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Abstract

Deep learning excels in analyzing multi-modal signals for healthcare diagnostics1

but lacks the ability to quantify confidence in the predictions, which can lead to2

overconfident, erroneous diagnoses. In this work, we propose to predict model3

output independently and estimate the corresponding uncertainty. We present a4

unified audio-driven disease detection framework incorporating uncertainty quan-5

tification (UQ). This is achieved using a Dirichlet density approximation for model6

prediction and independent kernel distance learning in feature latent space for7

UQ. This approach requires minimum modifications to existing audio encoder8

architectures and is extremely parameter efficient compared to k-ensemble mod-9

els. The uncertainty-aware model improves prediction reliability by producing10

confidence scores that closely match the accuracy values. Evaluations using the11

largest publicly available respiratory disease datasets demonstrate the advantage of12

the proposed framework in accuracy, training and inference time over ensemble13

and dropout methods. The proposed model improves speech and audio analysis14

for medical diagnosis by identifying and calibrating uncertainties, enabling better15

decision-making and risk assessment. This is shown by high uncertainty scores at16

low model accuracy.17

1 Introduction18

The increase in general awareness and interest in speech technologies for disease diagnosis has19

generated significant growth in recorded public health datasets Song et al. (2023); Novikova and20

Balagopalan ([n. d.]) across different modalities such as audio, imaging and time series (EEG). As21

the healthcare industry increasingly embraces data-driven approaches, the accurate interpretation of22

these subtle and complex multi-modal signals has become paramount for informed decision-making23

and improved patient outcomes. However, for these models to be useful in practical implementation,24

the outputs of such models must be explainable for medical decision making Miller (2019). Multi-25

modal medical datasets have been extensively researched for the task of disease diagnosis, symptom26

identification and monitoring Kulkarni et al. (2023); Wang and Wang (2022); Bae et al. (2023).27

Popularly, large-scale convolutional neural network (CNN) architectures Demir et al. (2020) such as28

ResNet Gairola et al. (2021); Bengs et al. ([n. d.]) trained on spectrogram images of audio inputs are29

used for this task. Recently, direct waveform speech encoders (Wav2Vec Baevski et al. (2020), and30

PASE Ravanelli et al. (2020)) have shown improved speech feature representations for respiratory31

monitoring Kulkarni et al. (2023). After featurisation, a classification layer followed by softmax is32

used to produce output scores. However, fixed softmax scores may result in fundamentally incorrect33

outputs without indicating that the estimate is uncertain. Thus, achieving a statistically nuanced34

understanding of model outputs via uncertainty quantification (UQ) is crucial in safety-critical35

applications such as disease detection.36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Figure 1: Calibration histograms for speech-driven COVID classifier (left) and uncertainty aware
model (right) coloured according to prediction accuracy

This can be illustrated with a simple example of speech-driven disease detection. Input audio can37

be either "healthy" or COVID-"positive." A softmax-based classifier gives scores that express the38

likelihood of two different classes. Figure 1 (left) shows a histogram of the softmax scores coloured39

according to the correctness of the predicted output. The plot shows that irrespective of correctness of40

the prediction, the output confidence is always greater than 50%. The confidence score for two inputs41

(one predicted correctly and another incorrectly) lying on a vertical will be exactly same (healthy =42

0.89, positive = 0.11) and (healthy = 0.11, positive = 0.89). Without UQ model,43

there is no way to decide the reliability of either prediction based on just softmax probabilities. An44

independent UQ estimate can quantify high uncertainty for false predictions, as shown in Figure 145

(right). An uncertainty-aware audio classification model enables 1) prediction of confidence scores46

independent of model outputs and 2) calibration of model such that estimated uncertainty closely47

follows model accuracy.48

In this work, we present a novel framework for uncertainty-aware disease detection using speech49

and non-speech inputs through quantification and disentanglement of sample uncertainty and model50

calibration. The framework comprises of a probabilistic classification head on top of a self-supervised51

audio encoder and model uncertainties are quantified using a feature distance-based metric. A52

training scheme is proposed to optimize uncertainty estimation independent of model prediction or53

classification training. A novel formulation of learnable transformation matrix in latent space is used54

to maximise feature space diversity for distance calculation. Evaluations show that the uncertainty-55

aware model produces low confidence scores at low accuracy values, thus improving output reliability.56

Experiments on the largest public respiratory disease datasets show that the proposed UQ model57

is generalizable, computationally efficient at training and enables fast evaluation during inference58

without sacrificing classification performance. Specifically, our contributions are as follows -59

• Advocate the use of a probabilistic classifier in place of softmax scores to quantify irreducible60

uncertainties inherent in learning problem for audio-driven disease diagnosis and medical61

decision making62

• Emphasize the necessity of model calibration for reducible uncertainties in audio-driven63

disease diagnosis. we show that combining probabilistic classifier simple k-ensembles (even64

with small k=5) significantly improves model calibration score65

• Propose a novel single inference method of uncertainty quantification with minimal changes66

to large encoder models for high-fidelity datasets such as audio and speech. The proposed67

model performs as well as k-ensembles at a fraction of compute and memory costs68

To best of our knowledge, this is the first systematic study of uncertainties quantification and model69

calibration associated with audio driven disease diagnosis.70

2 Model71

Lets denote a(t) ∈ A as an input audio waveform and (yj = yj + ϵj) is its corresponding noisy label72

which takes a value from label space j ∈ {1, . . .J} and ϵj is the label noise due to data gathering73

process or the noise inherent to the mapping problem G : A → J. We decompose above function74

mapping as G = h ◦ f , where, f : A → Rn indicates a deep audio feature encoder. The feature75

encoder gives embedding vectorsXw(a) ∈ Rd. The uncertainty aware classification head h : X → y76

gives a prediction over class labels P [y|x] = h(X).77
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((a)) Single-shot UQ framework;
label prediction (left) and uncertainty calibration (right)

((b)) Multi-shot UQ models;
MC Dropout (left) and Ensemble (right)

Figure 2: Proposed framework for uncertainty quantification (UQ) of audio driven disease detection

