
Journal of Machine Learning Research 23 (2025) 1-13 Submitted 17/06/25; Published

Uncertainty-Aware Ensemble Segmentation of Breast Cancer
Tissue Microarrays

Lucia Schmidt-Santiago* lschmidt@pa.uc3m.es
Roman Kinakh*† rkinakh@ing.uc3m.es
Sergio Carreras-Salinas scarrera@pa.uc3m.es
Sara Guerrero-Aspizcua sguerrer@ing.uc3m.es
Gonzalo R. Ríos-Muñoz grios@ing.uc3m.es
Arrate Muñoz-Barrutia mamunozb@ing.uc3m.es
Bioengineering Department
Universidad Carlos III de Madrid, Spain
Legánes, Madrid, 28911, Spain

Editor: -

Abstract
Breast cancer Tissue Microarrays (TMAs) offer a high-throughput platform for studying
tumor morphology and biomarker expression. We present an automated deep learning
pipeline for semantic segmentation of Hematoxylin and Eosin (H&E)-stained breast cancer
TMAs, integrating ensemble U-Net architectures with ResNet encoders and Monte Carlo
Dropout (MCDO) for uncertainty estimation. A robust pre-processing workflow addresses
illumination artifacts, staining variability, and tissue detection.

Multiple U-Net models were trained using distinct loss functions to address class imbal-
ance and feature diversity. Predictions were combined via soft voting, emulating consensus
among pathologists. Uncertainty was quantified using MCDO across ensemble outputs,
enhancing reliability and interpretability.

Our pipeline outperforms similar methods such as WeGleNet (mIoU = 0.4368) and
HistoSegNet (mIoU = 0.5505), achieving a mean IoU of 0.58 ± 0.11 and Dice Score of
0.66 ± 0.10. Calibration analysis shows superior alignment of standard deviation–based
uncertainty estimates with actual prediction errors (UCE = 0.085 ± 0.033). This pipeline
effectively segments complex histopathological structures and flags ambiguous regions for
review, supporting downstream biomarker discovery and clinical interpretation.
Keywords: tissue microarrays, deep learning, segmentation, ensemble, uncertainty,
histopathology.

1 Introduction

Breast cancer accounts for 12.5% of all cancer diagnoses worldwide, with over 2.3 million
new cases and 685,000 deaths annually (Ferlay et al. (2021)). Its clinical complexity arises
from pronounced biological heterogeneity and the dynamic tumor microenvironment (TME),
which influences disease progression and treatment response.
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Tissue Microarrays (TMAs) have become essential tools in cancer research, enabling
high-throughput analysis of tumor morphology and biomarker expression from multiple sam-
ples (Nocito et al. (2001)). However, their densely packed layout, staining variability, and
tissue heterogeneity complicate automated analysis. Reliable segmentation of histopatho-
logical regions—such as tumor epithelium (TUM), tumor-associated stroma (STR), necrosis
(NEC), and inflammation (INF)—is vital for downstream clinical and translational applica-
tions, especially in HER2-positive (HER2+) and Tripple Negative Breast Cancer (TNBC)
(Salgado et al. (2015); Dieci et al. (2015)).

Deep learning has significantly advanced digital pathology. The U-Net architecture (Ron-
neberger et al. (2015)) is widely adopted for medical image segmentation due to its strong
localization and contextual learning abilities. However, challenges remain, including class
imbalance, staining inconsistencies, and ambiguous tissue boundaries (Van Eycke et al.
(2017)). These issues especially affect performance on underrepresented tissue types.

To improve robustness, ensemble learning aggregates outputs from models trained with
diverse loss functions, reducing individual biases and improving generalization (Kamnit-
sas et al. (2017)). Additionally, uncertainty estimation techniques such as Monte Carlo
Dropout (MCDO) (Gal and Ghahramani (2016b)) have proven effective in highlighting am-
biguous predictions, supporting model interpretability and trustworthiness in clinical work-
flows (Kendall et al. (2017)).

In this study, we propose a pipeline for breast cancer TMA segmentation that combines
pre-processing, an ensemble of U-Net models with ResNet encoders, and MCDO-based un-
certainty estimation. This approach addresses staining variability, class imbalance, and
model interpretability. Our goal is to deliver accurate, interpretable segmentations to sup-
port biomarker discovery and deepen understanding of tumor biology.

