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Abstract
Causal relationships underpin modern science and
our ability to reason. Automatically discovering
useful causal relationships can greatly accelerate
scientific progress and facilitate the creation of
machines that can reason like we do. Tradition-
ally, the dominant approaches to causal discovery
are statistical, such as the PC algorithm. A new
area of research is integrating recent advancement
in machine learning with causal discovery. We fo-
cus on a series of recent work that leverages new
algorithms in deep learning for causal discovery –
notably, generative flow networks (GFlowNets).
We discuss the unique perspectives GFlowNets
bring to causal discovery.

1. Introduction
Causal discovery from data is challenging because of the dis-
crete and combinatorial nature of the space of DAGs, which
grows super-exponentially with the number of nodes (Cundy
et al., 2021). Crucially, it has been shown that structure
learning from data is NP-complete (Chickering, 1996). In
addition, even if we had an oracle that could search over
the whole space of DAGs efficiently, the limited amount
of observational data reduces the certainty about the “best”
graph candidate. Worse yet, even if we had infinite observa-
tional data, in most cases there are multiple causal models
that are compatible with it. We discuss these concept more
rigorously in §2.

A number of methods tackle the problem of structure learn-
ing. However, most of them attempt to learn a single point
estimate of the DAG that best fits the data (Cundy et al.,
2021; Zheng et al., 2018). In this overview, we cover a
novel probabilistic inference tool called generative flow net-
works (GFlowNets; Bengio et al., 2021a;b) and review its
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successful applications in causal discovery relative to the
alternatives. It is a form of score-based method (Malinsky,
2022), but it learns a multimodal generative model estimat-
ing the Bayesian posterior distribution over DAGs rather
than returning a single DAG. Table 1 from Appendix A
shows a summary of some key differences between the vari-
ous lines of work compared in this paper. Since GFlowNets
are used to learn Bayesian posteriors, we found it useful
to include other works based on variational inference, such
as (Lorch et al., 2021), in Appendix E.

2. Why Bayesian Causal Discovery?
Causal discovery assumes there is a unique ground-
truth causal model that describes the data-generating pro-
cess (Pearl, 2009). The goal is then to learn the ground-truth
causal model. In principle, if the ground-truth model is
included in the search space and that it is distinct in some
ways, i.e., identifiable (Pearl, 2009), causal discovery is
reduced to an optimization problem with a unique global
minimum. This point-estimate perspective is exemplified
by Zheng et al. (2018).

In practice, the ground-truth model is often only identifiable
up to the Markov equivalence class (MEC) given observa-
tional data alone (Lorch et al., 2021). This is in particular
the case for the linear-Gaussian and multinomial model
classes (Eberhardt, 2017), which poses a problem because
the MEC might be exponentially large. As a result, identifia-
bility became a property often discussed in new causal mod-
els. With certain interventional data or different parametric
assumptions, such as linear non-Gaussian model classes,
we sometimes obtain identifiability (Eberhardt, 2017); how-
ever, interventional data is not always easy to obtain (or in
the quantity and diversity that would make a single graph
dominate) and a substantial body of work focuses on ei-
ther multinomial or linear-Gaussian parametrizations due to
the computational challenges involved (Deleu et al., 2022;
Cundy et al., 2021). More fatally, even if we have identifi-
ability of a given class of causal models, it is not clear at
all if the ground-truth model belongs to that class. Iden-
tifiability becomes less relevant here because the learned
model cannot be the true one. In fact, identifiability makes
the problem worse because we confidently converge to an
incorrect single point estimate when the causal model class
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is misspecified.

The solution we favor is anchored in the notion of Bayesian
uncertainty, which obviates the issue of identifiability. That
is, instead of working with a point estimate of a causal
model, we work with a distribution over causal models.
This allows us to specify a prior over such models, e.g., one
which exponentially favors simpler models, and derive a
posterior over them as we observe more data. Identifiability
becomes a special case where the posterior collapses to a
Dirac delta, but the approach works even if it doesn’t. This
raises the question of how tractable it may be to learn rich
approximations of the Bayesian posterior and how a gen-
erative policy for sampling from such a posterior may be
exploited in a computationally tractable way. It also raises
the question of computational asymptotics: if we dedicate
more computational resources to form the approximate pos-
terior, will we converge to the true posterior? The answer is
affirmative for GFlowNets, which are described below.