The proposed uncertainty quantification (UQ) framework, illustrated in Figure 2, consists of two78

parts:79

1. A probabilistic classifier h trained to output concentration parameters of Dirichlet distribution80

over the softmax layers. This classifier head is used on top of a regularised deep audio81

feature extractor (f ), which produces latent embedding X .82

2. An uncertainty aware calibration training to estimate UQ as a function of feature space83

density. We use a novel learnable Mahalanobis distance-based metric, which ensures the84

latent space is bi-Lipschitz continuous and captures a measure of data distribution.85

In the subsequent sections, we describe these two component of the proposed UQ framework86

2.1 Probabilistic Classifier87

A deterministic softmax classifier only outputs a single scaled vector s(x) corresponding a input x88

such that
∑

j s(x) = 1. In contrast, the probabilistic classifier head is trained to predict a vector of89

concentration parameters α = (α1 . . . αJ) one for each class label j ∈ J , and a strength parameter90

α0 :=
∑

j(αj). This set of concentration parameters define a Dirichlet distribution Dir(α) with91

probability density given by equation 1, where Γ(·) denotes Gamma function.92

This is used to sample a class probability vector p as a random vector p ∼ Dir(α), At the inference93

time, a sample from Dirichlet distribution gives indicative probability pj of input x belonging to class94

j. The expected probability (mean) and the variance for a single input x is given by95

Dir(p|α) =
Γ(α0)∏C
c=1 Γ(αc)

C∏
c=1

pαc−1
c ↔

µ(x) := E[pj ] =
αj

α0

σ2(x) :=
αj(α0 − αj)

α0(α0 + 1)

(1)

Thus, the classifier head is a model with uncertainty that outputs two quantities corresponding to label96

distribution, the mean µ(x) and the variance σ(x). The sampling based output stems from key insight97

that softmax based classifier cannot capture output categorical probability but a distribution over98

categorical softmax (i.e. Dirichlet) can be used to formulate deep learning as evidence acquisition99

problem Sensoy et al. (2018); DeVries and Taylor (2018).100

The classification head is trained using unweighted combination of negative log likelihood term LNLL101

and a KL-divergence term, following the Sensoy et al. (2018); Bachstein et al. (2019). Appendix102

covers Loss function derivations and final expressions. Upon training the classifier model using103

above loss, we obtain predictive distribution parameters - mean µ(x) and variance σ(x). However104

this quantity only gives the output label probability of a given input for a fixed model. Considering the105

original function mapping problem G : A → J and the decomposition G = h ◦ f , the probabilistic106
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classifier h is a single sample from a possibly large intractable hypothesis space H. Further, the107

audio encoder f is parametrised by a set weights W. In the supervised setting a point estimate108

of vector W is obtained by empirical risk maximisation of an objective function. In Bayesian109

modelling Lakshminarayanan et al. (2016); Gal and Uk (2016), uncertainties in this point estimate,110

are computed by assuming that the weights w follow a prior distribution Pr(w). Subsequently, the111

model training process leads to posterior distribution P (w|D). The trained model fw(x) uses this112

posterior distribution to calculate the estimated output y. The measure of uncertainty, UQ, is given by113

the expected value and variance of the prediction fw(x) over the posterior density distribution of w.114

However, for high-dimensional datasets such as audio and speech, accurate modelling of the density115

function P (w|D) is impossible, given the complexity and non-linear nature of weights w of audio116

classification models Hernández-Lobato and Adams (2015).117

Figure 2(b) shows two approaches for approximating the intractable posterior density P (w|D) by118

introducing diversity into model evaluations. The feature encoder generates a fixed and deterministic119

encoding vector X for the input audio signal. Model uncertainty is quantified by analysing the120

variance of the outputs obtained through multiple forward passes of diverse models. In Monte Carlo121

(MC) dropout Gal and Ghahramani (2016); Xiao and Wang (2019), probabilistic (p = 0.1) dropout122

layers between non-linear layers of the network are activated during inference resulting in variable123

outputs. Whereas, in Deep ensemble Lakshminarayanan et al. (2016), k-different models (k = 5, 15)124

are trained using different subsets of the dataset. The ensemble prediction is the average soft-max125

outputs from the individual models.126

Combining classification head with multi-forward pass inferences in equation 1, we get a series of127

means µk(x) and variances σ2
k(x), where k ∈ [1,K] are number of different ensembles or inferences128

of Figure 2(b). These samples are combined to form a single predictive uncertainty estimate V ar[X]129

for input X as an empirical expectation over all inferences k. A combination of Deep Ensemble

Var ∗ (x) = 1
K

∑
k σ

2
k(x) + 1

K

∑
k µ

2
k(x)− µ2

∗(x)

= Ek[σ
2
k(x)] + Ek[µ

2
k(x)]−Ek[µk(x)]

2

= Ek[σ
2
k(x)]︸ ︷︷ ︸

Aleatoric Uncertainty

+ Vark[µk(x)]︸ ︷︷ ︸
Epistemic Uncertainty

130
and Dirichlet Probabilistic classifier gives an estimate for the Irreducible Aleatoric Uncertainty and131

Model Uncertainty (Epistemic). However, it is neither possible to treat each term separately nor to132

reduce epistemic part of uncertainty. Despite the limitations, the k-ensemble approach is shown to133

be the state-of-the art for uncertainty prediction on several benchmarks Mukhoti et al. (2021). Both134

these methods improve performance and uncertainty estimation through model diversity but incur135

high computational costs during training and inference. In next section, we describe the second part136

of the proposed framework - an alternative to k-ensemble for quantifying approximate Epistemic137

uncertainty in single forward pass.138

2.2 Single Inference Uncertainty Quantification139

In contrast to multiple feed-forward evaluation models, we propose single-shot UQ estimation using140

latent feature maps produced by the encoder as a representation of the class conditional distribution.141

A distance measure in the feature space of the model has shown to be useful for the detection of142

out-of-distribution examples Venkataramanan et al. (2023) and uncertainty estimation Lee et al.143

([n. d.]); van Amersfoort et al. (2020). However, these methods suffer from three key problems144

namely feature collapse van Amersfoort et al. (2020), class imbalance Venkataramanan et al. (2023),145

smoothness and sensitivity Lee et al. ([n. d.]). We first describe the proposed single shot approach146

with intuitive modifications to training scheme that address the aforementioned problems.147