2 Material and Methods

2.1 Dataset

We used a publicly available dataset from the British Columbia Cancer Agency (BCCA),
comprising Hematoxylin and Eosin (H&E)-stained TMA cores from 4,944 breast cancer
patients (Genetic Pathology Evaluation Centre). Each patient contributed three digitized
0.6 mm cores at a resolution of 2256×1440 pixels.

For this study, we focused on 123 manually annotated TMA cores with pixel-wise labels,
obtained through a three-step annotation process: an expert pathologist identified regions of
interest, and a trained assistant delineated TUM, NEC, and INF using QuPath (Bankhead
et al. (2017)), which was then evaluated by the former. These three classes were prioritized
due to their prognostic significance in breast cancer and their relevance in downstream
biomarker and immune infiltration analyses. 110 images were used for training and validation
while the remaining 13 images were reserved for testing. The random selection was performed
based on patient name identifiers such that no images from the same patient appeared in
both the test and non-test sets.

The miscellaneous (MIS) class, consisting primarily of background, non-cellular and dis-
rupted tissue regions, was automatically segmented in the first step using simple thresholding
and morphological operations (Figure. 1), as these areas are typically easy to isolate due
to their predominantly white appearance. Following this, the STR class was derived by
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subtracting the manually annotated TUM, NEC, and inflammation/tumor-infiltrating lym-
phocytes (INF/TILs) regions from the remaining tissue, excluding areas already assigned to
the MIS class.

The final dataset contains 123 annotated cores: TUM (n=123), STR (n=123), NEC
(n=47), INF (n=52), and MIS (n=123). All images were square-cropped to the edges of the
core and resized to 1024×1024 pixels resulting in a uniform pixel size of ≈ 0.6µm.

2.2 Pre-processing and Data Augmentation

Comprehensive pre-processing was implemented to enhance the model’s training capacity
by addressing variability in tissue sections and staining. As shown in Fig. 1, the pipeline
included illumination correction, tissue segmentation in the LAB color space, morphological
post-processing, and contour filtering to exclude noise and small objects, and finally square
cropping centered on the primary TMA object. To address staining inconsistencies, Rein-
hard et al.’s Stain Color Normalization (SN) method (Reinhard et al. (2001)) aligned color
distributions, enhancing dataset uniformity while preserving morphological details.

Figure 1: Pre-processing pipeline. From left to right, the process begins with brightness
correction to improve TMA core image contrast, followed by segmentation to
distinguish tissue from the background. Post-processing steps include Salt &
Pepper noise reduction and morphological operations to refine tissue boundaries.
Finally, square cropping is applied around the main tissue object.

Due to the sparsity of manually annotated data, we employed a data augmentation
strategy that introduces realistic variations into the training dataset (Tellez et al. (2019)) to
enhance the generalization ability of our models and improve their robustness. Our augmen-
tation pipeline includes random geometrical transformations such as rotations, vertical and
horizontal flips, along with color adjustments, including changes in brightness and contrast.
These modifications were applied with a probability of p = 0.2.

2.3 Model Architecture

Our segmentation model combines a U-Net architecture (Ronneberger et al. (2015)) with
a ResNet50 encoder (He et al. (2016)), leveraging both spatial precision and deep feature
extraction. As shown in Fig. 2, the encoder, pre-trained on ImageNet (Deng et al. (2009)),
extracts hierarchical features from input images X ∈ RC×H×W , while skip connections
preserve spatial details.
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Figure 2: Architecture of the U-Net with ResNet50 encoder. The encoder (blue)
consists of a Conv1 layer and ResNet50 bottleneck blocks for efficient feature ex-
traction and dimensionality reduction, with skip connections (dashed lines) to the
decoder. The bridge (green) links the encoder and decoder, while the Decoder
Blocks (DB, red) upsample, integrate skip connections, and refine feature maps.
The final layer applies a 1× 1 convolution and softmax to generate class proba-
bility maps. H and W represent the height and width of the input image.

A bridge module refines deep features before decoding. The decoder upsamples and fuses
features with encoder outputs to reconstruct the spatial layout. The final layer applies a
1 × 1 convolution followed by softmax to produce class probability maps. The predicted
class for each pixel i is given by: ŷi = argmaxc

(
exp(zi,c)∑n

k=1 exp(zi,k)

)
, where zi,c is the logit for

class c and n is the total number of classes.

