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ABSTRACT

Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in
multi-step reasoning and calling search engines at appropriate steps. However, ex-
isting retrieval-augmented reasoning approaches rely on separate retrieval models,
limiting the LRM’s role in retrieval to deciding when to retrieve and how to query.
This architectural separation not only imposes a dual burden of training and opera-
tional overhead for both models but also results in retrieval errors stemming from
the representation bottleneck, as the retriever’s limited embedding space struggles
to capture the subtle distinctions required by the generator. To address this, we
shift our perspective on retrieval from sequence-to-sequence matching to locating
the answer-containing paths within the corpus, and propose a novel framework
called FREESON (Retriever-FREE Retrieval-Augmented ReaSONing). This
framework enables LRMs to directly interact with external knowledge sources and
autonomously acquire the information they need by acting as a unified generator-
retriever. To achieve this, we introduce a variant of the MCTS algorithm special-
ized for the retrieval task, which we call CT-MCTS (Corpus-Traversing Monte
Carlo Tree Search). In this algorithm, LRMs navigate the corpus toward answer-
containing regions. Experiments on five open-domain QA benchmarks covering
both single-hop and multi-hop questions demonstrate that FREESON achieves
an average improvement of 14.4% in EM and F1 over four multi-step reasoning
models with a separate retriever, and it also performs comparably to the strongest
baseline, surpassing it by 3% on PopQA and 2WikiMultihopQA, and by 12% on
the fact-checking benchmark FEVER.

1 INTRODUCTION

Retrieval-Augmented Reasoning (RAR) is a widely used framework to reduce hallucinations and
generate more factual responses by injecting external knowledge into the reasoning chain (Jiang et al.,
2023; Press et al., 2023; Asai et al., 2023; Li et al., 2025a; Jin et al., 2025; Song et al., 2025; Yao
et al., 2023; Wang et al., 2025; Schick et al., 2023). In such pipelines, external knowledge is crucial
for guiding subsequent reasoning steps. However, conventional search engines—typically based on
dual-encoder architectures—often suffer from inherent limitations, failing to retrieve appropriate
documents due to an representation bottleneck, where embedding vectors cannot sufficiently represent
subtle distinctions between documents or their relevance to the question (Wang et al., 2023; Kim
et al., 2024; Magesh et al., 2024). For example, given the query “Where was the place of burial of
John Tuchet, 6th Baron Audley’s father?”, E5base (Wang et al., 2024a) (a state-of-the-art retriever)
assigns higher similarity scores to “John Tuchet, 8th Baron Audley” and “George Tuchet, 9th Baron
Audley” (both incorrect) than to “John Tuchet, 6th Baron Audley” (correct), retrieving an incorrect
document in the first hop due to a single-character difference, and consequently failing to reach the
final answer document, “James Tuchet, 5th Baron Audley”.

To address this issue, prior works have proposed better representation learning methods, or scaling
up either the model size or the amount of training data to enhance retrieval performance (Izacard
et al., 2022a; Ram et al., 2022; Wang et al., 2024a;b; Lee et al., 2024; Shao et al., 2025). However,
fundamentally resolving the representation bottleneck remains challenging due to the nature of the
architecture. In addition, maintaining two separate models introduces additional hardware overhead
and operational costs (Zhang et al., 2024b; Reichman & Heck, 2024). In this paper, we revisit the
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External Retriever

Q. Where was the place of burial of John Tuchet, 6Th Baron Audley's father? Generator

5th baron audley

490) was an

(c . 13 98 - 14 

, 3rh baron 

: john baron 

, 3rd baron 
6th baron audley

subject

�� Query-specific CorpusTree �� CT-MCTS

�� Document Selection

question

john tuchet, 6th baron audley, 3rd baron tuchet (1423 – 26 september 1490) 
was an english politician. john tuchet was the son of james tuchet, 5th 
baron audley (c. 1398 - 1459). he married ann echyngham ... (omitted) ...

<think> I need to find the place of burial of John Tuchet, 6th Baron Audley's father.

        I'll search for it. </think>

<search> (subject: John Tuchet, 6th Baron Audley, 

          question: Who is John Tuchet, 6th Baron Audley's father) </search>

<think> I found out that the father of John Tuchet, 6th Baron Audley, is 
. Now I need to find the place of 


        burial of James Tuchet, 5th Baron Audley. </think>         

James 

        Tuchet, 5th Baron Audley (correct)

�� Query Embedding 2. Similarity Score Calculation

�� Document Selection

<think> I need to find the place of burial of John Tuchet, 6th Baron Audley's father.

        I'll search for it. </think>

<search> John Tuchet, 6th Baron Audley's father </search>

<think> I found out that John Tuchet, 6th Baron Audley's father is 
 . Now I need to find the place of burial of 


        John Tuchet, 8th Baron Audley. </think>

John Tuchet, 

        8th Baron Audley (incorrect)

John Tuchet, 4th Baron Audley, 1st Baron Tuchet (23 April 1371 – 19 December 1408) was 
an English peer. John Tuchet, 4th Baron Audley was the son of... (omitted) ...

George Tuchet, 9th Baron Audley, 6th Baron Tuchet( died 1560) was an English peer. George 
Tuchet was the son of John Tuchet, 8th Baron Audley( born c. 1483) ... (omitted) ...

John Tuchet, 8th Baron Audley, 5th Baron Tuchet (c. 1483 – c. 1557) was an English peer.

Westminster, LondonDarley Abbey

FREESON conventional RAR

Simulation: 1st > 2nd > 3rd > 4th

⋮ ⋮

⋮ ⋮ ⋮

⋮⋮ .

Figure 1: Overview of retrieval-augmented reasoning process. Left: FREESON performs both
reasoning and retrieval using a single generator via CT-MCTS. Right: conventional RAR methods
compute similarity scores between query and document embeddings using a separate retrieval model.
FREESON requires neither an external retriever nor additional corpus memorization training.

conventional retrieval-augmented paradigm and pose a question: Can a single LRM autonomously
acquire the required knowledge from a corpus without relying on a separate retrieval model?

