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Abstract

Machine learning has enabled the prediction of quantum chemical properties with
high accuracy and efficiency, allowing to bypass computationally costly ab initio
calculations. Instead of training on a fixed set of properties, more recent approaches
attempt to learn the electronic wavefunction (or density) as a central quantity of
atomistic systems, from which all other observables can be derived. This is com-
plicated by the fact that wavefunctions transform non-trivially under molecular
rotations, which makes them a challenging prediction target. To solve this issue, we
introduce general SE(3)-equivariant operations and building blocks for construct-
ing deep learning architectures for geometric point cloud data and apply them to
reconstruct wavefunctions of atomistic systems with unprecedented accuracy. Our
model achieves speedups of over three orders of magnitude compared to ab initio
methods and reduces prediction errors by up to two orders of magnitude compared
to the previous state-of-the-art. This accuracy makes it possible to derive properties
such as energies and forces directly from the wavefunction in an end-to-end manner.
We demonstrate the potential of our approach in a transfer learning application,
where a model trained on low accuracy reference wavefunctions implicitly learns
to correct for electronic many-body interactions from observables computed at a
higher level of theory. Such machine-learned wavefunction surrogates pave the
way towards novel semi-empirical methods, offering resolution at an electronic
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level while drastically decreasing computational cost. Additionally, the predicted
wavefunctions can serve as initial guess in conventional ab initio methods, decreas-
ing the number of iterations required to arrive at a converged solution, thus leading
to significant speedups without any loss of accuracy or robustness. While we focus
on physics applications in this contribution, the proposed equivariant framework
for deep learning on point clouds is promising also beyond, say, in computer vision
or graphics.

1 Introduction

Machine learning (ML) methods are becoming increasingly popular in quantum chemistry as a means
to circumvent expensive ab initio calculations, and led to advances in a broad range of applications,
including the construction of potential energy surfaces [1–8], prediction of electron densities and
density functionals [9–14], and development of models capable of predicting a range of physical
observables across chemical space [15–29]. Typically, such models are trained on reference data for
a predetermined set of quantum chemical properties and need to be retrained if other properties are
required. However, if a model is capable of predicting the wavefunction, expectation values for any
observable can be derived from it. Unfortunately, such an approach is complicated by the fact that
wavefunctions are typically expressed in terms of rotationally equivariant basis functions, introducing
non-trivial transformations under molecular rotations, which are difficult to learn from data. To
solve this issue, we propose several SE(3)-equivariant operations for deep learning architectures for
geometric point cloud data, which capture the effects of translations and rotations without needing to
learn them explicitly. We assemble these building blocks to construct PhiSNet, a novel deep learning
(DL) architecture for predicting wavefunctions and electronic densities, which is significantly more
accurate than non-equivariant models. For the first time, sufficient accuracy is reached to predict
properties like energies and forces directly from the wavefunction and in end-to-end manner.

This makes it possible to learn wavefunctions that lead to modified properties, which is interesting
from an inverse design perspective; or the development of novel machine-learned semi-empirical
methods, for example by learning a correction to the wavefunction that mimics the effects of electron
correlation. Such hybrid methods maintain the accuracy and generality of high level electronic
structure calculations while drastically reducing their computational cost. In addition, the predicted
wavefunctions can serve as initial guess to speed up conventional ab initio methods.
Beyond physics, other applications of our proposed equivariant DL architecture to e.g. computer
vision or graphics are conceivable – whenever accurate invariant analyses of high dimensional point
clouds are of importance.

In summary, this work provides the following contributions:

• We describe general SE(3)-equivariant operations and building blocks for constructing DL
architectures for geometric point cloud data.

• We propose PhiSNet, a neural network for predicting wavefunctions and electronic densities
from equivariant atomic representations, ensuring physically correct transformation under
translations and rotations.

• We apply PhiSNet to predict wavefunctions and electronic densities of several molecules and
show that our model reduces prediction errors of electronic structure properties by a factor
of up to two orders of magnitude compared to the previous state-of-the-art and achieves
speedups of over three orders of magnitude compared to ab initio solutions.

• We showcase a novel transfer-learning application, where a model trained on low accuracy
wavefunctions is adapted to predict properties computed at a higher level of theory by
learning a correction that implicitly captures the effects of many-body electron correlation.

