
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

FAST AGNOSTIC LEARNERS IN THE PLANE

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the computational efficiency of agnostic learning for several fundamental
geometric concept classes in the plane. While the sample complexity of agnostic learning
is well understood, its time complexity has received much less attention. We study the
class of triangles and, more generally, the class of convex polygons with k vertices for
small k, as well as the class of convex sets in a square. We present a proper agnostic
learner for the class of triangles that has optimal sample complexity and runs in time
Õ(ϵ−6), improving on the algorithm of Dobkin and Gunopulos (COLT ‘95) that runs
in time Õ(ϵ−10). For 4-gons and 5-gons, we improve the running time from O(ϵ−12),
achieved by Fischer and Kwek (eCOLT ‘96), to Õ(ϵ−8) and Õ(ϵ−10), respectively.
We also design a proper agnostic learner for convex sets under the uniform distribution
over a square with running time Õ(ϵ−5), improving on the previous Õ(ϵ−8) bound at
the cost of slightly higher sample complexity. Notably, agnostic learning of convex sets in
[0, 1]2 under general distributions is impossible because this concept class has infinite VC-
dimension. Our agnostic learners use data structures and algorithms from computational
geometry and their analysis relies on tools from geometry and probabilistic combinatorics.
Because our learners are proper, they yield tolerant property testers with matching running
times. Our results raise a fundamental question of whether a gap between sample and time
complexity is inherent for agnostic learning of these and other natural concept classes.

1 INTRODUCTION

The agnostic learning framework, introduced by Haussler (1992) and Kearns et al. (1994), elegantly models
learning from noisy data. It has had a tremendous impact, driving advances in both theory and practice.
Theoretically, it has deepened our understanding of learning theory, data compression, computational com-
plexity, property testing, and more. Practically, it underpins robust algorithms for image recognition, signal
processing, adversarial learning, and beyond. While the sample complexity of agnostic learning is well
understood, its time complexity remains underexplored.

Halfspaces are among the most fundamental concept classes in theory and practice, but their limited expres-
siveness has led to interest in richer models. For instance, Kantchelian et al. (2014) showed that convex
polytope classifiers outperform hyperplanes in both speed and accuracy. However, expressive classes in
high dimensions face a major obstacle: learning is computationally hard, even for halfspaces. While PAC
learning of d-dimensional halfspaces is efficient in the realizable setting, it is NP-hard agnostically (Gu-
ruswami & Raghavendra (2009); Feldman et al. (2009; 2012)). In contrast, in 2D, halfplanes admit efficient
agnostic learners with optimal sample and time complexity Õ( 1

ϵ2 log
1
δ ) (Matheny & Phillips (2021)). This

raises a natural question: do other expressive 2D classes – polygons and convex sets – admit comparably
efficient agnostic learners? More broadly, this points to a theme: low-dimensional geometric classes may
offer algorithmic advantages that are not yet well understood.
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We investigate the computational efficiency of agnostic learners for several fundamental geometric concept
classes in the plane, namely, of triangles, convex k-gons, and convex sets in a square. These classes arise
naturally in computer vision, image analysis, and shape recognition, where data is often low-dimensional
and spatially structured. Moreover, they serve as canonical examples in geometric learning theory, providing
a clean yet expressive setting for studying the trade-offs between sample complexity and computational
efficiency. We focus on proper agnostic learners—those that output hypotheses from the concept class being
learned—as this is crucial for our application to tolerant property testing. All learners we discuss, including
those from prior work, are proper.

The class of k-gons (that is, convex polygons with k vertices) has VC-dimension 2k+1 (Dobkin & Gunop-
ulos (1995)), and thus, by standard VC-dimension bounds, the sample complexity of agnostically PAC-
learning this class is s = Θ( 1

ε2 (k+ln 1
δ )). The running time of agnostically learning k-gons has been inves-

tigated by Fischer (1995), Dobkin & Gunopulos (1995), and Fischer & Kwek (1996). Specifically, Dobkin
& Gunopulos (1995) designed a (proper) agnostic learner for k-gons with running time O(s2k−1 log s),
where s is the size of the sample. For triangles (the case k = 3), the running time has Õ( 1

ε10 ) dependence on
the loss parameter ε, which, to our knowledge, is currently the best bound for this case. Prior to our work,
the best bound on the running time for larger k was O(ks6) in terms of the sample size s, by Fischer & Kwek
(1996). Thus, the dependence on ε in the running time was O( 1

ε12 ) for 4-gons and 5-gons. Notably, agnostic
learners for these basic concept classes suffered from high running times. We give a proper agnostic PAC
learner for k-gons for constant k with optimal sample complexity and running time Õ( 1

ε2k
log 1

δ +
1
ε2 log

2 1
δ ).

This improves the dependence on ε to Õ( 1
ε6 ) for triangles, Õ( 1

ε8 ) for 4-gons, and Õ( 1
ε10 ) for 5-gons, making

progress on long-standing open questions.

We also study agnostic learning of general convex sets in the plane under the uniform distribution over a
unit square. This concept class, denoted Cconv, has infinite VC-dimension and thus is not PAC learnable
under general distributions. Motivated by property testing of images, Berman et al. (2022) gave a (proper)
agnostic learner for Cconv under the uniform distribution over a square. Their learner has sample complexity
O( 1

ε2 log
1
εδ ) and time complexity Õ( 1

ε8 + 1
ε7 log

2 1
δ ). Moreover, they showed that Ω( 1

ε2 ) samples are
required for this task. We design a (proper) agnostic learner for this task with a significantly improved
running time at the expense of a small overhead in sample complexity. Our learner takes a sample of size
Õ( 1

ε2.5 log
1
δ ) and runs in time Õ( 1

ε5 log
1
δ + 1

ε2 log
2 1

δ ). It leaves an intriguing question of whether there is
an inherent tradeoff between the sample complexity and the running time of agnostic learning of this class.
Our results on proper agnostic learners are summarized and compared to previous work in Table 1.

Triangles 4-gons 5-gons Cconv

Prior
work

Sample complexity s = Θ(ϵ−2) (by VC-dimension) Õ(ϵ−2)
[BMR22]

Runtime O(ϵ−10) [DG95] O(ϵ−12) [FK96] Õ(ϵ−8)

Our
results

Sample complexity s = Θ(ϵ−2) Õ(ϵ−2.5)

Runtime Õ(ϵ−6) Õ(ϵ−8) Õ(ϵ−10) Õ(ϵ−5)

Table 1: Comparison of complexity of proper agnostic learners for concept classes we study, stated for
constant δ. The class Cconv is the class of convex sets under the uniform distribution in [0, 1]2.

Following the established connection between PAC learning and property testing (see Goldreich et al. (1998);
Berman et al. (2022)), our proper agnostic learners yield tolerant property testers for the geometric classes
we study, with the same running times. This is discussed in detail in Appendix A. The fact that our learners
are proper is crucial for this application.
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1.1 OUR TECHNIQUES

Two-sample framework. Both of our learners follow the same high-level template: they draw a small
sample N to generate a compact reference family of candidate hypotheses, and a larger sample S to evaluate
their empirical risk. Set N could be a subset of S (as in our result on k-gons) or an independent sample (as in
our result on general convex sets). The key is to prove that this restricted family still contains a near-optimal
hypothesis, so that empirical risk minimization over it gives strong guarantees. This design improves running
time by decoupling the (expensive) hypothesis construction from the (cheaper) risk evaluation.

