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Abstract

Imitation learning addresses the challenge of learning by observing an expert’s1

demonstrations without access to reward signals from environments. Most existing2

imitation learning methods that do not require interacting with environments either3

model the expert distribution as the conditional probability p(a|s) (e.g., behavioral4

cloning, BC) or the joint probability p(s, a) (e.g., implicit behavioral cloning). De-5

spite its simplicity, modeling the conditional probability with BC usually struggles6

with generalization. While modeling the joint probability can lead to improved7

generalization performance, the inference procedure can be time-consuming and it8

often suffers from manifold overfitting. This work proposes an imitation learning9

framework that benefits from modeling both the conditional and joint probability10

of the expert distribution. Our proposed diffusion model-augmented behavioral11

cloning (DBC) employs a diffusion model trained to model expert behaviors and12

learns a policy to optimize both the BC loss (conditional) and our proposed diffu-13

sion model loss (joint). DBC outperforms baselines in various continuous control14

tasks in navigation, robot arm manipulation, dexterous manipulation, and locomo-15

tion. We design additional experiments to verify the limitations of modeling either16

the conditional probability or the joint probability of the expert distribution as well17

as compare different generative models.18

1 Introduction19

Recently, the success of deep reinforcement learning (DRL) [Mnih et al., 2015, Lillicrap et al., 2016,20

Arulkumaran et al., 2017] has inspired the research community to develop DRL frameworks to21

control robots, aiming to automate the process of designing sensing, planning, and control algorithms22

by letting the robot learn in an end-to-end fashion. Yet, acquiring complex skills through trial and23

error can still lead to undesired behaviors even with sophisticated reward design [Christiano et al.,24

2017, Leike et al., 2018, Lee et al., 2019]. Moreover, the exploring process could damage expensive25

robotic platforms or even be dangerous to humans [Garcıa and Fernández, 2015, Levine et al., 2020].26

To overcome this issue, imitation learning (i.e., learning from demonstration) [Schaal, 1997, Osa et al.,27

2018] has received growing attention, whose aim is to learn a policy from expert demonstrations,28

which are often more accessible than appropriate reward functions for reinforcement learning. Among29

various imitation learning directions, adversarial imitation learning [Ho and Ermon, 2016, Zolna30

et al., 2021, Kostrikov et al., 2019] and inverse reinforcement learning [Ng and Russell, 2000, Abbeel31

and Ng, 2004] have achieved encouraging results in a variety of domains. Yet, these methods require32

interacting with environments, which can still be expensive or unsafe.33

On the other hand, behavioral cloning (BC) [Pomerleau, 1989, Bain and Sammut, 1995] does not34

require interacting with environments. BC formulates imitation learning as a supervised learning35

problem — given an expert demonstration dataset, an agent policy takes states sampled from the36

dataset as input and learns to replicate the corresponding expert actions. One can view a BC policy as37
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a discriminative model p(a|s) that models the conditional probability of an action a given a state s.38

Due to its simplicity and training stability, BC has been widely adopted for various applications.39

However, BC struggles at generalizing to states unobserved during training [Nguyen et al., 2023].40

To address this issue, implicit behavioral cloning (IBC) [Florence et al., 2022] aims to model the41

joint probability of the expert state-action pairs p(s, a) with energy-based models. IBC demonstrates42

superior performance when generalization is required. Yet, imitation learning methods in a similar43

vein [Ganapathi et al., 2022] that model the joint probability of state-action pairs p(s, a) instead44

of directly predicting actions p(a|s) require time-consuming actions sampling and optimization to45

retrieve a desired action argmax
a∈A

p(s, a) during inference despite the choice of models.46

This work proposes an imitation learning framework that combines both the efficiency of modeling the47

conditional probability and the generalization ability of modeling the joint probability. Specifically,48

we propose to model the expert state-action pairs using a state-of-the-art generative model, a diffusion49

model, which learns to estimate how likely a state-action pair is sampled from the expert dataset.50

Then, we train a policy to optimize both the BC objective and the estimate produced by the learned51

diffusion model. Therefore, our proposed framework not only can efficiently predict actions given52

states via capturing the conditional probability p(a|s) but also enjoys the generalization ability53

induced by modeling the joint probability p(s, a) and utilizing it to guide policy learning.54