• We demonstrate that the predicted wavefunctions can serve as initial guess in conventional
quantum chemistry methods, leading to significant speedups without sacrificing the accuracy
or robustness of ab initio solutions.

In principle, our method could also be used to construct orbital features as inputs for methods like
OrbNet [30], which otherwise rely on semi-empirical or ab initio methods.
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Figure 1: A: Illustration of an aspirine molecule and its highest occupied molecular orbital (HOMO) in three
different orientations, showing how the wavefunction (left) and Hamiltonian matrix (right) change with respect
to rotations. B: Overview of the proposed PhiSNet architecture. The atomic representation network creates
atom-wise equivariant features, which are used to produce self-interaction and pair-interaction features (Fig. S2),
from which the Hamiltonian matrix is constructed block-by-block (Fig. S5). C: Visualisation of electronic
densities (squared wavefunction) of various molecules predicted with our approach. D: Illustration of a transfer
learning application, where a model pretrained on Hartree-Fock (HF) Hamiltonians is fine-tuned to match
energies and forces derived from highly accurate coupled cluster (CC) calculations. The model achieves this by
learning a correction to the Hamiltonian matrix, which mimics the effects of many-body electron correlation.
The effective “CC-level” Hamiltonian can be thought of as a HF-level Hamiltonian plus a correction term. The
HOMO is shown to visualize subtle changes to the wavefunction (the correction is amplified in magnitude by a
factor of 103 for better visibility).

2 Related work

Only a small number of studies apply ML to the challenging problem of modeling the wavefunction
directly [31]. This is usually done by predicting Hamiltonian matrices, from which the wavefunction
can be obtained by solving a generalized eigenvalue problem. The earliest such study we are aware
of is by Hegde and Bowen [32], who used kernel ridge regression to learn the Hamiltonian matrix for
two simple case studies. Later, Schütt et al. [33] proposed the SchNOrb neural network architecture,
which constructs the Hamiltonian matrix of molecules in a block-wise manner from atom-pair
features. Recently, Li et al. [34] presented a deep neural network architecture for predicting the
Hamiltonian matrix of simple periodic crystals. However, none of these models form their predictions
in a rotationally equivariant manner, i.e. they need to learn how to predict the Hamiltonian matrix for
all possible orientations of the system of interest, which requires large amounts of training data. Even
when data augmentation via random rotations [35] or special Hamiltonian representations [36] are
used to mitigate this issue, the final model is only approximately equivariant, i.e. properties derived
from the wavefunction can change unphysically when the system is rotated or the frame of reference
is changed. Here, we draw upon insights from a range of SE(3)-equivariant models [37–48] to ensure
that predictions exactly preserve the physically correct dependence with respect to the orientation
of inputs (for a more detailed discussion see the supplement). We would like to remark that after
the initial submission of this manuscript, Nigam et al. [49] introduced a complementary method to
construct equivariant representations for Hamiltonian matrices, e.g. for the use in kernel machines.
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3 Background

The aim of most quantum chemistry methods is to solve the electronic Schrödinger equation

ĤelΨel = EelΨel, (1)

where Ĥel is the Hamiltonian operator describing the interactions and motion of the electrons, Ψel

is the electronic wavefunction and Eel is the ground state energy. After Ψel is determined, all
physical observables (beyond Eel) can be derived by applying other operators (similar to Ĥel) to the
wavefunction and reading out the corresponding eigenvalues [50]. In practice, Eq. 1 is usually solved
by expressing Ψel as an antisymmetric product of molecular orbitals

ψi =
∑
j

Cijφj , (2)

which are written as linear combinations of atom-centered basis functions φ. This leads to the
equation

HC = εSC , (3)

where the Hamiltonian is written as a matrix H with entries Hij =
∫
φ∗i (r)Ĥelφj(r)dr (r denotes

the electronic coordinates). The overlap matrix S with entries Sij =
∫
φ∗i (r)φj(r)dr has to be

