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ABSTRACT

Adversarial training is one of the most effective methods for defending adversar-
ial attacks, but it is computationally costly. In this paper, we propose Saliency
Adversarial Defense (SAD), an efficient defense algorithm that avoids adversarial
training. The saliency map is added to the input with a hybridization ratio to en-
hance those pixels that are important for making decisions. This process causes
a distribution shift to the original data. Interestingly, we find that this shift can
be effectively fixed by updating the statistics of batch normalization with the pro-
cessed data without further training. We justify the algorithm with a linear model
that the added saliency maps pull data away from its closest decision boundary.
Updating BN effectively evolves the decision boundary to fit the new data. As
a result, the distance between the decision boundary and the original inputs are
increased such that the model is able to defend stronger attacks and thus improve
robustness. Then we show in experiments that the results still hold for complex
models and datasets. Our results demonstrate that SAD is superior in defending
various attacks, including both white-box and black-box ones.

1 INTRODUCTION

Learning a model that is accurate on natural data and robust on adversarially perturbed data is cru-
cial in safety and security-critical applications. Adversarial robust accuracy, defined as the ratio of
adversarial examples correctly recognized by models, is commonly used to measure model robust-
ness. Although it is easy to calculate, it shows no insight into adversarial examples. Recently, Yin
et al. (2019) proposed Rademacher complexity and Bastani et al. (2016), Etmann et al. (2019) and
Jordan et al. (2019) proposed average distance of data to its closest decision boundaries as alternates.
The latter inspires us to understand adversarial training from a distance between data and decision
boundaries perspective. We shall name this distance as robust radius.

Naturally trained models have little robustness accuracy on adversarial samples, implying that each
sample is close to a decision boundary (Tanay & Griffin, 2016). Tanay & Griffin (2016) has proposed
a boundary tilting hypothesis, which is related to the explanation given by Szegedy et al. (2014), to
explain this phenomenon. The hypothesis states that though the learned decision boundaries well
separate the training data, it is ”tilted” from the training manifold. When the tilted angle is small,
every sample lies close to the decision boundary, and adversarial examples can be generated by
slightly lifting samples out of the manifold they live in to across the decision boundary easily. Such
results show that it is difficult to obtain a robust model with natural training if there is a direction
(or dimension) where the data is separable but with low variance. Adversarial training pushing the
decision boundaries away from the original data by augmenting those dimensions as we shown in
our method.

The saliency map, defined as the gradient of logit with respective to input, is proposed to explain
which pixels are important for deep neural networks to make the decision (Simonyan et al., 2014;
Ribeiro et al., 2016). Recent studies have shown that models with adversarial training has more un-
derstandable saliency map for human than their naturally trained counterparts Etmann et al. (2019).
We show that the saliency maps care only which information are important for the prediction of
input, while adversarial attacks aggregate information from all classes simultaneously to fool the
models. An example is shown in Fig. 1. The saliency map of the original image x0, classified as a
dog, focuses on the dog while that of x0’s adversarial counterpart, x′0, attends on both cat and dog.
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We process x0 and x′0 by adding their corresponding saliency maps with a ratio. The resulting im-
ages’ saliency map only attends on the model’s predicted class. That is, saliency map of processed
x0 attends on dog only while that of processed x′0 attends on cat. This procedure is animated in
the middle-top of Fig. 1. One can observe that data are pulled away from the decision boundaries,
no matter for original images or their adversarial counterparts. With the robust radius perspective
discussed, we believe that processing data with saliency maps can improve robustness.

However, the processing with saliency maps shifts the original data distribution, resulting in models
failing to recognize the processed data. It is straightforward to finetune or retrain the model but it is
more computational costly. Li et al. (2016) proposed AdaBN, which updates BN statistics with the
distribution shifted data to adapt existing models to that new distribution. We find that it is sufficient
to update BN’s statistics with the processed training data to adapt the decision boundaries to fit the
process data. This simple adaptation make the algorithm much more efficient.

In summary, we propose an efficient algorithm SAD, which achieves adversarial robustness by pre-
processing inputs with their saliency map, called Saliency Adversarial Defense (SAD), without ad-
versarial training. Experimentally, we demonstrate that this simple and efficient solution outper-
forms state-of-the-art methods in both adversarial robustness and vanilla accuracy.