2.4 Monte Carlo Dropout

To quantify model confidence, we employ MCDO, which approximates epistemic uncertainty
by performing multiple stochastic forward passes with dropout at inference time (Gal and
Ghahramani (2016a)). This produces a predictive distribution for each pixel from which
uncertainty metrics are derived.

We compute two measures: standard deviation (STD), which captures variation across
predictions (see Appendix B), and Entropy (H), which reflects the unpredictability of the
mean prediction for each pixel. For pixel i, entropy is defined as:

Hi = −
C∑
c=1

(p̄i,c log2 (σ̄i,c + ϵ) + (1− p̄i,c) log2 (1− p̄i,c + ϵ)) ,

where C is the number of classes, p̄i,c and σ̄i,c are the mean and standard deviation of
predicted probabilities for class c at pixel i, and ϵ ensures numerical stability.

Both uncertainty maps are normalized to [0, 1] for visualization and calibration.
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2.5 Training and Loss Functions

Multiple U-Net models were trained on an Nvidia RTX 3090 GPU (24 GB VRAM) using
5-fold cross-validation. Each fold used a batch size of 3, a learning rate of 10−4, and 50
epochs. The Adam optimizer was used, and the best model per fold was selected based on
validation IoU. Final evaluation was performed on 13 manually annotated TMA cores. For
MCDO, a dropout rate of 0.3 was applied during inference.

To address class imbalance and segmentation ambiguity, we trained models with five
loss functions: Cross-Entropy, Dice, Focal, Focal Dice, and Tversky (Appendix A). Each
emphasizes different properties of the prediction error, from probabilistic confidence to region
overlap.

2.6 Ensemble Model

Given the diverse and complex nature of the dataset, a soft voting mechanism is em-
ployed to ensemble outputs from models trained with different loss functions. This ap-
proach aggregates the predicted class probabilities for each pixel across all models and
selects the class with the highest cumulative probability as the final prediction: C∗ =

argmaxc

(∑M
m=1 Pm(c | p)

)
, where C∗ is the final predicted class for pixel p, c represents

a class label, M is the total number of models, and Pm(c | p) is the predicted probability
for class c at pixel p from model m. This approach not only ensures a more stable and
accurate segmentation outcome but also mimics the collaborative decision-making process
often employed by pathologists in clinical settings.

2.7 Evaluation

We evaluated segmentation performance using standard pixel- and region-level metrics, in-
cluding Intersection over Union (IoU), Dice Score, Accuracy, Precision, and Recall. Defini-
tions of these are provided in the Appendix C.

Two additional metrics are introduced to account for clinical relevance:
Frequency-Weighted IoU (fw-IoU) weighs IoU values by class frequency: fw-IoU =∑N

c=1wc · IoUc, where wc = |yc|/
∑N

i=1 |yi|.
Frequency–relevance–weighted IoU. We report frw-IoU defined inline as frw-IoU =∑

c pcwc IoUc, extending fw-IoU with clinical relevance weights pc (
∑

c pc = 1). We set
pc = {MIS : 0.05, STR : 0.15, NEC : 0.15, INF : 0.15, TUM : 0.50} to reflect asym-
metric utility: TUM is clinically paramount and anchors downstream readouts; NEC is
an adverse prognostic feature; stromal proportion (STR; tumor–stroma ratio) is prognos-
tic; and tumor-infiltrating lymphocytes (INF/TILs) are prognostic/predictive, especially in
TNBC/HER2+; MIS is minimally informative (Chen et al., 2023; Yan et al., 2022; Salgado
et al., 2015; Dieci et al., 2015). This task-aligned weighting is consistent with recommenda-
tions for clinically meaningful validation (Maier-Hein et al., 2024).

To evaluate uncertainty quality, we computed the Uncertainty Calibration Error
(UCE), which measures alignment between uncertainty estimates and actual errors: UCE =∑B

b=1wb · |ErrRate(b)− û(b)|, where wb is the proportion of samples in bin b, and û(b) is the
mean uncertainty in that bin. We report UCE for both entropy- and STD-based uncertainty
maps. Reliability diagrams (Fig. 4) illustrate calibration quality.
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An ablation study was conducted to evaluate the effects of SN and MCDO. Four configu-
rations (with/without SN and MCDO) were tested, and the mean IoU was further computed
per class.