The uncertainty estimation flow is shown in Figure 2(a). A centroid vector Z ∈ Rm is initialised148

randomly and assigned to each label class in a set of classes J . Let Xt(i) ∈ Rd be the set of audio149

encodings of a mini-batch during training. A distance transformation matrix Wj(m, d) is initialised150

using a Gaussian prior per class, where d is the feature encoding dimension and m < d is the151

size of the centroid vector. Weight matrix Wj acts as a learnable linear dimensionality reduction152

on feature vectors, enabling a compact representation for distance computation Ren et al. (2021);153
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Venkataramanan et al. (2023). The class-dependent nature of Wj enables class separation in latent154

space and is crucial for minimising the likelihood of feature collapse.155

A weighted feature distance Dj between the model output and centroids is computed as:

Dj(Xt, Zj) =

√
||WjXt − Zj ||2

2mσ2
j

where length scale σj is a trainable parameter and acts as class dependent normalising hyper-156

parameter.157

If the matrix W is assumed to be Identity Matrix the above formulation computes Mahalanobis158

distance (MD) from the centroids. The learnable nature of W acts as an adaptive dimensionality159

reduction on the latent space X and the output WX can be expected to represent global distributions160

as well as class dependent local distributions.161

During the forward pass, a class label for each sample is given by softmax of distance scores162

yi = ArgminZj(Xi) as the maximum correlation (minimum distance) between data point Xi and163

class centroids Zj . For the UQ estimate, the set of Mahalanobis distances is normalised through the164

division of maximum class distance. The model uncertainty is given by mixture of the Gaussian165

models fitted at each class centroid dUQ =
∑
jN (Dj |zj , σj).166

The class centroids, Zj , are updated for every mini-batch of training using an exponential moving
average of the feature vectors of data points corresponding to class j:

Zt+1,j = γZt,j +
1

nj
(1− γ)

∑
i

(WjXi)

where nj is number of samples in the jth class, and γ is a hyper-parameter similar to momentum167

gradient descent. After each update, the class vectors are normalised such that ||Zj ||2 = 1.168

Class dependent triplet Loss formulation is used to maximise the distance between distinct class
centroids and minimise intra-class separation, following Kumar et al. (2020); Hermans et al. (2017) .
Audio embeddings obtained from the encoder network were used as an anchor point Xa. Let Za be
the centroid vector of the class corresponding to true label ya, while Zj indicates remaining centroid
vectors such that {j ∈ J∀j ̸= a}, The loss with margin ϵ ∈ (0.1− 0.5) is given by

Ltriplet =
∑
a,j

max (||WXa − Za|| − ||WXa − Zj ||+ ϵ, 0)

During the training process, this loss is averaged over a mini-batch of data points, the class centroids169

are updated to new locations as per predicted labels and stochastic gradient descent (SGD) is170

performed for θ and Wj . Audio encoder output latent vectors usually have high dimensions and the171

above loss may suffer poorly due to involved distance computation. Low rank nature of W ensures172

that distance computation in above loss function is sensible.173

Feature Regularisation High dimensional feature space embedding suffer from feature collapse174

and feature redundancy in latent space which can adversely affect uncertainty prediction Liu et al.175

(2020); van Amersfoort et al. (2020). These problems can be alleviated by encouraging latent space176

smoothness and sensitivity, or alternatively by regularising the the weights W to follow bi-Lipschitz177

condition Liu et al. (2020)178

L1 ∗ ||x1 − x2||X ≤ ||fW (x1)− fW (x2)||H ≤ L2 ∗ ||x1 − x2||X
This ensures the mapping ||fW (x1)−fW (x2)||H has meaningful correspondence in input space with179

respect to a well defined distance measure ||x1 − x2||X Liu et al. (2020). This condition also ensures180

smoothness in latent space such that the audio embeddings are not too sensitive to small variations in181

input.182

We use spectral normalisation to enforce bi-Lipschitz condition during UQ training, following183

the analysis Smith et al. (2021); Liu et al. (2020)that adding spectral normalisation before each184

convolution layer leads to bi-Lipschitz condition. Apart from being simpler in implementation (with185

minor changes to encoder architecture such as replacing L2 norm layer by spectral norm), spectral186

normalisation is significantly faster Smith et al. (2021) and is more stable during training compared187

to Jacobian Gradient penalty implemented in van Amersfoort et al. (2020).188
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3 Experiments189

We will now demonstrate the utility of proposed framework in quantifying uncertainties of audio190

driven disease diagnosis. We first start with a brief description of datasets, evaluation criterion and191

implementation details. (detailed description and data histograms are covered in Appendix)192

3.1 Datasets193

We conduct extensive experiments using two popular audio-driven healthcare diagnosis datasets.194

The ICBHI Rocha et al. (2018) dataset is the largest publicly available respiratory audio repository195

recorded from 128 patients with a total of 6898 labelled breathing cycles (Label distribution 3642196

normal, 1864 crackle, 886 wheeze, and 506 cycles as both). The highly unbalanced dataset constitutes197

a 4-class audio classification task.198

COSWARA Sharma et al. (2020) consists of a diverse set of manually curated audio records from199

2635 individuals, of which 1819 are SARS-CoV-2 negative, 674 are positive subjects, and the200

remaining unlabelled or noisy samples are filtered out. Speech recordings of numbers (1-20) counted201

at a fast pace were used for this 2-class classification and disease detection task.202

3.2 Self-supervised Audio Encoder203

Self-supervised learning (SSL) is an attractive approach for healthcare audio datasets where the204

data size is limited and manual annotation is expensive Sharma et al. (2020); Rocha et al. (2018).205

Three different SSL models are employed as audio encoders for the empirical evaluation. First, an206

image-based ResNet-50 is used as the backbone with a residual block of two 3× 3 convolution layers207

and a skip connection between each block. The network is trained on the self-supervised task of208

spectral feature prediction and reconstruction of the log-Mel spectrogram. Further, Wav2Vec Baevski209

et al. (2020) and PASE Ravanelli et al. (2020) are used as direct waveform feature encoders. Each210

encoder is pre-trained on the respective SSL pretext task and used to obtain latent representations211

from raw audio.212

Let a(t) ∈ A be an input audio waveform and y = 1, . . . J be its corresponding label. The feature213

encoder gives embedding vectors Xw(a) ∈ Rd, where d = 256 is the fixed latent dimension.214