Adjusting the Statistics of BN
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After BN Adjustment
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Figure 1: Left: Saliency maps for different version of original image, x0. Its adversarial example
denotes as x′0. x̃ are image after pressing with saliency map. Sx denotes saliency map of image x.
Right: An overview of SAD. Colors and shapes represent the true label and prediction respectively.
x0 (red circle) is attacked to classified as cat (red triangle). Processed images are pulled away from
the decision boundary. Statistics of BN are updated with the processed images, resulting a new
decision boundary to correctly classify the processed images.

The main contributions of our paper are summarized below:

• We propose a defense algorithm SAD based on input transformations that achieves better
defense performance than adversarial training under various attacks, including white-box
and black-box.

• SAD is much more efficient than adversarial training. More interestingly, we demonstrate
that SAD can further improve the robustness of adversarial training.

• We show that the SAD model has surprisingly understandable saliency maps, providing
evidence that better interpretability is not just a side-effect of adversarial training but a
shared property of robust models Etmann et al. (2019).
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2 RELATED WORK

2.1 DEFENSES BASED ON ADVERSARIAL TRAINING

Adversarial attacks can make the model give wrong prediction by adding negligible perturbations
for humans to input data (Szegedy et al., 2013). Adversarial training first proposed in (Goodfel-
low et al., 2015) can effectively defense such attacks by training on adversarial examples. Madry
et al. (2017a) formulates adversarial training as a bi-level min-max optimization problem and trains
models exclusively on adversarial images rather than both clean and adversarial images. Although
it effectively improves the adversarial robustness, expensive computational cost, and performance
degradation on clean images are the two fatal shortcomings of it. Many works try to reduce the
computation cost to the natural training of a model (Shafahi et al., 2019; Wong et al., 2020; Zhang
et al., 2019b;a). These works still need adversarial training, while our methods can obtain robustness
throught adjusting the decision boundary without adversarial training.

2.2 DEFENSES BASED ON INPUT TRANSFORMATIONS

The input transformation based methods attempt to reduce the amount of perturbation that may exist
in the sample to be predicted by various transformation methods, and then directly input the con-
verted sample into the original model for prediction (Guo et al., 2017; Xie et al., 2017; Song et al.,
2017; Buckman et al., 2018). The advantage of input conversion defense is that the models remained
unchanged and adversarial training is not necessary. Li et al. (2020b) encourages a larger gradient
component in the tangent space of data manifold, suppressing the gradient leaking phenomenon,
which is similar to a data dimension reduction approach. However, experiments shown that the
existing defense methods are not robust enough compared to adversarial training. Our method par-
tially belong to this class as we add saliency map to the original data. But our algorithm surpass the
performance of adversarial training.

2.3 EXPLANATION METHODS

The core idea of the interpretation methods based on backpropagation is to propagate significant
signals that influence decisions from the output layer to the input layer by layer to deduce the impor-
tant pixel of the input sample (Simonyan et al., 2014; Springenberg et al., 2015; Zhou et al., 2015;
Selvaraju et al., 2016; Chattopadhyay et al., 2017). Tsipras et al. (2019) shows that saliency maps
of robustified classifiers tend to be well interpretable and describe this as an “unexpected benefit”
of adversarial robustness. Saliency maps of robustified classifiers tend to be far more interpretable,
for that structures in the input image also emerge in the corresponding saliency maps (Etmann et al.,
2019). Mangla et al. (2020) shows that saliency maps can be used as adversarial perturbation in
adversarial training. Our method shows more interpretable saliency maps as shown in Fig. 3.