To address this question, we shift our focus from sequence-to-sequence matching to locating the
answer-containing paths within the corpus for retrieval and propose a novel framework called
FREESON (Retriever-FREE Retrieval-Augmented ReaSONing). In this framework, a single LRM
functions as both a generator and a retriever, autonomously searching external knowledge sources
without an intermediate retriever to improve the reliability of its responses. To implement this, we
first introduce CT-MCTS (Corpus-Traversing Monte Carlo Tree Search), a retrieval-specialized
MCTS (Kocsis & Szepesvári, 2006; Silver et al., 2016; Chen et al., 2024; Liu et al., 2024; Zhang
et al., 2024a), which defines its search nodes at the token level, allowing each node to represent a
prefix of one or more tokens, where the prefix is constrained by a predefined index to ensure that the
search follows only sequences that exist in the corpus (§ 2.2).

Implementing such retrieval-oriented MCTS introduces two key challenges: (1) the search operates at
extremely fine granularity, with token-level nodes, making it difficult to capture meaningful semantics
due to step-wise constraints; and (2) the model must obtain appropriate node value estimates to
guide the search toward the desired location in the corpus that contains the answer. To address the
first challenge, we increase node granularity while preserving single-token-level constraints, and
incorporate stochastic beam search into the expansion process, enabling the LRM to actively guide
expansion with multiple parallel continuations, partially taking over the role of iterative exploration.
For the second challenge, we train an on-policy value network to estimate answer-containment, using
CT-MCTS rollouts in environments aligned with actual inference-time scenarios (§ 4.4).

We evaluate FREESON on five open-domain QA benchmarks comprising of single-hop and multi-
hop questions. On average, FREESON achieves 14.4% improvement in EM and F1 compared to four
reasoning models using a separate retriever in their reasoning pipeline. It also performs on par with
the strongest baseline, Search-R1, surpassing it by an average 3% on PopQA and 2WikiMultihopQA,
and by 12% on the fact-checking benchmark FEVER. (§ 3.3). Our retrieval-specialized CT-MCTS
plays a key role in this performance. Flexible node granularity yields a 27.5% gain over single-token
nodes (§ 4.2), and multi-node expansion guided by the LRM improves performance by 13% over
single-node expansion (§ 4.3). FREESON does not require any training and is applicable to an
arbitrary LMs when we could access the output logit values. Particularly, it is well suited for domain-
specific applications that have unlabeled corpus, as it directly explores and reasons over the content
without using any external search engine.
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2 METHODOLOGY

In this section, we detail how FREESON autonomously identifies and retrieves the knowledge it
needs. See Figure 1 for an illustration of this process.

2.1 DYNAMICALLY ADAPTED SEARCH SPACE

When search is required, FREESON first generates a query in the form of (subject: [subject],
question: [question]), where [subject] is the entity or proper noun the question is mainly about, and
[question] is the corresponding question. Then, based on the subject information, we adaptively
construct a prefix-based index we call CorpusTree that narrows the search space by filtering out
irrelevant documents, similar to how ANN search prunes candidates in embedding retrieval.

2.2 CT-MCTS FOR SELF-INTERACTION WITH KNOWLEDGE

Given a question, which we input using a few-shot prompt that guides reasoning in written form
(see Appendix F.2), and a filtered CorpusTree, FREESON locates the appropriate information using
CT-MCTS designed to reinforce paths that are likely to contain the correct answer. Basically, CT-
MCTS operates in a token-level search space where the LLM’s probability distribution is dynamically
masked by the CorpusTree, allowing only valid sequences found in the corpus. The CorpusTree is
implemented using an FM-Index (Ferragina & Manzini, 2000; Bevilacqua et al., 2022) based on
the Burrows-Wheeler Transform (BWT) (Manzini, 2001), which enables efficient and compressed
prefix-constrained search. In the following, we describe the key components of CT-MCTS.

Selection. The first step in each simulation is to select a node from the search tree for exploration.
To do so, we employ the widely used selection function, UCT (Kocsis & Szepesvári, 2006; Auer
et al., 2002). Starting from the root node, we recursively select the child node a ∈ CorpusTree(s)
that maximizes the UCT score at the current node s, until a leaf node is reached.

a∗ = argmax
a

[
Q(s, a) + λ ·

√
log

∑
b N(s, b)

1 +N(s, a)

]

Here, Q(s, a) is the average value of taking action a from node s, N(s, a) is the number of times
action a has been selected from node s, and λ is a scalar balancing exploration and exploitation. The
action space is constrained by a CorpusTree according to the expansion process described below.

Granularity-aware multi-node expansion. The second step is to expand the selected node by
determining the promising next search directions. Our expansion approach differs from conventional
MCTS in two key ways.

(1) Expanding Nodes Granularity: Each node in our search tree contains a sequence of tokens (length
G), rather than a single token (e.g., “5th Baron Audley” instead of “5th”; see Figure 1). This allows
the model to make more context-aware and semantically meaningful decisions at each step, while also
enabling faster search by traversing multiple steps in a single move. This allows the reasoning model
to contribute more actively to the expansion process. Through this, we strengthen the effectiveness of
CorpusTree-guided search while still adhering to token-level constraints for retrieval (§ 4.2).

(2) Multi-node expansion per simulation: Rather than expanding a single node per simulation, we
expand the M candidate children based on the LRM’s next-token probabilities (e.g., “, 3rd baron”
and “: john baron” are expanded in a single simulation; see Figure 1). This allows the model to better
utilize the LRM’s outputs during expansion, resulting in substantial performance gains (§ 4.3).