3.3 Preprocessing215

All audio files were resampled to a fixed rate of 22.05kHz. The ICBHI respiratory sounds were216

cropped/padded to max a length of 7s Gairola et al. (2021); Kulkarni et al. (2023), while COSWARA217

speech were fixed to 10s length Sharma et al. (2020). In the case of ResNet, each audio was218

transformed to log Mel-spectrogram using 128 frequency bins. An input size of (128, 350) was used219

for ICBHI, whereas, for COSWARA, the input size was (128, 500). For both cases, the dataset was220

divided into three non-overlapping portions such that the test set (20%) and validation set (20%)221

contained audio records from different patients than that of the train set (60%).222

3.4 Evaluation223

For measuring accuracy of model, sensitivity ( TP
TP+FN ), and specificity ( FP

FP+TN ) scores were224

used. Each score measures class-wise prediction accuracy in the case of the unbalanced dataset. The225

notations TN,FN denote true and false negative rates and TP, FP denote true and false positive226

rates, respectively. Average of these two scores (SP+SN
2 ) was used for comparison with SoTA227

models Rocha et al. (2018). The area under the receiver operating curve (AUROC) was used as an228

indicative probability of correctly classifying a randomly selected unseen sample.229

Most common measure predictive uncertainty is Expected Calibration error (ECE). Low ECE230

indicates model accuracy closely follows predicted uncertainty estimates, i.e. low model accuracy in231

high-uncertainty regions and vice versa. To calculate ECE on a test set, all test samples are grouped232

in k = 10 equal bins according to uncertainty scores. ECE was calculated as the absolute sum of233

differences between expected model confidence and accuracy for each bin. A small ECE indicates234

better performance as the model accurately quantifies uncertainties in its prediction. Experiments235
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show that ECE values drastically reduce with the proposed UQ implementation while maintaining236

the model’s accuracy.237

4 Results and Discussion238

The first goal of the experiments is to answer the question ’whether model uncertainty score follows239

model accuracy’. Figure 7 show reliability diagrams of ICBHI 4-class classification model using240

PASE encoder as backbone. The model output is divided in equally spaced bins according to estimated241

confidence score for each bin. Reliability plots show the average accuracy of the examples in each242

corresponding confidence bin. We also visualise the confidence scores (1- uncertainty) with class243

conditional histograms of correctly and incorrectly classified outputs. The proposed model reliably244

predicts high uncertainty misclassified examples while producing high uncertainty for accurately245

classified examples.

Figure 3: Reliability diagrams before and after feature distance based uncertainty calibration. Plots
show that proposed models predicts UQ scores that closely follow the model accuracy. (low confi-
dence scores for low accuracy data regions and vice versa)

246

Table 1: Performance comparison of different base encoder models with and without uncertainty
estimation (ICBHI)

Model Base (Dirichlet) Base+UQ
AUROC ECE AUROC ECE

PASE 0.835±0.01 0.121±0.01 0.905±0.01 0.055±0.01

Wav2Vec 0.778±0.02 0.148±0.01 0.812±0.02 0.069±0.01

ResNet 0.746±0.01 0.106±0.01 0.862±0.01 0.041±0.01

A similar analysis is conducted for different choices of base feature encoder (Table 1) by considering247

the ECE (error) and AUROC (accuracy) of ICBHI respiratory classification task using different audio248

encoders (ResNet, PASERavanelli et al. (2020) and Wav2Vec Baevski et al. (2020)) with and without249

UQ estimation. A significant reduction in ECE values is observed among all three feature models.250

This means the model is more uncertain for false predictions and more confident for correct outputs.251

ResNet achieves higher relative improvement compared to direct waveform-based audio encoders.252

This is due to ResNet having higher embedding dimension compared to SSL encoders and thus253

adversely affecting the class conditional density estimation in latent space Ren et al. (2021). The254

low rank class-wise linear transformation enables distribution aware low dimensional transformation,255

improving both AUROC and ECE score.256

Classification Accuracy and dataset variability of uncertainty aware models are compared in Table257

2. Bootstrapping is used to compute the maximum confidence interval. The proposed model shows258

a significant advantage in ECE prediction over other UQ methods with marginal improvements in259

model accuracy.260

An ablation study was conducted to study the incremental effects of various loss functions by261

fixing the feature encoder of the proposed UQ model. Table 3a displays the ECE and accuracy262

improvements with each additional loss term. A significant reduction in ECE error is observed upon263

the inclusion of triplet loss term for both datasets.264

Compute efficiency of the proposed method, in terms of the number of parameters (in Millions) and265

inference time (in milliseconds), is compared with those of popular UQ models in Table 3b. The266

scores show the expected inference time for a single sample averaged over the test set compared267
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Table 2: Evaluation of the UQ framework for two different datasets with fixed feature encoder (PASE)
Model ECE SN(%) SP(%) AUROC

ICBHI4- class
Base 0.161±0.01 79.8 ±4.71 50.5±6.21 0.782±0.01

MC Drop. 0.064±0.01 79.6±5.31 42.6±5.91 0.732±0.02

Ensemble 0.051±0.01 83.1±3.71 57.7±1.91 0.888 ±0.01

Our (UQ) 0.045±0.01 82.1±4.07 55.1±3.75 0.823±0.01

COSWARA2-class
Base 0.191±0.02 96±3.32 72.9±2.21 0.781±0.01

MC Drop. 0.074±0.01 96±5.59 70±4.19 0.951±0.01

Ensemble 0.060±0.01 96.6±3.15 77.9±4.98 0.964±0.01

Our (UQ) 0.058±0.01 95.9±4.81 74.6±2.91 0.961±0.01

Table 3: Ablation study (a) of proposed UQ framework to study effects of modification terms,
along with network size (Millions) and inference time (sec) of different UQ models(Results on
non-intersecting splits of ICBHI dataset with PASE as feature encoder)