3 METHOD

3.1 MOTIVATION OF SAD

Adversarial training is the most effective way to get adversarial robustness. Nevertheless the un-
derstanding of adversarial training is limited. We give a closer look at what adversarial training
does with binary linear classification and how it motivates our method. We consider the adversarial
optimization problem for a linear classifier:

min
w

E(x,y)∼D

[
max
δ∈Bpε

L(w>(x + δ), y)

]
, (1)

where input (x, y) sampled from D ⊆ Rd × {−1, 1}, loss L(w>x, y) = `(yw>x), ` : R → [0, 1]
is monotonically nonincreasing, Bpε = {δ ∈ Rd : ‖δ‖p ≤ ε} is the `p ball of radius ε. If consider
the linear binary classification problem of adversarial training, we get the close form perturbation
as in following lemma (Moosavi-Dezfooli et al., 2016; Chen et al., 2020; Dobriban et al., 2020; Yin
et al., 2019; Awasthi et al., 2020):
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Lemma 1 If δ∗ε,p = arg maxδ∈Bpε `(yw
>x), then δ∗ε,p = −εy |w|

p∗−1

‖w‖p
∗−1
p∗

� sgn(w). In particular,

δ∗ε,∞ = −εysgn(w).

This lemma shows that the adversarial example of `∞ attack move towards the linear decision
boundary in the direction −ysgn(w) for all the input data, see Fig. 2(a). Also, adversarial training
pushes the linear decision boundary from l0 to l1 to get good performance on the attacked data. In
this way, original data become much further from the new linear classifier so we can get adversar-
ial robustness up to magnitude ε. Adversarial training is very expensive and shows the trade-off
between accuracy and robustness. There are two stages in adversarial training, first to get new
adversarial examples towards the decision boundary, then adjust the decision boundary to fit the
adversarial examples. The main benefit of adversarial training is to enlarge the robust radius in light
of the binary linear classification. This motivates our method, which moves the data away from the
decision boundary.
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Figure 2: (a) Adversarial training for linear classifier. (b) SAD defense for linear classifier. δ∗ε,p
indicates the adversarial direction. x0 indicates the saliency map direction. r indicates the strength
of the added saliency map.

3.2 SALIENCY MAP AND ADVERSARIAL ATTACK

To enlarge the distance of original data from the decision boundary, we first generate adver-
sarial examples and then push them further by their saliency maps. Consider a trained net-
work Φ = (Φ1, ...,ΦK) : RD → RK , the predicted label of a sample (x, yj) is defined as
i∗ = arg maxi Φi(x). Define the probability by softmax as pk = exp(Φk)∑K

i=1 exp(Φi)
, and the cross-

entropy loss of (x, yj) is `(x, yj)) = − log pj = −Φj(x) + log(
∑K
i=1 exp(Φi(x)). The saliency

map is

S(x) =
∂Φi∗

∂x
(2)

and the attack direction is δ(x, y) = ∂`(x,y)
∂x . More precisely,

δ(x, yj) = −∂Φj
∂x

+

K∑
i=1

pi
∂Φi
∂x

= −(1− pj)
∂Φj
∂x

+
∑
i 6=j

pi
∂Φi
∂x

(3)

This implies that adversarial attacks reduce the information of the right class and induce information
of other classes to fool the model, see Fig. 1. Saliency map, on the contrary, collection important
pixels for a particular class only. Adding the saliency map to the data enhance those important pixels.
After adding their saliency map on adversarial examples, we adjust the decision boundary to fit the
new data distribution. In this way, the decision boundary will be far away from the original data,
which implies adversarial robustness. In the linear binary classification setting above, the saliency
map is yw0, which moves data away from the original decision boundary, as shown in Fig. 2(b).
For general classification problems, we use the saliency map as the direction moving away from the
original decision boundary.
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Algorithm 1 Saliency map defense
Model Update:
Input: Training set Dtrain, naturally trained model Φ0 = Φ0(W, {γl, βl, µ0

l , σ
0
l }Ll=1) with BN

parameters {γl, βl}Ll=1, and BN statistics {µ0
l , σ

0
l }Ll=1.

for each batch B in Dtrain do
compute saliency map S0 and adversarial perturbation δ0 under Φ0 by Eq. (2) and (3);
compute DBadv = {x + εδ0(x, y) : (x, y) ∈ B} and DBsadv = {x + ηS0(x) : (x, y) ∈ DBadv};
update only BN statistics by passing DBsadv through network with training mode;

end for
Output: SAD model Φ1 = Φ1(W, {γl, βl, µ1

l , σ
1
l }Ll=1) with new BN statistics {µ1

l , σ
1
l }Ll=1.