To enable the two features, we employ stochastic beam search decoding. Let As = CorpusTree(s)
denote the set of valid next tokens for the current selected path s, and Ãs = {ã1, . . . , ãk} ⊂ As be
the top-k tokens ranked by log-probability. Final candidates are sampled from Ãs using multinomial
sampling. For each candidate, we iteratively extend the sequence by sampling tokens until either a
predefined per-node token limit G is reached or no valid tokens remain (As = ∅), while maintaining
the top-M paths ranked by cumulative log-probability at each step.
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Evaluating answer presence in search trajectories. For each newly expanded node, we perform
a rollout to evaluate its value using an answer presence-aware value network. The rollout follows a
greedy decoding process, guided by CorpusTree at each step, and continues until either the maximum
sequence length is reached or no valid tokens remain.

Once the rollout terminates, the resulting path sfinal is evaluated by the value network V , which takes
as input a prompt-style sequence x consisting of the question and sfinal, and outputs a value estimate.
The detailed prompt format is provided in Appendix F.3. The value is computed as:

ŷ = σ (R(pool(f(x))))

where f(x) denotes the decoder’s final hidden states used as input to the value head, pool(·) extracts
the hidden state of the last token, and σ is the sigmoid function. The output scalar ŷ ∈ [0, 1] serves as
the value signal, which is used to update the statistics Q(s, a) and N(s, a) during the backpropagation
phase.

2.3 TRAINING THE VALUE NETWORK

To evaluate whether a candidate path contains the information necessary to answer the question, we
train value networks on rollouts from CT-MCTS and synthetic paths generated by LLM. In our
experiments, evaluation is performed using the former. Each result is described in Section 4.4.

On-policy training on CT-MCTS rollouts. In this on-policy approach, we directly leverage
intermediate rollouts collected during CT-MCTS execution. At each expansion step, we pause and
return to the original reasoning process, feeding the current candidate path and the question into the
model. The model then generates an answer, which is compared to the ground-truth to assign a soft
value: 1.0 for a full match, 0.8 for a partial match, and 0.0 if there is no match. The value network
is implemented by attaching a classification head to the frozen backbone of the original reasoning
model and trained using binary cross-entropy loss. Training is performed on approximately 15,000
such rollout-label pairs obtained from 400 PopQA (Mallen et al., 2023) examples.

Off-policy training on synthetic trajectories. In this off-policy setup, we generate diverse syn-
thetic retrieval paths and corresponding value scores using GPT-4o on the 2WikiMultihopQA
dataset (Ho et al., 2020). To simulate realistic trajectories, we construct three paths per query,
varying in length, relevance, and whether the final answer is entailed. Detailed prompt is in Ap-
pendix F.4. We input each query paired with its evidence sentences and generate three retrieval paths
with corresponding value scores, resulting in a total of 147,755 path–value pairs. We then train a
classification head on top of the frozen backbone of the original reasoning model.

2.4 DOCUMENT SELECTION FROM RETRIEVED PATHS

After obtaining multiple paths through CT-MCTS, we must determine how to present the identified
references for downstream reasoning. We consider three possible strategies for document selection:

Direct Path: providing only the exact retrieved path spans.

Window Expansion: extending retrieved paths with surrounding context windows.

Complete Document: returning the complete documents from which the retrieved spans originate.

In this work, we implement the Complete Document approach. While direct path or window
expansion may offer compact references, they risk omitting potentially important information that
lies outside the selected regions or fragmenting coherent explanations. By supplying complete
documents, we alleviate potential information loss. Unlike dual-encoder models that always retrieve
the predefined top-k documents based on similarity scores, FREESON retrieves only documents
containing the search trajectories, reducing the possibility of including noisy or irrelevant information
in the retrieved content (see 3. Document Selection of Figure 1).
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General QA Multi-hop QA Fact-checking

Method PopQA TriviaQA HotpotQA 2WikiMultihopQA MuSiQue FEVER

EM F1 EM F1 EM F1 EM F1 EM F1 ACC

Reasoning w/o retrieval
Qwen2.5-7B 0.09 0.11 0.26 0.31 0.13 0.19 0.19 0.23 0.02 0.06 -
R1-Distill-Qwen-7B 0.07 0.10 0.13 0.17 0.11 0.15 0.18 0.20 0.01 0.03 -

Retrieve-then-reasoning
E5 + Qwen2.5-7B 0.13 0.16 0.15 0.19 0.10 0.15 0.19 0.23 0.02 0.05 -

Multi-step reasoning with external retrievers
FLARE 0.20 0.28 0.29 0.41 0.21 0.28 0.27 0.32 0.06 0.14 -
Self-Ask 0.21 0.24 0.33 0.45 0.18 0.27 0.22 0.28 0.03 0.09 -
Search-o1 0.13 0.15 0.36 0.43 0.19 0.25 0.09 0.12 0.03 0.10 -
Search-R1 0.35 0.39 0.54 0.67 0.40 0.53 0.54 0.61 0.12 0.20 0.59

Multi-step reasoning via self-retrieval
FREESON (Ours) 0.39 0.43 0.51 0.63 0.31 0.42 0.55 0.63 0.11 0.20 0.71

Table 1: Overall performance on single- and multi-hop QA, and fact-checking tasks. Bold indicates
best, and underline indicates second-best. All models are built on 7B LMs, but FREESON uniquely
operates without any external retrieval model, yet still matches or outperforms the baselines.

3 EXPERIMENTS

3.1 BENCHMARKS

We evaluate the effectiveness of FREESON on six benchmarks, including five knowledge-intensive
QA datasets and one fact-checking benchmark. See Appendix 6 for detailed dataset and retrieval
settings. We use EM and F1 metrics for QA, and Accuracy for fact-checking.

General QA: (1) POPQA (Mallen et al., 2023), a dataset constructed of factual questions centered
on entities extracted from Wikipedia pages with high view counts. (2) TRIVIAQA (Joshi et al.,
2017), a dataset containing complex and factoid questions collected from trivia websites and evidence
passages from web documents.