(a) Ablation study

Model ECE AUROC

Old (Softmax) 0.158±0.01 0.741±0.02

Base (Dirichlet) 0.149±0.01 0.876±0.01

+ KL Divergence 0.104±0.01 0.921±0.02

+ Triplet loss 0.086±0.01 0.923±0.02

+ Regularisation 0.065±0.01 0.918±0.01

(b) Network size

Method AUROC Params Inference

Base (logits) 0.782 26M 1.8 ms
MC Dropout 0.732 26M 4.3 ms
Ensemble - 5 0.888 132M 9.8 ms
Ensemble - 15 0.891 395M 29 ms
Mahalanobis 0.823 26M 2.1 ms

against AUROC scores. In this case, PASE is used as the base model. The ensemble model performed268

well but was extremely slow at inference time with a large number of parameters, increasing the269

storage and compute overhead. The Mahalanobis distance-based uncertainty estimation enables270

lightweight and fast inference while improving model accuracy.271

Table 4: Comparison with SoTA models and recent studies on four-class respiratory anomaly detection
(ICBHI dataset)

Method Performance

SN(%) SP(%) Acc.
ResNet Gairola et al. (2021) 40.1 72.3 56.2
ResNeST Wang and Wang (2022) 70.4 40.2 55.3
CNN8-Pt Ren et al. (2022) 72.9 27.8 50.4
ResNet Chang et al. (2022) 69.9 35.8 52.9
CVAE-Tr Bae et al. (2023) 81.7 43.1 62.4
Our (UQ) ECE- 0.058 82.1±4.07 55.1±3.75 68.5±3.92

Comparison with state-of-the-art (SoTA) models for ICBHI 4+class respiratory sound classification272

task is presented in Table 4. The proposed model improved the accuracy scores over the current273

SoTA by 6.1%. A validation set sensitivity score of 82.1% indicates the ability to correctly identify274

true positives from unseen patient samples recorded using different digital stethoscopes. Accounting275

for the uncertainties not only provides a nuanced understanding of output but also improves model276

performances for audio-driven disease diagnosis.277

5 Uncertainty Visualisation and Decision Making278

The outputs produced by sampling from Dirichlet distribution (output of probabilistic classifier for a279

single input) satisfy the property that
∑

j(pj) = 1, where pj is probability P [y = j|X]. For a three280

class problem (ICBHI - wheeze, crackle, healthy) , each of these samples fall on the 2D plane defined281

by
∑

j(pj) = 1. Figure 4 shows uncertainty visualisations on the simplex plane. This uncertainty282
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is sample specific (data/ aleatoric uncertainty) indicating inherent label noise or ambiguity in the283

samples.

(a) Healthy audio input (b) Wheeze and Crackle (c) Novel anomaly (Rhonchi)
(Absence of Rhonchi is a known limitation of ICBHI dataset Rocha et al. (2018))

Figure 4: Plots visualising data uncertainty corresponding to each input audio sample. The network
predicts Dirichlet distribution parameters (α) in single forward pass which are then used to plot
probability density over the simplex.

284

At the same time, the model uncertainty (predictive) is given by mixture of the Gaussian models fitted285

at each class centroid dUQ =
∑
jN (Dj |Cj , σj). This estimate is independent model prediction286

at a given sample. This is a measure of learning capacity of model for current input and can also287

be used as OOD indicator (epistemic uncertainty). A threshold on the UQ score can be used as a288

decision factor for audio-driven medical diagnosis. If the predicted UQ value is higher than this289

threshold, the model is not sufficiently confident in its prediction; thus, the disease diagnosis output290

is rejected. In such cases, second or multiple evaluations using re-recording of input audio samples291

are recommended. If the resulting uncertainty, after multiple empirical evaluations, is still higher292

than the threshold, then the particular sample is selected for clinical or manual diagnosis. This avoids293

the risk of erroneous predictions via uncertainty quantification. As a result, the proposed framework294

improves the performance of audio-driven disease detection system along with patient safety. (Such295

threshold based rejection was not used during experiments and results, however it can be a useful296

tool for medical decision making)297

6 Conclusion298

In this work, a framework for uncertainty-aware disease diagnosis was proposed using speech and299

non-speech inputs. The UQ framework enables confidence scoring to improve the reliability of300

model outputs.Evaluations of the popular COSWARA and ICBHI datasets illustrate the superiority of301

the proposed model over the popular ensemble and Monte Carlo dropout method. Using the same302

ResNet backbone, the UQ aware model outperformed softmax-based SoTA models for respiratory303

diseaseBae et al. (2023) without using data driven oversampling techniques. Using the UQ model for304

the ICBHI dataset, an improvement of 6.1% was observed over the SoTA models. Furthermore, for305

speech-driven COVID detection, quantifying data uncertainty improves AUROC scores by 18.1%.306

The UQ model performs well on unseen datasets, as seen from results on non-intersecting inter-patient307

data splits, and is equally applicable to more general datasets. Results also show the effectiveness and308

applicability of the Mahalanobis distance-based metric for different general-purpose audio encoders.309

Finally, the proposed framework enables fast and lightweight UQ estimation, making it more suitable310

for implementation in mobile and IoT devices for continuous health monitoring owing to its small311

size and lower number of trainable parameters.312
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Appendix / supplemental material429

A Algorithm430

We consider the probabilistic function learning problem between input audio space X ∈ X and431

corresponding discrete label space Y ∈ Y , where X and Y are random variables. We denote x ∈ X432

and y ∈ Y as data samples from joint space µXY = (X,Y ), with a joint distribution function denoted433

by µXY . A model trained with uncertainty aware classification tries to approximate the conditional434

probability distribution µY |X = P[Y = y|X].435

The training dataset Dn = {(xi, yi)∀i = 1 . . . N} (a subset of joint space µXY ) is used to train an436

estimator Ŷ = g(X;W ), where g denotes a neural network with parameter W . Further, the collected437

dataset itself can be inherently noisy or error-prone, which results in data uncertainty (also known as438

Aleatoric uncertainty). The noise in the dataset is indicated by xi = x̂+ ηi and yi = ŷ+ ϵj where the439

the observed noisy dataset is given by, Dn = {(xi, yi)}. This aleatoric uncertainty is irreducible and440

can only be estimated as expected variance in the output for a fixed input X , and a given estimator441

f(x|W ). However is not the only source of uncertainty in the estimator, the output variance does not442

capture the uncertainty in estimator or the learning process itself.443

The total predictive probability, can be expanded as follows -444

µY |X = P[Y = y|X] (2)

= P[Y = y|X,Dn]P [X ∈ Dn] (3)
.. +P[Y = y|X,Dn]P [X /∈ Dn] (4)

(5)