We evaluate our proposed framework and baselines in various continuous control domains, including55

navigation, robot arm manipulation, and locomotion. The experimental results show that the proposed56

framework outperforms all the baselines or achieves competitive performance on all tasks. Extensive57

ablation studies compare our proposed method to its variants, justifying our design choices, such as58

different generative models, and investigating the effect of hyperparameters.59

2 Related Work60

Imitation learning addresses the challenge of learning by observing expert demonstrations without61

access to reward signals from environments. It has various applications such as robotics [Schaal,62

1997], autonomous driving [Ly and Akhloufi, 2020], and game AI [Harmer et al., 2018].63

Behavioral Cloning (BC). BC [Pomerleau, 1989, Torabi et al., 2018] formulate imitating an expert64

as a supervised learning problem. Due to its simplicity and effectiveness, it has been widely adopted65

in various domains. Yet, it often struggles at generalizing to states unobserved from the expert66

demonstrations [Ross et al., 2011, Florence et al., 2022]. In this work, we augment BC by employing67

a diffusion model that learns to capture the joint probability of expert state-action pairs.68

Adversarial Imitation Learning (AIL). AIL methods aim to match the state-action distributions of69

an agent and an expert via adversarial training. Generative adversarial imitation learning (GAIL) [Ho70

and Ermon, 2016] and its extensions [Torabi et al., 2019, Kostrikov et al., 2019, Zolna et al., 2021]71

resemble the idea of generative adversarial networks [Goodfellow et al., 2014], which trains a72

generator policy to imitate expert behaviors and a discriminator to distinguish between the expert73

and the learner’s state-action pair distributions. While modeling state-action distributions often leads74

to satisfactory performance, adversarial learning can be unstable and inefficient [Chen et al., 2020].75

Moreover, AIL methods require online interaction with environments, which can be costly or even76

dangerous. In contrast, our work does not require interacting with environments.77

Inverse Reinforcement Learning (IRL). IRL methods [Ng and Russell, 2000, Abbeel and Ng,78

2004, Fu et al., 2018, Lee et al., 2021] are designed to infer the reward function that underlies the79

expert demonstrations and then learn a policy using the inferred reward function. This allows for80

learning tasks whose reward functions are difficult to specify manually. However, due to its double-81

loop learning procedure, IRL methods are typically computationally expensive and time-consuming.82

Additionally, obtaining accurate estimates of the expert’s reward function can be difficult, especially83

when the expert’s behavior is non-deterministic or when the expert’s demonstrations are sub-optimal.84

Diffusion Policies. Recently, Pearce et al. [2023], Chi et al. [2023], Reuss et al. [2023] propose to85

represent and learn an imitation learning policy using a conditional diffusion model, which produces86

a predicted action conditioning on a state and a sampled noise vector. These methods achieve87

encouraging results in modeling stochastic and multimodal behaviors from human experts or play88
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data. In contrast, instead of representing a policy using a diffusion model, our work employs a89

diffusion model trained on expert demonstrations to guide a policy as a learning objective.90

3 Preliminaries91

3.1 Imitation Learning92

Without loss of generality, the reinforcement learning problem can be formulated as a Markov decision93

process (MDP), which can be represented by a tuple M = (S,A,R, P, ρ, γ) with states S, actions94

A, reward function R(S,A) ∈ (0, 1), transition distribution P (s
′ |s, a) : S ×A× S → [0, 1], initial95

state distribution ρ, and discounted factor γ. Based on the rewards received while interacting with96

the environment, the goal is to learn a policy π(·|s) to maximize the expectation of the cumulative97

discounted return (i.e., value function): V (π) = E[
T∑

t=0
γtR(st, at)|s0 ∼ ρ(·), at ∼ π(·|st), st+1 ∼98

P (st+1|st, at)], where T denotes the episode length. Instead of interacting with the environment and99

receiving rewards, imitation learning aims to learn an agent policy from an expert demonstration100

dataset, containing M trajectories, D = {τ1, ..., τM}, where τi represents a sequence of ni state-101