Multi-hop QA: (1) HOTPOTQA (Yang et al., 2018), the first multi-hop QA benchmark, which
consists of questions that require reasoning over multiple Wikipedia paragraphs, and includes
sentence-level supporting facts. (2) 2WIKIMULTIHOPQA (Ho et al., 2020), a dataset where each
question requires reasoning over two distinct Wikipedia pages corresponding to different entities,
encouraging cross-page inference. (3) MUSIQUE (Trivedi et al., 2022), a dataset containing 2-4 hop
questions, requiring complex reasoning (Krishna et al., 2025), curated to test compositional reasoning
over multiple evidence sentences with reduced lexical overlap between questions and supporting
contexts.

Fact-checking: (1) FEVER (Thorne et al., 2018), a fact-checking dataset for claim verification, with
claims labeled as SUPPORTS, REFUTES, or NOT ENOUGH INFO.

3.2 BASELINES

We evaluate FREESON against strong baselines: reasoning without retrieval, which uses only
parametric knowledge; retrieve-then-reasoning, which first retrieves relevant documents and then
reasons; and multi-step reasoning with external retrievers, which performs step-by-step reasoning
with interleaved retrieval. Below are the methods for multi-step reasoning with an external retriever.
Details on evaluation and prompts are provided in Appendices G and F.

(1) FLARE (Jiang et al., 2023) generates reasoning steps and triggers retrieval when any token has
low confidence, using a look-ahead next step as the retrieval query.
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(2) SELF-ASK (Press et al., 2023) employs a scaffolded reasoning approach by generating sub-
questions and corresponding intermediate answers to build the final answer.

(3) SEARCH-O1 (Li et al., 2025a) performs reasoning with interleaved retrieval and uses a separate
Reason-in-Documents module when injecting retrieved documents into the reasoning chain to provide
more accurate information.

(4) SEARCH-R1 (Jin et al., 2025) is trained through reinforcement learning (e.g., PPO (Schulman
et al., 2017), GRPO (Shao et al., 2024b)) with retrieved-token masking to acquire the ability to
interact with search engines during reasoning.

3.3 MAIN RESULTS

Table 1 presents FREESON’ performance on six benchmarks.

Comparison with Retrieve-then-reasoning. We observe that E5 + Qwen2.5-7B, which performs
a single retrieval step before generation, improves performance on PopQA, where most questions
can be answered with a single piece of evidence. This shows that even one-time retrieval can help in
single-hop settings. However, on multi-hop QA, it does not bring meaningful gains, indicating that
single-step retrieval is insufficient when multiple reasoning steps are required. In contrast, our method,
FREESON, performs retrieval at each reasoning step and achieves 2 - 3× higher performance. This
demonstrates the clear advantage of performing step-wise retrieval, aligned with each reasoning step
when needed, for complex and multi-hop questions.

Comparison with Multi-step reasoning with external retrievers. Our primary focus is on how
effectively retrieval-augmented reasoning can be performed using a fully retriever-free approach. Our
results show that FREESON achieves an average gain of +14.4% over four baseline models that
use external retrievers during their multi-step reasoning. Specifically, it outperforms these baselines
by +16.6% on PopQA, +13.5% on TriviaQA, +7.6% on HotpotQA, +28.4% on 2WikiMultihopQA,
and +5.9% on MuSiQue. These results underscore that LRMs can obtain necessary knowledge
without external retrieval models, by treating retrieval as a path-finding process, rather than relying
on conventional embedding-based similarity search.

We have observed certain limitations in QA dataset annotations, which may lead to a slight underesti-
mation of FREESON’s performance. As discussed in Appendix E, we observed that ground-truth
answers in some QA datasets often align with expressions found in documents retrieved by systems
like E5, which may introduce some bias during evaluation.

4 ANALYSIS

4.1 WHY CT-MCTS OVER OTHER DECODING STRATEGIES?

PopQA 2WikiMultihopQA

Decoding EM F1 EM F1

Greedy Search 0.17 0.21 0.21 0.23

Beam Search 0.18 0.21 0.23 0.25

CT-MCTS 0.44 0.45 0.54 0.60

Table 2: Comparison of decoding strategies. Un-
like deterministic methods, CT-MCTS achieves
remarkable performance on constrained decoding.

We compare three decoding algorithms—greedy
search, beam search, and CT-MCTS—in Table 2.
The results show a consistent ranking under con-
strained decoding with a prefix-based index: CT-
MCTS > beam search > greedy search.

Constrained decoding is dependent on previous
decoding steps. Once the decoding path diverges
in the wrong direction, it becomes impossible
to recover. This makes greedy search particu-
larly vulnerable in such environments. Beam
search considers more candidates, but it remains
deterministic and often suffers from early com-
mitment, especially to the first token.

In contrast, CT-MCTS is better suited for
retrieval-oriented decoding, as it enables more flexible exploration of how target information may be
expressed in the corpus. Because CT-MCTS always starts from the root node and explores diverse

6
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Figure 2: Impact of node granularity on system efficiency and performance (1 – 10 tokens per node).
Left: Latency(s) sharply decreases with higher granularity, enabling faster search. Middle: Higher
granularity yields longer, more informative paths without increasing rollout counts, indicating more
efficient search. Right: Higher granularity leads to better performance.

Performance Efficiency

Multiple Expansion EM F1 Latency

M=1 0.41 0.46 21s
M=2 0.54 0.60 31s
M=3 0.54 0.60 36s
M=4 0.54 0.60 44s

Table 3: Effect of the number of expanded nodes (M ) per simulation. On 2WikiMultihopQA,
performance improves significantly at M=2 and quickly saturates due to constrained token space.

paths from the very first token, it can more effectively follow the guidance of a value network to
construct an optimal retrieval trajectory.

4.2 WHAT NODE GRANULARITY IS MOST EFFECTIVE FOR TRAJECTORY EXPLORATION?

To enable more context-aware decisions during CT-MCTS, we expand node granularity from a single
token to multiple tokens. Our findings highlight the importance of choosing a granularity level that
preserves semantic meaning while not hindering the fine-grained adjustments of MCTS.