The second term in above equation signifies distribution uncertainty, i.e. uncertainty associated with445

limitations of training data. This can be reduced by obtaining more training data i.e. by minimising446

P [X /∈ Dn]. Assuming the dataset D is used to learn a function y = f(x;W ), parametrized by the447

weights W , the first term can further be expanded as follows -448

µY |X,D = P[Y = y|X,Dn] (6)

=

∫
P (y|X,w)dP (w,D) (7)

=

∫
P (y|X,w)P (w|D)dw (8)

(9)

This integral is called as inference using posterior density P [w|D], this computation involves test449

time optimisation, by formulating closed form of posterior density. The second term, posterior in450

above equation can be decomposed as451

P (w|D) =
P[D|W ]P [W ]

P [W ]
(10)

P (D) =

∫
P (D|w)dP (w) (11)

=

∫
P (D|w)P (w)dw (12)

(13)

This integral is called as marginal integration to compute a form for posterior density from a presumed452

prior p[w]. Often this marginal is intractable for most non trivial forms of likelihood functions p[D|W ].453

The inference integral is often approximated using multiple forward pass via Dropout or Ensemble454

modelling. The goal of the proposed distance based model is to provide an efficient single forward455

pass alternative to approximate the marginal and inference integrals.456

Given that we can view an ensemble member as a single deterministic model and vice versa, this457

provides an intuitive explanation for why single deterministic models report inconsistent and widely458

varying predictive entropies and confidence scores for OoD samples for which a Deep Ensemble459

would report high epistemic uncertainty (expected information gain) and high predictive entropy.460

13



Assuming that p(y|x, ω) only depends on p(y|x) and I[Y ;w|x], we model the distribution of p(y|x, ω)461

(as a function of ω) using a Dirichlet distribution Dir(α) which satisfies:462

p(y|x) = αi

α0
(14)

H[Y |x]− I[Y ;w|x] = ψ(α0 + 1) (15)
(16)

Then, we can model the softmax distribution using a random variable p ∼ Dir(α) as:463

P (y|x;w) ≈∼ Cat(p). (17)

The variance V arH[Y |x;w] of the softmax entropy for different samples x given p(y|x) and464

I[Y ;w|x] is then approximated by V arY |p: This is the estimate of Aleatoric Uncertainty in the465

model. For the random variable, p ∼ Dir(α), the expected entropy Ep∼Dir(α)HY∼Cat(p)[Y ] of the466

categorical distribution Y ∼ Cat(p) is given by467

Ep(p|α)H[Y | p] = ψ (α0 + 1)−
K∑

y=1

αi

α0
ψ (αi + 1)

Proof. Applying the sum rule of expectations and 3 from 1.1 we can write468

EH[Y | p] = E

[
−

K∑
i=1

pi logpi

]
= −

∑
i

E [pi logpi]

= −
∑
i

αi

α0
(ψ (αi + 1i− ψ (α0 + 1))

The result follows after rearranging and making use of
∑

i
αi

α0
= 1.469

B Base Model470

B.1 Feature Encoder471

A feature encoder serves as base model (backbone) of the framework. The feature encoder serves as472

an indicative audio classification backbone. The proposed framework can accommodate any state of473

the art audio encoder and does not require any modification in the feature encoder training process474

and architecture. Specifically, when a(t) ∈ A be an input audio waveform, the feature encoder gives475

embedding vectors Xw(a) ∈ Rd, where d = 256 is the fixed latent dimension. Next we explain the476

base encoders used for experiments

Figure 5: Self supervised feature encoder architecture for PASE+ Ravanelli et al. (2020)

477
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B.2 Wav2vec2.0478

wav2vec is a self-supervised learning model trained to learn representations of raw audio waveforms479

directly, without relying on manual transcriptions or labels. Wav2vec employs contrastive learning480

to learn powerful representations from raw audio inputs. A more recent version, wav2vec 2.0481

introduces a more sophisticated approach by masking portions of the latent space rather than the482

raw audio. Wav2Vec 2.0 significantly improves upon the quality of learned representations and483

demonstrates exceptional performance in downstream speech tasks. We use Wav2vec2.0 as one of484

the backbone feature extractor in the proposed framework. The Wav2vec model predicts the masked485

latent representations, encouraging it to capture rich contextual information. The output embedding486

dimension of the Wev2vec encoder is fixed to be 256.487

B.3 PASE +488

Problem Agnostic Speech Encoder (PASE) is another self supervised audio feature encoder which489

employs multiple neural networks, termed "workers," to tackle various self-supervised tasks. These490

workers contribute to learning rich and discriminative representations. To ensure robust feature491

vectors with respect to small variations in input audio, PASE+ introduces an online speech distortion492

module that artificially corrupts the input audio, forcing the encoder to learn more invariant features.493

As shown in Figure 5 PASE+ also uses bidirectional attention layers to combine convolution ouputs494

to better capture both short-term and long-term speech dynamics.495

B.4 ResNet496

An image-based ResNet-50 is used as the backbone with a residual block of two 3× 3 convolution497

layers and a skip connection between each block. The network is trained on the self-supervised task498

of spectral feature prediction and reconstruction of the log-Mel spectrogram. The network consists of499

a series of convolution layers. Each of these layers is defined with 64 channels, kernel strides (5, 2, 2,500

2, 2, 2, 2), and kernel widths (7, 3, 3, 3, 3, 3, 2, 2), respectively, followed by batch normalization501

and ReLU activation. The interval between two sequential samples in the feature encoder output Z is502

15ms, and the receptive audio field is 20 ms. The output from convolution layers is concatenated and503

passed to a multi-head attention layer and a fully connected layer with an embedding size of 256.504

Like PASE Ravanelli et al. (2020), the final linear layer is used to predict speech features such as log505

power spectrum (LPS), MFCCs, prosody, 40 FBANKS and 40 Gammatone features. The architecture506

is pre-trained on an open source audio dataset called Audioset ?, consisting of a wide variety of input507

sounds ranging such as birds, coughs, speech and machine sounds. During pretraining, the model508

predicts a set of 12 supervised tasks consisting of regression and binary feature banks such as log509

power spectrum (LPS), MFCCs, prosody and Gammatone features. This pretraining ensures that the510

