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Abstract

Short text clustering poses substantial chal-001
lenges due to the limited amount of information002
provided by each text sample. Previous efforts003
based on dense representations are still inade-004
quate as texts are not sufficiently segregated in005
the embedding space before clustering. Even006
though the state-of-the-art method utilizes con-007
trastive learning to boost performance, the pro-008
cess of summarizing all local tokens to form009
a sequence representation for the whole text010
includes noise that may obscure limited key011
information. We propose Mutual Information012
Maximization Framework for Short Text Clus-013
tering (MIST), which overcomes the informa-014
tion drown-out by including a mechanism to015
maximize the mutual information between rep-016
resentations on both sequence and token levels.017
Experimental results across eight standard short018
text datasets show that MIST outperforms the019
state-of-the-art method in terms of Accuracy or020
Normalized Mutual Information in most cases.021

1 Introduction022

Text clustering is a vital task for a wide range of023

downstream applications. It aims to partition texts024

into groups of similar categories in an unsuper-025

vised manner. The growth of social media, dis-026

cussion forums, and news aggregator websites has027

led to a large number of short-length texts being028

produced daily. Therefore, clustering these short029

texts has become crucial for many real-world ap-030

plications ranging from recommendation to text031

retrieval (Yohannes and Assabie, 2021).032

In short texts, the most informative words and033

phrases of the text content usually appear only once.034

This exacerbates the sparsity problem, posing an035

additional hurdle for clustering short texts. Tra-036

ditional methods, such as BoW and TF-IDF, pro-037

vide relatively sparse representation vectors with038

limited descriptive power. Hence, they perform039

poorly when clustered using a standard distance-040

based clustering algorithm (Hadifar et al., 2019).041

To address this problem, most recent methods 042

(Xu et al., 2017; Hadifar et al., 2019; Yin et al., 043

2021) utilize deep neural networks to map high- 044

dimensional data into meaningful dense represen- 045

tations in a lower-dimensional space and adopt a 046

multi-stage scheme in which the clustering process 047

is performed after learning feature representations. 048

However, the clustering performance of these meth- 049

ods remains unsatisfactory as texts still have a lot of 050

overlap among categories in the latent space before 051

clustering (Zhang et al., 2021). 052

Alternatively, an end-to-end clustering scheme 053

(Zhang et al., 2021; Xie et al., 2016) simultane- 054

ously optimizes representation learning and clus- 055

tering objectives. To achieve desirable outcomes, 056

Zhang et al. (2021) propose a method that employs 057

contrastive representation learning, which has been 058

successful in self-supervised learning and can help 059

spread out overlapping categories, in order to ob- 060

tain effective short text representations. 061

As shown in Zhang et al. (2021), improving rep- 062

resentation is crucial for enhancing the clustering 063

performance. Nevertheless, the contrastive learn- 064

ing method used in Zhang et al. (2021) only con- 065

siders sequence-level embeddings that are formed 066

by averaging all local tokens in each text instance, 067

including uninformative noise. This could gener- 068

ate a representation in which spare yet informative 069

terms used to describe the text content may be 070

obscured by noise, potentially affecting the cluster- 071

ing performance. We consider the preservation of 072

limited information in such a low signal-to-noise 073

environment as a vital feature for short-text clus- 074

tering. Addressing this gap will result in sequence 075

representations that are more semantically repre- 076

sentative and robust to noisy tokens in short texts. 077

In this paper, we introduce the Mutual 078

Information Maximization Framework for Short 079

Text Clustering (MIST), a new multi-stage ap- 080

proach. We aim to improve representation learning 081

stage for short text clustering using two contrastive 082
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learning objectives operating at the sequence and083