As shown in Figure 2, a moderately coarse granularity (G = 6), corresponding to six-token nodes,
achieved the best performance (F1 ↑). This level of granularity allows nodes to capture coherent
semantic units, even if they do not correspond to complete linguistic phrases, while also providing
significant speed improvements (Latency ↓) and longer retrieved paths (Avg Path Length ↑). These
benefits arise from providing CT-MCTS with semantically richer units, which help overcome the
limitations of token-level search under constrained decoding.

In contrast, at finer granularities (e.g., G = 1 and G = 2), CT-MCTS takes considerably more time,
while retrieving shorter and often uninformative paths. Performance also degrades, possibly due to the
increased number of simulations needed to identify optimal paths and capture semantic relationships
between nodes—reflected in the notably high number of leaf nodes in Table 7, indicating scattered
and uncertain search behavior.

However, overly coarse granularity is not always better. As shown by the performance decline
from G = 6 to G = 10, excessively long nodes could limit fine-grained exploration, ultimately
degrading performance. These results underscore the importance of balancing semantic richness and
controllability through appropriate node granularity.
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PopQA TriviaQA 2WikiMultiHop Avg.

Value Network EM F1 EM F1 EM F1 EM F1

LLM Synthetic Trajectory 0.41 0.41 0.48 0.61 0.53 0.59 0.47 0.54

CS-MCTS Rollout 0.44 0.45 0.51 0.63 0.54 0.60 0.50 0.56

Table 4: Comparison between CT-MCTS and LLM-based value policy. On-policy CT-MCTS
performs better by learning value estimates aligned with the inference-time environment.

Efficiency

Metric CT-MCTS Dual-encoder

Indexing time (↓) 63.665 mins (cpu) 176.855 mins (gpu)

Index memory (↓) 11GB 61GB

FLOPs (↓) 1.88e13 4.42e10

Table 5: Comparison of efficiency in indexing time, index memory, and FLOPs. CT-MCTS builds an
FM-index, while the dual encoder uses embedding-based indexing. FLOPs are theoretical estimates
without optimization; calculation details are in Appendix D.

4.3 CAN LLM-DRIVEN MULTI-NODE EXPANSION BOOST PERFORMANCE?

To better leverage the LLM’s reasoning ability over document expressions during expansion in CT-
MCTS, we explore expanding multiple candidate child nodes per simulation, selected via multinomial
sampling over top-k predictions from the LLM. As shown in Table 3, setting M = 2 achieves the best
performance, improving EM and F1 scores by 13 and 14 points, respectively, compared to M = 1.

This improvement stems from the increased involvement of the LLM in selecting the node to expand,
providing more informed guidance. However, under constrained decoding, the number of valid
next-token candidates is inherently limited. As a result, although expanding more candidates is
initially beneficial, the performance quickly saturates—as many of the additional nodes are likely
to be explored by later simulations anyway. From M = 3 onward, no further gains are observed.
These findings indicate that even a modest increase in LLM involvement can meaningfully improve
retrieval quality in CT-MCTS.

4.4 CT-MCTS ON-POLICY VS. SYNTHETIC OFF-POLICY: WHICH GIVES BETTER VALUE
ESTIMATES?

Assigning an appropriate value to each explored node is crucial for guiding the search toward answer-
containing paths. We compare two types of value models: (1) an on-policy model trained from our
CT-MCTS rollouts, and (2) an off-policy model trained on LLM-generated samples. As shown in
Table 4, value models trained on CT-MCTS rollouts outperform those trained on LLM-generated
data. This is likely due to stronger alignment with the actual inference-time behavior of CT-MCTS,
as the value model is trained directly on the actions the system would take during real search.
Additionally, this on-policy approach is cost-efficient, as it eliminates the need for separate synthetic
data generation. These results suggest that training the value network within the true CT-MCTS
environment is more effective, and we adopt this strategy in our method. During training, we use an
80GB A100 GPU.

4.5 EFFICIENCY OF CT-MCTS SELF-RETRIEVAL OVER EMBEDDING-BASED RETRIEVAL

On the 21M Wikipedia corpus, CT-MCTS indexes about 3× faster (63.7 mins vs. 176.9 mins) and
requires about 5.5× less memory (11GB vs. 61GB), even smaller than the 14GB raw corpus due
to compression with the BWT. While dual encoders store external knowledge as large embedding
vectors that must be managed during inference, CT-MCTS eliminates the need for handling vectors
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outside the model. However, as an inference-time scaling approach, CT-MCTS leads to higher
FLOPs during inference (1.88e13 vs. 4.42e10). Unlike dual encoders whose cost scales with corpus
size (Kim et al., 2024), CT-MCTS operates over valid next tokens regardless of corpus size, and
its efficiency can potentially be improved with LM optimization techniques such as speculative
decoding (Leviathan et al., 2023) and pruning (Sun et al., 2024).

5 RELATED WORKS

5.1 RETRIEVAL-AUGMENTED GENERATION

Large Language Models (LLMs) achieve strong performance in language understanding and genera-
tion but suffer from hallucinations in domain-specific tasks. Retrieval-Augmented Generation (RAG)
alleviates this by retrieving relevant documents before generation, improving factuality (Guu et al.,
2020; Lewis et al., 2021; Borgeaud et al., 2022; Izacard et al., 2022b). Early approaches follow a
retrieve-then-generate framework (Lewis et al., 2021), while later work studied what (Khandelwal
et al., 2020; Borgeaud et al., 2022), how (Ram et al., 2023), and when to retrieve (Guu et al., 2020).