introduced and a generalized eigenvalue problem must be solved, because the basis functions φ are
typically not orthonormal. The eigenvectors C specify the wavefunction Ψel via the coefficients
Cij of the molecular orbitals (Eq. 2) and the eigenvalues ε are the corresponding orbital energies.
Since eigenvectors are only defined up to sign changes, predicting H (instead of C) is preferable
for ML applications. This is a challenging task, because the basis functions are typically products
of a radial component and spherical harmonics, which introduces non-trivial dependencies of the
matrix elements with respect to the orientation of the chemical system (see Fig. 1A). Spherical
harmonics Y ml of degree l = 0, . . . ,∞ and order m = −l, . . . , l form a complete orthonormal basis
for functions on the surface of a sphere and can be used to derive irreducible representations (irreps)
of the 3D rotation group SO(3). In other words, they are rotationally equivariant, which means that
when r is rotated, the values of Y ml (r) change accordingly. Since Ψel is expressed with spherical
harmonic basis functions, the entries of H transform predictably under rotations (a more detailed
overview of quantum chemistry fundamentals, groups, equivariance, and spherical harmonics is given
in Section A of the supplement).

4 Deep learning architecture for molecular wavefunctions

Deep message-passing neural networks (MPNNs) [51] for quantum chemistry applications, such as
DTNN [18] or SchNet [19], model physical properties of chemical systems as a sum over atomic
contributions predicted from features xi ∈ RF for each atom i. Starting from initial element-specific
embeddings, the features are constructed by iteratively exchanging “messages” between neighboring
atoms i and j, which depend on the current xi and xj and their distance rij . Since geometric
information enters only in the form of pairwise distances, the final atomic features are rotationally
invariant by construction. This is desirable when they are used to predict a quantity that itself is
rotationally invariant, for example the potential energy. To predict observables that change under
rotation, e.g. electric moments or the electronic Hamiltonian, a natural extension is to instead construct
rotationally equivariant features. To see how this can be achieved, it is useful to think of the F
entries of atomic feature vectors xi ∈ RF as different “channels”, where each channel carries scalar
information about the chemical environment of atom i. To construct rotationally equivariant features,
each scalar channel can be replaced by values derived from the spherical harmonics up to a maximum
degree L, i.e. there are now F × (L+ 1)2 entries (each spherical harmonic degree l ∈ {0, . . . , L}
contributes 2l + 1 values for all possible orders m ∈ {−l, . . . , l}). Our proposed model, which
we call PhiSNet, shares basic design principles with PhysNet [23], but uses equivariant (instead of
invariant) operations throughout its architecture. Contrary to most other MPNNs, instead of directly
predicting chemical properties from atomic features, PhiSNet constructs the Hamiltonian matrix
in a block-wise manner from equivariant representations. All known physical symmetries of the
Hamiltonian are preserved by construction, an essential constraint which is not satisfied by existing
DL architectures for chemical applications.
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Notation Whenever equivariant features are discussed, bold symbols (e.g. x) refer to the collection
of all F × (L+1)2 entries for all feature channels F and spherical harmonics degrees l ∈ {0, . . . , L},
whereas a superscript l in parentheses (e.g. x(l)) is used to refer only to the F × (2l + 1) entries of
degree l. Similarly, Y(r) refers to the collection of all 1× (L+ 1)2 spherical harmonics with distinct
combinations of l and m, whereas Y(l)(r) refers to the 1× (2l+ 1) values for degree l. The notation
c ◦ x denotes a Hadamard product between matrices, i.e. c ∈ RF×(L+1)2 and x ∈ RF×(L+1)2 are
multiplied entry-wise. When there is no one-to-one correspondence between the entries in c and
x, e.g. when c ∈ RF and x ∈ RF×(L+1)2 , c ◦ x implies that c is “broadcasted” across the missing
dimensions, i.e. each of the (L+ 1)2 “slices” of x is multiplied entry-wise with c and the result c ◦ x
has dimensions F × (L+ 1)2. Double-struck digits denote an irreducible representation (irrep) with
the corresponding number of dimensions 2l + 1. For example, 1 refers to a one-dimensional irrep
of degree l = 0 and 3 to a three-dimensional irrep of degree l = 1. By abuse of terminology, the
term “irrep” is also used for the individual (2l + 1)-dimensional components along the F feature
dimensions of x ∈ RF×(L+1)2 . When a collection of equivariant features x(l) ∈ RFin×(2l+1) is
multiplied by a matrix M ∈ RFout×Fin , the result is Mx(l) ∈ RFout×(2l+1), i.e. the ordinary rules for
matrix multiplication apply.