token levels. In particular, we apply the concept of084

mutual information (MI) maximization to facilitate085

us in comparing the semantic similarity between086

representations across the two hierarchical levels.087

The crux of our method lies in integrating the088

sequence-level and token-level MI maximization089

objectives concurrently for the following purposes.090

1. Learning Distinct Text Representation: The091

first learning objective maximizes MI between092

each positive pair at the sequence level;093

2. Informative Token Preservation: The second094

objective is designed to enforce each text rep-095

resentation at the sequence level to extract lo-096

cal information shared across all its individual097

tokens by directly maximizing MI between098

them. This way, we mitigate the obscurity-099

by-noise problem and preserve limited key100

information in a weak signal environment.101

The growth in the size of short text sequences102

may exacerbate a poor signal-to-noise ratio. To103

deal with short text samples with various signal-to-104

noise ratios, we additionally propose an adaptive105

weighting function that dynamically determines an106

appropriate ratio between the two objectives based107

on the length of the texts. To our knowledge, the108

method of combining two MI maximization objec-109

tives logically is presented for the first time. Note110

that the representations at different levels have a111

direct implication on one another, and the sequence112

representations are subsequently used in the clus-113

tering stage by applying the k-means algorithm.114

We conduct extensive experimental studies over115

the eight standard benchmarks. MIST improves116

the clustering performance in terms of Accuracy117

and Normalized Mutual Information in most cases118

compared to the current state-of-the-art while using119

an identical configuration across all datasets. This120

demonstrates the generalizability of our method.121

Our main contributions are outlined as follows:122

(1) We propose a novel representation learning tech-123

nique for short text clustering through the integra-124

tion of sequence-level and token-level MI maxi-125

mization objectives. (2) To balance the two objec-126

tives, we introduce an adaptive weighting func-127

tion. (3) Our ablation study provides a further128

demonstration of how different prioritization of129

the two MI objectives impacts the clustering per-130

formance across datasets of various text lengths;131

as text length increases, the preservation of limited132

local information becomes more significant.133

2 Related Work 134

Short Text Clustering. There are several strate- 135

gies to overcome the sparsity of short text represen- 136

tations. Some recent methods utilize a multi-stage 137

architecture that breaks down the clustering frame- 138

work into multiple stages; the clustering process 139

is performed after learning feature representations. 140

Xu et al. (2015, 2017) use a convolutional neural 141

network to learn non-biased representations by fit- 142

ting the output units with pretrained-binary codes 143

from a dimensionality reduction method. Hadi- 144

far et al. (2019) utilize Smooth Inverse Frequency 145

(Arora et al., 2017) to obtain weighted word embed- 146

dings. During training, they enrich discriminative 147

features by tuning an autoencoder with soft clus- 148

tering assignments. For the aforementioned works, 149

the k-means clustering is employed on the trained 150

representations to get the final clusters. 151

Another approach is to enhance the quality of 152

the initial clustering with an iterative classification 153

algorithm. Rakib et al. (2020) proposed the ECIC 154

algorithm to detect and remove outliers in each 155

iteration. Moreover, they make use of word em- 156

beddings by averaging them to represent each text, 157

and combine the ECIC algorithm with hierarchical 158

clustering. To boost the clustering quality further, 159

Pugachev and Burtsev (2021) exploit deep sentence 160

representations (Cer et al., 2018) and make modifi- 161

cations to the ECIC algorithm. 162

The recent state-of-the-art, SCCL (Zhang et al., 163

2021), leverages contrastive learning to encourage 164

greater separation between overlapped categories 165

in the original data space. By jointly optimizing a 166

contrastive loss and a clustering objective (Reimers 167

and Gurevych, 2019a), SCCL outperforms prior 168

works and yields cutting-edge results. In addition, 169

other constrastive learning methods have also been 170

experimented on short text clustering, such as using 171

entities for contrastive learning to provide supervi- 172

sion signals for their related sentences (Nishikawa 173

et al., 2022), and using virtual augmentation for 174

contrastive learning to circumvent the discrete na- 175

ture of language (Zhang et al., 2022). 176

Moreover, a new technique for short text cluster- 177

ing is presented in Zheng et al. (2023); it comprises 178

a pseudo-label generation module and a robust rep- 179

resentation learning module. The former generates 180

pseudo-labels, which are robust against the imbal- 181

ance in data, as the supervision for the latter. 182

Self-Supervised Learning. Self-supervision has 183

gained popularity and become a common technique 184
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Figure 1: (a) Representation Learning Stage Overview. MIST considers all pairs of original text xi, and its
augmented version xa

i as positive samples. MIST jointly optimizes the clustering objective LCluster, and the MI
objective LMI, which includes (b) a sequence-level MI maximization objective Iseq that maximize MI between
representations at the sequence level (xi and xa

i ), and (c) a token-level MI maximization objective Itok that directly
maximizes MI between a sequence representation(of both xi and xa

i ) and its tokens (fθ(xi) and fθ(x
a
i )).