Retrieval has since been integrated into reasoning: Self-Ask (Press et al., 2023) generates sub-
questions, FLARE (Jiang et al., 2023) uses look-ahead queries, and Self-RAG (Asai et al., 2023)
decides when to retrieve and evaluate content autonomously. With Large Reasoning Models
(LRMs)(DeepSeek-AI et al., 2025; Zhong et al., 2024; Qwen et al., 2025), methods such as Search-
o1(Li et al., 2025a) and Search-R1 (Jin et al., 2025) enhance retrieval through agentic mechanisms or
reinforcement learning, while ReAct (Yao et al., 2023) directly employs external tools. FREESON
extends this line by directly interacting with external knowledge, eliminating separate retrievers along
with their training overhead and representation bottleneck.

5.2 LLMS WITH MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006) builds a search tree through selection,
expansion, rollouts, and backpropagation, and has recently been combined with LLMs to enhance
reasoning. AlphaMath (Chen et al., 2024) applies MCTS for math reasoning with value models,
ReST-MCTS* (Zhang et al., 2024a) leverages process reward guidance for self-training, and PPO-
MCTS (Liu et al., 2024) integrates PPO value networks with MCTS at inference. To the best of
our knowledge, FREESON is the first to adapt MCTS for retrieval, introducing CT-MCTS, which
enables a single LRM to traverse the corpus with multi-token nodes and on-policy value estimation
to locate answer-containing paths.

5.3 GENERATIVE INFORMATION RETRIEVAL

Generative Information Retrieval (GenIR) (Li et al., 2025b) integrates autoregressive LMs into
retrieval, typically by generating document identifiers under constrained decoding with prefix-
tree structures. Approaches vary by identifier format: some generate titles (Cao et al., 2021),
others generate document IDs (Tay et al., 2022; Wang et al., 2023; Zeng et al., 2023; 2024), while
SEAL (Bevilacqua et al., 2022) generates spans, later extended by MINDER (Li et al., 2023b) and
LTRGR (Li et al., 2023a). Dynamic settings have been studied in DSI++ (Mehta et al., 2023),
Corpusbrain (Chen et al., 2022), and DynamicIR (Kim et al., 2024). Recent research introduced
end-to-end LLM-driven architectures unifying all IR functions within a single model by internalizing
the corpus through self-supervised learning (Tang et al., 2024). FREESON extends GenIR by
unifying generator and retriever at inference time without extra memorization trainings.

6 CONCLUSION

We revisit the conventional retrieval-augmented approach with separate retrievers and propose
FREESON, where a single model serves as both generator and retriever, mitigating representation
bottlenecks. To this end, we introduce CT-MCTS, a retrieval-specific search algorithm that guides
LMs to traverse the corpus toward answer-containing regions. Across six tasks, our retriever-free
framework shows strong performance without external search engines, demonstrating that LMs can
directly leverage external knowledge to improve response reliability.
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APPENDIX

A LIMITATIONS

Our method is particularly well-suited for scenarios with a predefined corpus. In QA tasks where
the corpus is not predefined, our method may be less effective compared to web-based retrieval
systems, which can flexibly access a broader and more diverse range of information. Although
the development of large-scale corpora, such as MassiveDS-1.4T/140B (Shao et al., 2024a), helps
mitigate this limitation, efficiently handling them at scale remains a challenge.

Furthermore, our current inference-time algorithm is not explicitly optimized for reasoning over
how knowledge is expressed in the corpus. Incorporating reinforcement learning techniques such as
PPO to optimize the LRM’s traversal over retrieval candidates could enable more adaptive and faster
convergence. In addition, because CT-MCTS is an inference-time scaling algorithm, it introduces
extra latency, which needs to be further optimized to make the approach more practical in real-world
settings.

B DATASET STATISTICS & RETRIEVAL SETTINGS

Table 6 presents the statistics and retrieval settings of the five knowledge-intensive QA datasets used
in our experiments.

Settings PopQA TriviaQA HotPotQA 2WikiMultihopQA MuSiQue FEVER
Mallen et al. (2023) Joshi et al. (2017) Yang et al. (2018) Ho et al. (2020) Trivedi et al. (2022) Thorne et al. (2018)

Dataset statistics
# Examples 500 500 500 500 500 495
Gold answer count Many Single Single Single Single -

Retrieval settings
Corpus Wikipedia-dpr Wikipedia-dpr Wikipedia-dpr Wikipedia-2wiki Wikipedia-dpr Wikipedia-dpr
Corpus size 21M 21M 21M 6M 21M 21M
Retriever E5 E5 E5 E5 E5 E5
Top-k 2 3 3 3 3 3

Table 6: Comparison of datasets and retrieval settings. As shown in # Examples, to reduce compu-
tational cost, we randomly sample up to 500 examples from each dataset. In Gold answer count,
“Many” denotes multiple gold answers; “Single” denotes exactly one.
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Efficiency Performance Exploration

Node Granularity Latency (↓) Avg Rollout Count Avg Path Length. EM (↑) F1 (↑) Exploration

G=1 67s 39.14 11 0.30 0.33 32
G=2 60s 63.13 42 0.48 0.54 16
G=3 36s 60.19 60 0.54 0.60 12
G=4 34s 60.60 84 0.52 0.58 10
G=5 30s 60.60 99 0.52 0.59 9
G=6 28s 59.40 109 0.55 0.63 9
G=7 28s 60.18 130 0.53 0.60 9
G=8 27s 60.00 136 0.53 0.60 8
G=9 27s 61.10 154 0.54 0.61 9

G=10 27s 60.23 160 0.52 0.60 8

Table 7: Analysis of efficiency, performance, and exploration behavior under varying node granularity.
Avg Rollout Counts for G = 4 and G = 5 are imputed with the mean (excluding G = 1), as

single-token nodes (G = 1) often fail to yield valid rollouts due to limited semantic context.