ResNet representations are tuned capture short and long-range audio dynamics over a wide variety of511

input sounds. These representations are proven to outperform spectrogram-based large CNN models512

and standard acoustic features for different classification and speech recognition tasks Ravanelli et al.513

(2020). These representations are then frozen to compute encoding for respiratory cycle datasets.514

Experiments show that no significant improvement are observed with additional complete finetuning515

on the ICBHI dataset during the training phase compared to the frozen representation.516

C Criteria517

C.1 Probabilistic Classifier518

We train the classification using unweighted combination of negative log likelihood term LNLL and519

a KL-divergence term, following the Sensoy et al. (2018); Bachstein et al. (2019). Appendix covers520

Loss function derivations and final expressions.521
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The loss function expressions of LNLL and LKL are respectively522

LNLL =

C∑
c=1

yc(log(α0)− log(αc)) (18)

LKL = log

(
Γ(
∑C

c=1 α̃c)

Γ(C)
∏C

c=1 Γ(α̃c)

)

+

C∑
c=1

(α̃c − 1)

(
ψ(α̃c)− ψ

(
C∑

c=1

α̃c

))
(19)

in which α̃c = yc + (1− yc)αc and ψ(·) is Digamma function.523

These two losses can viewed intuitively as a union of Bayes Risk Approximation losses, which is524

defined with respect to class conditional density prediction. We use Bayes risk formulation from PAC525

learning nomenclature as given below,526

Li(Θ) =

K∑
j=1

(yij −E [pij ])
2
+Var (pij) (20)

=

K∑
j=1

(yij − αij/Si)
2︸ ︷︷ ︸

Lerr
ij

+
αij (Si − αij)

S2
i (Si + 1)︸ ︷︷ ︸

LVar
ij

(21)

=

K∑
j=1

(yij − p̂ij)
2
+
p̂ij (1− p̂ij)

(Si + 1)
. (22)

C.2 Uncertainty Calibration Network527

During the forward pass, a class label for each sample is given by softmax of distance scores528

yi = ArgminZj(Xi) as the maximum correlation (minimum distance) between data point Xi and529

class centroids Zj . For the UQ estimate, the set of Mahalanobis distances is normalised through the530

division of maximum class distance. The model uncertainty is given by mixture of the Gaussian531

models fitted at each class centroid dUQ =
∑
jN (Dj |zj , σj).532

The class centroids, Zj , are updated for every mini-batch of training using an exponential moving
average of the feature vectors of data points corresponding to class j:

Zt+1,j = γZt,j +
1

nj
(1− γ)

∑
i

(WjXi)

where nj is number of samples in the jth class, and γ is a hyper-parameter similar to momentum533

gradient descent. After each update, the class vectors are normalised such that ||Zj ||2 = 1.534

Class dependent triplet Loss formulation is used to maximise the distance between distinct class
centroids and minimise intra-class separation, following Kumar et al. (2020); Hermans et al. (2017) .
Audio embeddings obtained from the encoder network were used as an anchor point Xa. Let Za be
the centroid vector of the class corresponding to true label ya, while Zj indicates remaining centroid
vectors such that {j ∈ J∀j ̸= a}, The loss with margin ϵ ∈ (0.1− 0.5) is given by

Ltriplet =
∑
a,j

max (||WXa − Za|| − ||WXa − Zj ||+ ϵ, 0)

During the training process, this loss is averaged over a mini-batch of data points, the class centroids535

are updated to new locations as per predicted labels and stochastic gradient descent (SGD) is536

performed for θ and Wj .537
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C.3 Evaluation538

For measuring accuracy of model, sensitivity ( TP
TP+FN ), and specificity ( FP

FP+TN ) scores were539

used. Each score measures class-wise prediction accuracy in the case of the unbalanced dataset. The540

notations TN,FN denote true and false negative rates and TP, FP denote true and false positive541

rates, respectively. Average of these two scores (SP+SN
2 ) was used for comparison with SoTA542

models Rocha et al. (2018). The area under the receiver operating curve (AUROC) was used as an543

indicative probability of correctly classifying a randomly selected unseen sample.544

Most common measure predictive uncertainty is Expected Calibration error (ECE). Low ECE
indicates model accuracy closely follows predicted uncertainty estimates, i.e. low model accuracy in
high-uncertainty regions and vice versa. At high thresholds, the model is tolerant of low confidence
predictions, and thus, the model accuracy should decrease. At low uncertainty thresholds, the model
should have high accuracy and confidence scores. To calculate ECE on a test set, all test samples
are grouped in k = 10 equal bins according to uncertainty scores. ECE was calculated as the
absolute sum of differences between expected model confidence and accuracy for each bin. A small
ECE indicates better performance as the model accurately quantifies uncertainties in its prediction.
Experiments show that ECE values drastically reduce with the proposed UQ implementation while
maintaining the model’s accuracy. The expected difference between

ECE =

10∑
k=1

nk
n
|ascore(Bk)− uscore(Bk)|

where nk is number of samples in kth bin, ascore and uscore are average accuracy and uncertainty545

estimates for each bin Bk. Experiments show that calibration error drastically reduces with the546

addition of UQ models while maintaining the model accuracy in AUROC scores. It can be interpreted547

as the probability that a positive example (in-distribution) will have a higher detection score than a548

negative example (out-of-distribution).549

D Datasets550

We conduct extensive experiments using two popular audio-driven healthcare diagnosis datasets.551

Figure 6: Audio samples showing varying degrees of anomalous (green) and healthy (blue) classes
illustrating the necessity of uncertainty quantification

The ICBHI Rocha et al. (2018) dataset is the largest publicly available respiratory audio repository552

recorded from 128 patients with a total of 6898 labelled breathing cycles (Label distribution 3642553

normal, 1864 crackle, 886 wheeze, and 506 cycles as both). The highly unbalanced dataset constitutes554

a 4-class audio classification task. Figure 6 shows audio samples showing varying degrees of555

anomalous (orange) and healthy (blue) classes. The input sample contains illustrating the necessity of556

uncertainty quantification. We share training and validation sets of this dataset for SoTA comparison.557
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COSWARA Sharma et al. (2020) consists of a diverse set of manually curated audio records from558