action pairs {si1, ai1, ..., sini
, aini

}.102

3.2 Behavioral Cloning: Modeling Conditional Probability p(a|s)103

To learn a policy π, behavioral cloning (BC) directly estimates the expert policy πE with maximum104

likelihood estimation (MLE). Given a state-action pair (s, a) sampled from the dataset D, BC105

optimizes max
θ

∑
(s,a)∈D

log(πθ(a|s)), where θ denotes the parameters of the policy π. One can view a106

BC policy as a discriminative model p(a|s), capturing the conditional probability of an action a given107

a state s. Despite its success in various applications, BC tends to overfit and struggle at generalizing108

to states unseen during training [Ross et al., 2011, Codevilla et al., 2019, Wang et al., 2022].109

3.3 Modeling Joint Probability p(s, a)110

Aiming for improved generalization ability, implicit behavioral cloning [Florence et al., 2022] and111

methods in a similar vein [Ganapathi et al., 2022] model the joint probability p(s, a) of expert state-112

action pairs. These methods demonstrate superior generalization performance in diverse domains. Yet,113

without directly modeling the conditional probability p(a|s), the action sampling and optimization114

procedure to retrieve a desired action argmaxa∈A p(s, a) during inference is often time-consuming.115

Moreover, explicit generative models such as energy-based models [Du and Mordatch, 2019, Song and116

Kingma, 2021], variational autoencoder [Kingma and Welling, 2014], and flow-based models Rezende117

and Mohamed [2015], Dinh et al. [2017] are known to struggle with modeling observed high-118

dimensional data that lies on a low-dimensional manifold (i.e., manifold overfitting) [Wu et al., 2021,119

Loaiza-Ganem et al., 2022]. As a result, these methods often perform poorly when learning from120

demonstrations produced by script policies or PID controllers, as discussed in Section 5.4.121

We aim to develop an imitation learning framework that enjoys the advantages of modeling the122

conditional probability p(a|s) and the joint probability p(s, a). Specifically, we propose to model the123

joint probability of expert state-action pairs using an explicit generative model ϕ, which learns to124

produce an estimate indicating how likely a state-action pair is sampled from the expert dataset. Then,125

we train a policy to model the conditional probability p(a|s) by optimizing the BC objective and126

the estimate produced by the learned generative model ϕ. Hence, our method can efficiently predict127

actions given states, generalize better to unseen states, and suffer less from manifold overfitting.128

3.4 Diffusion Models129

As described in the previous sections, this work aims to combine the advantages of modeling both130

the conditional probability p(a|s) and the joint probability p(s, a). To this end, we leverage diffusion131

models to model the joint probability of expert state-action pairs. The diffusion model is a recently132

developed class of generative models and has achieved state-of-the-art performance on various133

tasks Sohl-Dickstein et al. [2015], Nichol and Dhariwal [2021], Dhariwal and Nichol [2021].134
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q(xn |xn−1)

ϕ(xn−1 |xn)
xn−1 xn xNx0

Forward diffusion process

Reverse diffusion process

Figure 1: Denoising Diffusion Probabilistic
Model (DDPM). Latent variables x1, ..., xN are
produced from the data point x0 via the forward
diffusion process, i.e., gradually adding noises to
the latent variables. The diffusion model ϕ learns
to reverse the diffusion process by denoising the
noisy data to reconstruct the original data point x0.

In this work, we utilize Denoising Diffusion135

Probabilistic Models (DDPMs) J Ho [2020] to136

model expert state-action pairs. Specifically,137

DDPM models gradually add noise to data sam-138

ples (i.e., concatenated state-action pairs) until139

they become isotropic Gaussian (forward diffu-140

sion process), and then learn to denoise each141

step and restore the original data samples (re-142

verse diffusion process), as illustrated in Figure143

1. In other words, DDPM learns to recognize a144

data distribution by learning to denoise noisy145

sampled data. More discussion on diffusion146

models can be found in the Section G.147

4 Approach148

Our goal is to design an imitation learning framework that enjoys both the advantages of modeling149

the conditional probability and the joint probability of expert behaviors. To this end, we first adopt150

behavioral cloning (BC) for modeling the conditional probability from expert state-action pairs, as151

described in Section 4.1. To capture the joint probability of expert state-action pairs, we employ152

a diffusion model which learns to produce an estimate indicating how likely a state-action pair is153

sampled from the expert state-action pair distribution, as presented in Section 4.2.1. Then, we propose154

to guide the policy learning by optimizing this estimate provided by a learned diffusion model,155

encouraging the policy to produce actions similar to expert actions, as discussed in Section 4.2.2.156