Agnostic learner for k-gons. Our learner generates all halfplanes induced by pairs of points in sample N
and intersect k of them to form candidate k-gons. To evaluate each candidate, the learner triangulates it
and applies the triangle range-counting data structure of Goswami et al. (2004). Using this building block,
the learner efficiently computes the asymmetric discrepancy (see Definition B.6) with respect to S of every
reference triangle, which later yields the asymmetric discrepancy of the reference k-gons. The analysis
relies on the elegant reference halfplane construction of Matheny & Phillips (2018b): we lift their ε-net for
halfplanes (via a union bound over the k sides) to show that the candidate family induced by N forms an ε-
reference set for k-gons. Thus, even though the search space is drastically smaller than the set of all k-gons,
it suffices to approximate the best one, leading to optimal sample complexity and improved dependence on ε.

Agnostic learner for convex sets. Our learner for convex sets uses the smaller sample N to implicitly
construct islands. An island induced by N is a set formed by intersecting N with a convex set. Our learner
then evaluates the empirical risk of islands with respect to the larger sample S. As in the case of k-gons,
the learner uses the algorithm of Goswami et al. (2004) to construct a data structure that quickly computes
asymmetric discrepancy on each queried triangle. Since the islands considered are induced by a small set,
our learner can quickly choose the island with smallest asymmetric discrepancy by running the algorithm of
Bautista-Santiago et al. (2011). Given access to triangle queries, their algorithm uses dynamic programming
to find an island with maximum asymmetric discrepancy, implying minimum empirical risk. In contrast to
our simple randomized construction of islands, the set of reference polygons used in prior work by Berman
et al. (2022) is quite complicated: at a high level, it is obtained (deterministically) by taking axis-parallel
reference rectangles and iteratively chipping away triangles from the corners of current polygons.

To analyze our learner for convex sets, we show that any convex set (including the optimal set) is closely
approximated by the largest island that fits inside it. The behavior of the “missing area” between a convex set
and the convex hull of a uniform sample of a given size inside the set has been extensively studied (see, e.g.,
Har-Peled (2011) and the survey in Bárány (2007)). We utilize the concentration result of Brunel (2020)
that demonstrates that if ℓ points are sampled from a convex set then the fraction of the missing area is
concentrated around Θ(ℓ−2/3). It allows us to show that, with high probability, there is an island induced by
the sample N that closely approximates the optimal convex set.

In the second part of the analysis, we bound the size of the sample S required to estimate the empirical risk
of the islands induced by N . Since the class of convex sets has infinite VC-dimension, standard uniform
convergence results do not apply. Instead, we first use the concentration bounds of Valtr (1994; 1995)
regarding the maximum convex set of points in a uniform sample from [0, 1]2 to show that all islands are
likely to have O( 3

√
|N |) vertices in their convex hulls. Then we apply uniform convergence to all convex

sets on O( 3
√
|N |) vertices to get a bound on the size of a representative sample.

1.2 OPEN PROBLEMS AND FUTURE DIRECTOINS

Our agnostic learners have better runtime than previously know, in some cases improving decades-old clas-
sical algorithms. However, their running time is still larger than their sample complexity. It is an interesting
(and difficult) open problem to either improve the running time or to justify this discrepancy by proving
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computational hardness, for example, by using the tools from fine-grained complexity. For the case of ag-
nostic learners of k-gons, we were able to improve the running time for triangles, 4-gons, and 5-gons. For
larger constant k, the best known running time is Õ( 1

ε12 ), and it is open whether it can be improved. For
the case of agnostic learning of convex sets, our algorithm is faster than that of Berman et al. (2022), but
has slightly worse sample complexity. It is open whether it is possible to get a fast algorithm with optimal
sample complexity.

Future directions. Although our results focus on two dimensions—where efficient algorithms are more
within reach—gaining a precise understanding of these settings is a crucial step toward addressing higher-
dimensional cases. Another natural direction is to relax the requirement of properness: while proper learners
are particularly valuable due to their connections to property testing and related applications, it remains an
intriguing open question whether improper learners can be more efficient.

1.3 RELATED WORK

Agnostic PAC learning, introduced by Haussler (1992) and Kearns et al. (1994), has played a central role in
learning theory. For halfspaces, PAC learning is efficient in the realizable case, but agnostic learning is NP-
hard in high dimensions [Guruswami & Raghavendra (2009); Feldman et al. (2009; 2012)]. In contrast, 2D
halfplanes admit efficient agnostic learners with optimal sample and time complexity [Matheny & Phillips
(2021)]. Intersections of halfspaces have also been studied, with hardness results showing that efficient ag-
nostic learning is unlikely in general [Giannopoulos et al. (2012); Daniely et al. (2014)]. On the algorithmic
side, Dobkin & Gunopulos (1995) and Fischer & Kwek (1996) designed early learners for polygons, while
Berman et al. (2022) studied convex sets under the uniform distribution, proving near-optimal sample bounds
but with high running time. Works on related problems in agnostic learning and computational geometry are
too numerous to list here. We mention a couple. Kwek & Pitt (1996) presented a PAC learning algorithm
with membership queries for a class of intersections of halfspaces in d-dimensional space. Eppstein et al.
(1992) showed how to find, given a set P of n points with weights, a maximum-weight k-gon with vertices
in P in time O(kn3).

1.4 PRELIMINARIES

Due to space limitations, we defer the preliminaries to Appendix B.

2 AGNOSTIC LEARNER AND ERM FOR k-GONS

This section proves our result on agnostic learning of k-gons. The following theorem, stated for all integers
k ≥ 3, improves upon previous bounds for triangles, quadrilaterals, and pentagons.

Theorem 2.1. ∀ ε, δ ∈ (0, 1) and constant integer k ≥ 3, the class of k-gons over R2 is properly agnostically
PAC learnable with O( 1

ε2 log
1
δ ) samples and in O( 1

ε2k
(log 1

ε ) log
1
δ + 1

ε4 log
2 1

δ ) time.

Let Ck denote the class of k-gons over R2 (as in Definition B.3). Our k-gon learner first obtains a sample S
of s examples from distribution D, where s is large enough to get uniform convergence for the class Ck with
loss parameters ε

3 and constant failure probability. The class of k-gons has VC-dimension 2k+1 (Dobkin &
Gunopulos (1995)). By standard VC-dimension arguments ((Shalev-Shwartz & Ben-David, 2014, Theorem
6.8)), a sample of size s = O( 1

ε2 log
1
δ ) is sufficient when k is constant and, moreover, an algorithm that finds

an empirical risk minimizer on such a sample is an agnostic PAC learner (see discussion in Appendix B.3).
Our algorithm finds a hypothesis that approximately minimizes the risk. Its performance is summarized in
Theorem 2.2. Later (in Appendix E), we use our ERM minimizer on a sample of size s and then amplify the
success probability of the resulting learner to complete the proof of Theorem 2.1.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Theorem 2.2. For all ε ∈ (0, 1) and fixed k ≥ 3, there is an algorithm (specifically, Algorithm 1) that
finds a hypothesis with empirical risk at most OPT + ε from the class Ck (of k-gons over R2) on a set S
of examples in time O( 1

ε2k
log |S| + |S|2) with success probability at least 2

3 , where OPT is the smallest
empirical risk of a hypothesis in Ck on the set S.