in unsupervised representation learning for a vari-185

ety of downstream purposes(Chen et al., 2020; He186

et al., 2020; Caron et al., 2020; Grill et al., 2020).187

Learning meaningful representations by estimat-188

ing and maximizing MI is one of the prominent189

contrastive learning strategies. Its effectiveness190

has been demonstrated in both vision (Hjelm et al.,191

2019; Bachman et al., 2019; Sordoni et al., 2021)192

and text domains (Kong et al., 2020; Caron et al.,193

2020; Giorgi et al., 2021). Deep Infomax (DIM)194

(Hjelm et al., 2019) introduces global and local MI195

maximization objectives for learning image repre-196

sentations. However, each of these is implemented197

separately according to the task. The authors find198

success in optimizing local MI maximization ob-199

jective by maximizing MI between local features200

and global features. Inspired by local Deep In-201

foMax, Zhang et al. (2020) proposes a sentence202

representation learning method that maximizes the203

MI between the sentence-level representation and204

its CNN-based n-gram contextual dependencies.205

On the contrary, we integrate two MI maximiza-206

tion strategies concurrently to learn textual repre-207

sentations for various short text characteristics. We208

also introduce a generalized adaptive weighting209

function for effectively integrating both objectives.210

3 Proposed Method: MIST211

We propose a short text clustering framework con-212

sisting of two stages. First, we train a model us-213

ing feature representation learning objectives as214

illustrated in Figure 1. Second, we apply the k-215

means algorithm on the trained representations at216

inference time to obtain the final clusters. This217

investigation focuses on improving the first stage. 218

The main idea of our solution lies in the learn- 219

ing objective function L that takes into account an 220

MI objective LMI and an unsupervised clustering 221

objective LCluster, which is used to enforce the en- 222

coder to capture categorical structure and provide 223

a suitable representation space for clustering task. 224

L = βLMI + ηLCluster, (1) 225

where β and η represent the trade-off between LMI, 226

and LCluster. In our experiments, we set β to 1 and 227

η to 2 to provide more weight to LCluster. 228

In Section 3.1, we describe our main contri- 229

bution, the MI maximization learning procedure, 230

including (1) sequence-level and token-level MI 231

maximization objectives; (2) an adaptive weight- 232

ing function that is also incorporated to balance 233

them. Section 3.2 presents the auxiliary clustering 234

objective utilized in the learning stage. 235

3.1 Representation Learning with MI 236

Maximization 237

Short texts are challenging to cluster due to the 238

weak signal caused by noise. In the context of this 239

study, short texts are recognized as those that are 240

short in length and typically contain informal frag- 241

mental non-sentence structures, e.g., tweets and 242

news snippets. One strategy to improve the clus- 243

tering performance is to adopt contrastive learning 244

to construct an embedding space that minimizes 245

local invariance for each positive pair. However, 246

a standard contrastive learning procedure, which 247

is performed by contrasting between sequence rep- 248

resentations (global features), may allow noise to 249

drown out sparse but informative local-token em- 250

beddings (local features) when these tokens are 251

3



mean-pooled to form a sequence representation.252

Consequently, optimizing solely contrastive learn-253

ing at the sequence level is insufficient for learning254

representations in a weak signal environment.255

3.1.1 Hierarchical MI Objective256

In contrast to previous works on MI maximization257

learning, which utilized each MI objective sepa-258

rately, we incorporate the learning of both sequence259

and token representations into a single objective.260

This strategy offers two advantages: (1) it mitigates261

the problem of information drown-out by allowing262

individual tokens to participate in the MI maxi-263

mization process; (2) it supports weight adjustment264

between these two MI levels to handle short text265

inputs with various signal-to-noise ratios.266

Sequence-Token MI Maximization. According to267

Tian et al. (2020), contrastive learning is equivalent268

to maximizing the lower bound of MI between a269

sequence representation and its augmented version270

(positive). Intuitively, it reflects how much more271

precisely we can determine the representation given272

a positive compared to when we are unaware of the273

positive (Bachman et al., 2019). This principle274

enables us to incorporate an additional mechanism275

beyond the sequence-level objective.276

We build our framework based on the MI maxi-277

mization concept through the integration of two MI278

objectives. In this way, our model can effectively279

learn distinct short text representations using the280

sequence-level MI objective while simultaneously281

preserving local information using an additional282

objective. Specifically, the token-level MI objec-283

tive helps alleviate the information obscurity from284

noise by maximizing the MI between each local285

token and its sequence representation. As a result,286

the overall learning objective LMI consists of two287

components: (1) sequence-level MI maximization288

Iseq, and (2) token-level MI maximization Itok, op-289

erating concurrently in a sequence-token hierarchy290

as shown in Figure 1.291

LMI = −(1− λ)Iseq − λItok, (2)292

where λ corresponds to the balancing weight for293

Iseq and Itok objectives, which is defined in Eq.3.294

Adaptive Weighting Function. According to our295

analysis, short text inputs vary in length across dif-296

ferent datasets, ranging from fragmental sequences297

of 6 words to 28 words. Regarding signal-to-noise,298

larger sequences tend to contain a greater propor-299

tion of noise that does not provide useful seman-300

tics for the clustering step, whereas informative301

terms usually still appear once. This exacerbates 302

the information drown-out problem due to a poor 303

signal-to-noise ratio. 304

While other short text clustering techniques treat 305

all text samples in the same fashion, we argue that 306

different-length short texts should be handled dif- 307

ferently. We propose an MI maximization strategy 308

adaptable to text length so that our method can ef- 309

ficiently deal with short text instances containing 310

varying signal-to-noise ratios, without the need for 311

a hyperparameter search for any particular dataset. 312

Since larger sequences necessitate more effort to 313

preserve limited crucial information, we place more 314

weight on the Itok objective by encouraging λ to 315

be larger as the total number of tokens in the text 316

grows. Thus, our generalized adaptive weighting 317

function (Eq.3) is introduced to assign the weight 318

of λ depending on the average number of tokens in 319

text samples for each minibatch of size N : 320

λ = max

(
0,

⌊
0.1

N

N∑
i=1

li

⌉
− 1

)
× 0.1, (3) 321

where li denotes the number of tokens in a text xi 322

and it is directly proportional to the text length. 323

In the representation learning stage, we ran- 324

domly sample a minibatch Xo = xo1, ..., x
o
N of 325

N original texts with empirical probability distri- 326

bution P. Then, we generate an augmented ver- 327

sion for each text to obtain an augmented batch 328

Xa = xa1, ..., x
a
N , where Xo and Xa are of identi- 329

cal size. The encoder fθ, a pretrained transformer 330

network, encodes an input text x into a sequence 331

of contextualized token embeddings with length l, 332

fθ(x) := {f (i)
θ (x) ∈ Rd}li=1, where i is the token 333

index and d is the number of dimension. These to- 334

ken representations are then mean pooled m(fθ(x)) 335

to generate a sequence representation denoted as 336

g(x) = m(fθ(x)) ∈ Rd. 337

3.1.2 Computing the Sequence-level MI. 338

This learning objective, Iseq, aims to learn distinct 339

text representations through the maximization of 340

MI between the original sample and its augmented 341

version at the sequence level. By treating each 342

original text g(xo) and its augmentation g(xa) as 343

positive pairs, the Iseq objective is defined as: 344

Iseq =
1

N
(
∑
x∈X

ÎJSD(g(xo); g(xa))) (4) 345

We adopt a Jensen-Shannon estimator (Nowozin 346

et al., 2016; Hjelm et al., 2019) to estimate a lower 347

bound of MI, ÎJSD
θ : 348
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ÎJSD
θ (g(xo); g(xa)) :=

EP [−sp(−g(xo) · g(xa)).]
− EP×P̃ [sp(g(x

o) · g(x̃a))] ,
(5)349

where x̃a is a negative augmented textual input350

sampled from distribution P̃ = P, and sp(z) =351

log(1 + ez) is the softplus function.352

3.1.3 Computing the Token-level MI353

In contrast to Zhang et al. (2020), we constrain the354

sequence representation containing high MI with355

each token to preserve limited local information in356

short texts— by maximizing MI between the se-357

quence representation and its token representations358

directly— instead of its local contextual n-gram359

embeddings. In particular, we attempt to maximize360

the average MI between a sequence representation361

and all its token representations while minimizing362

MI with the tokens of other texts. We define Itok363

for each minibatch as364

Itok =
1

2N
(
∑

xo∈Xo

lxo∑
i=1

ÎJSD(g(xo); f
(i)
θ (xo)))

+
∑

xa∈Xa

lxa∑
i=1

ÎJSD(g(xa); f
(i)
θ (xa))).

(6)365

An estimated MI for each sequence g(x) and token366

representations f (i)
θ (x) is calculated as follows:367

ÎJSD
θ (g(x); f

(i)
θ (x)) :=

EP[−sp(−g(x) · f (i)
θ (x))]

− EP×P̃[sp(g(x) · f
(i)
θ (x̃))],

(7)368

where x̃ is a different text on the minibatch.369

3.2 Clustering with KL Divergence370

In addition to the MI objective, we employ LCluster371

during the learning stage to encourage the coales-372

cence of samples that are most likely to belong to373

the same cluster. We follow the clustering method374

proposed by Xie et al. (2016), which is also used375

by Zhang et al. (2021). This method involves com-376

puting soft cluster assignments and formulating the377

clustering objective using KL divergence.378

For the first step, we follow Xie et al. (2016)379

using the Student’s t-distribution Q to compute380

a soft cluster assignment for each text instance381

xj ∈ X and the centroid µk where µk ∈ {1, ...,K}382

for the dataset with K-clusters. Specifically, we383

compute the probability qjk of assigning a text xj384

to a cluster µk as follows.385

qjk =
(1 + ∥g(xj)− µk∥22 /α)