Finally, in Section 4.3, we introduce the framework that combines the BC loss and our proposed157

diffusion model loss, allowing for learning a policy that benefits from modeling both the conditional158

probability and the joint probability of expert behaviors. An overview of our proposed framework is159

illustrated in Figure 2, and the algorithm is detailed in Section B.160

4.1 Behavioral Cloning Loss161

The behavioral cloning (BC) model aims to imitate expert behaviors with supervision learning. BC162

learns to capture the conditional probability p(a|s) of expert state-action pairs. Given a sampled163

expert state-action pair (s, a), a policy π learns to predict an action â ∼ π(s) by optimizing164

LBC = d(a, â), (1)

where d(·, ·) denotes a distance measure between a pair of actions. For example, we can adapt the165

mean-square error (MSE) loss ||a− â||2 for most continuous control tasks.166

4.2 Learning a Diffusion Model and Guiding Policy Learning167

Instead of directly learning the conditional probability p(a|s), this section discusses how to model168

the joint probability p(s, a) of expert behaviors with a diffusion model in Section 4.2.1 and presents169

how to leverage the learned diffusion model to guide policy learning in Section 4.2.2.170

4.2.1 Learning a Diffusion Model171

We propose to model the joint probability of expert state-action pairs with a diffusion model ϕ.172

Specifically, we create a joint distribution by simply concatenating a state vector s and an action173

vector a from a state-action pair (s, a). To model such distribution by learning a denoising diffusion174

probabilistic model (DDPM) J Ho [2020], we inject noise ϵ(n) into sampled state-action pairs, where175

n indicates the number of steps of the Markov procedure, which can be viewed as a variable of the176

level of noise. Then, we train the diffusion model ϕ to predict the injected noises by optimizing177

Ldiff(s, a, ϕ) = ||ϵ̂(s, a, n)− ϵ(n)||2 = ||ϕ(s, a, ϵ(n))− ϵ(n)||2, (2)

where ϵ̂ is the noise predicted by the diffusion model ϕ. Once optimized, the diffusion model can178

recognize the expert distribution by perfectly predicting the noise injected into state-action pairs179

sampled from the expert distribution. On the other hand, predicting the noise injected into state-180

action pairs sampled from any other distribution should yield a higher loss value. Therefore, we181
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(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model
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Figure 2: Diffusion Model-Augmented Behavioral Cloning. Our proposed method DBC augments behavioral
cloning (BC) by employing a diffusion model. (a) Learning a Diffusion Model: the diffusion model ϕ learns to
model the distribution of concatenated state-action pairs sampled from the demonstration dataset D. It learns
to reverse the diffusion process (i.e., denoise) by optimizing Ldiff in Eq. 2. (b) Learning a Policy with the
Learned Diffusion Model: we propose a diffusion model objective LDM for policy learning and jointly optimize
it with the BC objective LBC. Specifically, LDM is computed based on processing a sampled state-action pair
(s, a) and a state-action pair (s, â) with the action â predicted by the policy π with Ldiff.

propose to view Ldiff(s, a, ϕ) as an estimate of how well the state-action pair (s, a) fits the state-action182

distribution that ϕ learns from.183

4.2.2 Learning a Policy with Diffusion Model Loss184

A diffusion model ϕ trained on the expert distribution can produce an estimate Ldiff(s, a, ϕ) indicating185

how well a state-action pair (s, a) fits the expert distribution. We propose to leverage this signal to186

guide a policy to imitate the expert. Specifically, given a state-action (s, a) sampled from D, the π187

predicts an action given the state â ∼ π(s) by optimizing188

Lagent
diff = Ldiff(s, â, ϕ) = ||ϵ̂(s, â, n)− ϵ||2. (3)