3 Results

3.1 Ablation

We conducted an ablation study to assess the effects of stain SN and MCDO on segmentation
performance (Table 1). SN preserved structural integrity, yielding an average Structural
Similarity (SSIM) of 0.95 (Wang et al. (2004)). The ensemble without SN or MCDO achieved
the highest performance (mIoU = 0.58 ± 0.11, Dice = 0.66 ± 0.10, fw-IoU = 0.80 ± 0.07),
and was selected for visualization and benchmark comparison.

Incorporating MCDO substantially reduced segmentation metrics but improved inter-
pretability due to uncertainty estimation. In this configuration, interestingly, SN slightly
improves the performance. The configuration with both MCDO and SN (mIoU = 0.52±0.07)
offered a good balance and was chosen for uncertainty estimation (see Section 3.3).

We also compared loss functions individually and as part of an ensemble. The ensem-
ble did not outperform standalone models across multiple metrics. However, it consistently
achieved lower Standard Deviation (σ) with Means (µ) almost as high as in the best per-
forming standalone models, indicating a more consistent performance across different images
(Table 2) and delivered stable results across all tissue classes (Table 3).

Table 1: Impact of MCDO and SN on segmentation metrics (µ±σ). Bold indicates the best
results.

MCDO SN IoU Dice Accuracy Precision Recall frw-IoU fw-IoU

– – 0.58 ± 0.11 0.66 ± 0.10 0.87 ± 0.05 0.69 ± 0.09 0.68 ± 0.10 0.73 ± 0.10 0.80 ± 0.07
– ✓ 0.50 ± 0.10 0.57 ± 0.11 0.81 ± 0.15 0.62 ± 0.09 0.58 ± 0.10 0.63 ± 0.23 0.74 ± 0.14
✓ – 0.50 ± 0.08 0.57 ± 0.08 0.87 ± 0.07 0.59 ± 0.08 0.59 ± 0.07 0.73 ± 0.11 0.79 ± 0.09
✓ ✓ 0.52 ± 0.07 0.59 ± 0.07 0.87 ± 0.05 0.61 ± 0.08 0.61 ± 0.07 0.75 ± 0.09 0.80 ± 0.07

Table 2: Segmentation metrics (µ±σ) across loss functions. Bold indicates the best results.

Loss IoU Dice Accuracy Precision Recall frw-IoU fw-IoU

Cross-Entropy 0.59 ± 0.14 0.67 ± 0.14 0.86 ± 0.05 0.70 ± 0.12 0.70 ± 0.14 0.71 ± 0.09 0.78 ± 0.07
Dice 0.55 ± 0.07 0.62 ± 0.07 0.87 ± 0.04 0.65 ± 0.08 0.64 ± 0.07 0.73 ± 0.10 0.80 ± 0.06
Focal 0.59 ± 0.12 0.66 ± 0.12 0.85 ± 0.10 0.72 ± 0.12 0.68 ± 0.11 0.69 ± 0.16 0.77 ± 0.10
Focal-Dice 0.57 ± 0.13 0.64 ± 0.13 0.86 ± 0.07 0.67 ± 0.11 0.66 ± 0.12 0.70 ± 0.11 0.78 ± 0.08
Tversky 0.53 ± 0.08 0.60 ± 0.08 0.87 ± 0.05 0.65 ± 0.08 0.62 ± 0.07 0.72 ± 0.09 0.79 ± 0.06
Ensemble 0.58 ± 0.11 0.66 ± 0.10 0.87 ± 0.05 0.69 ± 0.09 0.68 ± 0.10 0.73 ± 0.10 0.80 ± 0.07

Table 3: Per-class IoU (µ± σ) across loss functions. Bold indicates the best results.
Loss MIS STR TUM NEC INF

Cross-Entropy 0.93 ± 0.03 0.64 ± 0.20 0.64 ± 0.17 0.14 ± 0.31 0.14 ± 0.21
Dice 0.93 ± 0.03 0.65 ± 0.18 0.68 ± 0.18 0.24 ± 0.34 0.11 ± 0.20
Focal 0.94 ± 0.03 0.66 ± 0.19 0.62 ± 0.22 0.14 ± 0.30 0.15 ± 0.23
Focal-Dice 0.94 ± 0.03 0.65 ± 0.20 0.64 ± 0.19 0.18 ± 0.30 0.14 ± 0.22
Tversky 0.94 ± 0.03 0.65 ± 0.20 0.66 ± 0.19 0.17 ± 0.30 0.09 ± 0.19
Ensemble 0.94 ± 0.03 0.66 ± 0.19 0.67 ± 0.18 0.18 ± 0.31 0.13 ± 0.21
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3.2 Final Ensemble