Model inference:
for any x̂ in Dtest and adversarial data generated from Dtest do

compute S1(x̂) =
∂Φ1

max

∂x , ŷ = arg maxj Φ1
j (x̂ + S1(x̂)).

end for

3.3 BATCH NORMALIZATION HELPS TO PUSH THE DECISION BOUNDARY

For more complicated datasets, we will use ResNet which contains BN layers, and many works have
found that BN layers are sensitive to distribution shift (Li et al. (2016); Xie et al. (2019); Li et al.
(2020a)). The data distribution will change after we move adversarial data away from the decision
boundary by adding saliency maps of the naturally trained model. Therefore we update the statistics
of BN layers to obtain suitable model for processed data. This makes the decision boundary move
away from the original data. AdaBN (Li et al. (2016)) modifies the statistics of BN layers by data
from the new domain in order to get better generalization in that domain. This update can be simply
implemented with Pytorch (Paszke et al., 2019) by feeding the data forward to the network under
training mode. In the inference stage, we first add the saliency map to clean or adversarial data, then
use the updated model to test. Our algorithm is outlined in Algorithm 1.

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION

To demonstrate SAD’s effectiveness, we chose three typical white-box attacks and three black-box
attacks and run experiments on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). To compare
with the state-of-the-art methods, we train TRADES (1/λ=6) (Zhang et al., 2019b), Fast (Wong et al.,
2020) and Free (m=8) (Shafahi et al., 2019). These results are produced with their open-source code.
The hybridization ratio of SAD is set to ratio=0.8. Besides, we combine adversarial training (AT)
and SAD to show that the SAD improves the performance of AT. TRADES is used in the experiment
for AT.

4.2 WHITE-BOX ATTACKS

Project Gradient Descent (PGD) (Madry et al., 2017b) is a typical first-order attack (directly us-
ing gradient attack). Defending against PGD also means that it can resist other first-order attacks.
We define WeakPGD: k=20, ε=4/255; StrongPGD: k=20, ε=8/255. C&W attack (Carlini & Wag-
ner, 2016) is generally considered one of the most powerful white-box attack algorithms and is
an optimization-based adversarial sample generation algorithm, which allows it to attack many de-
fenses based on gradient obfuscation successfully. We set the hyperparameter c of C&W to 0.2.
APGD (Liu et al., 2018) is a combination of Expectation over Transformation (EoT) (Athalye et al.,
2018) and PGD. Physical confrontation samples produced based on EoT can effectively attack vari-
ous applications of image recognition or object detection. We set the APGD attack strength as k=12,
ε=12/255, sampling=32.

We apply the SAD algorithm on various CIFAR-10 models, includes ResNet-18 and WRN-32-10
(WiderResNet), and compare the results with other methods. As shown in Table 1, SAD outper-
forms Fast and Free in all attacks while it is comparable to TRADES. In particular, with the WRN-
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Table 1: Results of CIFAR-10 compared to other methods. Results of TRADES, Fast and Free are
produced with their open source code. Scores of (AT+) SAD that are better than other methods are
highlighted.

Model Method Nat. Images WeakPGD StrongPGD C&W APGD

ResNet-18

TRADES 82.77% 69.46% 52.14% 78% 37.66%
Fast 83.81% 61.1% 46.06% 72.86% 34.82%
Free 85.96% 62.73% 46.33% 71.74% 35.12%

SAD (ours) 83.86% 65.33% 52.61% 77.2% 38.88%
AT+SAD (ours) 82.73% 71.83% 53.65% 79.04% 39.11%

WRN-32-10

TRADES 85.55% 70.24% 52.00% 77.04% 37.57%
Fast 86.02% 66.64% 48.19% 73.16% 35.42%
Free 85.96% 65.5% 46.13% 72.61% 37.22%

SAD (ours) 86.96% 69.27% 53.47% 79.97% 38.73%
AT+SAD (ours) 84.61% 73.33% 54.81% 79.2% 39.68%

Table 2: Results of CIFAR-100 compared to baseline methods. Scores of (AT+) SAD that are better
than other methods are highlighted.