To compute the empirical risk of a k-gon, we use the triangle range–counting data structure of Goswami
et al. (2004). Recall that ERM is equivalent to maximizing asymmetric discrepancy (Def. B.6, Claim B.7).
The algorithm of Goswami et al. pre-processes a point set in the plane so that, given a query triangle T ,
it quickly returns the number of points in T . We build two such structures, one for positive and one for
negative examples, allowing us to compute the discrepancy of any query triangle with two fast queries.
Theorem 2.3 (Corollary of Theorem 2, Goswami et al. (2004)). There exists an algorithm Bpre that, for any
set S ⊂ R2 × {0, 1}, builds a data structure DS of size O(|S|2) in time O(|S|2) for computing asymmetric
discrepancy of triangles w.r.t. S. There also exits a query algorithm Bquery that, given the data structure DS
and a (geometric) triangle T , returns in O(log |S|) time the asymmetric discrepancy of T on S.

Our ERM constructs a reference set of k-gons. The notion of a reference set is defined next.
Definition 2.4 (An ε-reference set). For functions h, r : X → {0, 1}, let h ⊕ r denote the XOR function,
i.e., (h⊕ r)(x) = h(x)+ r(x) mod 2. Let C be a class of concepts from X to {0, 1} and R, H ⊂ C. The set
R is an ε-reference set for a concept class C w.r.t. a set S of examples and a set H if ∀ h ∈ H , there exists a
hypothesis r ∈ R such that |{(x, y) ∈ S : (h⊕ r)(x) = 1}| ≤ ε|S|.

In other words, for every h ∈ H , there exists some reference hypothesis r ∈ R that does not differ too much
from h on the points in S. For brevity, when H = {h}, we say “a reference set for h” instead of “for H”.
Next we draw a random sample N to specify the specific set of k-gons that we use as a reference set.
Definition 2.5 (Induced halfplanes, reference k-gons). A halfplane h ∈ H2 is induced by a set N ⊂ R2 if
h is defined by a line that passes through two points in N . Let IN denote the set of all halfplanes induced
by N . A k-gon t in Ck is a reference k-gon defined by a set N ⊂ R2 if t is formed by the intersection of k
induced halfplanes. Let RN be the set of all reference k-gons defined by N .

Algorithm 1 constructs a data structure DS for computing asymmetric discrepancy of triangles on sample
points. For every k-gon P ∈ RN , it computes its asymmetric discrepancy discS (P )by triangulating P and
querying DS on each triangle T in the triangulation and summing up the results. The algorithm returns the
indicator function for the k-gon with the largest asymmetric discrepancy.

Algorithm 1: Algorithm for Approximating ERM for k-gons

input : loss parameter ε ∈ (0, 1); a set S ⊆ R2 × {0, 1} of examples.

1 Run algorithm Bpre from Theorem 2.3 on the set of examples S to construct a data structure DS for
computing asymmetric discrepancy of triangles w.r.t. S.

2 Sample a set N of n = ck log k
ϵ points from {x ∈ R2 : (x, y) ∈ S} uniformly and independently with

replacement, where c is a large enough constant (dictated by Lemma 2.8).
3 Compute the reference set RN of k-gons (see Definition 2.5).
4 For each k-gon fP in RN , compute the triangulation of P into k − 2 triangles T1, . . . , Tk−2.

Use algorithm Bquery from Theorem 2.3 to query the data structure DS on each triangle Ti for
i ∈ [k − 2] to get asymmetric discrepancy discS (Ti). Compute discS (P ) =

∑
i∈[k−2] discS (Ti).

\\Counts can be easily adjusted for boundary points.

5 Return the k-gon fP̃ , where P̃ = argmax
P∈RN

discS (P ).
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2.1 ANALYSIS OF THE ERM FOR k-GONS

To analyze correctness of Algorithm 1, we show that RN is likely to be a good reference set for Ck w.r.t. the
input set S of examples and the ERM k-gon that labels them optimally. We start by proving that any good
reference set for halfplanes yields a good reference set for k-gons when used in our construction.
Lemma 2.6. Fix a loss parameter ε ∈ (0, 1), an integer k ≥ 3, a set of examples S, and a k-gon t ∈ Ck.
Let t be the intersection of k halfplanes h1, . . . , hk ∈ H2. Let R ⊂ H2 be an ε

k -reference set for H2 w.r.t. S
and {h1, . . . , hk}. Let KR be the set of all k-gons formed by an intersection of k halfplanes in R. Then KR

is an ε-reference set for Ck w.r.t. S and the k-gon t.

Proof. Since R is an ε
k -reference set for H2 w.r.t. S and {h1, . . . , hk}, there exist halfplanes h′

1, . . . , h
′
k ∈ R

such that |{(x, y) ∈ S : (hi ⊕ h′
i)(x) = 1}| ≤ ε

k |S| for all i ∈ [k]. Let t′ be the k-gon formed by the
intersection of halfplanes h′

1, . . . , h
′
k. Then t′ ∈ KR. The k-gons t and t′ can differ only on points on which

at least one of the corresponding pairs of halfplanes differs:

|{(x, y) ∈ S : (t⊕ t′)(x) = 1}| ≤
∑
i∈[k]

|{(x, y) ∈ S : (hi ⊕ h′
i)(x) = 1}| ≤ k

ε

k
|S| = ε|S|.

Thus, for the k-gon t, there is a nearby (w.r.t. S) reference k-gon t′ ∈ KR, as required.

To obtain a good reference set for halfplanes, we use following result.
Lemma 2.7 (Matheny & Phillips (2018a)). Fix a concept h ∈ H2 and a set S of examples from R2×{0, 1}.
If a set N of size 4

ε ln
2
δ0

is sampled uniformly and independently with replacement from {x : (x, y) ∈ S}
then the induced set IN is an ε-reference set for H2 w.r.t. S and h with probability at least 1− δ0.

Using this lemma, we obtain the following guarantee for the reference set RN .
Lemma 2.8. Fix a concept t ∈ Ck and a set S of examples from R2 × {0, 1}. If a set N of size ckε log k,
where c is a sufficiently large constant, is sampled uniformly and independently with replacement from
{x : (x, y) ∈ S} then the set RN is an ε-reference set for Ck w.r.t. S and t with constant probability.