C ANALYSIS ON VARYING NODE GRANULARITY

Table 7 shows the efficiency, performance, and exploration behavior under varying node granularity.
As granularity increases, latency decreases, while the average path length grows—indicating that more
informative reasoning paths are explored. Performance also improves with increasing granularity,
peaking at G = 6 and saturating thereafter. Interestingly, although the number of valid rollouts
required during the CS-MCTS process remains theoretically similar or even lower, the length of
the retrieved paths increases with granularity. This is because longer current nodes provide more
contextual constraints, reducing the number of valid tokens available for rollout at the next step. In
other words, increased granularity allows the model to extract more informative reasoning paths with
comparable or even reduced computational cost. In the case of G = 1, FREESON must not only
search for answer-containing paths but also infer semantic relationships between adjacent nodes,
leading to broader exploration across many nodes. A higher number of explorations in this setting
should not be interpreted as a positive signal.

D FLOPS ANALYSIS

To assess computational efficiency, we measured the retrieval FLOPs of CT-MCTS in comparison to
a dual-encoder retriever.

FREESON’s complexity mainly depends on vocabulary size, not corpus size, and constrained
decoding reduces the candidate vocabulary exponentially as decoding progresses.

In contrast, dual-encoder methods scale with corpus size as shown in Figure 4 of the paper (Kim
et al., 2024). Although dual encoders benefit from FAISS indexing for lower latency, Table 3 shows
that they require more FLOPs than generative retrieval methods. Our findings are consistent with this.

FREESON maintains efficiency at any corpus scale by decoding over a search space determined by
the subject, using vocabulary masking throughout the process.

Following the DE FLOPs formula from Appendix A.7 of the aforementioned paper, we estimate the
FLOPs of the E5 retriever using our own forward pass formulation below: (FW × number of layers)
+ (corpus size × (2d - 1)), with corpus size = 21M, d = 768, and number of layers = 12.

The FLOPs formula for CT-MCTS is provided below.

CT-MCTS =
∑S

i=1

(
Selection + Expansion(Vo · e−ki) + Rollouts(Vo · e−ki)

)
• S represents the number of simulations. Each simulation consists of a selection, an expansion,

and a rollout phase. Backpropagation is negligible in FLOPs.
• Vo is the original vocabulary size.
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• exp(-k·i) represents the size of the valid vocabulary space at simulation step i, which de-
creases exponentially due to prefix constraints enforced by the FM-index during constrained
decoding. k is the decay rate.

Selection (per simulation) = D · (b− 1) · 7

• 7 is decomposed as 1 for sum + 5 for UCT + 1 for max
• D represents the average depth of the selection path from the root to the selected leaf node.
• b is the average branching factor, indicating the number of available child nodes considered

at each selection step.

Expansion (per simulation) =

L∑
t=0

[
B×

(
|V |·log |V |·e−kt+|V |·(2d−1)·e−kt

)
+FW (t)·nlayers

]
• FW represents the FLOPs of the forward pass per layer, and is approximated as

4 · input_len · d2 (Q/K/V/O projections)

+4 · input_len2 · d (attention score computation and context aggregation)
+4 · input_len · d · dff (feed-forward network)

• The term exp(-k · t) models the exponential decay of the valid vocabulary size due to
FM-index prefix constraints.

• |V| · log|V| corresponds to filtering candidate tokens using the FM-index, and |V| · (2d - 1)
corresponds to computing the inner products for valid token logits.

Rollouts (per simulation) =
∑R

t=0

[
|V | · log |V | ·e−kt+ |V | · (2d−1) ·e−kt+FW (t) ·nlayers

]
k = 2
Vo = 152,064
D = 4.8
b = 1.2
B = 2
L = 5
R = 20
S = 10
avg input_len = 82 (2WikiMultihop)
d = 3,584
dff = 18,944
nlayers = 28
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E LIMITATIONS OF GROUND-TRUTH ANNOTATIONS IN QA BENCHMARKS

Although both systems generate semantically correct answers, only one may match the ground-
truth due to differences in surface phrasing. For instance, E5 outputs “water” or “music”, whereas
FREESON (ours) produces more precise alternatives such as “fluid” or “opera”—yet only the former
is recognized as correct by the ground-truth annotations.

Closer inspection reveals that the ground-truth answers often reflect the phrasing found in documents
retrieved by E5. This suggests that the dataset construction process may be biased toward expressions
favored by embedding-based retrieval systems, which could inadvertently advantage such models
during evaluation. Below are the examples found in HotpotQA.

#1. FREESON retrieves correct documents but ground-truth fails to recognize valid answers

-----------------------------------------------------------------
*Question: What substance is always in a trap to prevent the passage
of anything from either direction, even sewer gases?
-----------------------------------------------------------------
*Ground-truth answer: water
-----------------------------------------------------------------

<think>I need to find the substance that is always in a trap to
prevent the passage of anything from either direction, even sewer
gases. I’ll search for it.</think>

<search> (subject : trap, question : What substance is always in a
trap to prevent the passage of anything from either direction, even
sewer gases) </search>

<information>For trap : Doc 0. trap (plumbing) trap (plumbing) in
plumbing, a trap is a device shaped with a bending pipe path to retain
fluid to prevent sewer gases from entering buildings while allowing

waste to pass through. in oil refineries, traps are used to prevent
hydrocarbons and other dangerous gases from escaping through drains.
... (omitted) ...

Doc 1. trap (plumbing) venting. certain drum-styled traps are also
discouraged or banned. trap (plumbing) in plumbing, a trap is a device
shaped with a bending pipe path to retain fluid to prevent sewer

gases from entering buildings while allowing waste to pass through.
... (omitted) ... </information>

<think>I found out that in plumbing, a trap is a device shaped with a
bending pipe path to retain fluid to prevent sewer gases from entering
buildings while allowing waste to pass through. Now I need to find

the substance that is always in a trap to prevent the passage of
anything from either direction.</think>

... (omitted) ...

