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Abstract

Deep learning now enables automatic and robust extraction of cardiac function descriptors
from echocardiographic sequences, such as ejection fraction or strain. These descriptors
provide fine-grained information that physicians consider, in conjunction with global vari-
ables from the clinical record, to assess patients’ condition. Drawing on novel transformer
models applied to tabular data (e.g. variables from electronic health records), we propose a
method that considers descriptors extracted from medical records and echocardiograms to
learn a representation of hypertension, a difficult-to-characterize and highly prevalent car-
diovascular pathology. Our method first embeds each descriptor separately using modality-
specific approaches. These embeddings are fed as tokens to a transformer encoder, which
combines them into a unified representation of the patient to predict a clinical rating. This
task is formulated as an ordinal classification to enforce a pathological continuum in the
representation space. We observe trends along this continuum for a cohort of 239 hyperten-
sive patients to describe the gradual effects of hypertension on cardiac function descriptors.
Our analysis shows that i) pretrained weights from a foundation model allow to reach good
performance (83% accuracy) even with limited data (< 200 training samples), ii) trends
across the population are reproducible between trainings, and iii) for descriptors known to
interact with hypertension, patterns are consistent with prior physiological knowledge.

Keywords: Multimodal, contrastive learning, transformer, foundation model, cardiac ul-
trasound, health records, hypertension

1. Introduction

When assessing patients, the typical clinical workflow is to integrate complementary data
from various sources such as medical images and Electronic Health Records (EHRs) (Zhou
et al., 2023; Hager et al., 2023) into an overall picture of the patient’s status. Such a work-
flow is especially relevant for conditions with a complex pathophysiology, like hypertension
(HT) (Mancia et al., 2023). However, the fusion of heterogeneous data makes it challenging
to properly assess HT using machine and deep learning methods.
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In this paper, a summary of (Painchaud et al., 2024), we use transformers to combine
EHR data and clinical parameters extracted from 2D+time echocardiographic sequences
to characterize HT. We base our method on the tabular representation of EHR data, with
a branch to integrate image data. We also formulate a supervised finetuning objective to
predict a position along a pathological continuum given only a few target classes.

2. Method

Figure 1 illustrates our pipeline. Echocardiographic sequences are segmented with a state-
of-the-art model (1a) (Ling et al., 2023) and descriptors are extracted from these segmenta-
tions (1b). In parallel, health records are structured into categorical and scalar descriptors
(2). These descriptors are embedded using modality-specific methods for time-series w.r.t.
the cardiac cycle (3a) (Pellegrini et al., 2023) and tabular data (3b) (Gorishniy et al., 2021).
The embeddings are fed to a transformer encoder (4a) that uses pretrained weights from
the XTab foundation model (Zhu et al., 2023). From the encoder’s latent space, a classifi-
cation head predicts the patient stratification (5), with the constraint that the probability
distribution over the classes must be unimodal to model the order of the classes (Beckham
and Pal, 2017). The latent space can then be visualized and analyzed w.r.t. the predicted
stratification (6) (cf. Figure 2).
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Figure 1: Schematic representation of our multimodal fusion pipeline, from ultrasound im-
ages and EHRs to patient stratification.

3. Results and Discussion

We tested our method on a private dataset of echocardiograms — Apical 4 Chamber (A4C)
and Apical 2 Chamber (A2C) views — and EHR data — 53 numerical and categorical
variables — from 239 hypertensive patients. The target HT severity descriptor corresponds
to three degrees of hypertension assessed by a cardiologist.

We performed ablation studies to evaluate configurations of pretrained weights and input
data. Table 1(a) shows that using the XTab foundation model’s weights drastically improves
performance (around 20%) over random initialization and contrastive pretraining (Bahri
et al., 2022; Onishi and Meguro, 2023) on our private dataset. Table 1(b) also highlights
that our method scales well given more input descriptors, with accuracy plateauing when
new data is not discriminative. This sets our method apart from similar analyses that filter
redundant or noisy features beforehand (Zheng et al., 2020).
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Table 1: Ablation study of the transformer encoder pipeline. Each result corresponds to
the mean ± standard deviation over 10 trainings with the same configuration.

(a) Transformer encoder’s weight initialization

Weights init. random pretrained xtab

Accuracy
(%)

63.5
± 6.2

56.9
± 7.2

83.3
± 2.8

(b) Descriptors provided as input

# input desc. 27 64 78

Accuracy
(%)

74.4
± 3.8

83.5
± 4.8

83.3
± 2.8

We also evaluate the clinical relevance of the representation. Figure 2(a) depicts the la-
tent space, where the patients are monotonically distributed w.r.t. HT severity. Figure 2(b)
plots average global longitudinal strain (GLS) curves, a standard descriptor of the heart’s
contraction over time (Amzulescu et al., 2019), across bins of patients with similar predicted
stratification. Differences between curves, like 1 differing from 2 by a steeper slope between
0.6–0.8 on the x-axis, represent subtle alterations of cardiac deformation that future clinical
studies could investigate as possible early biomarkers of HT.

(a) 2D embedding of the 192D latent space,
using PacMAP (Wang et al., 2021).
Each point is a patient, colored w.r.t. to
the predicted stratification.

(b) Average curves of Global Longitudinal
Strain (GLS), describing cardiac defor-
mation, over bins of patients grouped by
predicted stratification.

Figure 2: Visualization and analysis of the HT representation learned by the model.

4. Conclusion

We proposed a framework for fusing tabular data and 2D+time echocardiograms to learn a
stratification of patients, given limited data with categorical labels. The framework is de-
signed for difficult-to-characterize pathologies since it combines complementary data from
multiple sources and can pinpoint the patients along an interpretable pathological contin-
uum. We showed that our continuous stratification allows insights into how hypertension
can subtly affect clinically-relevant cardiac function descriptors. Our pipeline could help
clinicians study early alterations of cardiac biomarkers, contributing to improve our under-
standing of complex pathologies.
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