−α+1
2∑K

k′=1(1 + ∥g(xj)− µk′∥22 /α)
−α+1

2

(8)386

The α symbol represents the degree of freedom 387

of the distribution, and we set α to 1. Following 388

Zhang et al. (2021), each centroid µk is approxi- 389

mated by the linear clustering head cθ. 390

The second step is calculating an auxiliary tar- 391

get distribution P and using it to assist in refining 392

clusters’ centroids. The main idea is to give more 393

importance to text samples with high clustering 394

confidence. The probability pjk ∈ P is defined as 395

pjk =
q2jk/

∑
j′ qj′k∑

k′(q
2
jk′/

∑
j′ qj′k′)

. (9) 396

To match the soft cluster assignments to the target 397

distribution, the KL-divergence between probabil- 398

ity distributions P and Q is computed as follows. 399

400
ℓCj = KL [pj ||qj ] =

K∑
k=1

pjk log
pjk
qjk

(10) 401

We then formulate it as a clustering objective for 402

each minibatch of size N as 403

LCluster =

N∑
j=1

ℓCj /N. (11) 404

4 Experimental Setup 405

Datasets. Following previous works (Rakib et al., 406

2020; Zhang et al., 2021; Pugachev and Burtsev, 407

2021; Zheng et al., 2023), we conduct experiments 408

and evaluate the performance of MIST on the eight 409

standard short text clustering datasets. The descrip- 410

tions of the datasets are provided in Appendix A.1 411

Implementation. We implement our model in 412

PyTorch (Paszke et al., 2017) and use the 413

paraphrase-mpnet-base-v2 in Sentence Transform- 414

ers library (Reimers and Gurevych, 2019b) as the 415

encoder, with a linear clustering head following 416

Zhang et al. (2021). The encoder is trained for 417

1,200 iterations for all datasets and we use Adam 418

optimizer with a batch size of 256. The learning 419

rate of the encoder and the clustering head are set to 420

6e−6 and 6e−5, respectively. We follow Xu et al. 421

(2017) and Hadifar et al. (2019) by randomly select- 422

ing 10% of data as the validation set. Furthermore, 423

we follow Zhang et al. (2021) by not performing 424

any preprocessing operations on all eight datasets. 425

Although some of the existing works preprocess 426

the texts by removing symbols, stop words, and 427

punctuation, or converting them to lowercase. 428

In the training stage, the original and augmented 429

texts are taken into consideration as inputs for 430

the MI objective LMI, since we found that they 431

are more effective than employing two augmented 432
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AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

Reported in the References
STCC - - 77.09 63.16 51.13 49.03 43.62 38.05
Self-Train - - 77.1 56.7 59.8 54.8 54.8 47.1
SCA-AE 68.36 34.14 68.71 50.26 76.55 65.99 40.25 33.29
HAC-SD 81.84 54.57 82.69 63.76 64.80 59.48 40.13 33.51
RSTC 84.24 62.45 80.10 69.74 83.30 74.11 48.40 40.12
Reimplementation
SBERT (k-means) 83.44 57.76 73.02 59.77 76.79 75.12 41.30 36.93
SCCL 85.67 65.98 78.73 70.10 78.35 75.6 39.35 39.2
SCCL-Multi 85.6 66 78.6 70.17 78.3 76.22 39.2 33.7
Proposed Method
MIST 89.47∗ 70.25∗ 76.72 67.69 79.65 78.59∗ 39.15 34.66

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI

Reported in the references
STCC - - - - - - - -
Self-Train - - - - - - - -
SCA-AE 84.85 89.19 - - - - - -
HAC-SD 89.62 85.20 85.76 88.00 81.75 84.20 80.63 83.50
RSTC 75.20 87.35 83.27 93.15 72.27 87.39 79.32 89.40
Reimplementation
SBERT (k-means) 62.7 86.8 67.40 90.47 63.98 86.13 65.87 87.64
SCCL 68.3 88.59 78.9 92.92 69.9 87.9 73.55 89.33
SCCL-Multi 67.55 88.41 80.15 93.4 72.85 88.44 74.2 89.47
Proposed Method
MIST 91.75∗ 95.12∗ 90.63∗ 96.42∗ 78.8 89.31∗ 82.14∗ 90.86∗

Table 1: Experimental results on eight short text clustering datasets. ∗ denotes that MIST is significantly better
than both reimplemented versions of SCCL. In order to statistically compare models, we use the Almost Stochastic
Dominance test (Dror et al., 2019) with the significant level of 0.05.

pairs. We follow Zhang et al. (2021) and uti-433

lize Contextual Augmenter (Kobayashi, 2018; Ma,434

2019) to generate augmented samples for each text435

instance as it was demonstrated to produce the436

best outcomes in their study. To assess cluster-437

ing performance, we use the same standard met-438

rics—Accuracy (ACC) and Normalized Mutual In-439

formation (NMI)— as used in all competitive meth-440

ods 1. The results are averaged over five trials.441

5 Experimental Results442

We extensively compare the performance of MIST443

with state-of-the-art methods including STCC (Xu444

et al., 2017), Self-Train (Hadifar et al., 2019), HAC-445

SD (Rakib et al., 2020), SCA-AE (Yin et al., 2021),446

SCCL (Zhang et al., 2021), and RSTC (Zheng et al.,447

2023). In addition, this section provides an ablation448

study on our proposed method.449

5.1 Main Results450

As shown in Table 1, MIST achieves state-of-the-451

art results in terms of Accuracy and NMI for most452

1The Accuracy is calculated via the Hungarian algorithm,
and NMI measures the information shared between the ground
truth assignments and the predicted assignments.