4.1 SE(3)-equivariant neural network building blocks

In the following, we describe general-purpose operations for building SE(3)-equivariant MPNNs,
which can also be used outside a chemical context to build feature representations for other point cloud
data. Additionally, we discuss necessary modifications to established neural network components
(e.g. linear layers or activation functions) for keeping feature representations rotationally equivariant.

Activation functions may only be applied to scalar (l = 0) features, or else the output loses its
equivariant properties:

σ(x)(l) =

{
σ(x(l)) l = 0

x(l) l > 0
. (4)

Here, σ can be any activation function and the notation σ(x(l)) means that σ is applied to x(l)

entry-wise. In this work, a generalized SiLU [52, 53] activation function (also known as Swish [54])
given by

σ(x) =
αx

1 + e−βx
(5)

is used, where α and β are both learned and separate parameters are kept for all feature channels and
instances of σ [27] (see Section B.1 in the supplement for additional details).

Linear layers are applied to each degree l according to

linearFin→Fout(x)(l) =

{
Wlx

(l) + b l = 0

Wlx
(l) l > 0

, (6)

where W ∈ RFout×Fin and b ∈ RFout are weights and biases, respectively. The subscript l is used
to distinguish the weights for different degrees l, i.e. separate linear transformations are applied to
the features of each degree l. The bias term must be omitted for l > 0 so that output features stay
rotationally equivariant.

Tensor product contractions are used to couple two equivariant feature representations x(l1)

and y(l2) to form new features z(l3). The (reducible) tensor product x(l1) ⊗ y(l2) of two irreps has
(2l1+1)(2l2+1) dimensions and can be expanded into a direct sum of irreducible representations, e.g.
3⊗5 = 3⊕5⊕7. In general, the value for orderm3 of the irrep of degree l3 ∈ {|l1−l2|, . . . , l1+l2}
in the direct sum representation of the tensor product x(l1) ⊗ y(l2) is given by(

x(l1) ⊗ y(l2)
)l3
m3

=

l1∑
m1=−l1

l2∑
m2=−l2

Cl3,l2,l1m3,m2,m1
xl1m1

yl2m2
, (7)

whereCl3,l2,l1m3,m2,m1
are Clebsch-Gordan coefficients (CGCs) [55]. The short-hand notation x(l1)⊗

l3
y(l2)

is used to refer to the irrep of degree l3 in the direct sum representation of x(l1)⊗y(l2). In other words,
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the operation x(l1) ⊗
l3
y(l2) performs the tensor product and contracts the result to a single irrep of

degree l3. A similar construction is also used in Clebsh-Gordan [56] and Tensor Field networks [42].

Tensor product expansions are inverse to tensor product contractions. Instead of contracting two
irreps into one, CGCs are used to expand a single irrep x(l3) into a (2l1 + 1) × (2l2 + 1) matrix
that represents its contribution to the direct sum representation of the tensor product of two irreps of
degree l1 and l2, where |l2 − l1| ≤ l3 ≤ l2 + l1:

(
⊗x(l3)

)l1,l2
m1,m2

=

l3∑
m3=−l3

Cl1,l2,l3
ml,m2,m3

xl3m3
. (8)

Mirroring the shorthand used for tensor product contractions,
l1,l2

⊗ x(l3) will be used to refer to the
(2l1 + 1)× (2l2 + 1) matrix that is obtained from the tensor product expansion of x(l3).

Selfmix layers are used to recombine (“mix”) the F features of a single input x ∈ RF×(Lin+1)2

across different degrees and optionally allow changing the maximum degree from Lin to Lout. The
output features of degree l3 are given by

selfmixLin→Lout(x)(l3) =


kl3 ◦ x(l3) +

∑Lin

l1=0

∑Lin

l2=l1+1 sl3,l2,l1 ◦
(
x(l1) ⊗

l3
x(l2)

)
l3 ≤ Lin∑Lin

l1=0

∑Lin

l2=l1+1 sl3,l2,l1 ◦
(
x(l1) ⊗

l3
x(l2)

)
l3 > Lin

.

(9)
Here, k, s ∈ RF are learnable coefficients and the subscripts are used to distinguish independent
parameters k, s for different degrees: In total, a selfmix layer has Lout + 1 different kl3 (one for each
possible value of l3 ∈ {0, . . . , Lout}) and (Lout + 1)Lin(Lin+1)

2 different sl3,l2,l1 (one for each valid
combination of l3, l2, l1).