Proof. Let h1, . . . , hk ∈ H2 be the halfplanes such that the k-gon t is formed by their intersection. By
Lemma 2.7, for N of size 4k

ε ln 2k
δ0

, the set IN fails to be an ε
k -reference set for H2 w.r.t. S and one specific

hi, where i ∈ [k], with probability at most δ0
k . By a union bound, we get that IN fails to be an ε

k -reference
set for H2 w.r.t. S and {h1, . . . , hk} with probability at most δ0. By Lemma 2.6, if no failure events occur,
then RN is an ε-reference set for Ck w.r.t. S and k-gon t. We set δ0 = 1

3 to obtain the desired statement.

Proof of Theorem 2.2. First, we analyze correctness of Algorithm 1. Let t∗ ∈ Ck be a k-gon which achieves
the minimum error on S. Namely, errS(t∗) ≤ errS(t) for all t ∈ Ck. By Lemma 2.8, the set RN constructed
by Algorithm 1 is good, i.e., an ε-reference set for Ck w.r.t. S and t∗, with constant probability. Now
suppose RN is good. We analyze the error of the hypothesis fP̃ returned by Algorithm 1. Let OPT =
errS(t

∗). Since RN is good, there is a reference k-gon r ∈ RN such that |errS(t∗) − errS(r)| ≤ ε
and, consequently, errS(r) ≤ errS(t

∗) + ε = OPT + ε. Since Algorithm 1 outputs a reference k-gon
with the largest asymmetric discrepancy, and thus (by Claim B.7) with the smallest empirical risk, we get
errS(fP̃ ) ≤ errS(r). Combining this with the above implies errS(fP̃ ) ≤ errS(r) ≤ OPT + ε. Therefore,
errS(fP̃ ) ≤ OPT + ε with constant probability.

Running time: The most time consuming steps of Algorithm 1 are Steps 1 and 4. By Theorem 2.3, the run-
ning time of the preprocessing step is O(|S|2). Each query to the data structure DS takes time O(log(|S|)).
In Step 4, the algorithm queries DS on each element of RN . There are at most |N |2k reference k-gons in the

6
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set RN . For each reference k-gon, the algorithm computes its triangulation in time O(k) and queries DS on
each of the k triangles from the triangulation. Hence, Step 4 takes O

(
(k log k

ε )2k ·k log |S|
)
= O( 1

ε2k
log |S|)

time for constant k. The total running time of Algorithm 1 is thus O( 1
ε2k

· log |S|+ |S|2).

3 AGNOSTIC LEARNER FOR CONVEX SETS

We start by stating the guarantees of our learner for convex sets over [0, 1]2 (see Definition B.4).
Theorem 3.1. For all ε, δ ∈ (0, 1), the class Cconv of convex sets over X = [0, 1]2 is properly agnostically
PAC learnable with O( 1

ε2.5 ln
1
ε · ln 1

δ ) samples and running time O( 1
ε5 ln

2 1
ε · ln 1

δ + 1
ε2 ln

1
ε ln

2 1
δ ) under

each distribution D over X × {0, 1}, where the marginal DX is uniform over X .

We first present and analyze Algorithm 2, our learner for convex sets that has constant failure probability.
In Appendix E, we use standard arguments to amplify the success probability of Algorithm 2 to 1 − δ and
complete the proof of Theorem 3.1. The guarantees of Algorithm 2 are stated next.
Theorem 3.2. For all ε ∈ (0, 1), Algorithm 2 takes a sample of size O( 1

ε2.5 ln
1
ε ) from a distribution D

over X × {0, 1}, where the marginal distribution DX over X is uniform, and returns, with probability
at least 2

3 , a hypothesis h which is an indicator function for a polygon on O(ε−0.5) vertices and satisfies
errD(h) ≤ minf∈Cconv{errD(f)}+ ε. The running time of Algorithm 2 is O( 1

ε5 ln
2 1

ε ).

Algorithm 2 starts by obtaining a sample S from D and a net N drawn uniformly at random from [0, 1]2.
The net N is used to construct reference objects, called islands. Intuitively, an island induced by a set N is
a subset of N formed by an intersection of N and some convex set. See Figure 1. Our algorithm outputs the
indicator function of the island induced by the net N that has the largest asymmetric discrepancy, and thus
the smallest empirical risk, w.r.t. the set S.
Definition 3.3 (Island). An island I induced by a set N ⊆ R2 is a subset I ⊆ N such that Hull(I)∩N = I .
The polygon Hull(I) defined by an island I is denoted PI (recall that Hull(I) denotes the convex hull of I).
Let IN be the set of all islands induced by N and TN be the set of all triangles induced by N (i.e., triangles
with vertices in N ). Let fI be the indicator function for the polygon PI .

Our algorithm relies on the OptIslands procedure of Bautista-Santiago et al. (2011), which optimizes any
monotone decomposable function α over polygons. Intuitively, such functions decompose into contributions
from smaller polygons.1 See Appendix D for the formal definitions and guarantees about OptIslands. To
invoke OptIslands, we define α(P ) = discS (P ) for every convex polygon P , where S is a sample drawn
from D. Then α is decomposable and monotone, and we can use Theorem 2.3 to build a data structure for
computing α for all triangles induced by the set N in time O(|S|2 + |N |3 log |S|). Therefore, OptIslands
returns the island of N maximizing asymmetric discrepancy among all islands in IN .

The analysis of Algorithm 2 is organized into three sections. In Section 3.1, we show that with sufficient
probability there is an island that approximates the best convex set well. In Section 3.2, we prove that the
empirical risk is accurate for all islands with sufficient probability. Finally, in Section D.4, we put everything
together and complete the proof of Theorem 3.2.

3.1 A NEARLY OPTIMAL ISLAND

In this section, we show that for a sample set N of size O( 1
ε1.5 ), with high constant probability, there is an

island that approximates the optimal function in Cconv for distribution D.
1As explained in Bautista-Santiago et al. (2011), “roughly speaking, a function α is decomposable if, when a polygon

P is cut into two subpolygons P1 and P2 along a diagonal e joining vertices p1 and pi of P , then α(P ) can be calculated
in constant time from α(P1), α(P2), and some information on e.”
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Algorithm 2: Agnostic learner for convex sets in [0, 1]2 (with failure probability 1/3)

input : loss parameter ε ∈ (0, 1); access to examples from a distribution D over [0, 1]2 × {0, 1} with
the uniform marginal distribution over [0, 1]2

1 Let c1 and c2 be large enough constants.
2 Sample a set S of s = c1

ε2.5 ln
1
ε examples (x1, y1), . . . , (xs, ys) i.i.d. from D.

3 Sample a set N of n = c2
ε1.5 points u.a.r. from [0, 1]2.

4 Use algorithms Bpre and Bquery from Theorem 2.3 to build a data structure on set S and query it on each
triangle T ∈ TN to compute the asymmetric discrepancy discS (T ).

5 Run algorithm OptIsland from Theorem D.2 on the set N with α(T )
def
= discS (T ) for all triangles

T ∈ TN to find an island Ĩ ⊆ N with maximum asymmetric discrepancy discS (Ĩ). \\Find the
best island in IN.

6 Return the indicator function fĨ . \\See Definition B.4.

Definition 3.4 (Optimal convex set K and random set Kn). Let K be the (geometric) convex set with the
smallest error, i.e., K = argminC:fC∈Cconv

{errD(fC)}. For each n ∈ N, let Kn denote the convex hull of
the set of points in a sample N of size n that fall inside K.