Intuitively, the policy learns to predict actions that are indistinguishable from the expert actions for189

the diffusion model conditioning on the same set of states.190

We hypothesize that learning a policy to optimize Eq. 3 can be unstable, especially for state-action191

pairs that are not well-modeled by the diffusion model, which yield a high value of Ldiff even with192

expert state-action pairs. Therefore, we propose to normalize the agent diffusion loss Lagent
diff with an193

expert diffusion loss Lexpert
diff , which can be computed with expert state-action pairs (s, a) as follows:194

Lexpert
diff = Ldiff(s, a, ϕ) = ||ϵ̂(s, a, n)− ϵ||2. (4)

We propose to optimize the diffusion model loss LDM based on calculating the difference between195

the above agent and expert diffusion losses:196

LDM = max(Lagent
diff − Lexpert

diff , 0). (5)

4.3 Combining the Two Objectives197

Our goal is to learn a policy that benefits from both modeling the conditional probability and the joint198

probability of expert behaviors. To this end, we propose to augment a BC policy that optimizes the199

BC loss LBC in Eq. 1 by jointing optimizing the proposed diffusion model loss LDM in Eq. 5, which200

encourages the policy to predict actions that fit the expert joint probability captured by a diffusion201

model. To learn from both the BC loss and the diffusion model loss, we train the policy to optimize202

Ltotal = LBC + λLDM, (6)
where λ is a coefficient that determines the importance of the diffusion model loss relative to the BC203

loss. We analyze the effect of the coefficient in Section 5.6.1.204
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(a) MAZE (b) FETCHPICK (c) FETCHPUSH (d) HANDROTATE (e) WALKER

Figure 3: Environments & Tasks. (a) MAZE: A point-mass agent (green) in a 2D maze learns to
navigate from its start location to a goal location (red). (b)-(c) FETCHPICK and FETCHPUSH: The
robot arm manipulation tasks employ a 7-DoF Fetch robotics arm. FETCHPICK requires picking up
an object (yellow cube) from the table and moving it to a target location (red); FETCHPUSH requires
the arm to push an object (black cube) to a target location (red). (d) HANDROTATE: This dexterous
manipulation task requires a Shadow Dexterous Hand to in-hand rotate a block to a target orientation.
(e) WALKER: This locomotion task requires learning a bipedal walker policy to walk as fast as
possible while maintaining its balance.

5 Experiments205

We design experiments in various continuous control domains, including navigation, robot arm206

manipulation, dexterous manipulation, and locomotion, to compare our proposed framework (DBC)207

to its variants and baselines.208

5.1 Experimental Setup209

This section describes the environments, tasks, and expert demonstrations used for learning and210

evaluation. More details can be found in Section A.211

Navigation. To evaluate our method on a navigation task, we choose MAZE, a maze environment212

proposed in Fu et al. [2020] (maze2d-medium-v2), as illustrated in Figure 3a. This task features213

a point-mass agent in a 2D maze learning to navigate from its start location to a goal location by214

iteratively predicting its x and y acceleration. The agent’s beginning and final locations are chosen215

randomly. We collect 100 demonstrations with 18,525 transitions using a controller.216

Robot Arm Manipulation. We evaluate our method in a robot arm manipulation domain with217

two 7-DoF Fetch tasks: FETCHPICK and FETCHPUSH, as illustrated in Figure 3c and Figure218

3b. FETCHPICK requires picking up an object from the table and lifting it to a target location;219

FETCHPUSH requires the arm to push an object to a target location. We use the demonstrations220

provided in Lee et al. [2021] for these tasks. Each dataset contains 10k transitions (303 trajectories221

for FETCHPICK and 185 trajectories for FETCHPUSH).222

Dexterous Manipulation. In HANDROTATE, we further evaluate our method on a challenging223

environment proposed in Plappert et al. [2018], where a 24-DoF Shadow Dexterous Hand learns224

to in-hand rotate a block to a target orientation, as illustrated in Figure 3d. This environment has225

a high-dimensional state space (68D) and action space (20D). We collected 10k transitions (515226

trajectories) from a SAC [Haarnoja et al., 2018] expert policy trained for 10M environment steps.227