Model Method Nat. Images WeakPGD StrongPGD C&W APGD

ResNet-50

TRADES 56.96% 41.95% 29.15% 48.25% 19.84%
Fast 62.43% 30.05% 20.08% 41.19% 16.77%
Free 62.36% 30.14% 21.42% 41.22% 17.14%

SAD (ours) 56.27% 42.91% 33.15% 52.05% 19.88%
AT+SAD (ours) 56.37% 44.82% 35.21% 54.01% 20.34%

WRN-32-10

TRADES 55.5% 40.05% 26.54% 42.39% 17.46%
Fast 59.94% 36.91% 22.67% 37.2% 17.23%
Free 65.28% 35.24% 20.64% 36.15% 17.1%

SAD (ours) 63.86% 39.65% 28.55% 37.76% 29.88%
AT+SAD (ours) 57.81% 41.7% 30.69% 42.66% 21.06%

32-10 model, SAD outperforms all other models in either natural accuracy or adversarial accuracy
except TRADES on WeakPGD. These results demonstrate that SAD not only improves the robust-
ness against adversarial attack but also potentially improves accuracy on the clean image. When
combined with AT, in most of the cases, AT+SAD performs the best in defending various attacks.
To demonstrate our method can generalize to more complicated datasets, we run experiments on
CIFAR-100 with WRN-32-10 and ResNet-50. As shown in Table 2, SAD shows superior perfor-
mance compared with other methods. With ResNet-50, SAD, and AT+SAD models outperform all
other methods on all attacks. Especially, SAD algorithms show superior performance on defending
StrongPGD and C&W attack, exceeding TRADES for more than 4%. Besides, SAD has far better
performance in defending against APGD attacks on WRN-32-10 with a 12% improvement. When
defending against C&W attacks with the WRN-32-10 model, SAD is slightly inferior to TRADES
but with higher clean accuracy. To this end, we demonstrate that SAD show excellent performance
in various models (ResNet-18, ResNet50, WRN-32-10) and datasets (CIFAR-10, CIFAR-100).

4.3 BLACK-BOX ATTACKS

In practice, attackers often cannot obtain detailed information about the model. Therefore, black-
box attacks are more common. We choose the One Pixel Attack based on differential evolution (Su
et al., 2019), ZOO (Chen et al., 2017), and adversarial samples generated from the WideResNet-32-
10 model for the black box defense test. To compare with the state-of-the-art method, we show the
comparison between TRADES and SAD in Table 3. SAD also has satisfactory performance in the
black-box defense. The performance of using the SAD algorithm in model ResNet-50 (CIFAR100)
is worse than that of TRADES, but there is no need to be nervous. The effort of SAD is related to the
hyperparameter ratio and the performance of the used natural model. We can adjust the two factors
to optimize the result. Here we also show the performance of an adversarially trained model with
SAD (AT+SAD). The impact of ratio on the algorithm will be showed in subsequent experiments.
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Table 3: Results of Black-Box Attacks. OnePixel means one pixel attack, ZOO means ZOO attack,
and WRN means the adversarial samples are generated by WideResNet-32-10.

Model Method Nat. Images OnePixel ZOO WRN

ResNet-18, CIFAR10
TRADES 82.77% 76% 82.22% 82.07%

SAD 83.86% 75.75% 82.5% 83.14%
AT+SAD 82.73% 79.33% 82.65% 82.11%

ResNet-50, CIFAR100
TRADES 56.96% 47.63% 55.94% 56.65%

SAD 56.27% 46.41% 55.72% 56.19%
AT+SAD 56.37% 47.89% 56.08% 56.23%

4.4 SALIENCY MAP OF SAD

Recent studies (Zhang & Zhu, 2019; Tsipras et al., 2019) have shown that representations learned
by adversarial trained convolutional neural networks (ATCNNs) tend to evince more interpretable
saliency maps corresponding to their prediction than their non-robust equivalents. Etmann et al.
(2019) proves that as robust radius grows, so does the alignment between the input image and the
saliency map. Our results are consistent with their conclusion. As shown in Fig. 3, normally trained
model exhibits unstructured saliency map, which is difficult to recognize by the human. Surpris-
ingly, with SAD, the saliency map of the normally trained model shows clearly recognizable shape.
Meanwhile, there is a strong correlation between the saliency map and the input structure of the
robust model obtained by the adversarial training. After the adjustment of SAD, the adversarially
trained model can generate clearer and smoother saliency maps. The last row is the processed data
we used to infer, which is formed by overlaying the saliency map on the natural data. Surprisingly,
we see that the processed images become clearer to human, implying that the relevant features are
enhanced.

