shift. When combined with weighting methods (Zubizarreta, 2015; Li et al., 2018; Johansson et al.,
2018; Hassanpour & Greiner, 2019b), these approaches become more effective—showing that carefully chosen
weights can improve causal estimation. However, there is a trade-off between covariate balance and predictive
performance: overly strict balancing can lead to the loss of valuable features, increasing bias in treatment
effect estimates. Zhang et al. (2020) and Johansson et al. (2019) noted that such regularization might lead
to a loss of ignorability in the representation and suggested learning representations in which the context
information remains preserved but where treatment groups overlap. To this end, Assaad et al. (2021) intro-
duced the Balancing Weights Counterfactual Regression (BWCFR) method, which aims to achieve balance
within the reweighted covariate representations instead of directly balancing the covariates representations.
Assaad et al. (2021) argues that BWCFR provides bounds on the degree of imbalance as a function of the
propensity model and offers theoretical guarantees for estimating the CATE using the overlapping weight.
Johansson et al. (2022) built on the previous work on sampling weighting for counterfactual regression and
representation learning (Johansson et al., 2016; Shalit et al., 2017; Kallus, 2020; Jung et al., 2020; Assaad
et al., 2021), and provide a comprehensive theory for weighted risk minimization for CATE for a learned
representation from the data. In this paper, we adapt the weighted empirical risk minimization (WERM)
framework traditionally developed for static settings to the longitudinal context. Our approach empha-
sizes contemporaneous treatments effects over sequences of interventions (see Remark 1), allowing a natural
adaptation of WERM to time-varying data.

Probabilistic Modeling in Causal Inference In scenarios where confounders are unobserved but proxy
variables are available, probabilistic models are used to infer a representation for the unobserved confounding
given the proxy variables (Kuroki & Pearl, 2014; Miao et al., 2016; Louizos et al., 2017; Cheng et al., 2021).
While our work assumes the presence of observed confounding, it draws inspiration from the theory of
deconfounding (Lopez & Gutman, 2017; Ranganath & Perotte, 2018; Wang & Blei, 2019a), and its extensions
to time-varying settings (Bica et al., 2020b; Hatt & Feuerriegel, 2024). The deconfounding involves applying a
factor model over the treatment assignment, where each treatment becomes conditionally independent given
latent variables that serve as substitutes for the unobserved confounders. Bica et al. (2020b) extended the
application of the confounding method to sequential settings with multiple treatments to infer time-varying
confounders. They assumed that the joint distribution of causes at each time step, conditioned on latent
variables and observed confounders, could be decomposed into the product of the conditional distribution
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of each treatment. For a single treatment per time step, Hatt & Feuerriegel (2024) assumed a conditional
Markov model over the treatment sequences given the sequence of confounders and the latent variables. In
this work, we demonstrate that the core idea of the factor model can be applied to learn valid substitutes
for unobserved adjustment variables in the time-varying domain. Unlike previous deconfounder works, we
show that assuming a higher-order conditional Markov model for the sequence of responses is sufficient to
infer a valid representation of the unobserved adjustment variables.

3 Problem Definition

Following the Potential Outcome (PO) framework (Robins & Hernán, 2009b), we consider a cohort of
individuals indexed as i ∈ {1, 2, . . . , n}, observed over T time steps. At each time point t ∈ {1, 2, . . . , T}, we
define: (1) A binary treatment Wit ∈ W = {0, 1}, such as whether a cancer patient receives radiotherapy
or not; (2) An outcome Yit ∈ Y ⊂ R, which represents the response to the treatment (e.g., tumor volume);
(3) A context Xit ∈ X ⊂ Rdx , a time-varying dx-dimensional vector capturing confounders, such as health
records and patient measurements; (4) Partially observed potential outcomes Yit(1) and Yit(0) ∈ Y ⊂ R,
which represent the outcomes that would be observed under treatments Wit = 1 and Wit = 0, respectively;
(5) Unobserved adjustment variables Ui ∈ U ⊂ Rdu , which are static variables affecting the response
series Yi1, Yi2, . . . , YiT .

Remark 1 We could have defined the PO for an individual given their treatment history up to time t as
Yit(ωi,≤t), where ωi,≤t := (ωi,1, ωi,2, . . . , ωi,t) ∈ Wt. Here, we focus on the contemporaneous treatment effect,
that relates to the current treatment Wit. We assume the treatment history up to t − 1, ωi,<t, to be
consistent with the observed history, that is, ωi,<t = Wi,<t.

Y<t

W<t

X<t

Yt

Wt

Xt

U

History Ht

Figure 1: A simplified representation of the DGP at time t. Edges between Y<t, W<t, and X<t are omitted
for simplicity.

We define the confounding history process Hit = [Xi,≤t, Wi,<t, Yi,<t], capturing information up to the as-
signment of Wit depicted in Figure 1 which also compactly represents the Data Generating Process (DGP)
for which we can estimate the CATE, that is

τt(ht) := E(Yt(1)− Yt(0) | Ht = ht). (1)

We assume the CATE identifiability from the observed data distribution using sequential ignorability (Robins
& Hernán, 2009b; Lim, 2018; Bica et al., 2020a) represented in Assumptions 2.

Assumption 2 (CATE Identifiability) We make three key identifiability assumptions at each time step
t, for any potential treatment ω, and given the realization hit of the confounding history Hit:

1. Consistency. If a unit i receives treatment ω, then the observed outcome corresponds to the
potential outcome under ω. Formally, Wit = ω =⇒ Yit = Yit(ω).

2. Unconfoundedness/Ignorability. The potential outcomes Yit(ω) are independent of the treat-
ment assignment Wt, given the confounding history Hit = hit. Thus, Yit(ω) ⊥⊥Wt | Hit = hit.
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3. Overlap/Positivity. For any confounding context ht where p(ht) ̸= 0, there is a non-zero
probability of observing each treatment regime. Formally, p(Wt = ω | ht) > 0.

With Assumptions 2, we ensure that the CATE is identifiable. Specifically, we have:

τt(ht) = E(Yt | Ht = ht, Wt = 1)− E(Yt | Ht = ht, Wt = 0). (2)

So far, we expressed the CATE as a function of the confounding history Ht. Now, assuming we observe
adjustment variables U and aim to estimate a heterogeneous treatment effect depending on both Ht and
U. We define the Augmented CATE (ACATE) as follows:

τt(ht, u) := E(Yt(1)− Yt(0) | Ht = ht, U = u). (3)

Since the adjustment variables U influence only the response series and do not act as confounders in the
treatment-response relationship at any time step, the ignorability of treatment given Ht suffices for identi-
fying the ACATE, as expressed below:

τt(ht, u) = E(Yt | Ht = ht, U = u, Wt = 1)− E(Yt | Ht = ht, U = u, Wt = 0). (4)

Inference Problem Deriving the ACATE becomes straightforward when both confounding and
adjustment variables are fully observed. However, when U is missing, unobserved heterogeneity
in the treatment effect arises, leading to incomplete or biased conclusions about treatment effects.
This raises the following key inference question: Under what conditions can a substitute Z for the
unobserved adjustment variables U ensure the identifiability of the ACATE by replacing U with Z,
specifically guaranteeing that the following equality (i) holds?

τt(ht, z) = E(Yt(1)− Yt(0) | Ht = ht, Z = z) (i)= E(Yt | Ht = ht, Z = z, Wt = 1)− E(Yt | Ht = ht, Z = z, Wt = 0).

4 Causal DVAE

4.1 When does a Latent Representation Act as a Valid Substitute for Unobserved Adjustment
Variables?

To address the causal inference problem defined in Section 3, we treat Z as a latent variable to be learned from
the observed data distribution p(X≤T , W≤T , Y≤T ) within a probabilistic model defined over the conditional
responses as follows:

Assumption 3 (CMM(p): Conditional Markov Model of order p) We say that a latent variable Z
follows a Conditional Markov Model of order p, written Z ∼ CMM(p), if there exists a fixed order p ∈ N∗

and a parameter vector θ such that the response distribution factorizes as:

pθ(y≤T , z | x≤T , ω≤T ) = p(z)
T∏

t=1
pθ (yt | yt−1:t−p, x≤t, ω≤t, z) .

For t < 1, we set yt = ∅ by convention.

The fact that Z is set only with a prior in Assumption 3 mimics the role of U because U consists of static
adjustment variables that are parentless, as illustrated in the causal graph (Figure 1). The bounded memory
assumption over the sequence of responses, that is, the direct causal effect of past responses on future ones
stops at an arbitrary order p, is a technical condition ensuring the causal validity of Z as in the Theorem
4 where we demonstrate the sequential ignorability property when augmenting the history process with Z,
replicating the same result as if the true adjustment variables U were available. All the proofs are deferred
to Appendix A.
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Yt−3 Yt−2 Yt−1 Yt

Z Z′

Figure 2: A simplified causal graph for the sketch of the proof for Theorem 6. We do not represent W≤t, X≤t

for simplicity.

Theorem 4 (Sequential Ignorability with Augmented History) Let Z be a latent variable verifying
CMM(p). Assume the response domain Y is a Borel subset of a compact interval. Therefore, sequential
ignorability holds when augmenting the history process with Z:

Yt(ω) ⊥⊥Wt|Ht = ht, Z = z ∀(ω, ht, z),

where Ht represents the history process up to time t.

The ignorability result of Theorem 4 is the first step into answering the inference problem of 3 as it allows
us to establish the identifiability of the ACATE when Z replaces the true unobserved variable U in Eq. (4),
summarized in the following corollary:

Corollary 5 (Identifiability of ACATE with Z) Let Z be a latent variable satisfying CMM(p). The
Augmented CATE, when augmented with Z instead of U as defined in Equation 4, is identifiable. Specifically:

τt(ht, z) = E(Yt|Ht = ht, Z = z, Wt = 1)− E(Yt|Ht = ht, Z = z, Wt = 0) (5)

As a result, Corollary 5 addresses the identifiability problem and its conditions as raised in Section 3: A
CMM of arbitrary order over the conditional distribution of responses, along with a mild regularity condition
on the response domain as stated in Theorem 4, constitutes a sufficient condition to ensure the identifiability
of the ACATE. To further emphasize the relevance of Z ∼ CMM(p), we show that any two substitutes
satisfying CMM(p) must necessarily be related through a measurable map given the entire process history
HT :

Theorem 6 Let Z be a latent variable such that Z ∼ CMM(p), and assume the domain Y is a Borel subset
of a compact interval. Then, any static adjustment variable that influences the entire series of responses in
the panel must be measurable with respect to (Z, HT ).

Intuition behind CMM(p) We provide an intuition behind the CMM(p) assumption by sketching
a proof of Theorem 6 using d-separation properties, assuming the data generation process follows
the graph depicted in Figure 1. Let Z′ be an unobserved risk variable independent of Z, as illus-
trated in Figure 2. Given that Z ∼ CMM(p) and for m > p, Yt and Yt−m are d-separated given
{Yt−1:t−m+1, Z, W≤t, X≤t} implying that Yt ⊥⊥ Yt−m | Yt−1:t−m+1, Z, W≤t, X≤t. Now, suppose Z′

influences the entire series of responses similarly to Z. In this case, Z′ acts as a common parent
for both Yt and Yt−m, creating a path Yt−m ← Z′ → Yt that cannot be blocked by conditioning on
{Yt−1:t−m+1, Z, W≤t, X≤t}. Consequently, Yt ⊥̸⊥ Yt−m | Yt−1:t−m+1, Z, W≤t, X≤t, which contradicts
the implications of the conditional Markov assumption.

4.2 Definition of the Probabilistic Model

We define in the section the probabilistic model to learn a substitute Z building on the DVAE approach. We
break down the approach into three steps, where we first deal with selection bias and then incorporate the
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inductive bias of population structure, defining a GMM over the substitutes and finally define the suitable
Evidence Lower Bound (ELBO) to be maximized.

Step 1: Handling Selection Bias In a purely factual setting, modeling data with a DVAE involves
maximizing:

log pθ(y≤T | x≤T , ω≤T ) =
T∑

t=1
log pθ(yt | y<t, x≤t, ω≤t) =

T∑
t=1

log pθ(yt | ht, ωt)

based on the observed data distribution. However, this model cannot perform counterfactual regres-
sion—switching treatment assignment during inference to estimate counterfactual responses—nor does it
allow for causal inference. This limitation arises in observational studies where treatment assignment is
typically non-random and depends on observed covariates, resulting in a selection bias. We adopt the im-
portance sampling strategy to reduce the selection bias by reweighing the likelihood of the factual model
(Shimodaira, 2000). The key idea is to assign weights {α(ht, ωt)}T

t=1 to units in the population such that
the resulting distribution in a given treatment regime matches that of the entire population. Therefore, we
seek to maximize the likelihood L defined as:

L :=
T∑

t=1
EHt,Wt

[
α(Ht, Wt)EYt|Ht,Wt

log pθ(yt | Ht, Wt)
]

.

A more convenient formulation expresses L as an expectation over all repeated cross-sectional data of a
population:

L =
T∑

t=1
EDT

[α(Ht, Wt) log pθ(Yt | Ht, Wt)] , (6)

with DT = {Y≤T , X≤T , W≤T }. The formulation of a conditional DVAE model specifies the con-
ditional generative model pθ(y≤T , z | x≤T , ω≤T ), which factorizes as: pθ(y≤T , z | x≤T , ω≤T ) =∏T

t=1 [pθ(yt | y<t, x≤t, ω≤t, z)] p(z).

Step 2: Incorporating Population Structure To account for an eventual population structure induced
by unobserved adjustment variables, we place a Gaussian mixture prior over the latent variable Z, with K
components:

p(z) =
K∑

c=1
πcN (z|µc, Σc). (7)

This prior corresponds to first generating a cluster index C ∼ Cat(π), followed by generating Z | C ∼
N (µC , ΣC). Here, π represents the probability distribution over cluster assignments, verifying

∑K
c=1 πc = 1,

with Cat(π) denoting the categorical distribution parameterized by π. Each cluster c is associated with a
learnable Gaussian distribution of mean µc and covariance Σc. The complete generative model becomes:

pθ(y≤T , z, c | x≤T , ω≤T ) =
T∏

t=1
[pθ(yt | y<t, x≤t, ω≤t, z)] p(z | c)p(c). (8)

We approximate the true posterior over (z, c) using a factorized variational distribution

qϕ(z, c | DT ) = qϕz
(z | DT )qϕc

(c | DT ), (9)

where ϕ = ϕz∪ϕc collects the variational parameters. The following theorem characterizes the corresponding
variational bound.

Theorem 7 (Weighted ELBO Decomposition) Under the generative model defined in Eq. (8) and the
approximate posterior factorization (Eq. (9)), the weighted likelihood in Eq. (6) can be decomposed as:

L = EDT
[ELBO0(DT ; θ, ϕ)] + EDT

[∆0(DT ; θ, ϕ)] , (10)
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where the individual gap term ∆0 is given by:

∆0(DT ; θ, ϕ) :=
T∑

t=1
α(ht, ωt)DKL(qϕ(z, c | DT ) ∥ pθ(z, c | DT )), (11)

and the individual ELBO termed ELBO0 is expressed as:

ELBO0(DT ; θ, ϕ) =
T∑

t=1
EZ∼qϕz (·|DT ) [α(ht, ωt) log pθ(yt | ht, ωt, Z)] (12)

−

(
T∑

t=1
α(ht, ωt)

){
DKL(qϕz

(z | DT ) ∥ p(z)) + EZ∼qϕz (·|DT )DKL(qϕc
(c | DT ) ∥ p(c | Z))

}
.

The individual gap ∆0 is a positive term that quantifies the inaccuracy of the variational approximation
of L using ELBO0 (Eq. (12)). The ELBO term, ELBO0, comprises three components: (1) A weighted
sum of the conditional log-likelihoods of the responses (reconstruction term). (2) A KL divergence between
the approximate posterior of the continuous latent variables qϕz

(· | DT ), which serve as substitutes for
adjustment variables, and the unconditional prior p(z). (3) A KL divergence between the approximate
posterior of the discrete latents qϕc

(· | DT ) and the true conditional posterior p(C | Z), averaged over
qϕz

(· | DT ). The decoupling of these two approximate posteriors arises from the assumed factorization over
the joint approximate posterior as in Eq. (9).

Step 3: Addressing the Discrete Latent Variable c The approximate posterior qϕ(z, c | DT ) involves
both continuous and discrete latent variables, z and c, respectively. Training deep generative models with
discrete latent variables presents challenges due to difficulties in reparameterization and handling high car-
dinality, even when using classical approaches like Gumbel-Softmax (Jang et al., 2017; Tucker et al., 2017;
Huijben et al., 2022). To avoid designing an additional inference network for qϕc

(c | DT ) and the associated
computational cost, we follow Jiang et al. (2017); Falck et al. (2021) and define a Bayes-optimal posterior
for the discrete latent variable. Specifically, we leverage the decomposition of Eq. (9) and choose qϕc(c | DT )
in such a way that the third term in the ELBO of Eq. (12) is minimized by definition:

min
qϕc (·|DT )

EZ∼qϕz (·|DT )DKL(qϕc(c | DT ) ∥ p(c | Z)). (13)

The minimal value of this optimization problem is
min

qϕc (·|DT )
EZ∼qϕz (·|DT )DKL(qϕc

(· | DT ) ∥ p(· | Z)) = − log Const(qϕz
(· | DT )), (14)

where Const(qϕz
(· | DT )) is a constant that depends only on the approximate posterior over the continuous

latents:

Const(qϕz (· | DT )) =
K∑

c=1
exp(EZ∼qϕz (·|DT ) log p(c | Z)).