-----------------------------------------------------------------
<answer> fluid </answer>
-----------------------------------------------------------------
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#2. FREESON retrieves correct documents but ground-truth fails to recognize valid answers

-----------------------------------------------------------------
*Question: What type of art does The Consul and Arlecchino have in
common?
-----------------------------------------------------------------
*Ground-truth answer: music
-----------------------------------------------------------------

#First step
<think>I need to find the type of art that The Consul and Arlecchino
have in common. I’ll search for it.</think>

<search> (subject: The Consul, question: What type of art does The
Consul have) </search>

<information>For The Consul : Doc 0. the consul the consul the consul
is an opera in three acts with music and libretto by gian carlo
menotti, his first full-length opera. ... (omitted) ...

Doc 1. the consul prize for music and also the 1950 new york drama
critics’ circle award for best musical. ... (omitted) ...

Doc 2. the consul the broadway cast, this time with rosemary kuhlmann
as the secretary of the consulate. ... (omitted) ... noted the
topicality of the opera by analogy to the real-life situations </
information>

#Second step
<think>I found out that The Consul is an opera. Now I need to find the
type of art that Arlecchino has in common with The Consul.</think>

<search> (subject: Arlecchino, question: What type of art does
Arlecchino have) </search>

<information>For Arlecchino : Doc 0. arlecchino (opera) of a double-
bill. the first british staged performance of arlecchino was in 1954
at glyndebourne. however, edward clark had produced a concert version
in london in 1939. the opera is in four movements ... (omitted) ...

Doc 1. arlecchino (opera) arlecchino, oder die fenster (harlequin, or
the windows, is a one-act opera with spoken dialog by ferruccio busoni
. ... (omitted) ...

Doc 2. arlecchino (opera) (finale.) in procession the other characters
, leandro and colombina, dottore and abbate, the donkey and the cart,
the two constables, and finally arlecchino and annunziata, cross the
stage and bow to the audience ... (omitted) ... </information>

<think>I found out that Arlecchino is an opera. Now I can compare the
type of art that The Consul and Arlecchino have in common. Both The
Consul and Arlecchino are operas.</think>

-----------------------------------------------------------------
<answer> opera </answer>
-----------------------------------------------------------------
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F PROMPT TEMPLATE FOR FREESON

F.1 REASONING PROMPT TEMPLATE

Reasoning process

Answer the given question.
You must conduct reasoning inside <think> and </think> every time you
get new information.
After reasoning, if you find you lack some knowledge, you can call a
search engine by:
<search> (subject : Help! Help! Police!, question : Who is the
director of the film Help! Help! Police!) </search>
This is the correct form for the query: ’Who is the director of the
film Help! Help! Police?’
It will return the searched results between <information> and </
information>.
You can search as many times as you want.
If you find no further external knowledge is needed, you can directly
provide the answer inside <answer> and </answer>,
without detailed illustrations. For example: <answer> Beijing </answer
>
Only respond to the final question. Your answer must reflect the end
goal, not just a part of the process.
Question: {question}

F.2 RETRIEVAL PROMPT TEMPLATE

Retrieval prompts for reasoning over document structure

Given a subject and a question, generate a word or phrase likely to
appear in a document
that answers the question.

Q: subject: Star Wars, question: who did Star Wars direct?
A: Star Wars is directed by

Q: subject: Alice, question: When was Alice born?
A: Alice (January 1, 1970 ~ December 12, 2024)

Now your tern:
Q: {question}
A:
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F.3 CT-MCTS VALUE NETWORK PROMPT TEMPLATE FOR TRAINING AND INFERENCE

Training on-policy value networks and evaluation using them

# training
Answer the given question.
you can call a search engine using <search> and </search>.
It will return the top searched results between <information> and </
information>.
Based on the provided information, provide the final answer inside <
answer> and </answer>.
Question: {question}

# inference
Score from 0 to 1 how much the generated reference contains at least a
partial answer to the query.

Query: {query_text}
Generated reference: {rollout_text}
Score:

F.4 PROMPT TEMPLATE FOR TRAINING VALUE NETWORKS WITH SYNTHETIC ROLLOUTS

Training off-policy value networks

You are helping build a dataset for a reward model.\n\n
Given:\n
- A user query\n
- A reference sentence that correctly answers it\n\n
Your task:\n
1. Generate 3 diverse outputs that vary in:\n

- Whether they contain the exact answer\n
- Helpfulness in answering the query\n
- Length and form (sentence, phrase, or word)\n

2. Include at least 1 short or fragment-style response.\n\n
Each output should be a dictionary with:\n
- ’generated’: the output\n
- ’has_answer_score’: 1 only if it contains the exact answer
textually (not paraphrased)\n
- ’sim_seq_score’: float (0.0-1.0) based on how well it answers
the query\n\n
Example:\n
Query: What nationality is Aleksandr Stolper?\n
Reference: Aleksandr Borisovich Stolper (12 August 1907, Dvinsk (
now Daugavpils) - 12 January 1979, Moscow) was a Russian/Soviet
film director and screenwriter.\n
Output: [{{\"generated\": \"Aleksandr Borisovich Stolper\", \"
has_answer_score\": 0, \"sim_seq_score\": 0.7}},
{{\"generated\": \"Aleksandr Borisovich Stolper (12 August 1907,
Dvinsk (now Daugavpils))\", \"has_answer_score\": 0, \"
sim_seq_score\": 0.85}},
{{\"generated\": \"Russian/Soviet film director and screenwriter
.\", \"has_answer_score\": 1, \"sim_seq_score\": 0.7}}]\n\n
Now do the same for:\n
Query:\n{query}\n\nReference:\n{reference}\n\nOutput:
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G EVALUATION DETAILS

All baseline LMs use Qwen2.5-7B. The FREESON framework performs retriever-free inference
based on the SearchR1-nq_hotpotqa_train-qwen2.5-7b-em-ppo checkpoint from Search-R1 (Jin et al.,
2025).

Hyperparameters for all models are set as follows:

• Temperature: 0.7
• Max new tokens per reasoning step: 1,024

For <retrieval> steps in FREESON:

• Max simulation: 20
• Max rollout length: 30

H USE OF LARGE LANGUAGE MODELS

We state that LLMs were employed in the writing process of this paper for polishing.
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