Spherical linear layers Spherical linear layers are a combination of linear (Eq. 6) and selfmix
(Eq. 9) layers given by

sphlinearLin→Lout,Fin→Fout
(x) = linearFin→Fout

(selfmixLin→Lout
(x)) . (10)

Chaining both operations allows arbitrary combinations across feature channels and degrees while
still preserving rotational equivariance. In principle, whenever Lin = Lout, selfmix layers are not
strictly necessary and Eq. 10 may be replaced by Eq. 6 for a boost in computational efficiency and
reduction of memory footprint. However, this comes at the cost of reduced accuracy (see Section D
in the supplement for details).

Residual blocks are modules consisting of two sequential spherical linear layers (see Eq. 10) and
activation functions (see Eqs. 4 and 5) inspired by the pre-activation residual block described in [57]:

residual(x) = x + sphlinear2(σ2(sphlinear1(σ1(x)))) . (11)

Here, Fin = Fout and Lin = Lout for both spherical linear layers.

Pairmix layers are used to combine a pair of features x ∈ RF×(Lx+1)2 and y ∈ RF×(Ly+1)2 with
a scalar r (e.g. their Euclidean distance) to generate new features of degree Lout:

pairmixLx,Ly→Lout
(x,y, r)(l3) =

Lx∑
l1=0

Ly∑
l2=0

(Wl3,l2,l1g(r)) ◦
(
x(l1) ⊗

l3
y(l2)

)
. (12)

Here, g(r) ∈ RK is the vector [g0(r) g1(r) . . . gK−1(r)]> and gk(r) are radial basis functions.
In this work, exponential Bernstein polynomials [27] are used (see Section B.2 and Eq. S9 in the
supplement). The weight matrices W ∈ RF×K allow to learn radial functions as linear combinations
of the basis functions gk(r) and subscripts are used to distinguish independent weights for different
combinations of l1, l2, l3 (in total, there are (Lx + 1)(Ly + 1)(Lout + 1) possible combinations).
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Interaction blocks use message-passing to model interactions between the features c ∈ RF×(L+1)2

of a central point i with features n ∈ RF×(L+1)2 of neighboring points j within a local environment:

a(x, r)(l) = x0 ◦ (Wlg(‖r‖)) ◦ sphlinearL→L,1→F (Y(r))(l) ,

b(x, r)(l) = pairmixL,L→L(x, sphlinearL→L,1→F (Y(r)) , ‖r‖)(l) ,

interaction(c,n, r)
(l)
i = c

(l)
i +

∑
j 6=i

(
a(nj , rij)

(l) + b(nj , rij)
(l)
)
.

(13)

Here rij is the distance vector rij = rj − ri between the positions ri, rj of i and j. The radial basis
function expansion g is the same as in pairmix layers and W ∈ RF×K are independent weight
matrices for each degree l. Since geometric information enters Eq. 13 via relative distance vectors
rij expanded in a spherical harmonics basis, interactions blocks are equivariant with respect to the
SE(3) group of roto-translations.

4.2 PhiSNet architecture

PhiSNet takes as inputs nuclear charges Z and positions r of N atoms, which are used to construct
equivariant feature representations encoding information about the chemical environment of each
atom. These features are then further transformed and used to predict the entries of the Hamiltonian
matrix, see below. An overview over the complete architecture is shown in Fig. 1B and more detailed
diagrams of individual building blocks are given in Fig. S2 (see Section D of the supplement for
ablation studies that explore the impact of possible simplifications of the PhiSNet architecture on
prediction accuracy).

Atomic feature representations An embedding layer produces initial atomic feature representa-
tions x from the nuclear charges Z according to

embedding(Z)(l) =

{
WdZ + bZ l = 0

0 l > 0
, (14)

where W ∈ RF×4 is a weight matrix and bZ element-specific biases with learnable parameters. Here,
dZ ∈ R4 are fixed vectors for each element that contain information about their nuclear charge and
ground state electron configuration, similar to the embeddings described in [27] (see Section C.1 in
the supplement for details). The features are then refined by five sequential modules, each consisting
of identical building blocks with independent parameters:

t = residual(x) ,

i = sphlinearL→L,F→F (σ (residual(t))) ,

j = sphlinearL→L,F→F (σ (residual(t))) ,

v = sphlinearL→L,F→F (σ (residual(interaction(i, j, r)))) ,

x̃ = residual (t + v) ,

ỹ = residual (x̃) .