The minimizer is given by:

π(c | qϕz (· | DT )) =
exp(EZ∼qϕz (·|DT ) log p(c | Z))

Cst(qϕz
(· | DT )) . (15)

Moreover, the minimal value is:
min

qϕc (·|DT )
EZ∼qϕz (·|DT )DKL(qϕc

(· | DT ) ∥ p(c | Z)) = − log Z(qϕz
(· | DT )). (16)

Thus, we update the original ELBO0 in Eq. (12) to obtain a modified ELBO by replacing qϕc(· | DT ) with
the minimizer π(c | qϕz (· | DT )) and plugging in the minimal value from Eq. (16):

ELBO(DT ; θ, ϕ) =
T∑

t=1
EZ∼qϕz (·|DT ) [α(ht, ωt) log pθ(yt | Ht, Wt, Z)]

−

[
T∑

t=1
α(ht, ωt)

]
{DKL(qϕz (· | DT ) ∥ p(z))− log Z(qϕz (· | DT ))} .

(17)
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As a result, the modified ELBO is computationally more efficient than the original one, as it bypasses the
need for applying a reparameterization trick to discrete latents and eliminates the necessity of training over
specific parameters ϕc, all while remaining a valid lower bound for the weighted likelihood L. This validity
holds since Theorem 7 applies to any arbitrary approximate posterior qϕc

(· | DT ), and in particular, to
π(c | qϕz

(· | DT )), which is the minimizer of Eq. (13). We henceforth use ϕ to denote ϕz.

4.3 CDVAE in the Near-Deterministic Regime

In this section, we explore the behavior of Causal DVAE in the near-deterministic regime, where the variance
of the generative model approaches zero. We examine how this regime affects both inference and causal
identifiability, demonstrating that it leads to a non-diffuse posterior suitable for treatment effect estimation.

Model Setup For the remainder of our discussion, we define the DVAE model parameters as Mvae =
{θ, ϕ} and assume the approximate posterior to be Gaussian qϕ(z | DT ) ∼ N (z|µz, Σz), where the mean
is defined as µz = fµz(DT , ϕ), and the covariance matrix is given by Σz = SzS⊤

z , with Sz = fSz(DT , ϕ).
Moreover, we assume the conditional generative model to be Gaussian such that:

pθ(yt | y<t, x≤t, ω≤t, z) = N (ft(ht, ωt, z; θ), σ2), (18)

with σ > 0, a spatially and temporally uniform scale parameter.

Motivation In probabilistic modeling, our inference model for the substitute adjustment variable is
stochastic. However, to calculate an individualized ACATE for each individual i, that is

τt(hit, zi) = E(Yt|Hit = hit, Z = zi, Wt = 1)− E(Yt|Ht = hit, Z = zi, Wt = 0),

we need to choose a unique instance of the latent variable representation. Otherwise, infinitely many ACATEs
for the same individual i could be generated by sampling repeatedly from qϕz (· | DiT ). A natural choice
for this deterministic representation is the mean of the posterior. Yet, because we sample from the approx-
imate posterior during training rather than using the mean, it is essential to prevent the posterior from
becoming overly diffuse—ensuring that the mean remains a valid representation during causal inference.
Previous studies (Dai & Wipf, 2019; Takida et al., 2022) show that operating in the near-deterministic
regime of the VAE decoder—where σ → 0+—leads the encoder’s covariance matrix toward zero, resulting
in near-deterministic behavior. We, therefore, explore the near-deterministic regime in our Causal DVAE
by controlling the decoder’s variance to induce a non-diffuse, stable posterior distribution suitable for causal
inference in the latent space.

Side Benefit: Preventing Posterior Collapse A well-known challenge in training VAEs is posterior
collapse, where the approximate posterior converges to the uninformative prior, making the latent space
irrelevant (Bowman et al., 2015; Sønderby et al., 2016; Higgins et al., 2017; Dai & Wipf, 2019; Fu et al., 2019;
Lucas et al., 2019; Wang et al., 2021; Takida et al., 2022). A notable advantage of the near-deterministic
regime is its ability to avoid posterior collapse within the latent space, a benefit demonstrated in static
VAEs (Lucas et al., 2019; Takida et al., 2022). Specifically, Takida et al. (2022) showed that the decoder’s
output variance and covariance could influence the latent space by causing over-smoothing by affecting the
gradient regularization strength, which in turn leads to posterior collapse. By controlling variance in the
near-deterministic regime, we mitigate this collapse and thereby preserve meaningful latent representations.

We advance the study of dynamic VAE models by investigating their behavior in the near-deterministic
regime within the context of causal inference. This work is the first to explore dynamic VAEs in this regime
for causal applications, addressing a gap in the literature, as such behavior has yet to be thoroughly examined
even in non-causal, factual settings. For the remainder, and unless otherwise stated, we omit dependence on
the individual i for notational ease.

We prove that in our framework, replacing the original lower bound ELBO0(DT ; θ, ϕ) with the modified
ELBO(DT ; θ, ϕ) still ensures the existence of a parameterization under which the approximate likelihood
of responses converges to the true likelihood. Specifically, Theorem 8 demonstrates that, for a sequence of
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inference and generative models parameterized by σ, the gap between the modified and true importance-
weighted likelihoods asymptotically approaches zero.

Theorem 8 (Asymptotic Likelihood Recovery) Suppose dz ≤ T . There exists a family of autoencoders
{ϕσ, θσ}σ>0 such that

lim
σ→0+

pθσ (y≤T | x≤T , ω≤T ) = p(y≤T | x≤T , ω≤T ),

and when operating under the Bayes-optimal posterior over the discrete latents, i.e.,

qϕ(c | DT ) = π(c | qϕ(· | DT )),

the gap ∆(DT ; θσ, ϕσ) between the modified ELBO (Eq. (17)) and the true weighted likelihood L (Eq. (6))
satisfies

∆(DT ; θσ, ϕσ) = ELBO(DT ; θσ, ϕσ)− L(DT ; θσ)

and converges to zero:
lim

σ→0+
∆(DT ; θσ, ϕσ) = 0.

This result generalizes prior findings for static VAEs (Dai & Wipf, 2019) to the more complex dynamic
setting with GMM priors and weighted objectives. It also addresses an oversight in Dai & Wipf (2019)
regarding the proof of gap convergence.

More importantly, we establish a critical property in our setting within the near-deterministic regime: the
causal effect remains asymptotically consistent whether one uses an arbitrary realization of the latent variable
z or the posterior mean µz. Theorem 9 formalizes this insight as follows:

Theorem 9 (Realization-Invariant Causal Consistency) For a fixed σ > 0, let a parametrization of
Causal DVAE M∗

vae(σ) = {θ∗
σ, ϕ∗

σ} be an optimal solution to the ELBO defined in Eq. (17). Then, for any
substitute realization z ∈ Rdz , the conditional expected outcome satisfies the following consistency in the
near-deterministic regime:

lim
σ→0+

EM∗
vae(σ) [Yt | Ht, Wt = ω, Z = z] = lim

σ→0+
EM∗

vae(σ) [Yt | Ht, Wt = ω, Z = µz] . (19)

As a result of Corollary 5, the Augmented CATE satisfies the same consistency in the near-deterministic
regime:

lim
σ→0+

τM∗
vae(σ)(Ht, z) = lim

σ→0+
τM∗

vae(σ)(Ht, µz). (20)

Theorem 9 demonstrates that as the variance parameter σ of the generative model approaches zero, both
the expected outcome and the estimated causal effect remain consistent, regardless of whether one relies on
an arbitrary realization of the latent variable z or its posterior mean µz. Such consistency ensures that, in
the near-deterministic regime, the causal effect is robust to the specific realization of the latent variable.

4.4 Generalization Bound over Treatment Effect Estimation and Derivation of Model Loss

We establish in this section a theoretical generalization bound for the error in estimating ACATE, which
serves as a foundation for deriving the training loss of CDVAE. We begin by defining a suitable represen-
tation function to address the high dimensionality of the history Ht. Next, we introduce a weighted risk
minimization framework that ensures covariate balance between treatment groups. We then derive a gen-
eralization bound for treatment effect estimation, relating the error in estimating ACATE to the model’s
weighted risk. Finally, we construct the CDVAE training objective by integrating these theoretical insights
into a structured loss function.

11



Published in Transactions on Machine Learning Research (10/2025)

Step 1: Representation Learning To address the high dimensionality of the history Ht, we define
a representation function Φ that reduces dimensionality while preserving essential information in a latent
space. Assuming Φ is invertible, we ensure sequential ignorability holds in the latent space if and only if it
holds in the original space. In practice, the outcome and treatment models share the same representation
Φ(Ht), capturing information predictive of both treatment and response. While invertibility is theoretically
assumed for identifiability, it is not strictly enforced in implementation. Instead, we prioritize ensuring Φ(Ht)
remains predictive across treatment regimes, applying regularization techniques to balance representations
as in Shalit et al. (2017); Lim (2018); Bica et al. (2020a); Assaad et al. (2021); Melnychuk et al. (2022);
Johansson et al. (2022).

Remark 10 Following Eq. (18), the generative model for the responses is defined as Yt = ft(Ht, Wt, Z)+ϵt,
where ϵt ∼ N (0, σ2) is the error term. A common modeling (Johansson et al., 2016; Shalit et al., 2017; Shi
et al., 2019; Johansson et al., 2022) approach for ft is to assume

ft(Ht, Wt, Z) := Wtft,1(Ht, Z) + (1−Wt)ft,0(Ht, Z),

where ft,0 and ft,1 denote the mappings to the response under each treatment regime Wt = 0, 1.

The representation function Φ over {Ht}T
t=1 produces lower-dimensional vectors {rt}T

t=1, living in a space
R ⊂ Rr. Instead of defining time-dependent generative functions ft, we define a single hypothesis function

f : R×W × Rdz → Y,

such that:
Yt = f(Φ(Ht), Wt, Z) + ϵt = Wtf1(Φ(Ht), Z) + (1−Wt)f0(Φ(Ht), Z) + ϵt.

Step 2: Weighted Risk Minimization To integrate causal inference into the DVAE framework, we
employ weighted risk minimization techniques (Kallus, 2020; Johansson et al., 2022). First, we justify the
choice of weights α(Ht, Wt) used in the definition of the weighted ELBO in Section 4.2, Eq. (17). In
general, these weights can be any arbitrary mapping α : Ht × W → R+ such that for every ω ∈ W,
EHt|Wt=ω [α(Ht, ω)] = 1. The weights α(ht, ω) induce, therefore, a weighted probability target distribution
g over the population s.t g(ht | Wt = ω) := α(ht, ω)p(ht | Wt = ω). Choosing an appropriate weighting
strategy α(ht, ω) is essential for achieving covariate balance between treatment groups, specifically g(ht |
Wt = 1) = g(ht |Wt = 0). We use overlap weights (Li et al., 2018; Assaad et al., 2021), defined as:

α(ht, ω) ∝ e(Φ(ht)) (1− e(Φ(ht)))
ω e(Φ(ht)) + (1− ω) (1− e(Φ(ht)))

,

where e(Φ(ht)) = p(Wt = 1 | Φ(ht)) is the propensity score within the representation space. Overlap weights
emphasize units with propensity scores near 0.5, concentrating on regions where treated and control groups
have the most overlap, thereby enhancing comparability and improving covariate balance (Li et al., 2018).

We now define the weighted population risk for a given treatment regime Wt = ω, measuring the expected
risk for a given (f, Φ) at time t and over the weighted population distributed according to g, as:

Rω
t,g(f, Φ) := EHt|Wt

[α(Ht, Wt) ℓf,Φ(Ht, Wt) |Wt = ω] ,

where ℓf,Φ(ht, ω) is the expected pointwise loss associated with the hypothesis f :

ℓf,Φ(ht, ω) := EZ∼qϕ(Z|D≤t−1) EYt(ω)|Ht,Z [L (Yt(ω), f (Φ(Ht), Z, Wt)) | Ht = ht, Z] . (21)

In the definition of the expected pointwise loss, we respect the temporal order by conditioning the approx-
imate posterior of the continuous latents only on the longitudinal data up to time step t. In line with our
probabilistic modeling in Section 4.2 and the distributional assumptions in Section 4.3, we define the loss as
the negative log-likelihood:

L (Yt(ω), f (Φ(Ht), Z, Wt)) = − logN
(
Yt(ω); f (Φ(Ht), Z, Wt) , σ2) .

12
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Step 3: Generalization Bound Our aim during training is to minimize the factual quantities
{Rω

t,g(f, Φ)}T
t=1 to reduce the error in estimating treatment effects. To formalize and theoretically justify

this objective, we establish a generalization bound for the Precision in Estimation of Heterogeneous Effects
(PEHE) (Hill, 2011), which accounts for our weighted population risks {Rω

t,g(f, Φ)}T
t=1. PEHE measures the

mean squared error (MSE) between the true and estimated ACATE at time t as 2

ϵPEHEt = EHt EZ∼qϕ(Z|D≤t−1)

[
(τ(Ht, Z)− τ̂f,Φ(Ht, Z))2

]
,

where τ(Ht, Z) is the true ACATE and τ̂f,Φ(Ht, Z) is the estimated ACATE. Similarly, we define the weighted
PEHE relative to the target distribution g:

ϵPEHEt,g = EHt∼gEZ∼qϕ(Z|D≤t−1)

[
(τ(Ht, Z)− τ̂f,Φ(Ht, Z))2

]
.

We provide an upper bound for the weighted PEHE for CDVAE similar to Assaad et al. (2021). This bound
consists of three key components: the weighted factual prediction error, a term capturing the discrepancy be-
tween treatment and control distributions in the confounders representation space, and a term that accounts
for the variance of the generative model over responses.

Theorem 11 (Generalization Bound for Weighted PEHE) Let MVAE(σ) = {θσ, ϕσ} be the VAE
model defined in Section 4.2. For a given class of functions G, assume there exists a constant BΦ such
that ℓf,Φ

BΦ
∈ G. Assume the representation Φ is invertible. Then, the error in estimating the treatment effect

at time t for a weighted population is upper bounded by:

ϵPEHEt,g
≤ 2σ2 {Rω=1

t,g (f, Φ) + Rω=0
t,g (f, Φ) + BΦ IPMG (gΦ(· |Wt = 1), gΦ(· |Wt = 0))− log(2πσ2)

}
, (22)

where gΦ(r) is the distribution in the representation space R. The Integral Probability Metric (IPM) (Müller,
1997; Sriperumbudur et al., 2009) measures the dissimilarity between distributions.

Assuming strict overlap in treatment assignment, where δ ∈ (0, 0.5) such that δ < e(ht) < 1− δ, then there
exists constants At,g, Bt,g such that the unweighted PEHE ϵPEHEt

is bounded:

At,g · ϵPEHEt,g
(τ̂) ≤ ϵPEHEt

(τ̂) ≤ Bt,g · ϵPEHEt,g
(τ̂).

The representation discrepancy in 22 quantifies the imbalance between treatment groups, measured using
IPMs like the Wasserstein distance or Maximum Mean Discrepancy (Gretton et al., 2012). The connection
between ϵPEHEt and ϵPEHEt,g indicates that minimizing the weighted PEHE can also minimize ϵPEHEt ,
thereby enhancing the reliability of CATEs estimation across the original population.

To justify the pertinence of our probabilistic model defined in Section 4.2, we will show how maximizing the
likelihood term in the ELBO of Eq. (17) implies minimization of the risks Rω=1

t,g (f, Φ) and Rω=0
t,g (f, Φ).

Proposition 12 (ELBO-Risk Connection) Assume stationarity of the approximated posterior of Z given
sub-longitudinal data; that is, there exists t0 such that for t ≥ t0, qϕ(Z | Dt) ≈ qϕ(Z | DT ). Given a finite
sample B = {DiT = {Wit, Yit, Xit}T

t=1; i = 1, . . . , |B|}, we have the following approximation:

T∑
t=t0

EZ∼qϕ(·|DT ) [α(Ht, Wt) log pθ(Yt | Ht, Wt, Z)] ≈ − 1
|B|

T∑
t=t0

{
n

(t)
1 Rω=1

t,g (f, Φ) + n
(t)
0 Rω=0

t,g (f, Φ)
}

, (23)

with
Rω

t,g (f, Φ) ≈ − 1
n

(t)
ω

∑
i∈B, Wit=ω

EZ∼qϕ(Z|DiT ) [α(Hit, ω) log pθ(Yit | Hit, ω, Z)] ,

where n
(t)
ω represents the number of instances in the batch B for which Wit = ω.