Table 2 reports segmentation performance across loss functions and the ensemble approach,
while Table 3 details per-class IoU values. Although the ensemble does not lead in all
standard metrics (mIoU = 0.58 ± 0.11, Dice = 0.66 ± 0.10), it achieves the highest scores
on weighted metrics (frw-IoU = 0.73± 0.10, fw-IoU = 0.80± 0.07), indicating better overall
balance and generalization. Its strong performance on the TUM class (mean IoU = 0.67)
emphasizes clinical relevance.

While Dice and Focal losses perform well on specific metrics, the ensemble provides
more consistent results across all classes, particularly for underrepresented tissues like NEC
and INF. Visual examples in Figure 3 highlight the ensemble’s segmentation quality and
uncertainty estimation, especially around complex boundaries and rare regions.

Figure 3: Segmentation and uncertainty maps from the ensemble with MCDO.
Left to right: images, ground truth, predicted masks, and error maps (white =
error); TUM-specific TP, FP, FN overlays; Entropy and STD overlays reveal high
uncertainty at boundaries and minority classes.

3.3 Uncertainty Estimation

The MCDO-based uncertainty maps indicate higher prediction variability in underrepre-
sented classes such as NEC and INF, and around tissue boundaries, as reflected by elevated
STD and entropy values (Fig. 3). These observations suggest that MCDO effectively cap-
tures ambiguity in clinically relevant and structurally complex regions.

To evaluate the reliability of these estimates, we computed the UCE in addition to
reliability diagrams (see Appendix D, Fig. 4). STD-based uncertainty consistently aligned
better with actual error rates, closely following the ideal calibration diagonal. In contrast,
entropy-based uncertainty tended to be misaligned, often overestimating confidence in low-
error areas and underestimating it in high-error regions. This was quantitatively supported
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by a substantially lower UCE for STD-based maps (0.085±0.033) compared to entropy-based
ones (0.404± 0.085).

4 Discussion

Semantic segmentation of histopathological tissues remains a complex task due to blurred tis-
sue boundaries and inter-observer variability. This study presents an automated pipeline for
breast cancer TMA segmentation using an ensemble of U-Net models with ResNet encoders
and MCDO for uncertainty estimation. Our method achieves a mean IoU of 0.58±0.11 and
Dice Score of 0.66± 0.10, outperforming similar algorithms like WeGleNet and HistoSegNet
(Silva-Rodríguez et al. (2021); Chan et al. (2019)).

While IoU is a demanding metric—particularly for minority classes such as NEC and
INF—our results demonstrate that combining it with the Dice Score offers a more compre-
hensive assessment. This distinction is particularly relevant in histopathology, where even
small discrepancies can significantly impact the IoU. For example, minor errors in underrep-
resented classes can lead to a substantial drop in IoU, even when the segmentations appear
visually acceptable.

A key contribution is the use of MCDO to estimate epistemic uncertainty, particu-
larly in ambiguous regions and minority classes. Calibration analysis showed that standard
deviation-based uncertainty more accurately reflected prediction errors (UCE = 0.085 ±
0.033) compared to entropy-based estimates (UCE = 0.404± 0.085). This demonstrates its
value for enhancing model reliability and supporting clinical interpretability.

Nonetheless, the method has certain limitations. Ensemble models and MCDO increase
computational overhead and may reduce predictive accuracy due to the use of dropout dur-
ing inference, which poses challenges for clinical deployment. Future work should explore
more advanced architectures, such as Transformers (Vaswani et al. (2017)) and posterior
sampling techniques, to improve inference speed without compromising performance. More-
over, addressing class imbalance via sampling strategies or synthetic data augmentation
could enhance the representation of minority classes.

Expanding the pipeline to incorporate multi-modal imaging (e.g., IHC or fluorescence),
as well as to Whole Slide Imaging (WSI) could enable richer characterization of the TME,
advancing both diagnostic accuracy and biological insights.