3. GFlowNets and Bayesian Posteriors over
Directed Acyclic Graphs

A distribution over causal models can be difficult to repre-
sent. We use the common assumption which decomposes
causal models into directed acyclic graphs (DAGs), which
encode the conditional independencies of the causal rela-
tionships, and parametrized mechanisms, which encode the
conditional probability distributions (CPDs) of these rela-
tionships. The DAG and the mechanisms together define
a structural causal model or SCM (Pearl, 2009). A distri-
bution over causal models then at least describes a distri-
bution over DAGs, whose support is super-exponential in
the number of nodes (Cundy et al., 2021)). As a result,
prior work has relied on either factorized variational approx-
imations (Lopez et al., 2022) or expensive Markov Chain
Monte Carlo (MCMC) simulations (Eaton & Murphy, 2012;
Jain et al., 2023) to sample from posterior distributions over
causal models. A more recent line of work (CSIvA; Ke
et al., 2022) casts causal discovery as a supervised learning
problem. They use a maximum-likelihood objective to learn
a rich multimodal Bayesian posterior, just like GFlowNet-
based methods, on synthetic dataset-causal graph pairs in
a way that generalizes to unseen, realistic datasets. A key
difference is that the GFlowNet works should require less
neural network capacity and training time since they learn
to sample from the Bayesian posterior for the single actually
given dataset rather than for any dataset.

GFlowNets (Bengio et al., 2021a;b) are a novel framework
for training amortized samplers of compositional objects,
such as DAGs. They learn to construct such objects step-
by-step and are trained to sample them according to an
energy function using self-consistency objectives (Bengio
et al., 2021b) similar to ones used in reinforcement learning

(Sutton & Barto, 2018). The key insight is that one can turn
the difficulty of approximating an intractable distribution,
defined by an energy function, into that of optimizing a large
neural network. This allows us to leverage the advancement
of deep learning, i.e., the training of large neural networks,
in the last decade (Bengio et al., 2021b; Hu et al., 2023).

3.1. Advantages of the GFlowNet Framework

GFlowNets can be trained to sample objects step-by-step
with probability proportional to a given reward function. Al-
ternatives approaches are max-entropy reinforcement learn-
ing (RL) (Haarnoja et al., 2018) and hierarchical variational
inference (HVI) (Sønderby et al., 2016). As elaborated
in Bengio et al. (2021a), policies trained with max-entropy
RL do not sample according to the reward function, i.e.,
exponentiated negative energy, even when trained to com-
pletion, if there exists multiple trajectories leading to the
same final object, e.g., in causal discovery, we might build
the same DAG by placing edges in different orders. Ex-
tensive experimentation in Malkin et al. (2022b) compare
GFlowNets with existing amortized variational inference
and shows that GFlowNets find a better tradeoff between the
mode-seeking behavior of reverse-KL and the zero-avoiding
behavior of forward-KL; the simulations show that this al-
lows GFlowNets to better capture multiple modes, e.g., dif-
ferent DAGs in the same MEC. In addition, GFlowNets are
able to be trained off-policy without resorting to importance
sampling. In practice, this leads to more stable gradients
and better optimization. A non-machine-learning alternative
is to run MCMC in the DAG space (Lorch et al., 2021). This
unamortized approach is prohibitively expensive due to the
well-known issue of mode mixing (Jain et al., 2023; Bengio
et al., 2021a).

4. Applications of GFlowNets in Causal
Discovery

We compare works that apply GFlowNets to causal discov-
ery in various setups. Overall, the structure of the GFlowNet
is very similar across different papers, with the reward func-
tion being the biggest difference in most cases, which high-
lights the framework’s great flexibility.