2Note that pθ(Ht, Z) = p(Z | D≤t−1) p(Ht) because Xt is d-separated from Z given D≤t−1 = [Y≤t−1, X≤t−1, W≤t−1].
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As a result, maximizing the ELBO in Eq. (17) not only maximizes the weighted conditional likelihood over
responses (the "reconstruction term") but also, as shown in Eq. (23), minimizes the weighted population
risk. This, in turn, decreases the generalization bound in Theorem 11, reducing the error in treatment
effect estimation. To further reduce this error, we include the IPM term from Theorem 11, regularizing the
WELBO with the IPM term at each time step:

LIPM(θω, Φ) :=
T∑

t=1
IPMG (gθω,Φ(· |Wt = 1), gθω,Φ(· |Wt = 0)) .

where θω are the parameters of the treatment network.

Intuition: Stationarity of the inferred latent variables We further justify the core assump-
tion made in Proposition 12. The representation learning for the adjustment variables is achieved by
approximating the posterior pθ(z|DT ) with qϕ(z|DT ). Here, the missing baseline covariates are in-
ferred by analyzing all longitudinal data {y≤T , x≤T , ω≤T }. However, since these covariates are static
and pre-response variables, we should, ideally, be able to infer the exact substitute from a shorter
longitudinal data {y≤T ′ , x≤T ′ , ω≤T ′} where T ′ < T , or from any temporal slice {yt1:t2 , xt1:t2 , ωt1:t2}
with t2 > t1. Thus, ensuring a form of stationarity in our posterior approximation is crucial. To
understand the importance of this property, consider estimating the Average Treatment Effect (ATE)
for panel data at time t:

τt := E(Yt(1)− Yt(0)) = EZ,Ht

[
EYt|Z,Ht,Wt

[Yt | Z, Ht, Wt = 1]− EYt|Z,Ht,Wt
[Yt | Z, Ht, Wt = 0]

]
.

To compute τt, we need to marginalize the conditional response over the joint distribution of covariates
and latent adjustment variables, p(ht, z) = p(z | D≤t)p(ht). Because we model pθ(z|DT ), which
depends on the entire history, there is, generally, no guarantee that p(z | ht) ≈ pθ(z|DT ).

As a consequence of the stationarity assumption in Proposition 12, we introduce a penalty term in the form
of the Wasserstein distance between consecutive posterior distributions qϕ(z|Dt) and qϕ(z|Dt−1), penalizing
significant variations as the data history grows. To preserve the model’s capacity to capture time-varying
dependencies, we begin regularization from t0 ≫ 0, typically t0 = T

2 :

LDistM(ϕ) =
T∑

t=t0

EDtW (qϕ(z | Dt), qϕ(z | Dt−1)).

Assuming a Gaussian approximate posterior, the Wasserstein distance simplifies to

LDistM(ϕ) =
T∑

t=t0

EDt ||µz(Dt)− µz(Dt−1)||22 + EDt
||Sz(Dt)− Sz(Dt−1)||2F ,

where the penalty regularizes the first and second moments of the posterior distribution as the data history
grows.

Step 4: Total Loss Function and Training Strategy The overall loss for the CDVAE model combines
the ELBO from Eq. (17) with two additional terms: LIPM, which reduces covariate imbalance at each time
step and addresses residual imbalance not corrected by weighting, and LDistM, which captures the global,
static nature of adjustment variables. To push the Causal DVAE toward a near-deterministic regime, we
treat the variance parameter σ as learnable and fit it using the following loss function:

Ltot(θ, θω, ϕ, Φ, σ) = −ELBO(θ, θω, ϕ, Φ, σ) + λIPMLIPM(θω, Φ) + λDistMLDistM(ϕ). (24)

Since the loss Ltot depends on the treatment parameters θω, as the weighted ELBO is also a function of
the propensity scores, we introduce an additional loss function LW , a binary cross-entropy loss to predict
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treatment from confounders representation. To optimize CDVAE, we adopt an adversarial training strategy,
simultaneously minimizing Ltot with respect to θ, ϕ, Φ, and σ, while minimizing LW with respect to θω

(Algorithm 3, Appendix E): {
minθ,ϕ,Φ,σ Ltot(θ, θω, ϕ, Φ, σ),
minθω LW (θω, Φ).

The adversarial nature of the training arises because, in one optimization step, we learn the representation
Φ to predict the response while applying an IPM regularization to ensure balance between the weighted
covariates. In the subsequent optimization step, for a fixed representation, we train the treatment classifier
to predict the treatment. We use the Wasserstein distance as a specific case of IPM, with details on its
computation provided in Algorithm 2, Appendix E.1. A computational complexity analysis of CDVAE is
also provided in Appendix E.2.

CDVAE: Model Specification We use a three-head neural network architecture for CDVAE to learn a
shared representation between outcome and treatment models inspired by Shi et al. (2019). This architecture
consists of two prediction heads for potential outcomes and one for treatment (Appendix G). We use a
GRU (Cho et al., 2014) to learn a representation Φ(ht+1) of the context history ht+1. The input of the
outcome model fθy is the shared representation Φ(ht+1) and a sampled substitute z from qϕ(z | DT ). The
outcome model fθy

is represented by two non-linear functions fθ1
y

and fθ0
y

for treatment assignments 1 and
0, respectively. The third head is a binary classifier fθω

estimating the propensity score. The inference
model (encoder) qϕ (z | y≤T , x≤T , ω≤T ) is modeled by a GRU, producing a hidden state that represents the
sequence. Two non-linear mappings, µϕ2 and Σϕ3 , learn the mean and diagonal covariance matrix in the
latent space.

5 Experiments

Baselines In all our experiments, we compare CDVAE against the relevant baselines: RMSN, CRN, GNet,
Causal Transformer, and Causal CPC. Each baseline is evaluated in three different settings: 1. The "base
approach," where models are trained using only static and time-varying confounders. 2. The "substitute
approach," where models are augmented with substitutes for the unobserved adjustment variables, obtained
from CDVAE and represented by the mean of the approximated posterior. 3. The "oracle approach," where
models are trained with the true adjustment variables.

Hyperparameter Selection All models are fine-tuned using a grid search over hyperparameters, in-
cluding architecture and optimizer settings. Model selection is based on the mean squared error (MSE) of
factual outcomes on a validation set, which is also used as the criterion for early stopping. More details are
in Appendix F.

Adapting Baselines to Our Causal Settings All the considered baselines do not assume the obser-
vation of adjustment variables; however, they only consider time-varying and static confounders. It is not
straightforward to incorporate adjustment variables into these models when observed. Naively augmenting
their input with adjustment variables and treating them as static confounders often results in suboptimal
performance or even worse outcomes compared to excluding the adjustment variables altogether. This is
primarily due to two reasons: 1. Most baselines concatenate static confounders with time-varying ones at
each time step. When high-dimensional adjustment variables are included, this dramatically increases the
number of parameters, leading to overfitting. 2. When comparing different versions of the same baseline, it
is important to ensure comparable complexity represented by the number of learnable parameters (Table 1).
3. Models such as CRN, Causal Transformer, and Causal CPC learn a balanced representation. Including
adjustment variables naively as input may bias the learned representation towards these variables, as they
are inherently balanced.
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To ensure fair experimentation, we adapt the baselines
as follows:
1. CRN, Causal Transformer, and Causal CPC:
Instead of solely feeding the balanced representation
to the outcome network, we augment it with static
adjustment variables, similar to the CDVAE design,
where the representation Φ(Ht) is augmented with
substitutes Z.
2. GNet: Adjustment variables are only used to aug-
ment the representation fed to the outcome model, not
the representation used to reconstruct the current co-
variates Xt.
3. RMSN: Stabilized weights are learned solely as a
function of Ht, while the adjustment variables are con-
catenated with the representation of Ht.

Model Params (k),
synthetic
data

Params (k),
MIMIC-III
data

CDVAE 11.5 5.7
Causal CPC (base) 6.7 5.3
Causal CPC (with substi-
tute)

7.1 5.7

Causal CPC (oracle) 14.3 7.5
CT (base) 18.7 16.3
CT (with substitute) 18.9 16.7
CT (oracle) 26 18.7
G-Net (base) 21.2 4.1
G-Net (with substitute) 21.5 4.3
G-Net (oracle) 28.5 5.7
CRN (base) 8.3 3.5
CRN (with substitute) 8.5 3.7
CRN (oracle) 14.2 4.9
RMSN (base) 14 6.7
RMSN (with substitute) 15.3 6.9
RMSN (oracle) 20.9 8.0

Table 1: Trainable parameters in thousands (k)
for baselines in all configurations for the syn-
thetic and semi-synthetic MIMIC-III data.

5.1 Synthetic Data Sets

Generation We simulate longitudinal data with a time length of T = 75 using an autoregressive model
for both confounders and treatment assignments. The confounders Xt have a dimensionality dx = 100. The
outcome model includes unobserved adjustment variables U, with dimensionality du = 100, generated from
a Gaussian mixture model. A detailed description is provided in the Appendix C.1.1. The experiment is
conducted with 5000 samples for training, 500 for validation, and 1000 for testing.

Controlling the Effect of Unobserved Adjustment Variables To assess the impact of unobserved
variables U, we vary the parameter γY U

(1) (Appendix C.1.1), which determines the contribution of U in
generating Yt(1). By design, Yt(1) increases with γY U

(1) , and the parameter γY U
(1) is varied within the range

[0, 2.5] with a step size of 0.25, and we generate a longitudinal dataset at each level of γY X
(1) . We report the

mean and standard deviation over 10 different seeds of PEHE in estimating the one-step-ahead ACATE, i.e.,
ϵPEHET +1 , over the test individuals.

Results The Figure 3 shows the performances of all models given the three possible configurations. First,
the error in estimating the ACATE increases substantially as the coefficient γY U

(1) increases because the
contribution of the unobserved static variables becomes considerably more important in the writing of the
potential outcomes. However, CDVAE notably displays a slower increase in error and superior performance
in all data configurations. Second, the errors decrease across all levels of unobserved heterogeneity when the
baselines are provided with the substitutes learned features by CDVAE, highlighting the superiority of the
substitute approach assisted by CDVAE over the base one. As expected, a baseline in the oracle approach
generally performs better than with substitutes, especially at higher values of γY U

(1) , while the substitute
approach provides near-oracle performance. Extended results are provided in Appendix C.2, which we
complement by stressing performances by varying sequence length T and number of simulated vitals dx in
Appendix C.3.

5.2 Semi-Synthetic MIMIC-III Data

We adapt to our setting a semi-synthetic dataset constructed by Melnychuk et al. (2022) based on the
MIMIC-III dataset (Johnson et al., 2016). The covariates are high-dimensional and include several vital
measurements recorded in intensive care units. We investigate the effect of vasopressor treatments on blood
pressure (response) for patients. The static covariates in the dataset (gender, ethnicity, and age) are included
in the data construction as adjustment variables for the response. Detailed descriptions are provided in
Appendix D.1. We conduct our experiments with 1400 patients for training, 200 patients for validation, and
400 patients for testing.
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(b) Performance of Causal CPC with CDVAE Compari-
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(c) Performance of CRN with CDVAE Comparison
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(d) Performance of G-Net with CDVAE Comparison
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(e) Performance of RMSN with CDVAE Comparison

Figure 3: Evolution of PEHE in estimating ACATE for synthetic data across increasing levels of heterogeneity
induced by adjustment variables U.

Similar to the synthetic data experiment, we evaluate all baselines using three approaches (base, with substi-
tutes, and oracle), and report the PEHE in estimating the one-step-ahead ACATE for a patient trajectory.

Results Figure 4 reports the mean and standard deviation of PEHE for CDVAE and all baselines across
all configurations. Similar to the synthetic data results, the base approach always performs worse than the
substitute and oracle approaches. However, the substitute approach substantially enhances performance
compared to the base approach, highlighting the relevance of the substitutes learned by CDVAE. Across
all configurations, CDVAE achieves the best performance compared to all baselines. Extended results are
provided in Appendix D.2.
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Figure 4: Results on the MIMIC-III data reported by PEHE and organized following the three possible
configurations. Smaller is better.

6 Discussion

Ablation Study To experimentally validate the design of CDVAE, we perform an ablation study
by exploring several model configurations: the full CDVAE model with all components; CD-
VAE without the IPM term (λIPM = 0); CDVAE without the distribution matching term
(λDistM = 0); CDVAE without both the IPM term and distribution matching term (λIPM =
0, λDistM = 0); CDVAE without the IPM term and weighting (λIPM = 0, w/o weighting); CDVAE
(λIPM = 0, λDistM = 0, w/o weighting); and CDVAE with a fixed variance parameter (σ = 1).

CDVAE Configuration PEHE
Ours 17.63±0.25

λIPM = 0 18.38±0.26
λDistM = 0 18.21±0.26

σ = 1 20.50±1.04
λIPM = 0, λDistM = 0 18.45±0.23

λIPM = 0, w/o weighting 18.97±0.28
(λIPM = 0, λDistM = 0, w/o weighting) 19.23±0.28

Table 2: CDVAE ablation study with semi-synthetic
MIMIC-III data reported by PEHE. Smaller is better.

We follow the same experimental protocol as in
prior experiments, conducting the ablation for the
synthetic dataset across all heterogeneity levels in-
duced by γY U

(1) and for the semi-synthetic MIMIC-III
dataset. Across all configurations, the full CDVAE
consistently outperforms the other models. Fur-
thermore, removing individual components results
in progressively higher errors, as shown in Tables
3 and 2. Interestingly, the configurations (λIPM =
0, λDistM = 0, without weighting) and (σ = 1) either
perform comparably to or worse than the second-
best model, Causal CPC, on both the synthetic dataset and the MIMIC-III dataset.

Table 3: Results on the synthetic data reported by PEHE. Smaller is better.

CDVAE Configuration γY U
(1) = 0 γY U

(1) = 0.25 γY U
(1) = 0.5 γY U

(1) = 0.75 γY U
(1) = 1 γY U

(1) = 1.25 γY U
(1) = 1.5 γY U

(1) = 1.75 γY U
(1) = 2 γY U

(1) = 2.25 γY U
(1) = 2.5

Ours 0.43±0.02 0.50±0.03 0.96±0.09 1.57±0.08 1.90±0.10 2.35±0.18 3.57±0.17 4.80±0.20 6.84±0.20 7.64±0.48 9.03±0.50

λIPM = 0 0.48±0.02 0.57±0.03 1.12±0.01 1.80±0.15 2.23±0.12 2.53±0.15 3.88±0.13 5.23±0.11 7.37±0.21 7.95±0.12 9.32±0.36

λDistM = 0 0.46±0.02 0.57±0.03 1.10±0.02 1.78±0.13 2.18±0.13 2.64±0.18 3.95±0.15 5.20±0.12 7.14±0.13 8.08±0.14 9.25±0.19

σ = 1 0.81±0.40 0.66±0.07 2.17±0.53 5.73±1.51 9.27±3.27 10.67±2.02 12.66±2.16 14.28±4.23 15.63±4.04 18.23±5.71 17.19±5.71

λIPM = 0, λDistM = 0 0.48±0.02 0.57±0.03 1.16±0.07 1.84±0.17 2.33±0.12 2.66±0.14 4.05±0.10 5.36±0.13 7.48±0.12 8.20±0.13 9.40±0.24

λIPM = 0, w/o weighting 0.50±0.01 0.60±0.01 1.20±0.03 1.90±0.11 2.31±0.10 2.66±0.13 3.99±0.16 5.30±0.19 7.51±0.12 8.21±0.15 9.41±0.23

λIPM = 0, λDistM = 0, w/o weighting 0.50±0.02 0.62±0.02 1.27±0.03 1.98±0.10 2.39±0.09 2.85±0.14 4.19±0.13 5.59±0.13 7.61±0.15 8.41±0.14 9.78±0.21

How CDVAE handles autoregressive order in practice. We require CMM(p) to ensure identifia-
bility of ACATE and validity of learned substitutes. In practice, we do not fix a lag p but rely on two
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mechanisms: 1. Fading memory. Recurrent predictors and fading-memory filters down-weight distant
history exponentially. Classical results show that fading-memory maps can be uniformly approximated by
finite-memory models: for any ϵ > 0, there exists an order pϵ such that conditioning on the last pϵ lags is
ϵ-close to conditioning on the full history (Funahashi & Nakamura, 1993; Miller & Hardt, 2019; Gonon &
Ortega, 2021). 2. Bias from training. Backpropagation through time biases RNNs toward short/medium
context, with little gain from longer lags (Khandelwal et al., 2018).