(15)

Each module produces two different outputs x̃ and ỹ. The first output x̃ serves as input to the next
module in the chain (replacing x in Eq. 15), whereas the second output ỹ is summed with the outputs
of other modules m to form the final atomic feature representations f =

∑
m ỹm (see Fig. S2A for a

visual representation).

Hamiltonian matrix prediction The Hamiltonian matrix is constructed block-by-block, with each
block corresponding to the interaction between two atoms i and j. Diagonal and off-diagonal blocks
are treated separately, i.e. different atomic pair features are constructed to predict them. Since these
transformations also involve interactions with neighboring atoms (similar to interaction blocks),
separate representations for central c and neighboring atoms n are created from the atomic features f :

ci = residual(fi) ,

nj = residual(fj) .
(16)
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Self-interaction features fii (for diagonal blocks) are constructed according to

f
(l)
ii = residual

c
(l)
i +

∑
j 6=i

(
n
(l)
j ◦Wlg(‖rij‖)

) , (17)

where rij is the distance vector between the positions of atoms i and j, and the radial basis function
expansion g is the same as in pairmix layers. The matrices W ∈ RF×K are separate trainable weight
matrices for each degree l.

Similarly, pair-interaction features fij (for off-diagonal blocks) are obtained by combining the central
representations of atoms i and j and interacting them with the neighbors of atom i according to

f
(l)
ij = residual

pairmix(ci, cj , ‖rij‖)(l) +
∑

k/∈{i,j}

(
n
(l)
k ◦Wlg(‖rik‖)

) . (18)

All blocks Hii and Hij of the Hamiltonian matrix, each representing the interaction between two
atoms, are themselves composed of smaller blocks corresponding to the interaction between atomic
orbitals. Since atomic orbitals are expressed in a spherical harmonics basis, their interactions
transform non-trivially (put predictably) under rotations. The correct equivariant behavior of a matrix
block Ml1,l2 ∈ R(2l1+1)×(2l2+1) corresponding to the interaction between orbitals of degree l1 and
l2 can be constructed as a sum over matrices obtained from tensor product expansions (Eq. 8) of
irreps a (collected from specific channels of the pairwise features fii or fij , see below) of all valid
degrees l3 ∈ {|l2 − l1|, . . . ,≤ l2 + l1}:

Ml1,l2 =

l2+l1∑
l3=|l2−l1|

l1,l2

⊗ a(l3) . (19)

Two sets of indices Iself and Ipair count and keep track of the irreps necessary to construct all
required matrices Ml1,l2 . For diagonal blocks Hii, the irreps of a given degree l for the interaction
of orbitals n and m of atoms with nuclear charge Z are collected from specific channels of the
self-interaction features fii via a unique index Iself(Z, n,m,L). Similarly, for off-diagonal blocks
Hij , a unique index Ipair(Zi, Zj , ni, nj , L) selects irreps corresponding to orbitals ni and nj of
atom pairs with nuclear charges Zi and Zj from the pair-interaction features fij . After all blocks have
been constructed, the complete matrix H̃ is obtained by placing individual blocks at the appropriate
positions (based on which atoms and orbitals interact). Finally, a Hamiltonian matrix satisfying the
necessary Hermitian symmetry is constructed as H = H̃+ H̃T . This symmetrization guarantees that
both pair-features fij and fji contribute equally to the corresponding off-diagonal blocks and also
makes sure that sub-blocks of the Hamiltonian swap positions in the correct way when equivalent
atoms are permuted. In cases where multiple Hamiltonian-like matrices need to be predicted, all
parameters up to the final residual blocks in Eqs. 17 and 18 are shared. An exception are overlap
matrices (see Section 3), for which simpler self- and pair-interaction features derived directly from the
embeddings are sufficient (see Section C.3 in the supplement for details). The complete block-wise
construction process of the Hamiltonian matrix from irreps is illustrated in Fig. S5 for a water
molecule with minimal basis set.