4.1. Bayesian Structure Learning with Generative Flow
Networks (DAG-GFlowNet)

Deleu et al. (2022) is the first to use GFlowNets for Bayesian
causal discovery. In their formulation, they assume ac-
cess to N samples of a static and single dataset D of d
observed causal variables X1, ..., Xd. Their goal is to train
a sampler over Bayesian networks from the posterior dis-
tribution p(G|D) over DAGs G. We note that this frame-
work and most of the other GFlowNets works are agnostic
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to the causality formalism, since the learned distribution
over graphs captures the ambiguity from having multiple
graphs in the same MEC, as discussed in §2. The esti-
mated posterior converges to the true one as the capacity
of the GFlowNet parametrization and the training time are
increased, i.e., as the training loss is brought to its global
minimum of 0. The posterior collapses to the true causal
graph in the limit as N →∞ when presented with enough
appropriate interventional data. The framework is thus very
flexible and remains principled regardless of the availability
of interventional data and N .

GFlowNets sequentially construct a solution (e.g. G) by
stochastically modifying a state variable (a partial construc-
tion of the object to generate). These works define the state
space as the set S of all partially constructed DAGs. The
action space A is the set of new edges that can be intro-
duced to a given state s ∈ S while not introducing any
cycles. Let us see how to define a reward function R(s)
for all terminating states s such that we obtain a sampler
of p(G|D) when the GFlowNet is trained to completion
(see Appendix B), i.e., when the GFlowNet samples G with
probability proportional to R(G):

p(G|D) = p(D|G)p(G)

p(D)
∝ p(D|G)p(G). (1)

Thus, it suffices to define R(G) := p(G)p(D|G) for any
terminating G. The prior over graphs could simply be the
uniform distribution if we don’t want to incorporate any
prior knowledge, but one can also define a preference for
sparser graphs. One limiting difficulty that is alleviated in
the next papers consists of computing the marginal likeli-
hood p(D|G), which is in principle given by

p(D|G) =

∫
θ

p(D|G, θ)p(θ|G)dθ, (2)

where θ has the parameters of the causal mechanisms.
p(D|G, θ) is the likelihood of the data under the fully speci-
fied SCM and p(θ|G) is the prior over parameters. To the
best of our knowledge, it is only possible to efficiently com-
pute this integral (Deleu et al., 2023) when we restrict the
class of causal mechanisms to be linear-Gaussian (Geiger
& Heckerman, 1994), discrete categorical with Dirichlet
prior (Heckerman & Geiger, 2013), or when we use a Gaus-
sian process parametrization of non-linear mechanisms (von
Kügelgen et al., 2019). Deleu et al. (2022) is restricted to
the first two classes of models, which is very limiting.

The reward is incorporated in a version of the detailed-
balance objective (see Appendix B) that is modified to ac-
count for the fact that each state is a valid DAG (see Ap-
pendix C).

One advantage of the GFlowNets framework is that the
graphs sampled from the GFlowNet posterior are always

valid DAGs, unlike DiBS (Lorch et al., 2021). Another ad-
vantage over DiBS is that, once trained, we can efficiently1

sample from the posterior because of amortization. In con-
trast, DiBS requires picking a specific number of samples
ahead of time and requires re-running the optimization algo-
rithm to construct new samples.

The main drawback of this work is that they only learn the
structure, not the parameters, of Bayesian networks. As
a result, they make strong parametric assumptions about
the causal mechanisms to compute the marginal likelihoods
efficiently, which makes the method less practical for real
data with complicated ground-truth mechanisms. The next
two lines of work address this issue.

4.2. Bayesian learning of Causal Structure and
Mechanisms with GFlowNets and Variational Bayes
(VB-GFlowNet)

Nishikawa-Toomey et al. (2022) model the joint posterior
p(G, θ|D), as opposed to only the marginal distribution over
graphs p(G|D), which allows one to not only use weaker
parametric assumptions than Deleu et al. (2022), but also
to answer causal queries with such a trained model via the
predictive posterior (Jain et al., 2023; Toth et al., 2022). To
learn P (G, θ|D), they assume the following factorization:

P (G, θ|D) ≈ qϕ(G)qλ(θ|G) = qϕ(G)

d∏
i=1

qλ(θi|G)

where θi has the parameters of the i-th conditional. We show
here that the last equality only relies on the weak assumption
of a factorized prior, i.e., P (θ|G) =

∏
i P (θi|G):

P (θ|D,G) =
P (θ,D|G)