To empirically substantiate these claims, we train CDVAE on synthetic data generated with ptrue = 10.
On test data, we compute counterfactual responses while masking outcomes to simulate CMM(p) with
p ∈ {4, 6, 8, 10, 12, 14, 16}. One-step residuals (conditioned on Ht and Z) are tested for autocorrelation using
Ljung–Box. Persistent autocorrelation or steadily improving accuracy with higher p would suggest violation
of CMM(p). In all cases, Ljung–Box p-values up to lag 20 remain well above 0.05 (Table 5, e.g., p = 4: 0.085;
p = 10: 0.109), so residual autocorrelation is not rejected. Meanwhile, one-step RMSE (∼ 1.129–1.131) and
PEHE (∼ 0.975–0.986) are nearly flat across p (Table 4). Thus, conditioning on short/medium windows
suffices to remove serial dependence: increasing p beyond 4–6 yields no material improvement. This agrees
with (i) portmanteau tests showing no residual autocorrelation up to lag h, and (ii) the fading-memory
approximation theorem together with the empirical bias of RNN training toward recent history (Table 6).

Metric p = 4 p = 6 p = 8 p = 10 p = 12 p = 14 p = 16
RMSE1-step 1.131 1.130 1.130 1.129 1.129 1.130 1.130
PEHE1-step 0.977 0.984 0.986 0.986 0.982 0.975 0.982

Table 4: One-step accuracy vs. masked autoregressive order p.

Metric p = 4 p = 6 p = 8 p = 10 p = 12 p = 14 p = 16
mink≤20 p-value 0.085 0.083 0.097 0.109 0.095 0.079 0.111

# lags ≤ 20 with p < 0.05 0 0 0 0 0 0 0
Reject any? No No No No No No No

Table 5: Residual whiteness vs. masked order p (Ljung–Box, joint up to h = 20).

p Q(1) p(1) Q(5) p(5) Q(10) p(10) Q(20) p(20)
4 2.963 0.085 7.442 0.190 10.812 0.372 12.111 0.912
6 2.996 0.083 7.442 0.190 10.725 0.379 12.067 0.914
8 2.755 0.097 6.669 0.246 9.892 0.450 11.483 0.933
10 2.566 0.109 7.012 0.220 9.927 0.447 11.213 0.941
12 2.788 0.095 6.825 0.234 10.289 0.416 11.653 0.927
14 3.077 0.079 8.189 0.146 11.694 0.306 13.236 0.867
16 2.533 0.111 7.135 0.211 10.652 0.385 11.930 0.918

Table 6: Ljung–Box statistics (Q) and p-values at selected lags k ∈ {1, 5, 10, 20}.

On the Near-Deterministic Behavior of CDVAE For the theoretical results in Section 4.3 to hold, it
is necessary to verify whether the variance parameter σ, as a learnable parameter, indeed decreases toward
zero during training. In all experiments, σ is initialized at one, and we show in Figure 5a its behavior during
training on the synthetic dataset across all levels of γY U

(1) , as well as on the MIMIC-III dataset in Figure 5b.
In all cases, the variance parameter stably decreases toward zero, validating the near-deterministic regime
at the end of training. This supports the consistency result related to the treatment effect established in
Theorem 9.

CDVAE Sensitivity to unobserved confounding To assess the sensitivity of CDVAE when sequential
ignorability is violated and when adjustment variables U are unobserved, we mask four confounders from

19



Published in Transactions on Machine Learning Research (10/2025)

0 1000 2000 3000 4000 5000 6000
Iteration

0.2

0.4

0.6

0.8

1.0 YU
(1) = 0.0
YU
(1) = 0.25
YU
(1) = 0.5
YU
(1) = 0.75
YU
(1) = 1.0
YU
(1) = 1.25
YU
(1) = 1.5
YU
(1) = 1.75
YU
(1) = 2.0
YU
(1) = 2.25
YU
(1) = 2.5

(a) Synthetic data.

0 100 200 300 400
Iteration

0.0

0.2

0.4

0.6

0.8

1.0 MIMIC III

(b) MIMIC III.

Figure 5: Evolution of variance parameter update during training for synthetic data (left) for each level of
γY U

(1) and MIMIC-III (right) averaged over 10 random initializations

the mimic experiment during model training, which are sodium, Glasgow Coma Scale total, cholesterol, and
hemoglobin. We repeat the same experimental protocol as in the experiment of Figure 4 and show in Figure
7 the results of all models under the three configurations (base, substitute, and oracle). As expected, PEHE
increases for all models across the three configurations, with an average increase of 2 points in PEHE, which is
at least an 11% increase. CDVAE still outperforms baseline in base and substitutes configurations; however,
baselines provided with true adjustment variables either provide comparable performances to CDVAE or
slightly outperform (eg, CRN).

For synthetic data, we perform sensitivity analysis in the following way: We extend the simulator by partition-
ing covariates Xt = [Xo

t , Xh
t ] into observed ones Xo

t and hidden ones Xh
t and summarizing the contribution

of Xh
t into a hidden score. Sensitivity to unobserved confounding is controlled on the selection side by adding

log(Γ)St to the treatment logit (Rosenbaum-Γ style (Rosenbaum & Rubin, 1983)), and on the outcome side
by arm-specific loadings βωSt in the potential-outcome equations. Setting γ = β0 = β1 = 0 recovers the
baseline DGP. Varying γ yields families of datasets with controlled degrees of hidden selection bias and hid-
den effect modification by unobserved confounder (cf. Appendix C.1.2). Figure 6 shows how CDVAE, along
with baselines in the "base" approach, degrades in performance (PEHE) as confounding level Γ increases
in {1, 1.5, . . . , 5}. CDVAE still provides globally lower PEHE, but the performance margin narrows as Γ
increases.
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Figure 6: Sensitivity analysis on the synthetic data. We report the variation of PEHE under different levels
of confounding Γ for CDVAE and baselines under the "base" approach. Mean and standard deviation are
computed for 10 different seeds. Smaller is better.
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Figure 7: Results on the MIMIC-III data under violation of sequential ignorability. For comparison, results
under sequential ignorability of Figure 4 are included in shadow. We report PEHE. Smaller is better.

CDVAE Robustness to the Number of Components in the Prior We demonstrate that the number
of components K in the Gaussian mixture prior does not substantially affect the PEHE. The chosen value,
selected via random search, is K = 7, while the ground truth is K = 8. To test robustness, we evaluate
CDVAE with values below and above this baseline, namely K = 2, 5, 8, 11. For the semi-synthetic MIMIC-III
dataset, the true number of components is unknown, and the value selected via grid search is K = 5. To
test robustness, we also evaluate K = 2, 8, 11, 14. Figure 9a shows the evolution of errors for the synthetic
data across levels of γY U

(1) for different values of K. While there are slight differences in performance means
for CDVAE with varying K, almost all error bars overlap across all levels of γY U

(1) . The same observations
hold for MIMIC-III, as depicted in Figure 9b. This highlights the robustness of CDVAE to the choice of K
for the prior and its low sensitivity compared to the components analyzed in the ablation study.

Do the learned substitutes Z better capture the clustering structure in U (population struc-
ture)? We assess this by computing the mutual information (MI) between learned representations and the
true U-cluster labels across the sensitivity sweep Γ ∈ {1, 1.5, . . . , 5} (Figure 8). First, we notice that the
MI for the baselines is positive. This is expected given the causal structure: the unobserved U affects the
entire response series, and observed outcomes serve therefore as proxies for U, so encoders that use past
responses inevitably preserve some cluster signal. CDVAE is more efficient because it learns a dedicated
substitute Z (the variational posterior) and, under CMM(p), explicitly exploits outcomes as high-signal
proxies for U, thereby better capturing response heterogeneity driven by latent variables. The downward
trend in baselines with larger Γ is expected: we hold the contribution of U to Yt fixed while increasing Γ,
which amplifies the influence of missing time-varying confounders, making outcomes less diagnostic about
U. CDVAE nevertheless retains more MI because it learns a dedicated, sequence-level substitute Z (near-
deterministic variational posterior) that globally modulates the trajectory and is fed only to the outcome
head, while baselines—though they inherit some MI via past outcomes acting as proxies—lack this explicit
latent channel and therefore capture less of the population structure.

Bayesian Model Assessment of CDVAE We assess the quality of the conditional response fitting in
our variational framework through a posterior predictive check (Rubin, 1984; Meng, 1994; Gelman et al.,
1995) and similar to Bica et al. (2020b); Hatt & Feuerriegel (2024). For each time step t, let yobs

t := {yi,t}Nval
i=1

represent the observed responses in the validation dataset. We generate S replicated datasets of responses
yrep

t (s) := {yrep
i,t (s)}Nval

i=1 for s = 1, . . . , S, such that for each individual i in the validation dataset, we draw
S samples of latent substitutes zi(1), . . . , zi(S) ∼ qϕ(· | D). The approximate posterior serves as a proxy for
the true (inaccessible) posterior p(z | D). Replicated responses are then generated from the fitted conditional
distribution: Y rep

t (s) ∼ Yt | y<t, x≤t, ω≤t, zi(s).

21



Published in Transactions on Machine Learning Research (10/2025)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
I (

M
ea

n 
± 

St
d) CDVAE

Causal Transformer
RMSN
G-Net
Causal CPC
CRN

Figure 8: Mutual Information between learned representations and true cluster labels in U under a sensitivity
analysis to missing confounding controlled by Γ. We report the mean and standard deviation over 10 different
seeds. Higher is better.
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Figure 9: Results of CDVAE when varying the number of components K of the prior for the synthetic data
(left) and MIMIC-III (right) reported by PEHE. Smaller is better.

To compare the observed and replicated data, we define a statistic T based on the conditional log-likelihood:

T(yobs
t ) := 1

Nval

Nval∑
i=1

log pθ(yi,t | hit, ωi,t, zi(s)),

and for replicated responses: T(yrep
t (s)) := 1

Nval

∑Nval
i=1 log pθ(yrep

i,t (s) | hit, ωi,t, zi(s)). We then define a
posterior predictive p-value as:

p = Pr(T(yrep
t (s)) > T(yobs

t )),
which is approximated as:

p ≈ 1
S

S∑
s=1

1{T(yrep
t (s)) > T(yobs

t )}.

We compare these p-values over time to assess how closely the distribution of the conditional responses
matches the distribution of the replicated responses. If the model accurately captures the conditional response
distribution given the substitutes, the test statistics for the replicated data should be close to those for the
observed data, ideally resulting in a p-value equal to 0.5. Figures 10a and 10b show the temporal evolution of
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Figure 10: Evolution of CDVAE posterior predictive p-values for synthetic (top) and semi-synthetic MIMIC-
III data (bottom). We report the average for 10 random initializations at each time step.

the p-values for both the synthetic data and semi-synthetic MIMIC-III. In general, all the p-values fluctuate
inside the interval [0.41, 0.59] except for the synthetic dataset with γY U

(1) = 0.0 because U no longer modifies
the potential outcomes (Yt(1))t≥1. Interestingly, the bias in the p-values (Figure 10a) decreases as γY U

(1)
increases because CDVAE is designed to capture substantial heterogeneity in the responses due to the
unobserved adjustment variables.

Connection to the Deconfounder Theory Our approach can also provide a remedy for a key in-
consistency in the deconfounder theory (Lopez & Gutman, 2017; Ranganath & Perotte, 2018; Wang &
Blei, 2019a;b). Crucially, while the inference model for the latent confounder is probabilistic, leading to a
distribution over the substitute confounder, the theory relies on the assumption that the posterior distri-
bution collapses into a Dirac delta distribution, implying that the confounder is estimated with certainty.
This assumption simplifies the theoretical framework but introduces a fundamental incoherence between the
stochastic nature of the inference models and the deterministic assumption in the theory (D’Amour, 2019b;
Imai & Jiang, 2019; D’Amour, 2019a). There is a significant theoretical-application gap: In theory, the
deconfounder assumes that the substitute confounder is estimated with certainty, while in practice, infer-
ence models are stochastic (Zhang et al., 2019; Bica et al., 2020b; Hatt & Feuerriegel, 2024), and the latent
confounder is described by a distribution, introducing uncertainty. Our use of near-deterministic VAEs indi-
rectly controls the posterior variance, finding a compromise where the posterior remains less diffuse yet not
fully deterministic. This approach enables a more precise estimation of the substitute confounder without
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assuming perfect certainty, addressing an inherent inconsistency. Applying this method within deconfounder
theory holds independent interest beyond this paper’s scope. Future research could explore integrating these
improvements into the deconfounder framework, with near-deterministic VAEs for substitute confounders
inference to bridge theory and practice.

Comparing our approach to the deconfounder Unlike the deconfounder, our method does not require
the consistency assumption for identifying treatment effects. Whereas the deconfounder framework models
unobserved covariates as confounders affecting both treatment and outcome, we treat these unobserved
covariates as adjustment variables, thus bypassing the need for the consistency assumption. A theoretical
discussion of this distinction is in Appendix B.1. Furthermore, aligned with critiques of the deconfounder on
the validity of inferred substitutes (D’Amour, 2019b; Imai & Jiang, 2019; D’Amour, 2019a; Ogburn et al.,
2019), we investigate in Appendix B.2 whether the substitute adjustment variables Z might inadvertently
capture “bad variables” that could bias causal effect estimation.

On failure modes of CDVAE We now present the principal theoretical failure modes of CDVAE that
may caution against its use in practice:

1. Hidden confounding beyond Ht. We assume sequential ignorability; only missing adjustment
variables U affect outcomes, but not treatments. If confounders are missing, identifiability fails. In
a knife-edge case where these confounders are (i) time-invariant and (ii) satisfy the same CMM(p)
structure as U, identifiability results (e.g., Theorem 4, Corollary 5, Theorem 6) might still hold.
But this is implausible in practice, and crucially, our propensity model omits the latent variable Z,
introducing bias in treatment weighting.

2. Time variation in the unobserved variables. CDVAE treats U as static adjustment variables.
If the true unobserved effect modifiers are time-varying, or if there are time-varying unobserved
confounders, the latent substitute Z can no longer absorb all the relevant heterogeneity with a time-
invariant representation, and both the identifiability argument and the sequential ignorability with
augmented history may fail.

3. Very long memory or infinite-order dependence. Our identifiability results rely on a finite
conditional Markov order p. If outcomes exhibit very long distributed-lag effects, or more strongly, if
there is no finite order m for which responses more than m steps back are conditionally independent
given current history Z, then the process is effectively infinite-order. This violates CMM(p) and
undermines our ability to infer reliable substitutes for U from the outcome sequence, and ACATE
may not be identifiable.

4. Outcome support and heavy tails. As a technical requirement, Theorem 6 assumes Y lies in a
Borel subset of a compact interval. Heavy-tailed outcomes stretch this regularity condition, but it
can often be mitigated by variance-stabilizing transforms or winsorization.

5. Parameter nonstationarity/regime switching. Even if a CMM(p) holds structurally, our anal-
ysis presumes fixed parameters θ. If the conditional response dynamics switch across regimes (e.g.,
latent or exogenous regime changes) so that, even given Z, the effective parameters drift over time,
the fixed-θ factorization in Assumption 3 breaks. A regime-switching or time-varying parameter
extension would be needed; otherwise, causal validity and estimation stability can degrade.

Conclusion In this paper, we proposed Causal DVAE, a novel framework for estimating treatment effects in
high-dimensional, time-varying settings. By leveraging variational inference with robust regularization tech-
niques, we introduced a principled approach to infer latent adjustment variables while ensuring identifiability
and mitigating covariate imbalance. Our framework demonstrated theoretical guarantees for generalization
and treatment effect consistency in the near-deterministic regime of VAEs—an overlooked property in the
causal inference literature. Extensive empirical evaluations support the effectiveness of CDVAE on both
synthetic and semi-synthetic datasets. Future work could focus on extending this framework to: 1. dynamic
treatment regimes, for example, by incorporating the g-calculus (Robins, 1997; Vansteelandt & Joffe, 2014);
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2. providing generalization bounds for treatment effects when they depend on a sequence of treatments (Lewis
& Syrgkanis, 2021; Vankadara et al., 2022; Oh et al., 2022; Csillag et al., 2024); 3. exploring theoretically
the bias-variance trade-off in the estimation of treatment effects in the near-deterministic regime.
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A Proofs

A.1 Identifiability: Treatment Effects and Unobserved Adjustment Variables

Proof [CATE Identifiability] Assuming the consistency, overlap, and ignorability assumptions (1, 3, 2),
we demonstrate that the CATE, as defined in Eq. 2, is identifiable from the observed data distribution:

τt = E(Yt|Ht = ht, Wt = 1)− E(Yt|Ht = ht, Wt = 0). (25)

Establishing the identifiability of CATE requires showing that the two potential outcome expectations are
identifiable. By the ignorability assumption (2), the potential outcome under treatment can be expressed
as:

m1
t (ht) = EYt(1)|Ht

(Yt(1) | Ht = ht) = EYt(1)|Ht,Wt
(Yt(1) | Ht = ht, Wt = 1).

Using the consistency assumption (1), the observed response can identify Yt(1) when conditioned on Wt = 1:

m1
t (ht) = EYt|Ht,Wt

(Yt | Ht = ht, Wt = 1).

Similarly, we identify the expected potential outcome under no treatment:

m0
t (ht) = EYt|Ht,Wt

(Yt | Ht = ht, Wt = 0).