Saliency Map
(AT)

Natural Data

Processed Data

airplane car bird deercat frogdog horse ship truck

Saliency Map
(Nat)

Saliency Map
(Nat+SAD)

Saliency Map
(AT+SAD)

Figure 3: Saliency maps of samples from CIFAR-10. The first row: the natural input images. The
second row: the saliency map of the naturally trained model. The third row: the saliency map of
the naturally trained model with SAD. The fourth row: the saliency map of the adversarially trained
model. The fifth row: the saliency map of the adversarially trained model with SAD. Last row: the
processed data, which consists of original data and saliency maps of SAD. Overlaying the saliency
map with the original image makes the area of focus more prominent.

4.5 TRADE-OFF BY VARYING HYBRIDIZATION RATIO

Tsipras et al. (2019) shows that the goal of adversarial robustness might be incompatible with that
of standard generalization, which means there is a trade-off between robustness and generalization
accuracy. The SAD algorithm can make a good trade-off between adversarial robustness and vanilla
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Table 4: Effect of hybridization ratio on CIFAR-100 WRN-32-10.

Data

Accuracy Ratio
0.9 0.8 0.7 0.6 0.5

Nat.Image 60.36% 62.29% 63.86% 64.79% 65.08%
StrongPGD 30.01% 29.43% 28.55% 27.2% 26.39%

accuracy by adjusting the ratio of saliency map overlaid on input data, as shown in Table 4. We see
that as the ratio decreases, the accuracy on clean images increases, and the adversarial robustness
decreases. This means that the SAD algorithm can quickly make a trade-off between adversarial
robustness and vanilla accuracy, rather than spending a large computation to retrain the model as
adversarial training does.

4.6 ABLATION STUDIES

The SAD algorithm involves modifying the statistics of the batch normalization layers of the original
model to get the SAD model and adding saliency maps to the testing data. In this section, we conduct
ablation experiments on both of these factors.

Firstly, we use a normally trained model to classify the data overlaid with the saliency map directly
without updating the statistics of BN (see Table 5). With the increase of ratio, the robust accuracy
will be improved slightly, but the natural accuracy decays quickly by contrast. Even with a large
ratio, robust accuracy is much lower than adversarial training. This proves that updating the statistics
of BN brings great benefits as the statistics are sensitive to the distribution of data.

Table 5: Result of SAD without updating statistics of BN on CIFAR10 with ResNet-18.

Data

Accuracy Ratio
0.2 0.5 0.7 1.0 1.2

Nat.Image 94.66% 93.36% 87.84% 81.12% 68.1%
StrongPGD 0.74% 4.88% 6.23% 9.11% 11.16%

Secondly, we modify the batch normalization layers’ statistics using the adversarial samples with-
out overlaying saliency maps. The result shows that the accuracy of the clean samples decreases,
while the robustness is too small to make sense, see Appendix 1.1 for detailed results. The ablation
experiments verify the importance of saliency maps and update of BN statistics.

5 CONCLUSIONS AND FUTURE WORKS

We have proposed an interpretable defense method called SAD, which outperforms state-of-the-
art adversarial training methods against multiple attacks without adversarial training. By adjusting
the strength of saliency maps overlaid to the input data, we can obtain different defense effects
and strike a good balance between robustness and accuracy. Our method provides a novel view
to understanding model robustness and adversarial samples, which may be illuminating for future
research. We also realized that fine-tuning with processed data and learning a sample-dependent
strength of saliency map are two promising ideas to further improve our results which are left for
future works.
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E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.
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