cases on the eight benchmark datasets. In contrast, 453

HAC-SD and Self-Train attain the best results in 454

only two cases, whereas SCCL and RSTC produce 455

the best outcome in only one case. Note that, the 456

performances of MIST are collected using the iden- 457

tical setting and training iteration across all datasets 458

to demonstrate generalizability. As a result, the 459

need for a specific configuration for each dataset is 460

avoided, enabling a reduction in model overhead. 461

For datasets with a small number of clusters in 462

the upper section of the table, MIST shows supe- 463

rior performances on AgNews for both metrics and 464

StackOverflow in terms of NMI. Notably, there are 465

two datasets that MIST is outperformed by com- 466

petitors for both ACC and NMI, i.e., Biomedical 467

and SearchSnippets. For Biomedical, Hadifar et al. 468

(2019) dominates the competitive methods. They 469

achieve the best results by using an in-domain pre- 470

trained model to process this dataset, whereas the 471

dataset used to pretrain our encoder and other re- 472

cent methods is a general-domain one. 473

For SearchSnippets, we observe that most of the 474

text samples are collections of keywords and termi- 475

nologies rather than coherent sentence structures. 476

Moreover, SearchSnippets samples are medium- 477
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length fragmental sequences; as a result, the token-478

level MI maximization objective is more empha-479

sized due to the length of the texts. These two480

factors exert a direct impact on the token-level MI481

maximization objective while it is being executed482

in the learning stage. Since the token vectors are483

contextualized representations, forcing the model484

to learn from incoherent contextual signals can be485

detrimental to the overall sequence representations,486

which are subsequently used in the clustering stage.487

This can be more problematic when the same key-488

words appear in multiple clusters.489

As demonstrated in the lower section of the ta-490

ble, MIST obtains the best outcomes on most of the491

datasets containing a large number of clusters. Due492

to the fine-grained categorization of these datasets,493

texts in different clusters may share similar content494

or keywords, hence inducing ambiguity. This am-495

biguity in textual data and ground truths leads to496

erroneous predictions. Moreover, another cause of497

inaccuracy is when the text content in one cluster498

is a subtopic of another. GoogleNews-T, which499

only contains news headlines that are relatively500

short with few keywords, presents an additional501

challenge for clustering these extremely short texts502

into a large number of clusters. In terms of Accu-503

racy, our method achieves a result comparable to504

that of Rakib et al. (2020) on GoogleNews-T. We505

conjecture that hierarchical clustering and outlier506

removal algorithms employed in their method can507

better deal with the hierarchical nature of data in508

this scenario. However, MIST outperforms Rakib509

et al. (2020) in terms of NMI on this dataset.510

Although GoogleNews-S and GoogleNews-TS511

share the same challenges as GoogleNews-T, clus-512

tering texts in both datasets is more accurate due513

to the benefit of additional context and informa-514

tion in the texts themselves. As GoogleNews-S515

contains snippets of news, and GoogleNews-TS516

includes both titles and snippets. Consequently,517

MIST achieves superior clustering performances518

on both datasets for both matrices.519

Furthermore, we thoroughly compare MIST with520

SCCL, as this current state-of-the-art model also521

utilizes contrastive learning and aims to improve522

the effectiveness of representations for short text523

clustering, which is similar to our contribution, by524

reproducing SCCL in two versions for a fair com-525

parison: an end-to-end (original) version, and a526

multi-stage version. For the latter, we apply the527

k-means algorithm on the trained representations to528

get the final clusters, referred to as SCCL-Multi. In 529

particular, SCCL-Multi is analogous to our frame- 530

work, except for the representation learning tech- 531

nique. The reimplemented versions use the same 532

backbone and augmentation setting as our model. 533

The comparative results show that MIST outper- 534

forms SCCL for both versions in most cases. More 535

specifically, the superior performances of MIST 536

compared to SCCL-Multi demonstrate that our pro- 537

posed representation learning procedure improves 538

short text representations more effectively than the 539

standard contrastive learning objective in the SCCL 540

framework. MIST also consistently surpasses both 541

reimplemented versions of SCCL in other settings, 542

including settings indicated in their publication in 543

most cases, as shown in Appendix A.6. 544

5.2 Ablation Study 545

To better understand the effect of the various model 546

modifications on the clustering performance and 547

the analysis versus text lengths, we conducted addi- 548

tional experiments by varying the trade-off between 549

components in our training procedure. 550

5.2.1 The Impact of Sequence- and Token-MI 551

Maximization Objectives 552

This experiment studies the impact of the ratio be- 553

tween two MI maximization objectives on the clus- 554

tering performance and the importance of incorpo- 555

rating both objectives in our representation learning 556

procedure. We report and analyze the performance 557

of our model using four different values of λ. Par- 558

ticularly, λ denotes the weight of token-level MI 559

maximization objectives, Itok, and 1-λ represents 560

the weight of sequence-level MI objectives, Iseq. 561

We consider the following settings: (1) MIST-seq: 562

our model with a sequence-only MI maximization 563

objective (λ = 0), (2) MIST-tok: our model with 564

a token-only MI maximization objective (λ = 1), 565

(3) MIST-equal: our model with both objectives 566

are given an equivalent weight (λ = 0.5), and (4) 567

MIST: our proposed version, i.e., our model with 568

the λ determined by the adaptive weighting func- 569

tion, Eq.3, varying according to input text length. 570

As shown in Figure 2, MIST with the value of λ 571

set by Eq.3 yields the best performances in terms 572

of Accuracy for most datasets and shows perfor- 573

mance gains compared to other settings. We also 574

discovered that NMI tends to follow the same trend 575

as Accuracy, as presented in Appendix A.2. This 576

demonstrates that the length of short texts has a 577

great impact on determining the appropriate ratio 578

7



Figure 2: Accuracy for six different settings including four different weighting ratios between sequence-level and
token-level MI maximization objectives. As well as, a setting where the clustering objective is absent (η = 0), and a
setting where the MI objective is absent (β = 0). Note that when we set β to 0, λ has no effect.