Locomotion. For locomotion, we leverage the WALKER environment Brockman et al. [2016], which228

requires a bipedal agent to walk as fast as possible while maintaining its balance, as illustrated in229

Figure 3e. We use the demonstrations provided by Kostrikov [2018], which contains 5 trajectories230

with 5k state-action pairs.231

5.2 Baselines232

We compare our method DBC with the following baselines.233

• BC learns to imitate an expert by modeling the conditional probability p(a|s) of the expert234

behaviors via optimizing the BC loss LBC in Eq. 1.235
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Table 1: Experimental Result. We report the mean and the standard deviation of success rate (MAZE,
FETCHPICK, FETCHPUSH, HANDROTATE) and return (WALKER), evaluated over three random
seeds. Our proposed method (DBC) outperforms the baselines on MAZE, FETCHPICK, FETCHPUSH,
HANDROTATE, and performs competitively against the best performing baseline on WALKER.

Method MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER

BC 79.35% ± 5.05% 69.15% ± 5.00% 66.02% ± 6.88% 55.48% ± 3.97% 7066.61 ± 22.79
Implicit BC 81.43% ± 4.88% 72.27% ± 6.71% 77.70% ± 4.42% 14.52% ± 3.04% 685.92 ± 150.26

Diffusion Policy 73.34% ± 5.30% 74.37% ± 3.80% 86.93% ± 3.26% 58.59% ± 2.85% 6429.87 ± 356.70
DBC 86.99% ± 2.84% 88.71% ± 6.46% 89.50% ± 3.99% 60.34% ± 4.60% 7057.42 ± 36.19

• Implicit BC (IBC) [Florence et al., 2022] models expert state-action pairs with an energy-based236

model. For inference, we implement the derivative-free optimization algorithm proposed in IBC,237

which samples actions iteratively to select the desired action with the minimum predicted energy.238

This baseline serves a representative of the methods that solely model the joint probability p(s, a)239

of the expert behaviors.240

• Diffusion policy refers to the methods that learn a conditional diffusion model as a policy [Chi241

et al., 2023, Reuss et al., 2023]. Specifically, we implement this baseline based on Pearce et al.242

[2023]. We include this baseline to analyze the effectiveness of using diffusion models as a policy243

or as a learning objective (ours).244

5.3 Experimental Results245

We report the experimental results in terms of success rate (MAZE, FETCHPICK, FETCHPUSH,246

HANDROTATE), and return (WALKER) in Table 1. The details of model architecture can be found247

in Section C. Training and evaluation details can be found in Section D. Additional analysis and248

experimental results can be found in Section E and Section F.249

Overall Task Performance. Our proposed method DBC achieves the highest success rates, out-250

performing our baselines in all the goal-directed tasks (MAZE, FETCHPICK, FETCHPUSH, and251

HANDROTATE) and perform competitively in WALKER compared to the best-performing baseline252

(BC). We hypothesize the improvement in the goal-directed tasks can be mostly attributed to the253

better generalization ability since starting positions and the goals are randomized during evaluation254

and therefore requires the policy to deal with unseen situation. To verify this hypothesis, we further255

evaluate the baselines and our method in FETCHPICK and FETCHPUSH with different levels of256

randomization in Section E.257

Locomotion. Unlike the goal-directed tasks, we do not observe significant improvement but competi-258

tive results from DBC compared to the best-performing baseline (BC). We hypothesize that this is259

because locomotion tasks such as WALKER, with sufficient expert demonstrations and little random-260

ness, do not require generalization during inference. The agent can simply follow the closed-loop261

progress of the expert demonstrations, resulting in both BC (7066.61) and DBC (7057.42) performing262

similarly to the expert with an average return of 7063.72. On the other hand, we hypothesize that263