The existence of these expectations is guaranteed by the overlap assumption.

Proof [Augmented CATE Identifiability] Assuming that the adjustment variables U are observed, we
demonstrate the identifiability of the Augmented CATE:

τt(ht, u) = E(Yt|Ht = ht, U = u, Wt = 1)− E(Yt|Ht = ht, U = u, Wt = 0).

The assumptions of consistency, overlap, and ignorability ensure that CATE is identifiable. Since U does
not affect the treatment, the overlap assumption (3) remains valid. Further, U being independent of the
treatment implies that the ignorability assumption holds when conditioning on U:

Yit(ω) ⊥⊥Wt|Ht = ht =⇒ Yit(ω) ⊥⊥Wt|Ht = ht, U = u ∀(ω, ht, u).
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The remainder of the proof follows the CATE identifiability argument.

Proof [Theorem 6] Let Z be a latent variable such that Z ∼ CMM(p). Any static adjustment variables
affecting all response series in the panel must be measurable with respect to (Z, HT ). We assume weak
regularity conditions on treatment and response domains.

Assumption 13 (Regularity) The response domain Y is a Borel subset of a compact interval.

The treatment domain W = {0, 1} is a Borel subset of [0, 1]. To prove the theorem, we need the following
lemma:

Lemma 14 (Kernels and Randomization (Kallenberg, 2021)) Let µ be a probability kernel from a
measurable space S1 to a Borel space S2. There exists a measurable function f : S1 × [0, 1] → S2 such that
if ϑ is uniform on [0, 1], then f(s1, ϑ) is distributed as µ(s1, ·).

Suppose by contradiction the existence of Z′ that is not measurable with respect to (Z, HT ) and such that:

Yit(ω)⊥̸⊥ Zi′|Hit, Zi ∀ω, t

Let t be an arbitrary time step in the panel data. By lemma 14, there exists a measurable function ft :
Ht ×W ×Z × [0, 1]→ Y such that:

Yit = ft(Hit, Wit, Zi, γit), γit ⊥⊥ (Hit, Wit, Zi).

The conditional Markov property implies the independence of the following conditional distributions:

(Yit | Hit, Zi, Wit = ω) ⊥⊥ (Yit′ | Hit′, Zi, Wit′ = ω′).

Such that t′ verifies |t− t′| > p. We can thus conclude that:

(Yit(ω) | Hit, Zi) ⊥⊥ (Yit′(ω′) | Hit′, Zi).

Because :
(Yit(ω) | Hit, Zi) = (Yit(ω) | Hit, Zi, Wit = ω)

= (Yit | Hit, Zi, Wit = ω).
The first equality follows from the sequential ignorability of the theorem 4, and the second equality follows
the consistency assumption. On the other hand, we also have from the CMM(p) that:

γit′ ⊥⊥ Yit | Hit, Zi.

From which it follows using the fact that γit ⊥⊥ (Hit, Wit, Zi) and Yit(ω) | Hit, Zi = Yit | Hit, Zi, Wit = ω:

γit′ ⊥⊥ Yit(ω) | Hit, Zi

By using twice the lemma 14, we write:

γit′ = ht(Z′i, ηit′), ηit′ ⊥⊥ Z′i (26)

And:
Yit(ω) = gt(Z′i, ϵit), ϵit ⊥⊥ Z′i. (27)

Since Z′i is not measurable with respect to (Zi, Hit), then by equation 26 and equation 27:

γit′ ⊥̸⊥ Yit | Hit, Zi

We have thus a contradiction.
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A.2 Derivation of CDVAE Loss

Proof [ELBO] We provide proof that the bound in Eq. (12) is indeed the Evidence Lower Bound (ELBO)
for the weighted conditional log-likelihood.

By the concavity of the logarithm, for every t ∈ {1, 2, . . . , T}, we have:

log pθ (yt | ht, ωt) ≥ EZ,C∼qϕ(·,·|DT )

[
log pθ (yt, Z, C | ht, ωt)

qϕ(Z, C | DT )

]
︸ ︷︷ ︸

(∗)

(28)

We use the identity pθ(yt, z, c | ht, ωt) = pθ(yt | z, ht, ωt)p(z, c), and the factorization of the approximate
posterior qϕ(z, c | DT ) = qϕz

(z | DT )qϕc
(c | DT ), to write:

(∗) = EZ,C∼qϕ(·,·|DT )

[
log pθ(yt | Z, ht, ωt) · p(C | Z)p(Z)

qϕz (Z | DT ) · qϕc(C | DT )

]
= EZ,C∼qϕ(·,·|DT ) [log pθ(yt | Z, ht, ωt)]−DKL(qϕz (Z | DT )qϕc(C | DT ) ∥ p(C | Z)p(Z))︸ ︷︷ ︸

(∗∗)

The KL divergence term (∗∗) between the joint approximate posterior and the prior can be decomposed into
the sum of two KL divergences:

(∗∗) =
K∑

c=1
EZ∼qϕ(·,c|DT ) log

(
p(c | Z)p(Z)

qϕz
(Z | DT )qϕc

(C | DT )

)

=
K∑

c=1
EZ∼qϕ(·,c|DT ) log

(
p(Z)

qϕz (Z | DT )

)
+

K∑
c=1

EZ∼qϕ(·,c|DT ) log
(

p(c | Z)
qϕc(C | DT )

)
= DKL (qϕz (z | DT ) ∥ p(z)) + EZ∼qϕz (·|DT )DKL (qϕc(c | DT ) ∥ p(c | Z))

We can now define the individual ELBO by performing a weighted sum over the log-likelihood terms and
marginalizing over the full longitudinal data distribution:

L =
T∑

t=1
EDT

[α(Ht, Wt) log pθ(Yt | Ht, Wt)] ≥ EDT

T∑
t=1

EZ,C∼qϕ(·,·|DT )

[
α(ht, ωt) log pθ (yt, Z, C | ht, ωt)

qϕ(Z, C | DT )

]
︸ ︷︷ ︸

ELBO0(DT ;θ,ϕ)

Given the developed expressions for (∗) and (∗∗), we can express ELBO0(DT ; θ, ϕ) as:

ELBO0(DT ; θ, ϕ) =
T∑

t=1
EZ∼qϕz (·|DT ) [α(ht, ωt) log pθ(yt | ht, ωt, Z)] (29)

−

(
T∑

t=1
α(ht, ωt)

){
DKL(qϕz

(z | DT ) ∥ p(z)) + EZ∼qϕz (·|DT )DKL(qϕc
(c | DT ) ∥ p(c | Z))

}
.

The gap in our variational approximation is defined as the difference between the true weighted log-likelihood
and the ELBO:

EDT
∆0(DT ; θ, ϕ) := L− EDT

ELBO0(DT ; θ, ϕ)

The per-time-step gap in Eq. (28) can be rewritten as:

log pθ (yt | ht, ωt)− (∗) = EZ,C∼qϕ(·,·|DT )

[
log pθ (yt | ht, ωt) qϕ(Z, C | DT )

pθ (yt, Z, C | ht, ωt)

]
= EZ,C∼qϕ(·,·|DT )

[
log qϕ(Z, C | DT )

pθ (Z, C | Dt)

]
= DKL (qϕ(Z, C | DT ) ∥ pθ (Z, C | Dt))
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This last equation holds because

pθ (yt, Z, C | ht, ωt) = pθ (Z, C | yt, ht, ωt) pθ (yt | ht, ωt) ,

and {yt, ht, ωt} = {y≤t, x≤t, ω≤t} = Dt. The individual gap is thus:

∆0(DT ; θ, ϕ) =
T∑

t=1
α(ht, ωt)DKL (qϕ(Z, C | DT ) ∥ pθ (Z, C | Dt))

A.3 Transfer of Ignorability under Invertible Maps

Proposition 15 Let Φ be an invertible representation function. Then, Yt(ω) ⊥⊥Wt|Φ(Ht) holds if and only
if Yt(ω) ⊥⊥Wt|Ht. Moreover, p(Wt = ω|Φ(ht)) > 0 holds if and only if p(Wt = ω|ht) > 0.

Proof Assume Yt(ω) ⊥⊥Wt|Ht. For a non-invertible Φ, we have, letting Φ−1(r) = {ht : Φ(ht) = r}:

p(Yt(ω) | ωt, r) =

∫
ht∈Φ−1(r) p(Yt(ω) | ωt, ht)p(ht | ωt)dht∫

ht∈Φ−1(r) p(ht | ωt)dht

=

∫
ht∈Φ−1(r) p(Yt(ω) | ht)p(ht | ωt)dht∫

ht∈Φ−1(r) p(ht | ωt)dht
, (30)

where ignorability implies that, for general Φ, p(Yt(ω) | ωt, r) ̸= p(Yt(ω) | r). For an invertible Φ, however,
p(Yt(ω) | ωt, Φ(ht)) = p(Yt(ω) | Φ(ht)). Similarly, p(Wt = ω|Φ(ht)) = p(Wt = ω|ht).

A.4 CDVAE in the Near-Deterministic Regime

Proof [Theorem 8]
Part 1: lims→+∞pθs

(y≤T | x≤T , ω≤T ) = p(y≤T | x≤T , ω≤T ).

Define the conditional cumulative distribution function (CDF) of the response given covariates, for each t
as:

Ft(yt | ht, ωt) =
∫ yt

−∞
p(y′

t | ht, ωt)dy′
t.

Define the mapping F : YT → [0, 1]T as:

F (y1, . . . , yT | x≤T , ω≤T ) := [F1(y1 | h1, ω1), . . . , FT (yT | hT , ωT )] .

The differential of the mapping is given by:

dF (y1, . . . , yT | x≤T , ω≤T ) = p(y≤T | x≤T , ω≤T )dy≤T .

Now, define the following mapping for the latent variables using the Darmois construction (Hyvärinen &
Pajunen, 1999):

Gi(zi | z1, . . . , zi−1) =
∫ zi

−∞
p(z′

i | z1, . . . , zi−1)dz′
i.

We then define the mapping G : Rdz → [0, 1]T such that:

G(z) := [G1(z1), G2(z2 | z1), . . . , Gi(zz | z1, . . . , zdz−1)].
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Since dz ≤ T by assumption, we can trivially augment the mapping G to G̃ so that the image is defined on
[0, 1]dz , i.e., G̃ : Rdz → [0, 1]T such that: G̃(z) := [G(z), 0, . . . , 0︸ ︷︷ ︸

T −dz

]. The differential is given by: dG̃(z) = p(z)dz.

We now define the mean and variance of the encoder as follows:

ft(ht, ωt, z; θ∗
s) := [F −1(G̃(z) | x≤T , ω≤T )]t, σ∗

s = 1√
s

.

There is a consistency issue to address with this definition. First, observe that the function ft(.; θ∗
s) takes as

input only data up to time step t, but the inverse of the cumulative CDF is defined given the whole sequence
of (x≤T , ω≤T ). We therefore need to verify the following lemma which holds for our definition of ft(.; θ∗

s).

Lemma 16 Let (y≤T , x≤T , ω≤T ) and (y′
≤T , x′

≤T , ω′
≤T ) be two distinct realizations of repeated measurements

such that there exists t0 for which there exist two identical sub-trajectories x≤t0 = x′
≤t0

and ω≤t0 = ω′
≤t0

.
Then, for every t ≤ t0, we have:

[F −1(G̃(z) | x≤t, ω≤t)]t = [F −1(G̃(z) | x′
≤t, ω′

≤t)]t.

Now, we decompose the marginal probabilistic model:

pθs
(y≤T | x≤T , ω≤T ) =

∫
Rdz

pθs
(y≤T , z | x≤T , ω≤T )dz

=
∫
Rdz

T∏
t=1

pθs
(yt, z | y<t, x≤t, ω≤t)p(z)dz

=
∫
Rdz

T∏
t=1
N
(
yt | [F −1(G̃(z) | x≤T , ω≤T )]t, (σ∗

s )2) p(z)dz

=
∫

[0,1]T

T∏
t=1
N
(
yt | [F −1(ξ | x≤T , ω≤T )]t, (σ∗

s )2) dξ

=
∫

YT

T∏
t=1
N
(
yt | [y′

≤T ]t, (σ∗
s )2) p(y′

≤T | x′
≤T , ω′

≤T )dy′
≤T .

Finally, we have:

lim
s→+∞

∫
YT

T∏
t=1
N
(
yt | [y′

≤T ]t, (σ∗
s )2) p(y′

≤T | x′
≤T , ω′

≤T )dy′
≤T =

∫
YT

T∏
t=1

δ(yt − y′
t)p(y′

≤T | x′
≤T , ω′

≤T )dy′
≤T

= p(y≤T | x≤T , ω≤T ).

Part 2: Proof of lims→+∞ ∆(DT ; θs, ϕs) = 0.
First, we give an explicit writing of the modified individual gap:

∆(DT ; θs, ϕs) = L(DT ; θs, ϕs)− ELBO0(DT ; θs, ϕs) + ELBO0(DT ; θs, ϕs)− ELBO(DT ; θs, ϕs)
= ∆0(DT ; θs, ϕs) + ELBO0(DT ; θs, ϕs)− ELBO(DT ; θs, ϕs)

−

[
T∑

t=1
α(ht, ωt)

]
EZ∼qϕs (·|DT )DKL(qϕs

(c | DT ) ∥ p(c | Z))

−

[
T∑

t=1
αs(ht, ωt)

]
log Z(qϕs

(· | DT ))

=
T∑

t=1
α(ht, ωt)DKL(qϕs

(z, c | DT ) ∥ pθs
(z, c | Dt)).
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The last equality holds because we assume qϕs
(c | DT ) = πϕs

(c | DT ) and πϕs
(c | DT ) is a minimizer of

min
qϕs (c|DT )

EZ∼qϕs (·|DT )DKL(qϕs
(c | DT ) ∥ p(c | Z)) = − log Z(qϕs

(· | DT )).

To show that lims→+∞ ∆(DT ; θs, ϕs) = 0, we will define ϕs such that for every c ∈ {1, . . . , K} and t ∈
{1, . . . , T}:

lim
s→+∞

DKL(qϕs
(z, c | DT ) ∥ pθs

(z, c | Dt)) = 0.

Let us define qϕs(z | DT ) such that

fµz(DT , ϕs) = G−1(F (y1, . . . , ydz ] | x≤T , ω≤T ))

and
fSz(DT , ϕ) = σs

√
Σ̃z(DT , ϕ),

with Σ̃z(DT , ϕ) being the inverse of:

Jac(F −1(. | x≤T , ω≤T ) ◦ G̃(z))Jac(F −1(. | x≤T , ω≤T ) ◦ G̃(z))⊤.

Using Bayes’ rule, we can write the true posterior as:

pθs (z, c | Dt) = pθs
(y≤T , z, c | x≤t, ω≤t)

pθs (y≤t | x≤t, ω≤t)
=
∏t

l=1N
(
yl | [F −1(G̃(z) | x≤T , ω≤T )]l, σ2

s

)
p(z | c)p(c)

pθs (y≤t | x≤t, ω≤t)
.

By the GMM assumption over the prior, we have p(z | c) = N (z | µc, Σc). The approximate posterior is of
the form:

qϕs(z, c | DT ) = qϕs(z | DT )πϕs(c | DT ) = N (z | fµz(DT , ϕs), σ2
sΣ̃z(DT , ϕ))πϕs(c | DT ).

We now show convergence by performing a change of variables. Define z′ = σ
− t

dz
s (z − z∗). We analyze the

behavior of the distributions p′
θs

(z′, c | Dt) and q′
ϕs

(z′, c | DT ).

We prove that
p′

θs
(z′, c | Dt)

q′
ϕs

(z′, c | DT )

converges to a constant independent of z′ as s → ∞. Since both q′
ϕs

(z′, c | DT ) and p′
θs

(z′, c | Dt) are
probability distributions, the constant must be 1. Therefore, the KL divergence between them converges to
0 as s→∞.