P (D|G)
(3)

=

∏
i P (θi|G)P (Di|Di−1

1 , θi, G)∏
i P (Di|Di−1

1 , G)
(4)

=
∏
i

P (θi, Di|Di−1
1 , G)

P (Di|Di−1
1 , G)

(5)

=
∏
i

P (θi|Di
1, G) (6)

where Di is the part of the dataset containing the values
for the i-th variable and Di

1 = (D1, . . . , Di), assuming a
topological ordering. Nishikawa-Toomey et al. (2022) use
a GFlowNet to model qϕ(G) in the same way as in Deleu
et al. (2022)) and they use a variational approximation for
qλ(θ|G). In order to find the parameters ϕ∗ and λ∗ that
lead to the best approximation of P (G, θ|D), they derive an

1To sample G, GFlowNets only require forward passes through
the pretrained policy network.
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ELBO such that log p(D) ≥ ELBO(ϕ, λ):

ELBO(ϕ, λ) = EG∼qϕ [Eθ∼qλ [log p(D|θ,G)]

−KL(qλ(θ|G)||P (θ|G))]

−KL(qϕ(G)||P (G)) (7)

which they maximize with respect to ϕ and λ using alternat-
ing coordinate ascent steps. In order to update qϕ(G), they
prove that, given a fixed λ, the optimal ϕ∗ satisfies

log qϕ∗(G) = const + Eθ∼qλ [log p(D|θ,G)]

−KL(qλ(θ|G)||P (θ|G)) + log p(G)
(8)

up to a normalizing constant that is independent of G. This
means that training the GFlowNet with logR(G) given by
the RHS of Eq. 8 will make it converge to qϕ∗(G). The
remainder of the algorithm can be left unchanged from
Deleu et al. (2022), which demonstrates the versatility of
GFlowNets. In order to find qλ∗(θ|G), one can resort to
gradient ascent with respect to λ of Eq. 7 with fixed ϕ = ϕ∗

found at the previous iteration of coordinate ascent. The
cycle continues until a convergence criterion is met.

4.3. DynGFN: Bayesian Dynamic Causal Discovery
using Generative Flow Networks

Scientific phenomena often involve time-varying behavior
and feedback loops. Does current cause voltage or vice-
versa? Both, when we unroll the dynamics. So when we
have only one time step measurement, it is desirable to
extend Bayesian causal discovery to cyclic graphs, which is
done for the first time in Atanackovic et al. (2023). Previous
works either learn a Bayesian posterior over causal models
given a static dataset or return a single point estimate from
dynamic data (Atanackovic et al., 2023). One additional
challenge is the joint learning of the structure and nature
of the relationships, akin to the parameters of mechanisms
in §4.2, in this dynamic context.

In order to formalize the notion of cyclic SCMs, Atanack-
ovic et al. (2023) posits that the data generation process is a
time-varying function

x(t) = (x1(t), x2(t), ..., xd(t)) : [0, T ]→ Rd

s.t.
dxi(t)

dt
= fi(x, ϵt,i) ∀1 ≤ i ≤ d

with independent random noises ϵt,i. In the graphical repre-
sentation of this stochastic dynamical system, j ∈ Pa(xi)
if and only if ∂fi

∂xj
̸= 0. This is an elegant way to represent

instantaneous causal relationships which naturally allows
cycles when ∂fi

∂xi
̸= 0 for some i. The functions fi are

analogous to the causal mechanisms from the usual SCM
formalism. We will use the notation fθ to indicate the ag-
gregation of fi across i that is parametrized by θ. With dx
a shorthand notation for dx

dt , the observations are n pairs

D =
{
(x(k), dx(k))

}n

k=1
2 taken at different time steps, and

the ultimate goal is to learn fθ(x, ϵ).

In a similar spirit as Nishikawa-Toomey et al. (2022), they
first use a GFlowNet to sample G ∼ Q(G|D). One major
problem is the even bigger search space that is comprised
of 2d

2

structures, since there is no DAG constraint anymore.
To solve this issue, they assume a per-node factorization:

Q(G|D) =
d∏

i=1

Qi(G[i, .]|D),

which can be derived from assuming a factorization of the
prior (similarly to 6). The above is parameterized by an
independent policy head for each node. Another assumption
that reduces the search space is the sparsity pattern in the
Jacobian of f , i.e., that dfi

dxj
̸= 0 only for a small set of

variables, which is enforced via L0 regularization of the
adjacency matrix of G.