Diffusion Policy performs slightly worse due to its design for modeling multimodal behaviors, which264

is contradictory to learning from this single-mode simulated locomotion task.265

Action Space Dimension. While Implicit BC models the joint distribution and generalizes better,266

it requires time-consuming actions sampling and optimization during inference. Moreover, such267

procedure may not scale well to high-dimensional action spaces. Our Implicit BC baseline with268

a derivative-free optimizer struggles in HANDROTATE and WALKER environments, whose action269

dimensions are 20 and 6, respectively. This is consistent with Florence et al. [2022], which reports270

that the optimizer failed to solve tasks with an action dimension larger than 5. In contrast, our271

proposed DBC can handle high-dimensional action spaces.272

Inference Efficiency. To evaluate the inference efficiency, we measure and report the number of273

evaluation episodes per second (↑) for IBC (9.92), Diffusion Policy (1.38), and DBC (30.79) on274

an NVIDIA RTX 3080 Ti GPU in MAZE. This can be attributed to the fact that DBC and BC275

model the conditional probability p(a|s) and can directly map states to actions during inference. In276

contrast, Implicit BC requires action sampling and optimization, while Diffusion Policy is required to277

iteratively denoise sampled noises. This verifies the efficiency of modeling the conditional probability.278
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(a) (b) (c)

Figure 4: Comparing Modeling Conditional Probability and Joint Probability. (a) Generaliza-
tion. We collect expert trajectories from a PPO policy learning to navigate to goals sampled from the
green regions. Then, we learn a policy πBC to optimize LBC, and another policy πDM to optimize
LDM with a diffusion model trained on the expert distribution. We evaluate the two policies by
sampling goals from the red regions, which requires the ability to generalize. πBC (orange) struggles
at generalizing to unseen goals, whereas πDM (blue) can generalize (i.e., extrapolate) to some extent.
(b)-(c) Manifold overfitting. We collect the green spiral trajectories from a script policy, whose
actions are visualized as red crosses. We then train and evaluate πBC and πDM . The trajectories
of πBC (orange) can closely follow the expert trajectories (green), while the trajectories of πDM

(blue) drastically deviates from expert’s. This is because the diffusion model struggles at modeling
such expert action distribution with a lower intrinsic dimension, which can be observed from poorly
predicted actions (blue dots) produced by the diffusion model.

5.4 Comparing Modeling Conditional Probability and Joint Probability279

This section aims to empirically identify the limitations of modeling either the conditional or the280

joint probability in an open maze environment implemented with [Fu et al., 2020].281

Generalization. We aim to investigate if learning from the BC loss alone struggles at generalization282

(conditional) and examine if guiding the policy using the diffusion model loss yields improved283

generalization ability (joint). We collect trajectories of a PPO policy learning to navigate from284

(5, 3) to goals sampled around (1, 2) and (1, 4) (green), as shown in Figure 4a. Given these expert285

trajectories, we learn a policy πBC to optimize Eq. 1 and another policy πDM to optimize Eq. 5. Then,286

we evaluate the two policies by sampling goals around (1, 1), (1, 3), and (1, 5) (red), which requires287

the ability to generalize. Visualized trajectories of the two policies in Figure 4a show that πBC288

(orange) fails to generalize to unseen goals, whereas πDM (blue) can generalize (i.e., extrapolate) to289

some extent. This verifies our motivation to augment BC with the diffusion model loss.290

Manifold overfitting. We aim to examine if modeling the joint probability is difficult when observed291

high-dimensional data lies on a low-dimensional manifold (i.e., manifold overfitting). We collect292

trajectories from a script policy that executes actions (0.5, 0), (0, 0.5), (−0.7, 0), and (0,−0.7) (red293

crosses in Figure 4b), each for 40 consecutive time steps, resulting the green spiral trajectories294

visualized in Figure 4c.295

Given these expert demonstrations, we learn a policy πBC to optimize Eq. 1, and another policy296

πDM to optimize Eq. 5 with a diffusion model trained on the expert distribution. Figure 4b shows297

that the diffusion model struggles at modeling such expert action distribution with a lower intrinsic298

dimension. As a result, Figure 4c show that the trajectories of πDM (blue) drastically deviates from299

the expert trajectories (green) as the diffusion model cannot provide effective loss. On the other hand,300

the trajectories of πBC (orange) is able to closely follow expert’s. This verifies our motivation to301

complement modeling the joint probability with modeling the conditional probability (i.e., BC).302

5.5 Comparing Different Generative Models303

Our proposed framework employs a diffusion model (DM) to model the joint probability of expert304

state-action pairs and utilizes it to guide policy learning. To justify our choice, we explore using other305

popular generative models to replace the diffusion model in MAZE. We consider energy-based models306

(EBMs) [Du and Mordatch, 2019, Song and Kingma, 2021], variational autoencoder (VAEs) [Kingma307

and Welling, 2014], and generative adversarial networks (GANs) Goodfellow et al. [2014]. Each308
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Table 2: Generative Models. We compare using different
generative models to model the expert distribution and
guide policy learning in MAZE.