We have:

p′
θs

(z′, c | Dt)
q′

ϕs
(z′, c | DT ) = N (z∗ + σ

t
dz
s z′ | z∗, σ2

sΣ̃z(DT , ϕ))πϕs(c | DT )pθs(y≤t | x≤t, ω≤T )∏t
l=1N (yl | fl(hl, ωl, z∗ + σ

t
dz
s z′; θs), σ2

s)N (z∗ + σ
t

dz
s z′ | µc, Σc)p(c)

(31)

Now, let At be a matrix such that its Moore–Penrose inverse A+ satisfies:

f≤t(h≤t, ω≤t, z∗ + σ
t

dz
s z′; θs) = A+f≤T (h≤T , ω≤T , z∗ + σ

t
dz
s z′; θs), y≤t = A+y≤T

That is, projecting onto A+ selects the first t responses. The matrix A+ has the form:

A+ =
[
It 0t×(T −t)

]
, A =

[
It

0(T −t)×t

]
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By noticing that [A⊺(σ2
sIT )−1A]−1 = σ2

sIt We can therefore apply the mean rearranging formula (Petersen
et al., 2008):

N
(

A+y≤T

∣∣∣∣A+f≤T (h≤t, ω≤t, z∗ + σ
t

dz
s z′; θs),

[
A⊺(σ2

sIT )A
]−1
)

=
√

det(2πσ2
sIT )√

det(2πσ2
sIt)
N
(

y≤T

∣∣∣∣ f≤T (h≤T , ω≤T , z∗ + σ
t

dz
s z′; θs), σ2

sIT

)

p′
θs

(z′, c | Dt)
q′

ϕs
(z′, c | DT ) =

N
(

z∗ + σ
t

dz
s z′ | z∗, σ2

sΣ̃z(DT , ϕ)
)

πϕs
(c | DT )pθs

(y≤t | x≤t, ω≤T )
√

det(2πσ2
sIT )√

det(2πσ2
sIt)
N
(

y≤T | f≤T (h≤T , ω≤T , z∗ + σ
t

dz
s z′; θs), σ2

sIT

)
N (z∗ + σ

t
dz
s z′ | µc, Σc)p(c)

= (2π)
t−d

2
det(Σ̃z)− 1

2

det(Σc)− 1
2

exp
{
− 1

2σ
2( t

dz
−1)

s z′⊤Σ̃−1
z z′ + 1

2σ2
s

T∑
l=1

(yl − fl(hl, ωl, z∗ + σ
t

dz
s z′; θs))2

+ 1
2(z∗ + σ

t
dz
s z′ − µc)⊤Σ−1

c (z∗ + σ
t

dz
s z′ − µc)

}

× πϕs
(c | DT )pθs

(y≤T | x≤t, ω≤t)
p(c)

By Noticing that
T∑

l=1
(yl − fl(hl, ωl, z∗ + σ

t
dz
s z′; θs))2 = ∥y≤T − F −1(G̃(z∗ + σ

t
dz
s z′) | x≤T , ω≤T )∥2

2

We apply a first-order Taylor expansion

y≤T − F −1(G̃(z∗ + σ
t

dz
s z′) | x≤T , ω≤T ) ≈

s→∞
−Jac(F −1(G̃))(z∗)(σ

t
dz
s z′)

which implies by norm continuity that
T∑

l=1
(yl − fl(hl, ωl, z∗ + σ

t
dz
s z′; θs))2 ≈

s→∞
∥Jac(F −1(G̃))(z∗)(σsz′)∥2

2 =
s→∞

σ
2t
dz
s z′⊤Σ̃−1

z z′

Now, define the constant Cst(Dt; σs, θs, ϕs) with respect to z′ as:

Cst(Dt; σs, θs, ϕs) = (2π)
t−dz

2

√
det(Σc)
det(Σ̃z)

πϕs
(c | DT )pθs

(y≤t | x≤t, ω≤t)
p(c) .

Thus,

p′
θs

(z′, c | DT )
q′

ϕs
(z′, c | DT ) ≈

s→∞

1
2(z∗ − µc)Σ−1

c (z∗ − µc)⊤Cst(Dt; σs, θs, ϕs) exp
{
−σ

2( t
dz

−1)
s

1
2z′⊤Σ̃−1

z z′ + σ
2( t

dz
−1)

s
1
2z′⊤z′

}
≈

s→∞

1
2(z∗ − µc)Σ−1

c (z∗ − µc)⊤Cst(Dt; σs, θs, ϕs).

To conclude the proof, we still need to show that lims→+∞ Cst(Dt; σs, θs, ϕs) exists and is finite because the
model parameters still depend on the chosen variance. This was the main misapprehension of Dai & Wipf
(2019) for a VAE in the static setting with an unimodal prior over the continuous latents Z.

We have already shown that

lim
σ→0+

pθσ
(y≤T | x≤T , ω≤T ) = p(y≤T | x≤T , ω≤T ),
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and therefore:

lim
s→+∞

Cst(Dt; σs, θs, ϕs) = (2π)
t−dz

2

√
det(Σc)
det(Σ̃z)

· p(y≤T | x≤T , ω≤T )
p(c) · lim

s→+∞
πϕs

(c | DT )

We verify that lims→+∞ πϕs(c | DT ) exists and is finite and not zero for all c ∈ {1, . . . , K}:

πϕs
(c | DT ) =

exp(EZ∼qϕz (·|DT ) log p(c | Z))∑K
c=1 exp(EZ∼qϕz (·|DT ) log p(c | Z))

=
exp(

∫
Z log p(c | z)N

(
z | z∗, σ2

sΣ̃z(DT , ϕ)
)

dz)∑K
c=1 exp(

∫
Z log p(c | z)N

(
z | z∗, σ2

sΣ̃z(DT , ϕ)
)

dz)

→
s→∞

exp(
∫

Z log p(c | z)δ(z− z∗)dz)∑K
c=1 exp(

∫
Z log p(c | z)δ(z− z∗)dz)

= p(c | z∗)∑K
c=1 p(c | z∗)

We have therefore proved that the ratio p′
θs(z′,c|DT )

q′
ϕs

(z′,c|DT ) converges into a nonzero constant which finishes the
proof of the theorem.

Proof of theorem 9. We start by considering the ELBO:

L(DT ; θ, ϕ) = −
T∑

t=1
EZ∼qϕ(·|DT ) [α(ht, ωt) log pθ(yt | Ht, Wt, Z)]

+
[

T∑
t=1

α(ht, ωt)
]

DKL (qϕ(z | DT ) ∥ p(z))

−

[
T∑

t=1
α(ht, ωt)

]
log Z(qϕ(· | DT )).

By the positivity of the KL divergence and using the fact that − log Z(qϕ(· | DT )) minimizes a positive
functional (as explained in Eq. equation 16), we obtain:

L(DT ; θ∗
σ, ϕ∗

σ) ≥ −
T∑

t=1
EZ∼qϕ(·|DT ) [α(ht, ωt) log (pθ (yt | Ht, Wt, Z))]

=
T∑

t=1
α(ht, ωt)EZ∼qϕ(·|DT )

[
1
2 log

(
2πσ2)+ 1

2σ2 (yt − f (Ht, Z, Wt))2
]

= 1
2σ2

( T∑
t=1

α(ht, ωt)
)

σ2 log
(
2πσ2)+

T∑
t=1

α(ht, ωt)EZ∼qϕ(·|DT ) (yt − f (Ht, Z, Wt))2︸ ︷︷ ︸
δσ(t)

 .

Suppose there exists t0 ∈ {1, 2, . . . , T} such that limσ→0+ δσ(t0) > 0. Then we have limσ→0+ L(DT ; θ∗
σ, ϕ∗

σ) =
+∞, which is impossible since we assume L(DT ; θ∗

σ, ϕ∗
σ) to be minimized. Therefore, we conclude that for

all t ∈ {1, 2, . . . , T}, limσ→0+ δσ(t) = 0.

Consequently, we have

lim
σ→0+

Eϵ∼N (0,I) (yt − f (Ht, Wt, fµz(DT ; ϕ∗
σ) + fSz(DT ; θ∗

σ)ϵ))2 = 0,
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which implies that

lim
σ→0+

f (Ht, Wt, fµz(DT ; ϕ∗
σ) + fSz(DT ; θ∗

σ)ϵ) = yt, almost surely.

In particular, we also have
lim

σ→0+
f (Ht, Wt, fµz(DT ; ϕ∗

σ)) = yt.

A.5 Upper bound on weighted PEHE

Proof [theorem 11] To prove the theorem, we rely on the following key lemma, but first, we need to define
further mathematical objects. We define the weighted population risk over the whole population as

Rt,g(f, Φ) := EHt,Wt
[α(Ht, Wt) ℓf,Φ(Ht, Wt)] ,

and the weighted population counterfactual risk as

Rt,g(f, Φ)CF := EHt,1−Wt [α(Ht, 1−Wt) ℓf,Φ(Ht, Wt)] .

Lemma 17

Rt,g(f, Φ) + Rt,g(f, Φ)CF ≤ R1
t,g(f, Φ) + R0

t,g(f, Φ) + BΦ IPMG (gΦ(· |Wt = 1), gΦ(· |Wt = 0))

Proof The proof immediately follows from lemma 1 in Shalit et al. (2017).

Next, to complete the proof, we define the expected potential outcome at time t, given the context history
Ht = ht and latent z as

mω
t (ht, z) := EYt(ω)|Ht,Z(Yt(ω) | Ht = ht, Z = z) ω ∈ W,

and we show the following lemma:

Lemma 18 Denote p̂ϕ(ht, w, z) := p(ht, w) qϕ(z | D≤t−1). We can decompose Rt,g(f, Φ) and Rt,g(f, Φ)CF
using our distribution assumptions as follows:

Ep̂ϕ(ht,w,z) [α(ht, w) (f(ht, w, z)−mw
t (ht, z))] = 2σ2 (Rt,g(f, Φ)− 1

2 log(2πσ2)
)
−

∑
ω∈{0,1}

Varp̂ϕ(ht,w,z)(Yt),

and,

Ep̂ϕ(ht,w,z)
[
α(ht, 1− w)

(
f(ht, 1− w, z)−m1−w

t (ht, z)
)]

= 2σ2 (Rt,g(f, Φ)CF − 1
2 log(2πσ2)

)
−
∑

ω∈{0,1}

Varp̂ϕ(ht,1−w,z)(Yt).

Proof We have:
Rt,g(f, Φ) = EHt,Wt [α(Ht, Wt) ℓf,Φ(Ht, Wt)]

=
∑

ω∈{0,1}

∫
Ht×Z×Y

−α(ht, ω) log pθ(yt | ht, ω, z) p(yt | ht, ω, z)p(ht, ω) qϕ(z | D≤t−1)dytdzdht

=
∑

ω∈{0,1}

∫
Ht

∫
Z

∫
Y

α(ht, ω)
{

1
2 log

(
2πσ2)+ 1

2σ2 (yt − f (ht, z, ω))2
}

p(yt | ht, ω, z) p(ht, ω) qϕ(z | D≤t−1)dytdzdht

= 1
2 log

(
2πσ2) ∑

ω∈{0,1}

∫
Ht

α(ht, ω) p(ht, ω)dhtdω + 1
2σ2

∫
Ht

∫
Z

∫
Y

α(ht, ω)
{

(yt − mω
t (ht, z))

− (f (ht, ω, z) − mω
t (ht, z))

}2

p(yt | ht, ω, z) p(ht, ω) qϕ(z | D≤t−1)dytdzdht

= 1
2 log

(
2πσ2)+ 1

2σ2

∑
ω∈{0,1}

V arp̂ϕ(ht,ω,z)(Yt) +
∫

Ht

∫
Z

α(ht, ω)(f (ht, ω, z) − mω
t (ht, z))2p(ht, ω) qϕ(z | D≤t−1)dzdht
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In a similar way, we can show the decomposition related to Rt,g(f, Φ)CF .
The remainder idea of the proof is to decompose the PEHE in such a way we can upper bound it with an
expression including Rt,g(f, Φ) and Rt,g(f, Φ)CF and then use lemma 17. We actually have:

ϵPEHEt,g = EHt∼gEZ∼qϕ(Z|D≤t−1)
[
(τ(Ht, Z) − τ̂f,Φ(Ht, Z))2]

= EHt∼gEZ∼qϕ(Z|D≤t−1)

[(
m1

t (ht, z) − m0
t (ht, z) − f (ht, 1, z) + f (ht, 0, z)

)2
]

(1)
≤ 2EHt∼gEZ∼qϕ(Z|D≤t−1)

[
(f (ht, 1, z) − m1

t (ht, z))2]+ 2EHt∼gEZ∼qϕ(Z|D≤t−1)
[
(f (ht, 0, z) − m0

t (ht, z))2]
= EHt|Wt=1EZ∼qϕ(Z|D≤t−1)

[
α(ht, 1)(f (ht, 1, z) − m1

t (ht, z))2]
+ EHt|Wt=0EZ∼qϕ(Z|D≤t−1)

[
α(ht, 0)(f (ht, 1, z) − m1

t (ht, z))2]
+ EHt|Wt=0EZ∼qϕ(Z|D≤t−1)

[
α(ht, 0)(f (ht, 0, z) − m0

t (ht, z))2]
+ EHt|Wt=1EZ∼qϕ(Z|D≤t−1)

[
α(ht, 1)(f (ht, 0, z) − m0

t (ht, z))2]
= EHt,WtEqϕ(Z|D≤t−1)[α(Ht, Wt)(f (Ht, Wt, Z) − mWt

t (Ht, Z))]

+ EHt,1−WtEqϕ(Z|D≤t−1)[α(Ht, 1 − Wt)(f (Ht, Wt, Z) − mWt
t (Ht, Z))]

(2)= 2σ2
{

Rt,g(f, Φ) + Rt,g(f, Φ)CF − log
(
2πσ2)}−

∑
ω∈{0,1}

(V arp̂ϕ(ht,1−ω,z)(Yt) + V arp̂ϕ(ht,ω,z)(Yt))

(3)
≤ 2σ2

{
Rt,g(f, Φ) + Rt,g(f, Φ)CF − log

(
2πσ2)}

(4)
≤ 2σ2

{
R1

t,g(f, Φ) + R0
t,g(f, Φ) + BΦ IPMG (gΦ(· | Wt = 1), gΦ(· | Wt = 0)) − log

(
2πσ2)}

The inequality
(1)
≤ follows from the property (a − b)2 ≤ 2a2 + 2b2. The equation (2)= follows from plugging

in the equations from Lemma 18, the inequality
(3)
≤ follows from the positivity of the variance terms, and

(4)
≤

follows from Lemma 17.

A.6 Proof of Proposition 12

Using a Monte Carlo approximation, we can express the approximate factual risk as:

Rω
t,g (f, Φ) ≈ 1

n
(t)
ω

∑
i∈B,Wit=ω

EZ∼qϕ(Z|Di,≤t−1)
[
α(hit, ω) logN (yit; f(Φ(hit), Z, ω), σ2)

]
.

By the stationarity assumption, for t ≥ t0, this approximation holds:

Rω
t,g (f, Φ) ≈ 1

n
(t)
ω

∑
i∈B,Wit=ω

EZ∼qϕ(Z|DiT )
[
α(hit, ω) logN (yit; f(Φ(hit), Z, ω), σ2)

]
.

On the other hand, the reconstruction term in the ELBO can be written as:

T∑
t=t0

EZ∼qϕ(·|DT ) [α(Ht, Wt) log pθ(Yt | Ht, Wt, Z)] ≈
T∑

t=t0

1
|B|
∑
i∈B

EZ∼qϕ(Z|DiT )
[
α(hit, ω) logN (yit; f(Φ(hit), Z, ω), σ2)

]
≈ 1
|B|

T∑
t=t0

{ ∑
ω∈W

∑
i∈B,Wit=ω

EZ∼qϕ(Z|DiT )
[
α(hit, ω) logN (yit; f(Φ(hit), Z, ω), σ2)

]}

≈ 1
|B|

T∑
t=t0

{
− n

(t)
1 R1

t,g (f, Φ)− n
(t)
0 R0

t,g (f, Φ)
}

.

41



Published in Transactions on Machine Learning Research (10/2025)

B Discussion of the validity of the Risk Factor Substitute

B.1 Estimating p(Yt(ω))

In causal inference, when unobserved confounders are present, the conditional distribution of potential
outcomes plays a critical role. If the adjustment variables U are observed, the potential outcome can be
represented as:

p(Yt(ω)) = p(Yt | ht, Wt = ω) =
∫

p(yt | ht, Wt = ω, U = u)p(u | ht, Wt = ω)du.

Due to the structural assumptions over the causal graph, the treatments Wt and covariates Xt are d-separated
from U given Ht, implying:

p(u | ht, Wt = ω) = p(u | Dt−1),

where the conditional potential outcome is identifiable, but estimating it requires sampling from the posterior
distribution of the adjustment variables, p(u | Dt−1).

When U is not observed, let Z be a latent variable satisfying the CMM(p). Under what conditions does the
following equality hold?∫

p(yt | ht, Wt = ω, Z = z)p(z | Dt−1) dz (∗)=
∫

p(yt | ht, Wt = ω, U = u)p(u | Dt−1) du

= p(Yt(ω) | ht).
(32)

This equation addresses the potential risk of non-uniqueness in the CMM assumption, which could lead to
varying values on the left-hand side (LHS) of Eq. (32). However, our framework differs from the traditional
deconfounder framework. Here, the identification of the conditional potential outcome p(Yt | ht) occurs
independently of the latent variables, as sequential ignorability holds without requiring conditioning on
them. The CMM assumption, under the condition Z ⊥⊥ X≤T , W≤T , ensures that no confounding backdoor
paths are introduced by conditioning on Z. Thus, using Z as a substitute for U presents no identifiability or
consistency issues. This conclusion also extends to the marginal distribution of potential outcomes, which
can be formally shown through a copula argument, as in D’Amour (2019a).

p(Yt(ω)) =
∫

p(Yt(ω) | Ht = ht)p(ht)dht,

p(Yt(ω)) =
∫

p(Yt | Ht = ht, Wt = ω)p(ht)dht,

p(Yt(ω)) =
∫

p(y≤t, x≤t, ω≤t)
p(ht)

p(ht, ωt)
dht,

p(Yt(ω)) =
∫ ∫

p(y≤t, z | x≤t, ω≤t)p(x≤t, ω≤t)
p(ht)

p(ht, ωt)
dhtdz,

=
∫ ∫

c(y≤t, z | x≤t, ω≤t)p(yt | ht, ωt)p(z | x≤t, ω≤t)p(ht)dhtdz.