Once the GFlowNet reaches state si corresponding to a
partially constructed graph, the next step is to sample the
parameters θ of the instantaneous dynamics. For this, they
use a neural network θ = hϕ(G). Unfortunately, this point
estimate does not capture any uncertainty, unlike Nishikawa-
Toomey et al. (2022)), but the authors suggest that this is in
principle possible by putting a prior over ϕ. Given a pair
(si, θ), they compute d̂x := fθ(x, si) and they define the
reward that contains the L0 sparsity penalty as

R(si) := e−(||dx−d̂x||22+λ0||si||0). (9)

Then, they update the parameters of the GFlowNet using
the same detailed-balance condition as in Eq. 17 for each
transition sampled from a tempered version of the training
policy. Once the GFlowNet policy decides to stop, they
update the parameters ϕ for predicting θ with ϕ ← ϕ −
ϵ∇ϕ logR(si).

5. Conclusion
Causal discovery is a fundamental scientific problem with
valuable downstream applications like drug discovery (Jain
et al., 2022). We reviewed how GFlowNets (Bengio et al.,
2021a;b), a novel deep learning framework, are used to
model Bayesian posteriors over causal graphs and mecha-
nisms (Deleu et al., 2022; Nishikawa-Toomey et al., 2022;
Atanackovic et al., 2023). With the growing availability of
data and computational resources, the Bayesian approach
enabled by GFlowNets holds the promise of better robust-
ness under uncertainty and misspecification, a principled
incorporation of domain knowledge as prior, and more ro-
bust predictions (not confidently wrong) via Bayesian model
averaging.

2In practice, they use a noisy measurement of x(k).
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A. Overview of the Different Works Compared

Table 1. Comparison of different causal discovery approaches covered in our overview. More detailed descriptions of each column are
provided below.

Method Learning Target Posterior Mechanisms Temporal Amortized

NOTEARS MLE struct.(D) mech.(D) linear
DiBS SVGD struct.(B) mech.(B) arbitrary
BCDNet ELBO struct.(B) mech.(B) linear-Gaussian ✓
DAG-GFlowNet DB struct.(B) linear-Gaussian and categorical ✓
VB-GFlowNet DB struct.(B) mech.(D) arbitrary ✓
JSP-GFlowNet SubTB struct.(B) mech.(B) arbitrary ✓
DynGFlowNet DB struct.(B) mech.(B) arbitrary ✓ ✓
CSIvA MLE struct.(B) / ✓

Learning Target. The appeared learning targets are maximum-likelihood estimation (MLE), Stein variational gradient
descent (SVGD; Liu & Wang, 2016), evidence lower bound for variational inference (ELBO; Blei et al., 2017), detailed
balance (DB; Bengio et al., 2021b), and sub-trajectory balance (SubTB; Madan et al., 2022).

Posterior. The posterior over structure (struct.) and mechanisms (mech.) is either Bayesian (B) or Dirac (D).

Mechanisms. The class of mechanisms, including function and noise, used to parametrize the relationships between a
child node and its parents in the SCM.

Temporal. Whether the framework supports cyclic causal relationships that can be unrolled through time.

Amortized. Whether the cost of learning the causal structure is transferred to the task of training a neural network, which
can approximate the exact answer at a cheaper cost.

B. GFlowNet Training Objectives

The key objective of GFlowNets is to sample objects x according to the probability distribution p(x) = exp[−E(x)]∑
x′ exp[−E(x′)] ,

where E(·) is an energy function. We shall use τ to denote a trajectory, a sequence of states that results in a complete object
x; we also use τ ∋ x to denote all trajectories ending in object x. Thus, a GFlowNet q(·), defined as a distribution over
trajectories, trained to completion should exhibit∑

τ∋x

q(τ) ∝ exp[−E(x)] (10)

It is often convenient to parametrize q(·) using a forward policy pF (s
′ | s) where s and s′ are adjacent intermediary states.