2635 individuals, of which 1819 are SARS-CoV-2 negative, 674 are positive subjects, and the559

remaining unlabelled or noisy samples are filtered out. Speech recordings of numbers (1-20) counted560

at a fast pace were used for this 2-class classification and disease detection task. The dataset is561

manually curated and has approximately 10% noisy audio samples.562

All audio files were resampled to a fixed rate of 22.05kHz. The ICBHI respiratory sounds were563

cropped/padded to max a length of 7s Gairola et al. (2021); Kulkarni et al. (2023), while COSWARA564

speech were fixed to 10s length Sharma et al. (2020). In the case of ResNet, each audio was565

transformed to log Mel-spectrogram using 128 frequency bins. An input size of (128, 350) was used566

for ICBHI, whereas, for COSWARA, the input size was (128, 500). For both cases, the dataset was567

divided into three non-overlapping portions such that the test set (20%) and validation set (20%)568

contained audio records from different patients than that of the train set (60%). 1569

E E Experiments570

Figure 7: Reliability diagrams before and after feature distance based uncertainty calibration. Plots
show that proposed models predicts UQ scores that closely follow the model accuracy. (low confi-
dence scores for low accuracy data regions and vice versa)

The proposed framework is trained independently in two stages. The distance transformation matrix571

W and audio feature encoders were optimised during the first stage of training process. It is important572

to note that the goal of feature encoder training not to represent state-of-the-art for any particular573

task – the goal is to demonstrate value of quantifying model uncertainty independent of the model574

prediction. We will show that across various of of-the-shelf audio feature encoders, the addition of575

UQ framework enables significant gains in model utility by not only quantifying model confidence576

but also reducing the calibration error of the model. This point is reinforced here using 2D synthetic577

dataset. In second stage of training the probabilistic classifier is optimised using KL divergence loss.578

In this second stage we show that, using off-the-shelf encoders it is possible to achieve and state of579

the art performance on popular disease diagnosis task.580

E.1 UQ on 2D dataset581

In the proposed uncertainty quantification framework weighted feature distance Dj between the
model output and centroids is computed as:

Dj(Xt, Zj) =

√
||WjXt − Zj ||2

2mσ2
j

where length scale σj is a trainable parameter and acts as class dependent normalising hyper-582

parameter.583

If the matrix W is assumed to be Identity Matrix the above formulation computes Mahalanobis584

distance (MD) from the centroids. The learnable nature of W acts as an adaptive dimensionality585

reduction on the latent space X and the output WX can be expected to represent global distributions586

as well as class dependent local distributions.587

Figure 8 shows comparison of uncertainty estimates obtained using distance based metric and588

ensemble based model. In contrast to multiple feed forward evaluation models, a single shot589

estimation of distance function in feature space gives an approximation of class conditional density.590

1Training and validation set labels shared as supplementary material.
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A Mahalanobis distance metric Lee et al. ([n. d.]); Venkataramanan et al. (2023) between output and591

the class centroids is has already been shown to act as an approximation of class conditional density592

and outperform empirical ensemble models for the task of OOD detection.593

Figure 8: Comparison of proposed UQ model with popular Bayesian methods using confidence heat
maps (Green) for a 2D synthetic dataset

F Related Work594

Much research has been devoted to UQ in deep learning models for computer vision (CV) DeVries595

and Taylor (2018); Mukhoti et al. (2021) speech and language processing Lin et al. (2023); Däubener596

et al. (2020). Traditional UQ models, such as Bayesian neural networks Dalal and Misra (2024); Neal597

(1995), Monte Carlo dropout Gal and Ghahramani (2016); Xiao and Wang (2019), and deep ensemble598

Lakshminarayanan et al. (2016) models have been popular for speech classification and automatic599

speech recognition (ASR) Däubener et al. (2020). Kalman filtering with Monte Carlo dropout has600

been used to quantify data and model uncertainties in speaker identification McKnight et al. (2023).601

In medical diagnosis, a nonparametric model for UQ has been used as a noise metric for Diffusion602

MRI. Statistical UQ using ensemble models has also been used to augment clinical decision support603

in medicine Kang et al. (2021). These models are resource-intensive due to multiple training runs604

to form an ensemble and/or several feed-forward evaluations for a single inference. However, the605

explainability via uncertainty quantification of speech and audio-driven disease classification remains606

under-explored and is paramount for system reliability and patient safety Xia et al. (2021). In this607

work we treat model prediction and uncertainty quantification as independent tasks. We emphasise608

quantification of both reducible epistemic and aleatoric (irreducible) uncertainties using a single609

inference model with minimal modifications to backbone architecture.610

G Further Comments611

The proposed framework introduced a new way to measure how confident the model is in its612

predictions. This is called model uncertainty. Instead of just giving a single answer, the model613

provides a range of possible outcomes along with how likely each outcome is. This helps in making614

more reliable decisions, especially in medical applications.615

When the model is very uncertain about its prediction, it can be considered as a "flag" to say, "I’m not616

sure about this." In this case, the system can ask for more information, like re-recording the audio,617

before making a final decision. This helps prevent incorrect diagnoses.618

The framework was tested on two well-known datasets: COSWARA and ICBHI. It performed better619

than other popular methods, especially in detecting respiratory diseases. The model was able to620

correctly identify diseases more often and was less likely to make mistakes. One of the strengths of621

this framework is its ability to handle different types of audio data. It can work well with various622
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Figure 9: Evaluation of individual anomalous class performance

audio encoders and can be used for different diseases. This makes it a versatile tool for many medical623

applications. Practical Implications624

In contrast to ensemble based SoTA alternatives, the proposed UQ model is relatively small and fast,625

it can be used on mobile devices or other devices with limited computing power. This means it could626

be used for real-time monitoring of people’s health.627

In summary, the model offers a significant improvement in audio-based disease detection. It is more628

accurate, reliable, and practical than existing methods. By considering the model’s uncertainty, it629

helps to reduce the risk of incorrect diagnoses and improve patient safety.630

Finally, Our results show that: there is a necessity of quantification and identification of prediction631

uncertainties in deep learning models for audio-driven disease estimation. Further it is necessary to632

distinguish between learning aleatoric and epistemic uncertainty, which is unexpected and violates633

assumptions on simple distribution based uncertainty quantification methods. We expect that our634

formulation and results help practitioners and researchers choose uncertainty methods and expand635

the use of disentangled uncertainties, as well as motivate additional research into this topic.636
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