(33)

The copula c(y≤t, z | x≤t, ω≤t) is restricted by the CMM(p) assumption. This constraint differs significantly
from the deconfounder theory, where factor models often separate multiple treatments or treatment sequences
and impose no such restrictions on the outcome model. Therefore, identifying potential outcomes in the
deconfounder framework requires additional assumptions, as discussed in Wang & Blei (2019a;b). However,
our framework enforces conditional separation of responses given past sequences of treatments and covariates,
implying independence between the latent variables and treatment sequences. Finally, in practice, how can
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we estimate p(Yt(ω))? We express this as:

p(Yt(ω)) =
∫

p(yt | Ht = ht, Wt = ω)p(ht)dht,

=
∫ ∫

p(yt | ht, ω, z)p(z | ht, ω)p(ht)dhtdz,

=
∫ ∫

p(yt | ht, ω, z)p(z | Dt−1)p(ht)dhtdz,

≈
∫ ∫

pθ(yt | ht, ω, z)qϕ(z | DT )p(ht)dhtdz.

(34)

Here, pθ(yt | ht, ω, z) is modeled by the outcome model (decoder), while qϕ(z | DT ) is the approximate
posterior distribution of the latent variables, estimated using the observed sequence of data.

B.2 Capturing "bad variables"

In this section, we examine whether the substitute adjustment variables Z can inadvertently capture "bad
variables," that is, variables that may introduce bias into the estimation of causal effects.

M-Colliders One potential source of bias arises from M-colliders. If the substitute adjustment variables
Z capture information not only about the true adjustment variables U, but also about a collider variable
M, this could result in Z ̸⊥W≤T .

Y≤T

M

W≤T

V

X≤T

U

Figure 11: An example of an M-collider structure, where the variable V influences both the treatment and
the response, as indicated by the dashed arrows.

The key concern is whether Z could "blindly" capture information from the sequence of responses or treat-
ments. Such cases may lead to open collider paths like U→ Yt ←W≤t or U→ Yt ← X≤t. These scenarios
would violate the assumption that Z ⊥W≤t and Z ⊥ X≤t.

In essence, the inclusion of colliders in the substitute adjustment variables can open "backdoor" paths, leading
to biased estimates of the treatment effect. To prevent this, it is essential to ensure that the substitute
variables Z do not inadvertently encode information about colliders that affect both the treatments and the
responses.

C Experiments on synthetic data: Details

C.1 Description of the Simulation Model

C.1.1 Simulation under sequential ignorability

We simulate a longitudinal data set of time-length T = 75 by generating the time-varying variables autore-
gressively. Specifically, the confounders Xt at each time-step t are generated in Rdx with dx = 100, and the
dynamics are specified through an autoregression of order p = 8 plus a regression over the past treatment
trajectory. Specifically, each dimension j ∈ {1, . . . , dx} of Xt is defined as:

X(j)
t = 1

p

p∑
k=1

γ
X,(t,j)
k X(j)

t−k + 1
p

p∑
k=1

γ
XW,(t,j)
k Wt−k + ϵX

t,j ,
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γ
X,(t,j)
k ∼ N (0, 1) γ

XW,(t,j)
k ∼ N (0, 1) ϵX

t :=


ϵX

t,1
ϵX

t,2
...

ϵX
t,dx

 ∼ N (0, Σx).

To ensure dependence between confounders, the vector error ϵX
t is generated by a Gaussian distribution with

a non-diagonal covariance matrix
Σx = ρ1dx1⊺

dx
+ (1− ρ)σ2Idx ,

where ρ = 0.5 and σ2 = 0.3.

The treatment ωt is generated using a Bernoulli distribution with a probability σ(πt) defined with a logistic
model to simulate the assignment mechanism. σ(.) refers to the sigmoid function:

πt = 1
p

p∑
k=1

γW,t
k Wt−k + 1

dxp

p∑
k=1
⟨γW X,t

k , Xt−k⟩+ 1
p

p∑
k=1

γW Y,t
k Yt−k + ϵW .

To ensure the variation of imbalance between treatment and control groups through time, we simulate the
regression parameters as follows:

γW,t
k , γW Y,t

k ∼ N (sin( t

π
), 0.012) γW X,t

k ∼ N (sin( t

π
), 0.012)⊗dx

ϵW ∼ N (0, 0.012)

Wt ∼ B(σ(πt))

To specify the outcome model, we first generate the unobserved adjustment variables U in Rdu with du = 100
using a Gaussian mixture of three distributions:

U ∼ 1
K

K∑
i=1
N (µi, Σu)

where µ1, . . . , µK ,∼ U([−10, 10])⊗du , and Σu = 0.2 diag(1du
), and K = 8. Finally, we write the expression

of the two potential outcomes as a function of the context history. The chosen specification is motivated
by the classic mixed-effect approach. We introduce the random effects to have an individual reaction to the
change in a covariate Xt,j , and we model it by the Hadamard product between the covariate vector and the
unobserved adjustment vector. The observed response is defined following the consistency assumption 1:

Yt = Yt(1)Wt + Yt(0)(1−Wt)

Yt(ω) = 1
dU
⟨γY U

ω , U⟩
p∑

k=1
Wt−k + 1

dxp

p∑
k=1
⟨γY X,t

k,ω , Xt−k⟩+ 1
p

p∑
k=1

γY,t
k,ωYt−k + ϵY

γY X,t
k,ω ∼ N (γY X

ω , 0.012) γY U
ω ∼ N (γY U

ω , 0.012) γY,t
k,(ω) ∼ N (γY

ω , 0.12) ϵY ∼ N (0, 0.012)

With γY X
1 , γY

1 = 0.0, 0.2 and γY X
0 , γY

0 = 0.2, 0.1 and γY U
0 = 0.1 while γY U

1 is varied generate multiple
datasets with different modification levels of treatment effect induced by U.

C.1.2 Simulation under hidden confounding

We partition the covariates into observed and hidden blocks:

Xt =
(
Xo

t , Xh
t

)
, Xo

t ∈ Rdo , Xh
t ∈ Rdh , do + dh = dx.

We keep the block-diagonal covariance

Σx =
(

Σzz 0
0 Σhh

)
,
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so that Xh
t is not a proxy for Xo

t at baseline.

Define the hidden score aggregated over the current p steps:

St := 1
dh

dh∑
j=1

p−1∑
k=0

Xh,j
t−k.

We inject the hidden score St into the treatment logit with a selection-sensitivity parameter γ:

πt = π
(0)
t︸︷︷︸

baseline under ignorability

+γ St, Wt ∼ Bernoulli{σ(πt)}.

Interpretation (Rosenbaum-Γ): If St is standardized, γ = log Γ where Γ ≥ 1 is the maximum treatment
odds ratio due to unobserved confounding.

We allow St to load differently on the two potential outcomes via coefficients β0, β1:

Yt(ω) = Y
(0)

t (ω) + βω St + ε̃
(ω)
t , ω ∈ {0, 1}.

The ITE is then
τt =

(
Y

(0)
t (1)− Y

(0)
t (0)

)
+ (β1 − β0)St +

(
ε̃

(1)
t − ε̃

(0)
t

)
.

If β1 ̸= β0, the hidden block changes the ITE, making PEHE sensitive to hidden confounding.

C.2 Additional results

Results of baselines on the synthetic datasets The following Table 7 provides the detailed results
responsible for Figures 3 related to baselines with the three different approaches across levels of γY U

(1) .

Table 7: Results on the synthetic data reported by PEHE. Smaller is better.

Model γY U
(1) = 0 γY U

(1) = 0.25 γY U
(1) = 0.5 γY U

(1) = 0.75 γY U
(1) = 1 γY U

(1) = 1.25 γY U
(1) = 1.5 γY U

(1) = 1.75 γY U
(1) = 2 γY U

(1) = 2.25 γY U
(1) = 2.5

CDVAE (ours) 0.43±0.02 0.50±0.03 0.96±0.09 1.57±0.08 1.90±0.10 2.35±0.18 3.57±0.17 4.80±0.20 6.84±0.20 7.64±0.48 9.03±0.50
Causal CPC 0.43±0.01 0.50±0.03 1.08±0.08 2.49±0.14 2.98±0.09 4.98±0.21 5.91±0.29 10.15±0.38 12.25±0.49 15.65±0.56 19.39±0.59

Causal CPC (with substitute) 0.46±0.02 0.49±0.01 1.02±0.05 2.38±0.08 2.83±0.09 4.81±0.13 5.38±0.22 8.13±0.39 10.11±0.41 12.01±0.54 14.03±0.64
Causal CPC (oracle) 0.45±0.02 0.43±0.03 0.96±0.04 1.59±0.06 2.14±0.08 4.41±0.10 5.08±0.30 6.93±0.25 8.70±0.17 10.15±0.47 12.91±0.51
Causal Transformer 0.46±0.02 0.68±0.04 1.50±0.06 2.55±0.18 3.65±0.20 5.55±0.50 8.15±0.72 12.35±0.25 15.48±1.02 24.77±2.21 43.84±2.58

Causal Transformer (with substitute) 0.46±0.02 0.67±0.02 1.46±0.03 2.48±0.08 3.53±0.09 5.23±0.11 7.72±0.18 11.86±0.17 15.22±0.17 20.12±0.35 33.58±0.45
Causal Transformer (oracle) 0.46±0.02 0.60±0.03 1.48±0.03 2.35± 0.06 3.30±0.07 5.11±0.09 7.34±0.13 11.55±0.25 16.98±0.29 18.64±0.31 28.45±0.33

G-Net 0.62±0.05 0.80±0.05 4.90±0.03 5.56±0.05 4.82±0.15 5.79±0.12 10.36±0.23 15.17±0.25 23.89±0.54 32.75±1.20 49.35±2.35
G-Net (with substitute) 0.56±0.04 0.75±0.01 3.61±0.02 4.99±0.20 4.27±0.18 5.50±0.15 8.34±0.64 13.55±0.97 17.97±1.83 19.25±2.04 40.21±2.10

G-Net (oracle) 0.48±0.02 0.69±0.03 3.10±0.05 4.36±0.08 4.45±0.12 5.28±0.17 8.28±0.23 13.10±0.50 17.47±0.65 16.22±0.95 35.35±1.77
CRN 0.53±0.02 0.68±0.03 1.63±0.04 2.94±0.11 5.14±0.17 6.66±0.19 9.08±0.25 11.93±0.37 16.54±0.65 18.68±0.67 29.66±1.12

CRN (with substitute) 0.48±0.01 0.65±0.01 1.51±0.02 2.56±0.18 3.98±0.21 6.05±0.35 6.81±0.65 8.50±1.16 13.81±0.76 16.23±0.73 26.11±1.41
CRN (oracle) 0.53±0.01 0.60±0.01 1.69±0.02 2.87±0.09 3.75±0.13 5.69±0.17 8.92±0.22 9.65±0.31 13.49±0.54 15.64±0.61 25.98±0.97

RMSN 0.57±0.02 0.67±0.02 1.60±0.03 2.67±0.05 4.31±0.15 5.58±0.17 7.40±0.32 11.25±0.57 15.01±0.89 19.41±1.13 25.07±0.97
RMSN (with substitute) 0.45±0.01 0.67±0.02 1.51±0.04 2.31±0.03 3.61±0.20 4.61±0.20 6.14±0.50 7.58±0.82 10.63±1.31 18.53±1.50 21.08±1.60

RMSN (oracle) 0.48±0.01 0.62±0.01 1.43±0.03 1.97±0.03 3.42±0.13 4.43±0.15 6.00±0.27 7.31±0.34 9.20±0.48 17.06±0.83 19.32±1.26

Robustness to Number of Prior Components The Table 8 gives detailed results summarized in Figure
9a that assess the sensitivity of CDVAE to the variation of the prior cluster numbers K.

Table 8: Results of CDVAE when varying the number of components K of the prior. The study is conducted
on the synthetic data and is reported by PEHE. Smaller is better.

Model γY U
(1) = 0 γY U

(1) = 0.25 γY U
(1) = 0.5 γY U

(1) = 0.75 γY U
(1) = 1 γY U

(1) = 1.25 γY U
(1) = 1.5 γY U

(1) = 1.75 γY U
(1) = 2 γY U

(1) = 2.25 γY U
(1) = 2.5

CDVAE (ours) 0.43±0.02 0.50±0.03 0.96±0.09 1.57±0.08 1.90±0.10 2.35±0.18 3.57±0.17 4.80±0.20 6.84±0.20 7.64±0.48 9.03±0.50
CDVAE (K = 2) 0.43±0.01 0.50±0.01 0.96±0.03 1.52±0.04 2.07±0.07 2.51±0.14 4.10±0.41 4.44±0.43 6.98±0.38 7.90±0.33 8.88±0.45
CDVAE (K = 5) 0.42±0.01 0.48±0.02 0.93±0.02 1.41±0.11 2.02±0.03 2.52±0.06 3.27±0.22 4.25±0.45 6.32±0.25 7.97±0.31 8.12±0.48
CDVAE (K = 8) 0.40±0.01 0.46±0.01 0.96±0.06 1.57±0.03 2.13±0.04 2.59±0.07 3.20±0.26 4.15±0.45 6.63±0.48 6.93±0.25 8.91±0.19
CDVAE (K = 11) 0.42±0.02 0.47±0.01 0.94±0.03 1.40±0.05 2.09±0.07 2.47±0.22 3.76±0.28 5.09±0.52 6.48±0.14 7.73±1.232 9.02±1.22
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C.3 Computational Scalability

We include additional experiments varying both the sequence length T and the covariate dimension dx.
Empirically, CDVAE’s one-step PEHE remains essentially flat when T more than doubles (75 → 175), while
it increases modestly (about +57%) when dx quintuples (100 → 500). This behavior matches the model’s
complexity profile: GRU unrolling makes both run-time and memory scale linearly in T , and the IPM
term—computed on a fixed-size batch of 16-dimensional representations—costs O(b2) in batch size b but
does not depend on dx. Only the first dense projection and GRU input weights scale with dx, explaining the
near-linear slowdown.

Metric T = 75 T = 100 T = 125 T = 150 T = 175
PEHE 1.09± 0.09 0.98± 0.15 1.00± 0.20 0.98± 0.21 0.97± 0.09

Wall-clock (min) 35± 3 57± 3 82± 2 95± 3 105± 3

Table 9: Performance of CDVAE as sequence length T increases.

Metric dx = 100 dx = 200 dx = 300 dx = 400 dx = 500
PEHE 1.09± 0.09 1.51± 0.03 1.60± 0.04 1.71± 0.05 1.71± 0.05

Wall-clock (min) 35± 3 33± 2 34± 2 32± 2 33± 2

Table 10: Performance of CDVAE as covariate dimension dx increases.

D Experiments on MIMIC-III data

D.1 Description of the MIMIC-III semi-synthetic model Model

A cohort of 2,000 patients is extracted from the MIMIC-III dataset, with the simulation setup proposed
by Melnychuk et al. (2022) extending the model introduced in Schulam & Saria (2017). Let dy denote
the dimension of the outcome variable. For multiple outcomes, untreated outcomes, denoted as Zj,(i)

t for
j = 1, . . . , dy, are generated for each patient i in the cohort. The generation process is defined as:

Zj,(i)
t = αj

SB-spline(t) + αj
ggj,(i)(t)︸ ︷︷ ︸

endogenous

+ αj
f f j

Z

(
X(i)

t

)
︸ ︷︷ ︸

exogenous

+ εt︸︷︷︸
noise

, (35)

where the B-spline B-spline(t) models the endogenous component, gj,(i)(·) is sampled independently for each
patient from a Gaussian process with a Matérn kernel, and f j

Z(·) is sampled from a Random Fourier Features
(RFF) approximation of a Gaussian process.

To introduce confounding into the assignment mechanism, current time-varying covariates are incorporated
via a random function f l

Y (Xt) and the average of a subset of the previous Tl treated outcomes, ĀTl

(
Yt−1

)
.

For da binary treatments Al
t, where l = 1, . . . , da, the treatment assignment mechanism is modeled as:

pAl
t

= σ
(
γl

AĀTl

(
Yt−1

)
+ γl

Xf l
Y (Xt) + bl

)
,

Al
t ∼ Bernoulli

(
pAl

t

)
,

where σ(·) denotes the sigmoid function.