Since K is a convex set, K ∩ N is an island in IN . Algorithm 2 considers all islands in IN , including
K ∩N . We show that the polygon Kn (defined by the island K ∩N ) has error similar to that of K w.r.t. to
the uniform distribution over examples.

Lemma 3.5. If n ≥ c2
ε1.5 , then |errD(fK)− errD(fKn

)| ≤ ε
3 with probability at least 0.9.

The absolute difference in the error of fK and fKn is bounded above by the “missing area” between K and
Kn. The measure of the missing area is with respect to the uniform distribution. As the number of samples
n tends to infinity, the random variable µ(K \Kn) goes to zero, as quantified in the following claim.

Claim 3.6. For a set A ⊆ [0, 1]2, let µ(A) = Prx∼[0,1]2 [x ∈ A]. There exists a constant C such
Pr

[
µ(K \Kn) ≥ Cn−2/3

]
≤ 0.1 for sufficiently large n.

Proof. Assume n is sufficiently large. When µ(K) = O(n−2/3), the missing area never exceeds Cn−2/3.
Now assume µ(K) = Ω(n−2/3). Let L = |N ∩K|, i.e., the random variable equal to the number of points
that fall in K among n points selected u.a.r. from [0, 1]2. Observe that N ∩K can be viewed as a uniform
sample of L points from K. Let random variable µL be µ(K\Kn), that is, the measure of the “missing” area
between K and Kn. The value of this random variable depends on the number of points from the sample of
size n that fall inside K. For each ℓ ∈ N, let µℓ represent µL conditioned on L = ℓ, i.e., on the event that
ℓ points from a sample of size n are in K. Then µℓ has the same distribution as the measure of the region
between K and the convex hull of ℓ points selected uniformly and independently at random from K.

The behavior of µℓ, the missing area between a convex set and the convex hull of a uniform sample of size
ℓ inside the set, has been extensively studied (see, e.g., Har-Peled (2011) and the survey in Bárány (2007)).
By (Brunel, 2020, Theorem 4), there exist constants ℵ1,ℵ2,ℵ3, such that for every convex body K and ℓ
points sampled uniformly and independently from K, for all a ≥ 0, we have Pr

[
µℓ

µ(K) > ℵ1 · ℓ−2/3 + a
ℓ

]
≤

ℵ2 · e−ℵ3·a . Therefore, for a = ℵ1 · ℓ1/3 and a sufficiently large ℓ,

Pr
[
µℓ > 2ℵ1 · µ(K) · ℓ−2/3

]
≤ ℵ2 · e−ℵ3·ℵ1·ℓ1/3 ≤ 0.05. (1)

8
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Now we analyze the behavior of the missing area µL when the number of samples that fall within the convex
body K is a random variable. Random variable L has binomial distribution and expectation E[L] = n·µ(K).
By the Chernoff bound, for sufficiently large n,

Pr[L ≤ 0.5n · µ(K)] ≤ Pr[L ≤ 0.5 · E[L]] ≤ e−n·0.52/2 = e−n/8 ≤ 0.05. (2)

Let ℓ∗ = 0.5n · µ(K) and Q = 2ℵ1 · µ(K) · ℓ−2/3
∗ . By the law of total probability,

Pr [µL ≥ Q] = Pr[µL ≥ Q | L ≥ ℓ∗] · Pr[L ≥ ℓ∗] + Pr[µL ≥ Q | L < ℓ∗] · Pr[L < ℓ∗]

≤ Pr[µL ≥ Q | L ≥ ℓ∗] · 1 + 1 · Pr[L < ℓ∗]

≤ Pr[µL ≥ Q | L = ℓ∗] + Pr[L < ℓ∗] (3)
= Pr[µℓ∗ ≥ Q] + Pr[L < ℓ∗] ≤ 0.1, (4)

where (3) holds because Pr[µL ≥ Q | L = ℓ] is monotonically decreasing in ℓ, the equality in (4) holds
by definition of µℓ, and the inequality in (4) holds by (1) and (2). Note that we can use (1) because n is
sufficiently large and µ(K) = Ω(n−2/3), implying that ℓ∗ is sufficiently large.

We substitute Q and ℓ∗ into Pr[µL ≥ Q] and use (4) to obtain that with probability at least 0.9, µL < Q =

2ℵ1 ·µ(K) · ℓ−2/3
∗ = 2ℵ1 ·µ(K) · (0.5n ·µ(K))−2/3 ≤ Cn−2/3, where C = 25/2ℵ1 and the last inequality

holds because µ(K) ≤ 1. Recall that µL = µ(K \Kn), completing the proof of Claim 3.6.

Proof of Lemma 3.5. By Claim 3.6, with probability at least 0.9, |errD(fK)−errD(fKn)| ≤ Pr(x,y)∈D[x ∈
K \Kn] ≤ C

n2/3 ≤ ε
3 , where the last inequality holds since n = c2

ε1.5 for sufficiently large constant c2.

3.2 EMPIRICAL RISK IS ACCURATE FOR ALL ISLANDS

In this section, we show that sample S is likely to be representative for all islands in IN . We rely on Valtr’s
theorem (formally stated in Theorem D.4 in Appendix D.3) in computational geometry that implies that,
for some constant λ, with high probability, all islands have at most λn1/3 vertices in their convex hull. See
Figure 2 for an illustration of vertices of a convex hull of an island. We then use Theorem D.4 to show that
with large enough probability, we get a sample S which is ε-representative for for all islands induced by N .
(Definition B.8 recalls what ε-representative means).

Lemma 3.7 (Sample S is an ε
3 -representative for islands). Let c1 be a sufficiently large constant and N

be a sample of n points drawn uniformly and independently at random from [0, 1]2. A sample S of size
s = c1

ε2 · n1/3 lnn drawn i.i.d. from D is an ε
3 -representative for all islands in IN with probability at least

9
10 . (The probability is taken over both samples, N and S.)

Proof. By Theorem D.4, for sufficiently large n, in a uniform sample N of size n, with probability at least
19
20 , the maximum number of vertices in the convex hull of any island I in IN is at most 7n1/3. Condition
on this event. Let H be the concept class of all polygons corresponding to convex hulls of islands in IN .
By the conditioning, all these polygons have at most 7n1/3 vertices. Thus, the size of this concept class is
|H| =

∑7n1/3

k=1

(
n
k

)
≤ 7n1/3 ·

(
n

7n1/3

)
≤ 7n1/3( ne

7n1/3 )
7n1/3

. By the uniform convergence bound for finite

classes (Appendix B.4) a set S of size mC(
ε
3 ,

1
20 ) =

c1 log |H|
ε2 = c1·n1/3 lnn

ε2 (for a sufficiently large constant
c1) is ε

3 -representative for H with probability at least 19
20 .

The lemma follows from taking a union bound over the two failure events: having a convex hull of an island
with more than 7n1/3 vertices and failing to have a representative set.