Method without BC with BC

BC N/A 79.35% ± 5.05%
EBM 49.09% ± 15.15% 80.00% ± 4.06%
VAE 48.47% ± 7.57% 82.31% ± 5.84%
GAN 50.29% ± 8.27% 71.64% ± 5.50%
DM 53.51% ± 4.20% 86.99% ± 2.84%

Table 3: Effect of λ. We experiment
with different values of λ in MAZE, each
evaluated over three random seeds.

λ Success Rate

1 85.40% ± 4.37%
2 85.64% ± 3.69%
5 86.99% ± 2.84%

10 85.46% ± 4.47%
20 85.17% ± 2.61%

generative model learns to model expert state-action pairs. To guide policy learning, given a predicted309

state-action pair (s, â) we use the estimated energy of an EBM, the reconstruction error of a VAE,310

and the discriminator output of a GAN to optimize a policy with or without the BC loss. Training311

details can be found in Section D.3.312

Table 2 compares using different generative models to model the expert distribution and guide313

policy learning. All the generative model-guide policies can be improved by adding the BC loss,314

justifying our motivation to complement modeling the joint probability with modeling the conditional315

probability. With or without the BC loss, the diffusion model-guided policy achieves the best316

performance compared to other generative models, verifying our choice of the generative model.317

5.6 Ablation Study318

In this section, we investigate the effect of the diffusion model loss coefficient λ (Section 5.6.1) and319

examine the effect of the normalization term Lexpert
diff in the diffusion model loss LDM (Section 5.6.2).320

5.6.1 Effect of the Diffusion Model Loss Coefficient λ321

We examine the impact of varying the coefficient of the diffusion model loss λ in Eq. 6 in MAZE.322

The result presented in Table 3 shows that λ = 5 yields the best performance. A higher or lower λ323

leads to worse performance, demonstrating how modeling the conditional probability (LBC) and the324

joint probability (LDM) can complement each other.325

5.6.2 Effect of the Normalization Term Lexpert
diff326

We aim to investigate whether normalizing the diffusion model loss LDM with the expert diffusion327

model loss Lexpert
diff yields improved performance in MAZE. We train a variant of DBC where only328

Lagent
diff in Eq. 3 instead of LDM in Eq. 5 is used to augment BC. This variant learning from an329

unnormalized diffusion model loss achieves an average success rate of 80.20%, worse than the full330

DBC (86.99%). This justifies the effectiveness of the proposed normalization term Lexpert
diff in LDM.331

6 Conclusion332

We propose an imitation learning framework that benefits from modeling both the conditional333

probability p(a|s) and the joint probability p(s, a) of the expert distribution. Our proposed diffusion334

model-augmented behavioral cloning (DBC) employs a diffusion model trained to model expert335

behaviors and learns a policy to optimize both the BC loss and our proposed diffusion model loss.336

Specifically, the BC loss captures the conditional probability p(a|s) from expert state-action pairs,337

which directly guides the policy to replicate the expert’s action. On the other hand, the diffusion338

model loss models the joint distribution of expert’s state-action pairs p(s, a), which provides an339

evaluation of how well the predicted action aligned with the expert distribution. DBC outperforms340

baselines or achieves competitive performance in various continuous control tasks in navigation,341

robot arm manipulation, dexterous manipulation, and locomotion. We design additional experiments342

to verify the limitations of modeling either the conditional probability or the joint probability of the343

expert distribution as well as compare different generative models. Ablation studies investigate the344

effect of hyperparameters and justify the effectiveness of our design choices.345
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