Static features U, such as gender and ethnicity, which are categorical, are one-hot encoded. A random Singu-
lar Value Decomposition (SVD) transformation fE(·) is then applied to U, retaining all singular components.
Subsequently, treatments are applied to the untreated outcomes using the following expression:

Ej(t) =
t∑

i=t−wl

minl=1,...,da ⊮[Al
i
=1]pAl

i
βlj +

∣∣∣∑dU

k=1 fE(U)k

∣∣∣
(wl − i)2 , (36)
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where wl is the treatment window.

The final outcome combines the treatment effect and the untreated simulated outcome:

Y j
t = Zj

t + Ej(t). (37)

D.2 Additional results

Results of baselines on the semi-synthetic MIMIC-III The following Table 11 provides the detailed
results responsible for Figures 4 related to baselines with the three different approaches.

Table 11: Results on the MIMIC-III data reported by PEHE. Smaller is better.

Model PEHE
CDVAE (ours) 17.63±0.25

Causal CPC 19.27±0.25
Causal CPC (with substitute) 18.45±0.26

Causal CPC (oracle) 17.98±0.21
Causal Transformer 19.68±0.20 ±

Causal Transformer (with substitute) 18.58± 0.21
Causal Transformer (oracle) 17.91 ± 0.20

G-Net 19.75±0.21
G-Net (with substitute) 18.60±0.25

G-Net (oracle) 17.95± 0.23
CRN 19.80±0.23

CRN (with substitute) 18.58±0.22
CRN (oracle) 17.91± 0.21

RMSN 19.85±0.25
RMSN (with substitute) 18.66±0.23

RMSN (oracle) 18.01± 0.19

E Algorithmic Details

E.1 Algorithms Description

In this appendix, we provide the algorithmic details for CDVAE. First, we describe the approximation of the
Integral Probability Metric (IPM) term used in Eq. (24). The IPM term aims to reduce covariate imbalance
between the treatment and control groups by quantifying the dissimilarity between their distributions. To
calculate the IPM, we use the Sinkhorn-Knopp algorithm (Sinkhorn, 1967) and the Wasserstein distance
computation algorithm (Algorithm 3 in Cuturi & Doucet (2014)). The Wasserstein distance computation
(Algorithm 2) calculates the pairwise distances between data points and constructs a kernel matrix using a
regularization parameter. It then computes the row and column marginals based on the weights assigned to
each data point. The Sinkhorn-Knopp algorithm (Algorithm 1), integrated within the Wasserstein distance
computation, is used to compute the optimal transport matrix. Finally, the Wasserstein distance is obtained
by summing the products of the optimal transport matrix and the pairwise distances. Computing the
Wasserstein distance at each time step and for every batch is computationally expensive. To accelerate
training, we compute it for a subsample of the time indices, sampled randomly at each batch. Empirically,
this approach is sufficient for maintaining model performance. Specifically, we sample 10% of the time indices
at each batch, corresponding to m =

⌊
T
10
⌋

time steps, as shown in Algorithm 3.

E.2 Computational complexity analysis of CDVAE

We provide both a theoretical and a practical computational complexity analysis. The training complexity
of CDVAE can be summarized in the following proposition.

Proposition 19 (Per-epoch complexity) For a mini-batch of size b, sequence length T , raw covariate
dimension dx, GRU hidden size H, and fixed representation width dϕ(= 16), let ε denote the entropic
regularization strength in the Sinkhorn algorithm for the IPM term. Then, one training epoch of CDVAE
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Algorithm 1 Sinkhorn-Knopp Algorithm
Require: Kernel matrix K ∈ Rnt×nc

Require: Row marginal vector a ∈ Rnt , Column marginal vector b ∈ Rnc

Ensure: Optimal transport matrix T ∈ Rnt×nc

1: Initialize transport matrix T (0) with all entries set to 1
2: Set iteration counter k ← 0
3: while not converged do
4: Update row scaling vector u ∈ Rnt

5: ui ← ai∑nc

j=1
KijT

(k)
ij

6: Update column scaling vector v ∈ Rnc

7: vj ← bj∑nt

i=1
KijT

(k)
ij

8: Update transport matrix T (k+1)

9: T
(k+1)
ij ← uiKijvj∑nt

i′=1

∑nc

j′=1
ui′ Ki′j′ vj′

10: Increment iteration counter k ← k + 1
11: if convergence criterion met then
12: Return T (k+1)

13: end if
14: end while

Algorithm 2 Weighted Wasserstein Distance Computation
Require: Batch B = {{ωit, yit, xit}T

t=1, i = 1, . . . , |B|}
Require: Representation learner Φ
Require: Weights vectors αΦ(ht, ω)
Require: Regularization parameter λ

1: for t ∈ {1, 2, . . . , T} do
2: Compute n

(t)
t ←

∑
i∈B Wit, n

(t)
c ←

∑
i∈B(1−Wit)

3: Compute pairwise distances matrix M ∈ Rn
(t)
t ×n(t)

c ▷ M
(t)
ij = ∥Hit −Hjt∥L2 , ∀i, j ∈ B; Wit = 1 and

Wjt = 0
4: Initialize kernel matrix K ∈ Rn

(t)
t ×n(t)

c such that K
(t)
ij ← e−λM

(t)
ij

5: Compute row marginal vector a(t) ∈ Rnt such that a
(t)
i ←

αΦ(hit,1)∑
k=1,Wkt=1

αΦ(hit,1)

6: Compute column marginal vector b(t) ∈ Rnc such that b
(t)
j ←

αΦ(hit,0)∑
k=1,Wkt=0

αΦ(hit,0)

7: Compute optimal transport matrix T (t) ∈ Rn
(t)
t ×n(t)

c :
8: T (t) ← Sinkhorn-Knopp(K(t), a(t), b(t))
9: Compute Wasserstein distance Dt ←

∑nt

i=1
∑nc

j=1 T
(t)
ij M

(t)
ij

10: end for
11: Return

∑T
t=1 Dt
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Algorithm 3 Pseudo-code for training CDVAE
Require: Training Data DT = {{wit, yit, xit}T

t=1, i = 1, . . . , n}
Require: CDVAE parameters ϕ, θy, θω, Φ, σ, Optimizer parameters

1: for p ∈ {1, . . . , epochmax} do
2: for batch B = {{wit, yit, xit}T

t=1, i = 1, . . . , |B|} do
3: Compute approximate posterior qϕ(z | y≤T , x≤T , ω≤T )
4: Sample latent variables z from qϕ(z | y≤T , x≤T , ω≤T )
5: Compute representation Φ(Ht) for t = 1, . . . , T .
6: Compute ELBO(θ, ϕ, Φ, σ).
7: Compute LDistM(ϕ).
8: Choose t1, . . . , tm ∼ U([1, T ]) compute IPM term as :

LIPM =
m∑

i=1
IPMG (gθω,Φ(· |Wti

= 1), gθω,Φ(· |Wti
= 0))

9: Compute total loss Ltot = ELBO(θ, ϕ, Φ, σ) + λIPMLIPM(θω, Φ) + λDistMLDistM(ϕ).
10: Update parameters related to the total loss

[θ, ϕ, Φ, σ]← [θ, ϕ, Φ, σ]− µ

(
∂Ltot(θ, θω, ϕ, Φ, σ)

∂[θ, ϕ, Φ, σ]

)
11: Compute binary cross-entropy loss for the propensity network LW (θω, Φ). and update parameters

θω ← θω − µW

(
∂LW (θω, Φ)

∂θω

)
12: end for
13: end for
14: Return Trained CDVAE model
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requires
O
(
nT H(H + dx)

)︸ ︷︷ ︸
GRU forward/back-prop

+ O
(
n dx dϕ

)︸ ︷︷ ︸
Φ-projection

+ O
(
m b2 log b/ε2)︸ ︷︷ ︸
Sinkhorn IPM

m=⌈0.1T ⌉

,

and stores O(T H + n b) activations.

Discussion. The first two terms are linear in the sequence length T and (near-)linear in the covariate
dimension dx because the GRU unrolls once per time step and the projection layer is dense. The third term
corresponds to the entropically regularized Sinkhorn solver; its cost is quadratic only in the batch size b and
independent of dx once the feature map has been compressed to dϕ.

Since we evaluate the IPM on only m = ⌈0.1T ⌉ randomly chosen time points, the overall runtime grows
linearly with T and almost linearly with dx for realistic batches (b ≤ 1024). The sole quadratic factor arises
from the b2 dependence inside Sinkhorn.

Practical results. On the simulation dataset, Table 12 reports the mean training time (in minutes) of all
models, averaged over 10 random seeds. All experiments were run on a single NVIDIA Tesla T4 GPU.

Model Training time (min)
CDVAE (ours) 35± 3
Causal CPC 8± 2
CT 27± 2
G-Net 12± 2
CRN 7± 2
RMSN 6± 2

Table 12: Mean training times of different models on the simulation dataset (10 seeds, 1× NVIDIA Tesla
T4).

Interpretation. CRN, RMSN, and CPC lack the IPM term and thus train faster, while the Causal
Transformer incurs higher cost due to transfer blocks. CDVAE’s additional complexity comes from explicit
distributional balancing over Φ(Ht), which we found necessary for stable ACATE estimation. The random-
time subsampling of representations keeps the added cost manageable in practice.

F Models hyperparameters

We use Pytorch (Paszke et al., 2019) and Pytorch Lightening (Falcon & team, 2019) to implement CDVAE
and all baselines. For the selection of hyperparameters, we fine-tuned our models using a random grid
search. We use the weighted reconstruction error as the selection criterion for CDVAE. We do not use a
metric related to the quality of estimating ACATEs as a selection criterion; a choice cannot be used in a
real scenario because ACATEs are usually unavailable. It is still rather an open problem how to design a
criterion for causal cross-validation or hyperparameters tuning for a causal model. Many proxies are used in
the literature, including loss over the factual outcomes (Lim, 2018; Hassanpour & Greiner, 2019a; Bica et al.,
2020a;b), one nearest-neighbor imputation (Shalit et al., 2017; Johansson et al., 2022), for the counterfactual
outcome, influence functions (Alaa & Van Der Schaar, 2019), rank-preserving causal cross-validation (Schuler
et al., 2018), Robinson residual decomposition (Nie & Wager, 2021; Lu et al., 2020). In this work, and since
we intend to search for the best regularization parameters (λIP M , λMM ) among other parameters related
to CDVAE architecture and optimization, we chose not to consider the total loss as this may bias the choice
of (λIP M , λMM ) toward small values. We, therefore, use the weighted reconstruction error as an objective
function for fine-tuning. Similarly, we fine-tune Causal CPC, Causal Transformer, CRN, and RMSM using
the loss over the factual response as a criterion.

We report in the following tables the search space of hyperparameters for all baselines.
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Table 13: Hyper-parameters search range for RMSN

Model Sub-model Hyperparameter Synthetic data MIMIC III

RMSNs Propensity Treatment Network

LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128 32, 64, 128
LSTM hidden units 6, 8, . . . , 12, 14 4, 6, . . . , 20
LSTM dropout rate - -
Max gradient norm 0.5, 1, 2 0.5, 1, 2

Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Propensity History Network

LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128 64, 128, 256
LSTM hidden units 6, 8, . . . , 12, 14 4, 6, . . . , 30
LSTM dropout rate - -

Early Stopping (min delta) 0.001 0.0001
Early Stopping (patience) 10 30

Encoder

LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128, 256 32, 64, 128
LSTM hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
LSTM dropout rate - -

Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Decoder

LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128, 256 128, 512, 1024
LSTM hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
LSTM dropout rate - -
Max gradient norm 0.5, 1, 2 0.5, 1, 2

Early Stopping (min delta) 0.001 0.0001
Early Stopping (patience) 10 30

Table 14: Hyper-parameters search range for CRN

Model Sub-model Hyperparameter Synthetic data MIMIC III)

CRN Encoder

LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128, 256 32, 64, 128
LSTM hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
LSTM dropout rate - -

BR size 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Decoder

LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 128, 256, 512 256, 512, 1024
LSTM hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
LSTM dropout rate - -

BR size 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Table 15: Hyper-parameters search range for G-Net

Hyperparameter Cancer simulation MIMIC III (SS)
LSTM layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128 32, 64, 128
LSTM hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20

FC hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
LSTM dropout rate - -

R size 6, 8, . . . , 18, 20 4, 6, . . . , 30
MC samples 50 50

Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30
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Table 16: Hyper-parameters search range for Causal Transformer

Hyperparameter Cancer simulation MIMIC III (SS)
Transformer blocks 1 1

Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001
Batch size 32, 64, 128 32, 64, 128

Attention heads 2 2
Transformer units 4, 6, . . . , 20 4, 6, . . . , 20

LSTM dropout rate - -
BR size 6, 8, . . . , 18, 20 4, 6, . . . , 20

FC hidden units 6, 8, . . . , 18, 20 4, 6, . . . , 20
Sequential dropout rate 0.1, 0.2, 0.3 0.1, 0.2, 0.3
Max positional encoding 15 20

Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Table 17: Hyper-parameters search range for Causal CPC

Model Sub-model Hyperparameter Cancer simulation MIMIC III (SS)

Causal CPC Encoder

GRU layers 1 1
Learning rate 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128 64, 128, 256
GRU hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
GRU dropout rate - -

Local features (LF) size 6, 8, . . . , 18, 20 4, 6, . . . , 20
Context Representation (CR) size 6, 8, . . . , 18, 20 4, 6, . . . , 20

Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Decoder

GRU layers 1 1
Learning rate (decoder w/o treatment sub-network) 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Learning rate (encoder fine-tuning) 0.001, 0.0005, 0.0001, 0.00005 0.001, 0.0005, 0.0001, 0.00005
Learning rate (treatment sub-network) 0.05, 0.01, 0.005, 0.0001 0.05, 0.01, 0.005, 0.0001

Batch size 32, 64, 128 32, 64, 128
GRU hidden units CR size CR size
GRU dropout rate - -

BR size CR size CR size
GRU layers (Treat Encoder) 1 1

GRU hidden units (Treat Encoder) 6 6
FC hidden units 6, 8, . . . , 18, 20 4, 6, . . . , 20

Random time indices (m) 10% 10%
Early Stopping (min delta) 0.001 0.001
Early Stopping (patience) 10 30

Table 18: Hyper-parameters search range for CDVAE

Model Sub-model Hyperparameter Synthetic data MIMIC III

CDVAE

Inference Network

GRU layers 1 1
GRU hidden units 6, 8, . . . , 12, 14 4, 6, . . . , 20
GRU dropout rate - -

Latent dim of z 0.001 0.001
Propensity Network FC hidden units 6, 8, . . . , 12, 14 4, 6, . . . , 30

Representation Learner

LSTM layers 1 1
GRU hidden units 6, 8, . . . , 18, 20 6, 8, . . . , 18, 20
GRU dropout rate - -

Dimension of representation 6, 8, . . . , 18, 20 4, 6, . . . , 20
Decoder FC hidden units (dim(z) + dim(Φ(Ht))/2 (dim(z) + dim(Φ(Ht))/2

Global

Learning rate (w/o propensity network) 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001
Learning rate (propensity network) 0.01, 0.005, 0.001, 0.0001 0.01, 0.005, 0.001, 0.0001

Batch size 32, 64, 128, 256 128, 512, 1024
Max gradient norm 0.5, 1, 2 0.5, 1, 2

Number of components in Prior 2, 4, . . . , 18, 20 2, 4, . . . , 20

52



Published in Transactions on Machine Learning Research (10/2025)

G The Neural Architecture of CDVAE

The extended neural architecture of CDVAE comprises multiple components which we did not explicit in
Section 4.4. We first begin by detailing neural network functions related to the generative model. The
Table 20 outlines the architecture for the Representation Learner Φ which encodes the context history,
Table 19 presents the identical architecture for both fθ1

y
and fθ0

y
responsible for generating the two potential

outcomes. Meanwhile, Table 21 illustrates the design of propensity network eθω
(.) built on the top of the

shared representation. Lastly, Tables 22 depict the architecture used to learn both the mean and covariance
matrix for the approximate posterior assumed to be Gaussian.

Inputs: {Φ(ht)}1≤t≤T , z
Concatenate: [Φ(ht), z]1≤t≤T

Linear Layer
Weight Normalization

ELU
Linear Layer

Weight Normalization
Linear Layer

Output: {Ŷt+1(ω)}1≤t≤T −1

Table 19: Architecture of the outcome model prediction, i.e., the decoder.

Inputs: {yt, xt, ωt}1≤t≤T

Concat: [yt, xt, ωt]1≤t≤T

GRU layer
Linear Layer

Tanh
Outputs: {Φ(ht)}1≤t≤T

Table 20: Architecture: representa-
tion learner ϕ of CDVAE

Inputs: {Φ(ht)}1≤t≤T

Linear Layer
ELU

Sigmoid
Output: {Ŵt+1(ω)}1≤t≤T −1

Table 21: Architecture: propensity
network eθω

(.).

Inputs: {yt, xt, ωt}1≤t≤T

Concat: [yt, xt, ωt]1≤t≤T

GRU layer
Linear Layer Linear Layer

Σϕ3 (gT ) µϕ2 (gT )

Table 22: Inference network
qϕ (z | y≤T , x≤T , ω≤T )
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