5 Conclusion

We propose a robust and interpretable pipeline for segmenting breast cancer tissue microar-
rays using U-Net ensembles with ResNet encoders, diverse loss functions, and MCDO for
uncertainty estimation. Our method outperforms existing baselines and generalizes well
across clinically relevant tissue types.

By incorporating uncertainty quantification, the approach improves reliability in am-
biguous and rare regions, with strong calibration against prediction errors. Despite added
computational cost, the framework lays the groundwork for future extensions to whole-slide
and multi-modal histopathology, supporting biomarker discovery and advancing clinical de-
cision support.

8



Uncertainty-Aware Ensemble Segmentation of Breast Cancer Tissue Microarrays

Acknowledgments and Disclosure of Funding

This work was partially supported under grant PID2023-152631OB-I00 by the Ministerio de
Ciencia, Innovación y Universidades, Agencia Estatal de Investigación
(MCIN/AEI/10.13039/501100011033/), co-financed by European Regional Development Fund
(ERDF), ’A way of making Europe’. L. Schmidt-Santiago is supported by the "Ayuda
para contratación del ayudante de investigación (Programa de Empleo Juvelil PEJ-2023-
AI/COM-27472)" project. R. Kinakh and S. Carrera-Salinas are supported under UC3M
PIPF "Inteligencia Artificial, CONVOCATORIA 2024/D/DE/TD/1" PhD fellowship.

References

Peter Bankhead, Maurice Loughrey, Jose Fernandez, Yvonne Dombrowski, Darragh Mcart,
Philip Dunne, Stephen Mcquaid, Ronan Gray, Liam Murray, Helen Coleman, Jacqueline
James, Manuel Salto-Tellez, and Peter Hamilton. QuPath: Open source software for
digital pathology image analysis. Nature. Scientific Reports, 7, 12 2017.

Lyndon Chan, Mahdi S Hosseini, Corwyn Rowsell, Konstantinos N Plataniotis, and Savvas
Damaskinos. Histosegnet: Semantic segmentation of histological tissue type in whole slide
images. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 10662–10671, 2019.

Junjie Chen et al. Prognostic value of tumor necrosis based on the evaluation of frequency in
invasive breast cancer. BMC Cancer, 23(1):1317, 2023. doi: 10.1186/s12885-023-10943-x.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255. IEEE, 2009. URL http://www.image-net.
org/.

Maria Vittoria Dieci et al. Prognostic and predictive value of tumor-infiltrating lymphocytes
in early breast cancer patients. Annals of Oncology, 26(8):1698–1704, 2015. doi: 10.1093/
annonc/mdv239.

Jacques Ferlay, Murielle Colombet, Isabelle Soerjomataram, Donald M. Parkin, Marion
Piñeros, Ariana Znaor, and Freddie Bray. Cancer statistics for the year 2020: An overview.
International Journal of Cancer, 149(4):778–789, 2021.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning, 2016a. URL https://arxiv.org/abs/1506.02142.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, ed-
itors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York,
USA, 20–22 Jun 2016b. PMLR. URL https://proceedings.mlr.press/v48/gal16.
html.

9

http://www.image-net.org/
http://www.image-net.org/
https://arxiv.org/abs/1506.02142
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html


L.Schmidt-Santiago, R. Kinakh et.al

GPEC Genetic Pathology Evaluation Centre. URL http://bliss.gpec.ubc.ca.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

Konstantinos Kamnitsas, Christian Ledig, Virginia F.J. Newcombe, Joanna P. Simpson,
Andrew D. Kane, David K. Menon, Daniel Rueckert, and Ben Glocker. Ensembles of
multiple models and architectures for robust brain lesion segmentation. NeuroImage, 146:
60–72, 2017. doi: 10.1016/j.neuroimage.2016.10.012.

Alex Kendall, Yarin Gal, and Roberto Cipolla. What uncertainties do we need in bayesian
deep learning for computer vision? In Advances in Neural Information Processing Systems,
pages 5574–5584, 2017.

Lena Maier-Hein, Annika Reinke, Patrick Godau, et al. Metrics reloaded: recommen-
dations for image analysis validation. Nature Methods, 21(2):195–212, 2024. doi:
10.1038/s41592-023-02151-z.

Antonio Nocito, Juha Kononen, Olli Kallioniemi, and Guido Sauter. Tissue Microarrays
(TMAs) for high-throughput molecular pathology research. International Journal of Can-
cer. Journal International du Cancer, 94:1–5, 10 2001.