9
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A IMPLICATIONS FOR PROPERTY TESTING

Agnostic learning is tightly related to computational tasks first investigated in by Parnas et al. (2006) and
studied in property testing: distance approximation and tolerant testing.

Definition A.1 (Distance Approximation). Let C be a class of functions f : X → Y (also referred to as
a property). A distribution-free distance approximation algorithm A for C is given sample access to an
unknown distribution DX on the domain X and query access to an input function f : X → Y , as well
as parameters ε, δ ∈ (0, 1). Let D denote the joint distribution on (x, y) ∈ X × Y , where x ∼ DX and
y = f(x). Algorithm A must return a number d̂ such that distD(f) − ε ≤ d̂ ≤ distD(f) + ε with
probability at least 1 − δ. The query complexity of A is the number of queries it makes to f in the worst
case over the choice of DX and f ∈ C.

A tolerant tester gets the same inputs as the distance approximation algorithm, with an additional parameter
ε0 ∈ (0, ε), and it has to accept if distD(f) ≤ ε0 and reject if distD(f) ≥ ε, both with probability at
least 1− δ. Distance approximation and tolerant testing have closely related query complexity, as stated, for
example, by Parnas et al. (2006) and (Pallavoor et al., 2022, Theorem 5.1). Most work in property testing
considers the special case of the distribution-free version of these problems, where the marginal distribution
DX is fixed to be uniform over X .

As proved by Goldreich et al. (1998), a proper PAC learning algorithm for a class C with sample complexity
s(ε) implies a tester for property C that makes s(ε/2) + O(1/ε) queries to the input. There is an analo-
gous implication from proper agnostic PAC learning to distance approximation with an additive overhead of
O(1/ε2) instead of O(1/ε). Therefore, our agnostic PAC learners imply distance approximation algorithms
with the same sample and time complexity. Specifically, we can estimate the distance to the nearest k-gon
with constant error probability in time Õ( 1

ε2k
) and the distance to the nearest convex set in time Õ( 1

ε5 ).

B PRELIMINARIES

B.1 AGNOSTIC LEARNING

The agnostic learning framework of Haussler (1992); Kearns et al. (1994) models learning from noisy data.
In this framework, a learning algorithm A is given examples of the form (x, y) ∈ X ×Y, where X represents
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a domain (e.g., Rd or [n]d for some d ∈ N), and Y is the set of labels (typically, {0, 1}). The examples are
drawn i.i.d. from some unknown distribution D on X × Y . A concept is a function f : X → Y . In contrast
to the PAC learning framework of Valiant (1984), where there is some underlying concept f producing the
labels, i.e., y = f(x), in agnostic learning, the labels come from the distribution. A concept class C is
a set of concepts. The goal of A is to output a hypothesis h in a specified concept class C. A concept
h is consistent with an example (x, y) if h(x) = y; otherwise, h mislabels the example. The error of a
concept h is measured with respect to the distribution D: specifically, errD(h) = Pr(x,y)∼D[h(x) ̸= y],
i.e., the probability that a random example drawn from D is mislabeled by h. The smallest possible error,
denoted OPT , is minf∈C{errD(f)}. The algorithm is given two parameters: the loss parameter ε ∈ (0, 1),
specifying how much the error of the output hypothesis is allowed to deviate from OPT , and the failure
probability parameter δ ∈ (0, 1). The number of examples A draws from D (in the worst case over D) is
denoted m(ε, δ) and is called the sample complexity of A.

Definition B.1 (Agnostic PAC learning). Let C be a class of concepts f : X → Y . An algorithm A is an
agnostic PAC learner for C with sample complexity m(ε, δ) if, for every joint distribution D over X × Y ,
given loss parameter ε ∈ (0, 1) and failure probability parameter δ ∈ (0, 1), algorithm A draws m(ε, δ)
examples i.i.d. from D and returns a hypothesis h such that

Pr[errD(h) ≤ min
f∈C

{errD(f)}+ ε] ≥ 1− δ,

where the probability is taken over D and the coins of A. The learner A is proper if it always returns a
hypothesis in C.

We measure the running time of the algorithm using the RAM model, where each basic arithmetic operation
and memory access can be performed in a single step.

B.2 GEOMETRIC PROPERTIES

We start by defining geometric properties we consider.
Definition B.2 (The class of halfplanes). A halfplane is an indicator function fa,b : R2 → {0, 1} indexed
by a ∈ R2, b ∈ R, where fa,b(x) = 1 iff aTx ≤ b. The set of all halfplanes in R2 is denoted H2.

Given a set of points P , let Hull(P ) represent the convex hull of P .
Definition B.3 (The class of k-gons). Let X ⊆ R2. A k-gon over X is an indicator function fP : X →
{0, 1} indexed by a set P ∈ R2 of k points in general position, where fP (x) = 1 iff x ∈ Hull(P ). The set
of all k-gons over X is denoted Ck.
Definition B.4 (The class of convex sets). Let X ⊆ R2. A convex set over X is an indicator function
fP : X → {0, 1} indexed by a (finite or infinite) set of points P ⊆ R2, where fP (x) = 1 iff x ∈ Hull(P ).
The set of all convex sets over X is denoted Cconv.

For a function f : Rd → {0, 1}, let f−1(1) denote the set of points x ∈ Rd on which f evaluates to 1, i.e.,
f−1(1) = {x ∈ Rd : f(x) = 1}. If f is an indicator function for some set P then f−1(1) = P .

B.3 EMPIRICAL RISK AND DISCREPANCY

We use standard definitions of empirical risk (also called empirical error) and other notions from learning
theory (see, e.g., the textbook by Shalev-Shwartz & Ben-David (2014)).
Definition B.5. The empirical risk of a concept h : X → Y on a set S ⊆ X × Y of examples is errS(h) =
1
|S|

∣∣{(x, y) ∈ S : h(x) ̸= y}
∣∣, i.e., the fraction of examples in S mislabeled by h.

Next, we define asymmetric discrepancy of a polygon w.r.t. a sample of points.

13
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Definition B.6 (Asymmetric discrepancy). Fix a polygon P and a multiset S ⊂ R2 × {0, 1} of labeled
examples {xi, yi}i∈S . The asymmetric discrepancy of P (w.r.t. S) is

discS (P ) = |{x ∈ P ∩ S : y = 1}| − |{x ∈ P ∩ S : y = 0}|.

It is well known (see, e.g., Lemma 2 in Fischer (1995)) that the asymmetric discrepancy of a polygon P is
related to the empirical risk of its indicator function fP . For completeness, we state the relationship in the
following claim.
Claim B.7 (Asymmetric discrepancy vs. empirical risk). Fix a polygon P and a multiset S ⊂ R2 × {0, 1}
of labeled examples. Let S+ be the set of positive examples, i.e., S+ = {(x, y) ∈ S : y = 1}. Then
discS (P ) = |S+| − errS(fP ) · |S|.

Proof. By definition of the asymmetric discrepancy,

discS (P ) = |{x ∈ P ∩ S : y = 1}| − |{x ∈ P ∩ S : y = 0}|
= |{x ∈ S : y = 1}| − |{x ∈ S \ P : y = 1}| − |{x ∈ P ∩ S : y = 0}|
= |{x ∈ S : y = 1}| − |{x ∈ S : fP (x) ̸= y}|
= |S+| − errS(fP ) · |S|,

where the last equality is obtained from the definition of S+ and the empirical risk.