5 Results and discussion

To assess the ability of PhiSNet to predict molecular wavefunctions and electronic densities (see
Fig. 1C), we train it on Kohn-Sham (the Kohn-Sham matrix takes the role of the Hamiltonian in
DFT methods, see Section A.1 in the supplement) and overlap matrices for various non-equilibrium
configurations of water, ethanol, malondialdehyde, uracil, and aspirin computed at the density
functional theory (DFT) level with PBE/def2-SVP. Datasets for all molecules are taken from [33],
with the exception of aspirin, for which geometries were sampled from the MD17 dataset [5]
(more details on the datasets, training procedure, and hyperparameter settings can be found in
Sections F and G of the supplement).

The results are summarized in Tab. 5 and compared to the current state-of-the-art given by
SchNOrb [33]. PhiSNet achieves accuracy improvements up to two orders of magnitude, with
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Table 1: Prediction errors of PhiSNet for various molecules compared to SchNOrb [33]. In addition
to Kohn-Sham K and overlap S matrices, we also report errors for energies ε and the cosine similarity
between predicted and reference wavefunction ψ for all occupied orbitals. Best results in bold.

Data set K S ε ψ
[10−6 Eh] [10−6] [10−6 Eh]

Water SchNOrb 165.4 79.1 279.3 1.00
PhiSNet 17.59 1.56 85.53 1.00

Ethanol SchNOrb 187.4 67.8 334.4 1.00
PhiSNet 12.15 0.626 62.75 1.00

Malondialdehyde SchNOrb 191.1 67.3 400.6 0.99
PhiSNet 12.32 0.567 73.50 1.00

Uracil SchNOrb 227.8 82.4 1760 0.90
PhiSNet 10.73 0.533 84.03 1.00

Aspirin SchNOrb 506.0 110 48689 0.57
PhiSNet 12.84 0.406 176.6 0.98

the biggest differences arising in larger and more complex molecules like uracil and aspirin. Note that
the training process for SchNOrb requires data augmentation via random rotations to approximate the
equivariance relation between wavefunction and molecular orientation, while PhiSNet preserves exact
equivariance. This not only allows for faster convergence, but also leads to much smaller model sizes,
with our model requiring approximately one fifth of the parameters of SchNOrb while providing
significantly more accurate results. In addition, PhiSNet provides speedups of over three orders of
magnitude compared to DFT calculations (see Section E.1 for details).

The improved prediction accuracy provided by PhiSNet makes it possible to accurately derive
properties such as energies and forces directly from the wavefunction in an end-to-end manner,
enabling a number of interesting and novel ML applications for the molecular sciences. As an
example, we showcase a transfer-learning application, where a model trained on low accuracy Hartree-
Fock (HF) electronic structure calculations is fine-tuned to learn a correction to the wavefunction, such
that energies and forces match those obtained via high-level coupled cluster with singles, doubles,
and perturbative triple excitations (CCSD(T)) calculations. The CCSD(T) method models the effects
of electronic many-body interactions, which are neglected in HF theory, and is often considered to
be the “gold standard” of quantum chemistry [8]. However, its accuracy comes at a significantly
increased computational complexity, going from O(N3) for HF to O(N7) for CCSD(T) (here, N is
the number of basis functions). Thus, a machine-learned correction to HF theory, which mimics the
effects of electron correlation in a computationally efficient manner, is a possible way towards novel
hybrid methods that rival the accuracy of high level electronic structure calculations and combine the
generality and robustness of ab initio methods with the efficiency of ML.

After pretraining PhiSNet on HF/cc-pVDZ data for Fock matrices F, core Hamiltonians Hcore, and
overlap matrices S, we fine-tune it on forces computed at the CCSD(T)/cc-pVTZ level, but still keep
loss terms for Hcore and S computed with HF/cc-pVDZ (see Section A.1 in the supplement for a
brief overview of HF theory, where we explain the relevance of F, Hcore, and S, and how energies
and forces are derived from them). This way, the model learns to adapt only the Fock matrix F, which
embodies the electron-electron interactions in the HF formalism. Interestingly, very subtle changes to
F seem to be sufficient to approximate the effects of electron correlation, resulting in an “effective
CCSD(T) wavefunction” that, at first glance, appears to be almost identical to its original HF-level
counterpart (see Fig. 1D). Nonetheless, the modified wavefunction reduces the mean absolute errors
(MAEs) between energies and forces predicted with PhiSNet to just 79 µEh and 0.85 mEha−10 ,
respectively, compared to the CCSD(T) reference. In contrast, the original HF-level wavefunction
leads to MAEs of 4266 µEh and 15 mEha−10 for energies and forces, respectively, i.e. prediction
errors are reduced by over one order of magnitude with no additional computational overhead. More
details on the transfer learning application can be found in Section G.2 of the supplement.