between the two MI objectives, i.e. the optimal579

ratio varies by input samples. By utilizing the pro-580

posed adaptive weighting function, MIST can per-581

form effectively across various datasets.582

For medium or large fragmental sequences, such583

as GoogleNews-TS, MIST produces the best out-584

comes when the weight λ calculated by Eq.3—the585

value of λ is greater than 0. Remarkably, MIST-586

equal and MIST-tok always outperform MIST-seq587

in this situation. This shows that only the sequence-588

level objective is inadequate when dealing with589

lengthy texts, as larger fragments usually have a590

higher signal-to-noise ratio. However, this issue591

can be mitigated by performing the token-level MI592

maximization during the learning stage.593

For small fragment datasets, such as Tweet, text594

samples are relatively short and contain less signal-595

to-noise problem. In this scenario, the weight λ596

is equal to 0 based on Eq.3, i.e., MIST is identi-597

cal to MIST-seq, which outperforms all other set-598

tings. MIST-tok and MIST-equal may encourage599

the encoder to learn text representations by placing600

emphasis on keywords that could also appear in601

multiple clusters, causing ambiguity and error in602

clustering. Hence, the token MI objective provides603

advantages when used in a suitable weight.604

In addition, we investigate the situation in which605

the MI objective is removed (β = 0), MIST-noMI.606

The ablation results show significant drops in the607

performance on all datasets. This implies that the608

MI objective is essential for performance gain.609

5.2.2 The Impact of the Clustering Objective610

As shown in Figure 2, the clustering performance611

drops drastically when we remove the clustering612

objective (η = 0) during learning representations,613

MIST-noClstr. This demonstrates that the categori-614

cal structure imposed by jointly optimizing the clus-615

tering objective with the MI objective is a crucial616

component that boosts performance. Furthermore,617

we observe that as the weight of the clustering 618

objective (η) increases, the performances continu- 619

ously improve until η reaches its saturation point at 620

2. In Figure 3, the average Accuracy and NMI for 621

all eight datasets improve as the clustering weight 622

is steadily increased until it reaches 2. 623

Figure 3: The average clustering performance across
eight datasets based on the clustering objective strength.

6 Conclusion 624

We propose a novel multi-stage short text clustering 625

framework that mainly focuses on improving the 626

representation learning stage. Our adaptive learn- 627

ing approach integrates two MI maximization ob- 628

jectives operating at the sequence and token levels 629

to produce effective representations. This mech- 630

anism allows us to simultaneously learn distinct 631

text representations while maintaining limited in- 632

formation in a weak signal environment. In addi- 633

tion, we introduce a generalized adaptive weight- 634

ing function that considers the length of the texts 635

to determine an optimal ratio between the two MI 636

maximization objectives during the learning stage. 637

MIST outperforms competitive methods in most 638

cases in terms of Accuracy and NMI across eight 639

benchmark datasets. This demonstrates that uti- 640

lizing the MI maximization strategy for learning 641

representation in a constrained environment could 642

potentially be a promising tactic. Further study 643

would be worthwhile since it might enhance the 644

quality of textual representations for other tasks. 645
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Limitations646

This section discusses the limitations of our pro-647

posed framework. Firstly, the encoder of our model648

is pretrained using general domain data. Hence,649

the performance drops when our model encounters650

short texts in a specific domain, such as Biomedical.651

Furthermore, short text inputs containing only of652

keywords or incoherent text sequences hinder the653

performance of our representation learning method.654

In particular, when dealing with lengthy texts that655

lack coherence, optimizing both token-level MI656

and sequence-level MI maximization forces a se-657

quence representation to resemble each individual658

token embedding. The token-level MI maximiza-659

tion objective provides no further improvement in660

this case. This issue is exacerbated when some661

terms are shared across clusters. This constraint662

should be taken into account in future research.663

Another limitation involving the general oper-664

ation of contrastive learning is that the selection665

of augmented samples directly affects the cluster-666

ing performance. Notably, the best augmentation667

strategy is still a subject of discussion and needs668

more exploration. A study in Zhang et al. (2021)669

and our own experiments with various augmenta-670

tion settings show that varying an augmenter as671

well as adjusting the configuration parameters both672

affect the performance. Additionally, even if the673

augmenter and the parameters used to generate674

augmented texts are exactly the same, there is a675

possibility that the outcomes from the two trials676

may vary, adding a variance to the performance677

results.678
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A Appendices908

A.1 Datasets909

Following previous works (Rakib et al., 2020;910

Zhang et al., 2021; Pugachev and Burtsev, 2021;911

Zheng et al., 2023), we conduct experiments and as-912

sess the performance of our model on eight English913

benchmark datasets for short text clustering. Table914

2 presents the important statistics of all datasets.915

• AgNews: a subset of the English news titles916

dataset (Zhang and LeCun, 2015) in 4 differ-917

ent topics, with 2,000 samples chosen ran-918

domly from each topic by Rakib et al. (2020).919

Dataset NCluster NDoc NWord

AgNews 4 8,000 23
SearchSnippets 8 12,340 18

Biomedical 20 20,000 13
StackOverflow 20 20,000 8

Tweet 89 2,472 8
Googlenews-TS 152 11,109 28
Googlenews-T 152 11,109 6
Googlenews-S 152 11,109 22

Table 2: Dataset statistics. NCluster: number of clus-
ters; NDoc: number of short text documents; NWord :
average number of words in each document

• SearchSnippets: a dataset consisting of 920

12,340 web search snippets from 8 different 921

categories (Phan et al., 2008). 922

• Biomedical: 20,000 paper titles, from 20 dif- 923

ferent Medical Subject Headings (MeSH), ran- 924

domly selected by Xu et al. (2017) from the 925

PubMed data distributed by BioASQ3. 926

• StackOverflow: challenge data published on 927

Kaggle and randomly chosen by Xu et al. 928

(2017), comprising 20,000 questions from 929

Stack Overflow related to 20 distinct tags. 930

• Tweet: a dataset comprising 2,472 tweets with 931

89 groups (Yin and Wang, 2016). 932

• GoogleNews: GoogleNews-TS is a collection 933

of titles and text snippets from 11,109 news 934

articles covering 152 events (Yin and Wang, 935

2016). Only titles and snippet of each news ar- 936

ticle were extracted to produce GoogleNews- 937

T and GoogleNews-S, respectively. 938

We spend up to 14 GPU hours on a Tesla V100 939

32G GPU to complete the training on all datasets 940

for each MIST model’s configuration. 941

A.2 The Effects of Sequence- and Token-MI 942

Maximization Objectives on NMI 943

Figure 4 shows the impact of the different ratios 944

between the two MI maximization objectives on 945

the clustering performance in terms of NMI across 946

eight short text datasets. It follows the same trend 947

as Accuracy as discussed in Section 5.2.1. MIST 948

with our proposed generalized adaptive weighting 949

function obtains the best clustering performance in 950

terms of NMI for most datasets. 951

A.3 Positive Pairs in Contrastive Learning 952
It is a common practice in contrastive learning 953

frameworks to only consider augmented texts as 954

inputs, excluding original samples. However, we 955
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Figure 4: NMI for six different settings including four different weighting ratios between sequence-level and
token-level MI maximization objectives. As well as, a setting where a clustering loss is absent (η = 0), and a setting
where an MI loss is absent (β = 0). Note that when we set β to 0, λ has no effect.

AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ η = 0 56.96 33.40 50.30 36.30 64.40 58.80 43.26 34.55
MIST w/ η = 1 81.40 57.39 70.99 56.90 76.41 71.92 47.66 40.34
MIST w/ η = 2 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66

Tweet GoogleNewsTS GoogleNewsT GoogleNewsS
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ η = 0 56.27 82.64 68.89 89.59 62.85 85.28 65.74 86.16
MIST w/ η = 1 64.46 86.27 74.86 91.89 66.91 87.04 71.98 88.58
MIST w/ η = 2 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79

Table 3: The clustering results of MIST on three different weights of the clustering objective, η.

adopt a different input scheme. We discovered that956

feeding both original and augmented samples into957

our representation learning framework (as shown in958

Figure 1) yields better clustering results than exclu-959

sively taking two augmented texts as an input pair.960

One plausible reason is that when augmented texts961

are generated, the augmenter replaces some key-962

words in the original texts with new words. Short963

texts inherently have few keywords; hence, the964

absence of crucial words required for text catego-965

rization impacts clustering performance.966

A.4 The Analysis of the Clustering Objective967

As discussed in Section 5.2.2, the clustering per-968

formance is substantially affected by the weight969

of the clustering objective. Table 3 presents the970

performance of MIST across eight datasets in three971

situations, i.e., the coefficient of the clustering ob-972

jective, η, in Eq.1 is assigned to 0, 1, and 2. The973

optimal results for the majority in terms of ACC974

and NMI are produced when η is set to 2.975

A.5 Exploration of Data Augmentations976

According to Zhang et al. (2021), which has studied977

the impacts of data augmentation in extensive de-978

tails. The Contextual Augmenter has shown that it979

substantially outperforms other augmenters in their980

study. They hypothesized that since both the Con-981

textual Augmenter and their encoder use the pre- 982

trained transformers as the backbones, this allows 983

the Contextual Augmenter to produce augmenta- 984

tion texts that are more informative and beneficial 985

to their framework. We also adopted a pretrained 986

transformer as the encoder in our framework and 987

we observed that the experimental results followed 988

the same trend as Zhang et al. (2021). We thus 989

employ this augmenter in our experiments. 990

In this section, we investigate the impact of the 991

Contextual Augmenter configurations in terms of 992

masked language models and word substitution ra- 993

tios. As shown in Table 4, we found that MIST 994

using augmented texts generated from the BERT 995

model with 20% substitution rate yields the best 996

overall performance. Interestingly, MIST with aug- 997

mented texts produced by other masked language 998

models with a 20% substitution rate also yields 999

outcomes close to those of BERT with the same 1000

substitution rate. 1001

A.6 SCCL Reimplementation 1002

To thoroughly compare the performance of our 1003

proposed representation learning strategy against 1004

the standard contrastive learning method in SCCL 1005

(Zhang et al., 2021), we reproduced SCCL in both 1006

an end-to-end version (SCCL) and a multiple-stage 1007
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AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ BERT 10% 87.74 66.99 75.98 67.71 77.78 76.42 37.51 33.97
MIST w/ BERT 20% 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66
MIST w/ BERT 30% 86.33 66.09 81.46 67.71 73.60 71.55 39.79 34.61
MIST w/ RoBERTa 10% 87.51 66.81 75.64 67.11 77.84 76.50 38.61 35.11
MIST w/ RoBERTa 20% 88.85 69.12 76.21 68.52 77.74 76.41 37.17 31.62
MIST w/ RoBERTa 30% 86.43 66.4 73.77 65.72 77.76 77.03 29.48 27.38
MIST w/ DistilBERT 10% 87.22 66.44 74.96 65.89 77.67 76.30 38.29 34.29
MIST w/ DistilBERT 20% 89.42 70.26 75.74 67.85 77.72 77.05 38.29 32.31
MIST w/ DistilBERT 30% 87.96 67.66 74.23 64.11 77.67 76.34 38.83 34.63

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ BERT 10% 88.76 93.04 86.65 94.76 72.41 87.99 76.56 89.3
MIST w/ BERT 20% 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79
MIST w/ BERT 30% 90.07 94.14 89.28 94.98 75.63 88.55 80.74 89.99
MIST w/ RoBERTa 10% 88.18 92.64 85.85 94.48 73.68 88.00 77.89 89.52
MIST w/ RoBERTa 20% 90.97 94.67 90.10 95.35 74.61 88.27 77.62 90.00
MIST w/ RoBERTa 30% 83.40 95.15 88.29 96.20 70.27 88.24 78.43 89.82
MIST w/ DistillBERT 10% 85.48 92.24 85.15 94.42 75.89 88.51 77.55 89.69
MIST w/ DistillBERT 20% 91.24 94.99 90.16 95.43 74.14 88.53 82.54 90.69
MIST w/ DistillBERT 30% 86.56 92.50 85.85 94.46 75.57 88.50 77.18 89.52

Table 4: The clustering performance of MIST when feeding augmented texts generated by Contextual Augmenter
as inputs across nine different configurations.