Since S+ and S do not depend on the polygon, Claim B.7 implies that maximizing the discrepancy over
some set of polygons is equivalent to minimizing the empirical risk of their indicator functions.

B.4 UNIFORM CONVERGENCE

Definition B.8 (ε-representative set of examples). A set S ⊆ X × Y of examples is called ε-representative
for hypothesis class C w.r.t. distribution D if for all f ∈ C,

|errS(f)− errD(f)| ≤ ε.

Definition B.9 (Uniform convergence). A hypothesis class C has the uniform convergence property if there
exists a function mUC

C : {0, 1}2 → N such that for every ε, δ ∈ (0, 1) and for every probability distribution
D over X × Y , if S is a sample of m ≥ mUC

C (ε, δ) examples drawn i.i.d. from D, then, with probability of
at least 1− δ, sample S is ε-representative for C w.r.t. D. In this case, we say that mUC

C (ε, δ) examples are
sufficient to get uniform convergence for C with loss parameter ε and failure probability δ. If the requirement
is satisfied for one specific distribution D, as opposed to all D, we refer to it as the uniform convergence
w.r.t. D.

By the Fundamental Theorem of Statistical Learning (Shalev-Shwartz & Ben-David, 2014, Theorems 6.7-
6.8), mC(ε, δ) = O( 1

ε2 (VC-dim(C) + ln 1
δ )) examples sampled i.i.d. from distribution D are sufficient to

get uniform convergence for C and to agnostically PAC learn C. By (Shalev-Shwartz & Ben-David, 2014,
Corollary 4.6), for the special case when the concept class C is finite, mC(ε, δ) = O( 1

ε2 (ln |C| + ln 1
δ )).

A hypothesis from C that minimizes empirical risk is abbreviated as ERM. Any algorithm that gets m ≥
mC(

ε
2 ,

δ
2 ) examples and outputs an ERM hypothesis is an agnostic PAC learner for C. Finally, an algorithm

that gets that many samples and outputs a hypothesis that has empirical risk within ε
4 of an ERM is also an

agnostic PAC learner.

C MATERIAL DEFERRED FROM SECTION 2

The following figures illustrate concepts from Section 2.
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Figure C.1: An illustration to Definition 2.5: a set of
points and a (light blue) reference triangle it defines.

𝑡

Figure C.2: An illustration to Lemma 2.6: a (waved)
triangle t and a (light blue) nearby reference triangle.

D MATERIAL DEFERRED FROM SECTION 3

D.1 MISSING FIGURES

The following figures were deferred from Section 3.

Figure 1: An illustration of an island: a set of points
is intersected with a (light blue) convex set; the (blue)
points in the intersection form an island.

Figure 2: The convex hull of the island is delin-
eated by (red) lines; the (six) vertices of the con-
vex hull have the red border.

D.2 DECOMPOSABLE FUNCTIONS AND THE OPTISLAND ALGORITHM

Recall that our algorithm uses a data structure of Bautista-Santiago et al. (2011) which relies on the notion
of decomposable functions, defined next.

Definition D.1 (Definition 1 in Bautista-Santiago et al. (2011)). Let P be the set of all convex polygons. A
function α : P → R is decomposable if there is a constant-time computable function β: R×R×R2×R2 →
R such that, for any polygon P = Hull(p1, p2, ..., pk) ∈ P and any index 2 < i < k, it holds that
α(P ) = β(α(Hull(p1, ..., pi)), α(Hull(p1, pi, ..., pk)), p1, pi). The function α is monotone if β is monotone
in the first and second argument.

Theorem D.2 (Theorem 3 in Bautista-Santiago et al. (2011)). Let N be a set of n points in general position in
the plane and let α : P → R be a monotone decomposable function. There exists an algorithm, OptIslands,
that computes the island that minimizes (maximizes) α in O(n3 + B(n)) time, where B(n) is the time
required to compute α for the O(n3) triangles induced by the set N .
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To invoke the OptIslands algorithm from Theorem D.2, we define α(P ) = discS (P ) for every convex
polygon P , where S is a sample drawn from D.
Observation D.3. Let P be a polygon with vertices p1, . . . , pk. If points in N ∪ S are in general position,
then α(P ) = α(Hull(p1, . . . , pi)) + α(Hull(p1, pi, . . . , pk)), so α is decomposable and monotone.

D.3 VALTR’S THEOREM

Theorem D.4 (Valtr (1994; 1995)). Let N be a set of n points chosen independently and uniformly from the
unit square. For every polygon P , let ν(P ) denote the number of vertices in P . Let V = maxI∈IN

ν(PI),
that is, the largest number of vertices in the convex hull of an island. Let h = 24/3e ≈ 6.85. Then

Pr[V > λ · n1/3] <
(
h
λ

)3λn1/3

for all λ ≥ h.

D.4 THE PROOF OF THEOREM 3.2

Proof of Theorem 3.2. First, observe that s points drawn from the uniform distribution over [0, 1]2 are in
general position with probability 1. Thus, the invocation of OptIsland in Algorithm 2 works correctly with
probability 1. Next we analyze the failure probability and the loss of Algorithm 2. Algorithm 2 returns
hypothesis fĨ , where Ĩ is the island with maximum asymmetric discrepancy and, hence, by Claim B.7,
with smallest empirical risk. Recall that K denotes the convex set such that errD(fK) = OPT , where
OPT = min

f∈Cconv
errD(f). Also recall that Kn is the convex hull of the points from sample N of size n that

fall inside K.

Consider the following three failure events: that the number of vertices in the largest island in IN exceeds
7n1/3, that sample S is not ε

3 -representative, and that |errD(fK)− errD(fKn)| > ε
3 . By Theorem D.4, the

first event occurs with probability at most 0.1. By Lemmas 3.7 and 3.5, each of the latter two events occur
with probability at most 0.1 for our setting of s and n. (This is because s = c1

ε2 · n1/3 lnn and n = c2
ε1.5 for

sufficiently large constants c1 and c2, and consequently s = c1
ε2.5 ln

1
ε ). Thus, by a union bound, one or more

of these events happens with probability at most 0.3. If none of the failure events happened then

errD(fĨ) ≤ errS(fĨ) +
ε

3
s is

ε

3
-representative for s =

c1
ε2

· n1/3 · lnn (Lemma 3.7)

≤ errS(fKn
) +

ε

3
Ĩ is the island that minimizes the empirical error

≤ errD(fKn
) +

2ε

3
by Lemma 3.7

≤ errD(fK) + ε by Lemma 3.5 for n =
c2
ε1.5

= OPT + ε.

Thus, we get that with probability at least 2
3 , the hypothesis fĨ returned by Algorithm 2 satisfies errD(fĨ) ≤

OPT + ε, and that fĨ is an indicator function for a convex polygon with at most 7n1/3 = O( 1
ε0.5 ) vertices.