Although PhiSNet predicts electronic properties very accurately, some applications might require
exact solutions, making existing quantum chemistry methods preferable over predictions of an
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ML model. Even then, PhiSNet can be used to achieve speedups without any loss of accuracy or
robustness: A significant fraction of compute time in HF and DFT calculations must be spent to
arrive at a self-consistent solution of Eq. 3. A good initial guess for the wavefunction can reduce
the number of required iterations significantly. We observe a decrease between 56–72% in the
number of iterations, resulting in a total reduction of wall-clock time between 24–40%, when using
PhiSNet-predicted wavefunctions in place of the default guess (see Section E.2 in the supplement for
more details).

While the results are highly promising, the current approach also has limitations. Due to the fact that
all pairwise combinations of atoms have to be considered for constructing the pair-interaction features
fij , the Hamiltonian matrix prediction scales quadratically with the number of atoms. Further, to
derive the coefficient matrix C defining the wavefunction, a generalized eigenvalue problem has to be
solved (see Eq. 3), which scales cubically with the matrix size (the number of basis functions). For
these reasons, PhiSNet does not scale well to systems with a very large number of atoms. However,
possible extensions of our method could exploit the fact that orbital overlaps between distant atoms
are very small, so the entries of corresponding matrix blocks are approximately zero [58]. Then,
only pair-interaction features for non-zero blocks need to be computed and the solution of Eq. 3 can
exploit sparsity.

6 Conclusion

For learning problems with known invariances, equivariances, symmetries, or other constraints, as
is common in physics applications, it is useful to include such properties directly into the model
architecture. This effectively reduces the complexity of the learning problem (cf. [59, 60]), increasing
model performance and decreasing the required amount of training data. While invariance and
equivariance properties could also be (approximately) learned, this typically requires much more
reference data and/or data augmentation. In contrast, by “hard coding” domain knowledge, the
learning is constrained to a meaningful submanifold, e.g. reflecting rotational equivariance [38],
energy conservation, physical laws or symmetries (e.g. [4, 5, 23, 27, 61]), group equivariance
(e.g. [37]), graph properties (e.g. [40, 46]) or alike. Thus, known properties do not need to be learned
explicitly, because the submanifold where learning takes place already embodies them.

Our present contribution follows this design principle, specifically, we describe a series of general
SE(3)-equivariant operations and building blocks for deep learning architectures operating on geomet-
ric point cloud data, which we used here to construct PhiSNet, a novel neural network architecture
capable of accurately predicting wavefunctions and electronic densities. Unlike previous models,
which need to approximately learn how the wavefunction transforms under molecular rotations and
rely on data augmentation, the SE(3)-equivariant3 building blocks of our network allow to exactly
capture the correct transformation without needing to learn it explicitly. By applying PhiSNet on
a range of small to medium-sized molecules, we demonstrated that our model achieves accuracy
improvements of up to two orders of magnitude compared to the previous state-of-the-art (while at
the same time requiring significantly less parameters), and speedups with respect to ab initio solutions
of over three orders of magnitude.

For the first time, sufficient accuracy is reached to derive quantum mechanical observations directly
from the predicted wavefunction in an end-to-end manner, which also allows to adapt the predicted
wavefunction such that it leads to desired physical properties. To showcase such an application, we
fine-tuned a model trained on low accuracy wavefunctions to predict properties computed at a much
higher level of theory, thereby learning a correction that implicitly captures the effects of many-body
electron correlation. This paves the way towards the development of novel semi-empirical methods
that are capable of providing highly accurate quantum chemical calculations at a drastically reduced
computational cost. In addition, we demonstrated that existing ab initio approaches can benefit from
guess wavefunctions provided by our method, achieving significant speedups without any loss of
accuracy or robustness.

Although we focus on quantum chemistry applications in this contribution, we would like to reiterate
that the presented SE(3)-equivariant operations are general and can be used to construct other deep
learning architectures for geometric point cloud data beyond physics, e.g. [37, 38, 40, 45, 46].

3Note that SE(3)-equivariance is important (in contrast to just SO(3)-equivariance), because the properties of
chemical systems may change substantially when individual atoms are translated relative to each other.
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