version (SCCL-Multi). For the latter version, we1008

apply the k-means algorithm on top of SCCL rep-1009

resentations to make their pipeline identical to our1010

framework except for the representation learning1011

method. To be more specific, in this study, we1012

report the experimental results of both reimple-1013

mented versions of SCCL using the backbone iden-1014

tified in the experimental setup of their publica-1015

tion. Moreover, SCCL considers the Contextual1016

Augmenter with three configurations by setting the1017

word substitution ratio of each text instance to 10%,1018

20%, and 30%. However, their study does not1019

identify which setting produces the best outcomes.1020

Therefore, we evaluate both reproduced versions1021

of SCCL using three alternative masked language1022

models: BERT-base, RoBERTa, and DistilBERT,1023

with the aforementioned word substitution ratios1024

for augmented pair generation to cover all scenarios1025

reported in their study.1026

Table 5 reports the clustering performance of1027

SCCL in both reproduced versions and in all con-1028

figurations mentioned above. The reported perfor-1029

mances show that despite the reproduced SCCL1030

employing the configuration specified in their ref-1031

erence paper, their outcomes are still inferior to1032

MIST in most cases. More specifically, MIST with1033

the setup described in Section 4 outperforms SCCL1034

and SCCL-Multi with the best parameter settings in1035

the majority of cases. The fact that MIST produces1036

better clustering performance than SCCL-Multi in1037

this study emphasizes that our proposed represen- 1038

tation learning technique improves short text repre- 1039

sentations more effectively than the standard con- 1040

trastive learning objective in the SCCL framework 1041

for short text clustering task. This demonstrates 1042

the success and efficiency of our proposed learn- 1043

ing method even when compared with SCCL in 1044

various settings. Note that we collected the experi- 1045

mental results of reimplemented versions of SCCL 1046

from the best iteration for each dataset throughout 1047

3000 iterations instead of using a stopping criterion, 1048

which is not indicated in their publication. Besides, 1049

the performances in their publication are reported 1050

from multiple settings. 1051

Interestingly, the percentage of word replace- 1052

ment and masked language models employed 1053

for augmented text generation have an impact 1054

on the clustering performance. The best setting 1055

for these two parameters varies across different 1056

datasets. However, the performances of our pro- 1057

posed method presented in Table 1 are reported by 1058

using only a single setting for all datasets. 1059
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AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

SCCL (in the reference paper) 88.20 68.20 85.20 71.10 75.50 74.50 46.20 41.50
SCCL w/ BERT 10% 87.20 66.94 83.70 70.05 71.40 71.28 46.00 40.06
SCCL-Multi w/ BERT 10% 87.2 66.94 83.40 69.88 77.30 73.76 46.00 40.13
SCCL w/ BERT 20% 87.10 66.91 84.40 69.58 64.20 56.23 46.40 40.39
SCCL-Multi w/ BERT 20% 87.10 66.80 83.60 69.28 60.02 52.22 45.50 40.07
SCCL w/ BERT 30% 87.50 67.46 83.70 68.54 60.70 52.18 42.40 38.14
SCCL-Multi w/ BERT 30% 87.50 67.45 82.60 66.45 60.90 52.29 42.30 37.95
SCCL w/ RoBERTa 10% 87.00 66.57 84.50 70.21 62.10 54.26 28.50 20.35
SCCL-Multi w/ RoBERTa 10% 87.00 66.55 84.10 70.14 61.40 53.05 28.50 20.34
SCCL w/ RoBERTa 20% 85.20 64.20 62.60 41.66 60.70 52.26 39.60 32.66
SCCL-Multi w/ RoBERTa 20% 85.10 64.24 72.00 51.23 60.09 52.31 38.40 38.40
SCCL w/ RoBERTa 30% 84.00 62.24 30.70 10.07 60.70 52.28 39.10 32.77
SCCL-Multi w/ RoBERTa 30% 84.00 62.26 30.70 10.05 60.90 52.44 39.50 32.63
SCCL w/ DistilBERT 10% 87.30 67.16 84.70 70.79 70.20 69.49 46.10 39.87
SCCL-Multi w/ DistilBERT 10% 87.30 67.16 84.50 70.64 72.10 68.20 46.20 39.92
SCCL w/ DistilBERT 20% 86.80 65.87 84.70 70.62 71.40 69.38 46.30 39.94
SCCL-Multi w/ DistilBERT 20% 86.80 65.87 84.20 70.45 72.20 70.84 46.40 40.01
SCCL w/ DistilBERT 30% 87.20 66.77 85.00 71.63 70.80 70.04 46.30 40.49
SCCL-Multi w/ DistilBERT 30% 87.20 66.75 84.60 71.35 76.50 72.57 46.40 40.58

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI

SCCL (in the reference paper) 78.20 89.20 89.80 94.90 75.80 88.30 83.10 90.40
SCCL w/ BERT 10% 56.80 81.91 70.10 89.49 62.50 81.53 69.00 86.29
SCCL-Multi w/ BERT 10% 75.30 88.39 86.70 93.95 76.30 88.25 81.00 89.82
SCCL w/ BERT 20% 57.10 82.54 75.60 90.99 63.00 81.72 67.80 85.97
SCCL-Multi w/ BERT 20% 78.20 89.41 88.70 94.70 76.20 87.97 81.10 89.60
SCCL w/ BERT 30% 56.6 82.23 74.2 90.83 61.30 81.20 64.9 89.78
SCCL-Multi w/ BERT 30% 78.80 89.58 89.90 94.91 75.60 87.88 82.10 89.77
SCCL w/ RoBERTa 10% 56.00 79.89 73.60 90.46 55.60 78.08 65.50 85.26
SCCL-Multi w/ RoBERTa 10% 71.10 85.86 86.60 93.94 56.90 78.52 80.50 89.50
SCCL w/ RoBERTa 20% 56.80 79.56 74.90 90.37 55.60 78.08 66.90 85.38
SCCL-Multi w/ RoBERTa 20% 74.20 86.61 88.10 94.27 58.40 79.28 81.30 89.87
SCCL w/ RoBERTa 30% 53.80 78.47 71.80 71.80 55.60 78.42 65.30 83.99
SCCL-Multi w/ RoBERTa 30% 63.60 76.98 85.20 93.53 56.60 78.42 78.00 88.14
SCCL w/ DistilBERT 10% 56.10 80.87 72.70 90.03 61.40 80.94 69.60 85.81
SCCL-Multi w/ DistilBERT 10% 78.80 88.91 87.70 94.25 74.30 87.78 79.70 89.20
SCCL w/ DistilBERT 20% 56.40 80.28 71.70 90.04 61.30 81.19 67.70 86.02
SCCL-Multi w/ DistilBERT 20% 77.10 88.61 86.50 94.03 75.10 87.51 79.50 89.70
SCCL w/ DistilBERT 30% 56.60 81.65 72.10 90.18 62.00 81.09 66.50 85.48
SCCL-Multi w/ DistilBERT 30% 76.00 88.39 88.50 94.18 75.80 87.60 79.10 89.01

Table 5: The clustering performances of the reimplemented SCCL and SCCL-Multi with nine different configurations
for Contextual Augmenter. These configurations are obtained by setting the word substitution ratio of each text
instance to 10% , 20%, and 30%, as well as using three alternative masked language models: BERT-base, RoBERTa,
and DistilBERT.
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