It remains to analyze the complexity. The sample complexity is O(n + s) = O(s) = O( c1
ε2.5 ln

1
ε ). By

Theorems 2.3 and D.2, the running time is O(s2 + n3 log s) = O( 1
ε5 ln

2 1
ε ).

E AMPLIFICATION OF SUCCESS PROBABILITY

In this section, we use standard arguments to amplify the success probability of the two learners to 1 − δ,
for any given δ ∈ (0, 1

2 ). We prove Lemma E.1 as well as Theorems 2.1 and 3.1. Given a learner A with
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constant success probability, Algorithm 3 calls it repeatedly and evaluates the hypotheses obtained from the
calls on a fresh sample.

Algorithm 3: Amplified-Success-Learner

input : A loss parameter ε ∈ (0, 1), a failure probability parameter δ ∈ (0, 1
2 ), a learner A.

1 Invoke the learner A independently t = ln 2
δ times with loss parameter ε

3 . For j ∈ [t], let hj denote the
hypothesis returned by the jth invocation.

2 Sample a set Q of q = 9
ε2 ln

1
δ examples i.i.d. from D.

3 For each j ∈ [t], compute errQ(hj).
4 Return hypothesis ĥ = argminj∈[t]{errQ(hj)}.

Lemma E.1. Let C be a class of concepts f : X → Y and D be a distribution on labeled examples. Let A
be an agnostic PAC learner for C w.r.t. distribution D that has failure probability 1

3 and sample complexity
SA. Then Algorithm 3 is an agnostic PAC learner for C w.r.t. distribution D that takes failure probability
δ ∈ (0, 1

2 ) as input and has sample complexity O(SA · ln 1
δ + 1

ε2 ln
1
δ ).

Proof. Fix some h in {hj}j∈[t]. For i ∈ [q], let χi be the indicator for the event that h(xi) ̸= yi. Let
χ =

∑
i∈[q] χi. Note that χ = q · errQ(h) and E[χ] = q · errD(h). By the Hoeffding bound,

Pr
[
|errQ(h)− errD(h)| ≥

ε

3

]
≤ 2 exp

(
−2

(ε
3

)2

· q
)

=
2

δ2
.

We call sample Q representative if |errQ(h)− errD(h)| ≤ ε
3 for all h ∈ {hj}j∈[t]. By a union bound over

the t = ln 2
δ invocations and for δ ∈ (0, 1

2 ), the probability of Q being representative is at least 1− δ
2 .

Let h∗ be argminj∈[t]{errD(hj)}, i.e., the best hypothesis w.r.t. to D among h1, . . . , ht. Since algorithm
A has failure probability 2

3 , we get Pr[errD(hj) > OPT + ε
3 ] ≤

1
3 for all j ∈ [t]. We call h∗ good if

errD(h
∗) ≤ OPT + ε

3 . Since h∗ is the function that minimizes errD(hj) among the t functions, h∗ is not
good with probability at most ( 13 )

t < δ
2 . Therefore, with probability at least 1−δ, sample Q is representative

and h∗ is good. We get

errD(ĥ) ≤ errQ(ĥ) +
ε

3
Q is a representative sample

≤ errQ(h
∗) +

ε

3
ĥ minimizes empirical risk w.r.t. to Q

≤ errD(h
∗) +

ε

3
+

ε

3
Q is a representative sample

≤ OPT + ε , h∗ is good

as stated.

The sample complexity is due to the sampling of the set Q and the O(ln 1
δ ) invocations of the learner,

yielding the overall sample complexity of O( 1
ε2 ln

1
δ + ln 1

δSA).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let A be an algorithm that first takes a sample S of size c
ε2 for some sufficiently

large constant c, so that with probability at least 5
6 , the sample S is ε-representative for Ck, and then invokes
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Algorithm 1 with the set S and loss parameter ε. Then by the discussion prior to Theorem 2.2, Algorithm
A is an (ε, 2

3 )-agnostic PAC learner for Ck with sample complexity SA = O( 1
ε2 ) and running time TA =

O( 1
ε2k

ln 1
ε + 1

ε4 ) = O( 1
ε2k

ln 1
ε ).

Therefore, by Lemma E.1, invoking Algorithm 3 with A results in an (ε, δ)-agnostic PAC learner for Ck
with sample sample complexity O(SA · ln 1

δ +
1
ε2 ln

1
δ ) = O( 1

ε2 ln
1
δ ). For the running time analysis observe

that for every constant k, hypothesis h ∈ Ck, and x ∈ R2, computing h(x) takes O(1) time. Therefore, the
running time is O(TA · ln 1

δ + 1
ε2 ln

2 1
δ ) = O( 1

ε2k
ln 1

ε ln
1
δ + 1

ε2 ln
2 1

δ ).

In the proof of Theorem 3.1, we use the following algorithm in order to efficiently evaluate the error of the t
hypotheses on the sample Q.
Theorem E.2 (Theorem 1 in Brodal & Jacob (2002)). There exists an algorithm that, given a convex polygon
P in the plane with v vertices and a set Q of q points on the plane, returns the set of points P

⋂
Q in time

O((v + q) log v).

Proof of Theorem 3.1. Let A be the algorithm that runs Algorithm 2 and outputs the hypothesis fĨ returned
by Algorithm 2 if Hull(Ĩ) has O(ε−0.5) vertices and fails otherwise. Note that A has the same guarantees
as those of Algorithm 2, with the additional guarantee that it always outputs an indicator function for a
bounded size polygon or fails. Hence, it has sample complexity SA = O( 1

ε2.5 ln
1
ε ) and running time

TA = O( 1
ε5 ln

2 1
ε ).

Now we analyze the complexity of Algorithm 3 invoked with A.

In order to efficiently compute the error empirical error of the t hypothesis on the set Q we do as follows.
For each hypothesis that is an indicator function for some polygon P over ν(P ) = cε−0.5 vertices and for
the Q examples, we invoke the algorithm described in Theorem E.2 to compute P

⋂
Q. This takes time

O((q+ν(P )) · log |ν(P )|) = O( 1
ε2 ln

1
ε ln

1
δ ) for each hypothesis. Therefore, computing the empirical error

of all t = O(ln 1
δ ) hypotheses takes time O( 1

ε2 ln
1
ε ln

2 1
δ ).

Thus, the sample complexity of the (ε, δ)-learner for Cconv is O(SA · 1
δ + 1

ε2 ln
1
δ ) = O( 1

ε2.5 ln
1
ε ln

1
δ +

1
ε2 ln

1
δ ) = O( 1

ε2.5 ln
1
ε · ln 1

δ ), and the running time is O(t · TA + 1
ε2 ln

1
ε ln

1
δ ) = O( 1

ε5 ln
2 1

ε · ln 1
δ +

1
ε2 ln

1
ε ln

2 1
δ ).

Finally, since by Theorem 3.2, Algorithm 2 is an (ε, 2
3 )-agnostic PAC learner for the class Cconv under every

distribution D over X × {0, 1}, such that DX is uniform, so is algorithm A, and therefore, Algorithm 3
invoked with A is an (ε, δ) learner for Cconv under the same distribution.
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