Thus we have ∑
τ∋x

∏
(s,s′)∈τ

pF (s
′ | s) ∝ exp[−E(x)] (11)

where (s, s′) ∈ τ iterates over all consecutive states in a trajectory.

The main result of GFlowNet is that Eq. 11 is satisfied when one of the several training objectives are minimized globally.
We discuss two such objectives most relevant to our use case; they are the flow matching objective (Bengio et al., 2021a)
and the detailed balance objective (Bengio et al., 2021b)). We refer interested readers to Malkin et al. (2022a) and Madan
et al. (2022) for other objectives.

Flow-matching Objective For every adjacent state-pairs (s, s′), meaning we can add an edge to DAG s to obtain DAG
s′, we define a scalar flow F (s→ s′) =

∑
τ∋(s,s′) F (τ) =

∑
τ∋(s,s′) Zq(τ). Here, we parametrize with F (·) to avoid the

intractable partition function Z =
∑

τ F (τ). The flow-matching objective is motivated by the observation that the ”flow”
coming into a state s equals the amount leaving it for all states when a GFlowNet is trained to completion. This means

∀s,
∑

s′∈Child(s)

F (s→ s′) =
∑

s′′∈Par(s)

F (s′′ → s) (12)
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where Child(s) and Par(s) denote the set of children and parent nodes of s. Bengio et al. (2021a) turned this into a
practical objective function

LFM =
∑
s

[
log

∑
s′∈Child(s) F (s→ s′)∑
s′′∈Par(s) F (s′′ → s)

]2

(13)

Detailed-balance Objective The summation over the set of parents or children can be expensive in Eq. 13. In addition,
sampling from the GFlowNet requires the evaluation of a policy π(s′′|s) = F (s→s′′)∑

s′∈Child(s) F (s→s′) , which involves many calls
to the flow function. It is sometimes more convenient to parametrize with the policy directly. Bengio et al. (2021b) used
both a forward policy pF (s

′|s) and a backward policy pB(s|s′) in addition to a scalar flow F (s) for every state s. They
observed that, when trained to completion, the flow associated with every transition s→ s′ is the same from the perspective
of both the forward and the backward policy analogous to the detailed-balance condition in Markov chains

∀(s, s′), F (s)pF (s
′|s) = F (s′)pB(s|s′) (14)

This can in turn be turned into a practical objective function

LDB =
∑
(s,s′)

[
log

F (s)pF (s
′|s)

F (s′)pB(s|s′)

]2
(15)

We will see in Section 4.1 how Eq. 15 can be modified to adapt to model a distribution over DAGs for causal discovery.

So far, we have focused on how GFlowNets are trained to sample DAGs. On-going work leveraging a recent generalization
of GFlowNets to the continuous domain has attempted to train and sample parameters for mechanisms using the same
GFlowNet. We will briefly present that work in Appendix D.

C. Proof of the Modified Detailed-Balance Loss for Structure Learning
Let st, st+1 be two consecutive (DAG) states, and let sf be the (universal) final state that is reached once the terminating
action is selected. Then by definition,

PF (sf |st) =
F (st → sf )

F (st)
=

R(st)

F (st)
, (16)

where the second equality assumes that the GFlowNet is trained to completion. This implies that F (st) =
R(st)

PF (sf |st) . Then,
substituting this into Eq. 15 yields the following modified loss, which can be approximated by an empirical average over
randomly drawn transitions from an exploratory policy to avoid the large summation:

LDB =
∑
(s,s′)

[
log

R(st)PF (st+1|st)PF (sf |st+1)

R(st+1)PB(st|st+1)PF (sf |st)

]2
. (17)

D. Work under Submission
D.1. Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network

(JSP-GFlowNet)

The main problem that Nishikawa-Toomey et al. (2022) solves is the ability to jointly learn a posterior distribution P (G, θ|D)
over causal graphs and mechanism parameters. For this, they separate the learning procedure into a GFlowNet part, for the
posterior over graphs, and a variational Bayes part for the mechanisms. One reason for this was that at the time, the theory
and application of GFlowNets only allowed discrete state and action space, while mechanism parameters are continuous.
Recently, a theory of continuous GFlowNets (Lahlou et al., 2023) is developed. This enables us to use a single GFlowNet to
sample both discrete graphs and continuous parameters for the above setup of Bayesian causal discovery.