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color Transfer between
Images. IEEE Computer Graphics and Applications, 21:34–41, 10 2001.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M.
Wells, and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pages 234–241. Springer International Publishing, 2015.

Roberto Salgado, Carsten Denkert, et al. The evaluation of tumor-infiltrating lymphocytes
(tils) in breast cancer: recommendations by an international tils working group 2014.
Annals of Oncology, 26(2):259–271, 2015. doi: 10.1093/annonc/mdu450.

Julio Silva-Rodríguez, Adrián Colomer, and Valery Naranjo. Weglenet: A weakly-supervised
convolutional neural network for the semantic segmentation of gleason grades in prostate
histology images. Computerized Medical Imaging and Graphics, 88:101846, 2021.

David Tellez, Geert Litjens, Péter Bándi, Wouter Bulten, John-Melle Bokhorst, Francesco
Ciompi, and Jeroen van der Laak. Quantifying the effects of data augmentation and
stain color normalization in convolutional neural networks for computational pathology.
Medical Image Analysis, 58:101544, 08 2019.

Yves-Rémi Van Eycke, Justine Allard, Isabelle Salmon, Olivier Debeir, and Christine De-
caestecker. Image processing in digital pathology: an opportunity to solve inter-batch
variability of immunohistochemical staining. Scientific Reports, 7(1):42964, 2017.

10

http://bliss.gpec.ubc.ca


Uncertainty-Aware Ensemble Segmentation of Breast Cancer Tissue Microarrays

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

Dong Yan et al. Tumour stroma ratio is a potential predictor for 5-year disease-free survival
in breast cancer. BMC Cancer, 22(1):1043, 2022. doi: 10.1186/s12885-022-10183-5.

Supplementary Material

Appendix A. Loss Function Definitions

The following equations detail the five loss functions used in model training:

A.1 Cross-Entropy (CE) Loss

A standard classification loss defined as:

CE(y, ŷ) = −
N∑
i=1

yi log(ŷi),

where yi ∈ {0, 1} is the ground truth label, ŷi ∈ [0, 1] is the predicted probability, and N is
the total number of pixels.

A.2 Dice Loss

Maximizes overlap between predicted and ground truth regions:

Dice(y, ŷ) = 1−
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

.

A.3 Focal Loss

Focuses learning on hard examples:

Focal(y, ŷ) = −
N∑
i=1

(1− ŷi)
γyi log(ŷi),

where γ > 0 is a focusing parameter.

A.4 Focal Dice Loss

Combines the benefits of Focal and Dice Loss:

FocalDice(y, ŷ) = 1−
2
∑N

i=1(1− ŷi)
γyiŷi∑N

i=1 yi +
∑N

i=1 ŷi
.
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A.5 Tversky Loss

A generalization of Dice with tunable false positive/negative weighting:

Tversky(y, ŷ) = 1−
∑N

i=1 yiŷi∑N
i=1 yiŷi + α

∑N
i=1 yi(1− ŷi) + β

∑N
i=1(1− yi)ŷi

,

where α and β control the weighting of false negatives and false positives, respectively.

Appendix B. Uncertainty Metrics

Standard Deviation (STD)

Given T stochastic forward passes, the standard deviation at pixel i is computed as:

σi =

√√√√ 1

T

T∑
t=1

(pi,t − p̄i)
2,

where pi,t is the predicted probability at iteration t, and p̄i is the mean probability across
T passes.

Appendix C. Evaluation Metrics

The following metrics are used to assess segmentation performance:

• Intersection over Union (IoU): IoUc =
|yc∩ŷc|
|yc∪ŷc|

• Dice Score: Dicec =
2|yc∩ŷc|
|yc|+|ŷc|

• Accuracy: Accuracy = TP+TN
TP + TN + FP + FN

• Precision: Precisionc =
TPc

TPc+FPc

• Recall: Recallc = TPc
TPc+FNc

The mean for each metric is calculated by averaging across all classes.

Appendix D. Supplementary Figures
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Figure 4: Reliability diagrams for uncertainty calibration. Comparison between pre-
dicted uncertainty and actual error rates across entropy-based and STD-based
uncertainty maps. STD-based uncertainty aligns more closely with the diago-
nal, indicating better calibration. Entropy-based estimates show overconfidence
in low-error areas and underconfidence in ambiguous regions.
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