This is done in Deleu et al. (2023). They define complete states as pairs (G, θ). The GFlowNet first constructs G by starting
with the empty graph and by adding one edge at the time in the same way as in Deleu et al. (2022). Then, a special “stop”
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action is selected to indicate that the construction of G, or the first phase, is terminated. This results in an incomplete
state (G, .). Once this is done, the second phase consists of sampling the parameters θ conditioned on G, following the
GFlowNet’s forward transition probabilities3. We let Pϕ(G

′|G) denote the transition probability during the first phase and
Pϕ(θ|G) denote the transition probability during the second phase, both parametrized by the GFlowNet parameters ϕ. By a
similar argument as in Deleu et al. (2022), they define the reward

R(G, θ) = P (G, θ,D) = P (G)P (θ|G)P (D|θ,G) (18)

for any complete state (G, θ). Note that in Eq. 18, both P (G) and P (θ|G) are priors over graphs and causal mechanism
parameters, respectively. The likelihood term P (D|θ,G) is easier to compute than the marginal likelihood in Deleu et al.
(2022). This makes this approach applicable to any kind of mechanisms parametrization in principle. Note that not all states
are complete in this setup, which means that they cannot use the same trick with the detailed-balance loss as in Deleu et al.
(2022). Instead, they use a variant of the trajectory balance loss, called the subtrajectory balance loss (Malkin et al., 2022a),
that operates on undirected paths of length 3 of the form

(G, θ)← (G, .)→ (G′, .)→ (G′, θ′), (19)

as shown in Figure D.1.

Figure 1. Illustration of undirected paths in the GFlowNet state space. The blue arrow shows and undirected path of length 2, while the
red one shows an undirected path of length 3. This figure is borrowed from Deleu et al. (2023).

The resulting loss is

∑
G→G′

[
log

R(G′, θ′)PB(G|G′)Pϕ(θ|G)

R(G, θ)Pϕ(G′|G)Pϕ(θ′|G′)

]2
(20)

which can be computed using an exploratory policy over transitions G→ G′ as in Deleu et al. (2022).

E. Related Work
We briefly review other work on Bayesian causal discovery using variational inference. Using Zheng et al. (2018) as the
foundation, Lorch et al. (2021) introduces a latent variable Z that is used to generate graphs from a probabilistic model
P (G|Z). It starts with some randomly initialized particles for Z and employs Stein variational gradient descent (SVGD;
Liu & Wang, 2016) to model P (Z|D), which is in turn used to model the Bayesian posterior over DAGs P (G|D) or over
full SCMs P (G, θ|D). One crucial weakness of this method is that once trained, it cannot sample new graphs since they
must fix the number of particles in advance. On the other hand, GFlowNets amortize all the computational costs during
training and can be used to generate an unlimited number of models from the posterior efficiently at test time. Another
weakness of Lorch et al. (2021) is that they only enforce the acyclicity constraint in a soft way via a penalty term in the prior
P (Z), which makes them prone to output invalid DAGs a small fraction of the time. In contrast, GFlowNets use a mask at
each transition to ensure that the DAGs are valid.

3For example, we can define Pϕ(θ|G, stop) = N (θ|µϕ(G),Σϕ(G)), where µϕ and Σϕ are outputs of a neural network that is part
of the GFlowNet.
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Cundy et al. (2021) learns a posterior over the full SCM. They assume a linear-Gaussian model class in order to parametrize
a given DAG as a weighted adjacency matrix W = PLPT , where L is a strictly lower triangular matrix and P is a
permutation matrix. They then learn the posterior P (P,L,Σ|D), where Σ is the noise covariance matrix as in §4.1. This
particular decomposition is their solution to guarantee acyclicity (since L corresponds to a canonical ordering of the nodes
and contains no cycles), something that Lorch et al. (2021) lacks, but entails the limiting parametric assumptions that this
work suffers from. In contrast, as seen in §4, GFlowNets solve both of these problems, and more.


