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Abstract

We study the problem of learning optimal behavior from sub-optimal datasets for goal-
conditioned offline reinforcement learning under sparse rewards, invertible actions and de-
terministic transitions. To mitigate the effects of distribution shift, we propose MetricRL,
a method that combines metric learning for value function approximation with weighted
imitation learning for policy estimation. MetricRL avoids conservative or behavior-cloning
constraints, enabling effective learning even in severely sub-optimal regimes. We intro-
duce distance monotonicity as a key property linking metric representations to optimality
and design an objective that explicitly promotes it. Empirically, MetricRL consistently
outperforms prior state-of-the-art goal-conditioned RL methods in recovering near-optimal

behavior from sub-optimal offline data.

1 Introduction

Effective decision-making is an integral part of in-
telligent behavior. To achieve this, learning-based
control methods have proven to be a viable option
in complex scenarios (Andrychowicz et al., [2020; |Sil-
ver et all 2017, [Mnih et al.| 2013} Peters & Schaall,
2008). In particular, reinforcement learning (RL)
allows learning near-optimal behavior through trial-
and-error (Sutton & Barto, 2018). However, the on-
line reinforcement learning framework generally re-
quires slow, expensive (and potentially dangerous)
online interactions with the environment.

Offline RL, on the other hand, formalizes the
learning of optimal behaviors from a static
dataset (Levine et al., 2020)). This approach offers
many advantages over its online counterpart, such as
the ability to leverage large-scale datasets to learn
complex behavior (Walke et al.l 2023; Dasari et al.,
2020) without the need of re-collecting data (Shi
et al.l 2021} |Giirtler et al.| 2023|). Because of the
inability to access the environment, in offline RL it
is assumed that the dataset already includes suitable
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Figure 1: Average reward on Minigrid
DoorKey (Chevalier-Boisvert et al, [2023) as a

function of the expected reward present in the offline
dataset. We contribute MetricRL (red line), a novel
goal-conditioned offline RL agent able to learn near-
optimal behavior from severely sub-optimal datasets.

information to perform the given task. This data, however, may often be collected by sub-optimal agents.
In this work, we address the question of how to learn different (and better) behaviors from the one observed
in the dataset, regardless of its optimality. We focus on the challenge of learning near-optimal behavior from
severely sub-optimal datasets, such as the ones collected by a random policy. We empirically demonstrate
in Section {4l and highlight in Figure |1, how under these conditions current offline RL: methods (Eysenbach
et al.l [2022; [Wang et al., [2023; |Ma et al., |2022b; [Kostrikov et al., |2021)) struggle significantly.
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We focus on sparse-reward goal-conditioned offline reinforcement learning, which aims at learning optimal
behavior to reach multiple goals within the same environment. Motivated by recent work in metric (Park
let al., [2024; |2023b)) and quasimetric (Eysenbach et al., [2022; |Wang et all 2023) learning for RL, we study
an approximation of the optimal value function in severely sub-optimal data conditions without explicitly
relying on the Bellman operator, . The core idea is to learn an embedding of the state space
such that distances correspond to the minimum number of actions needed to reach one state from the other.
We introduce the notion of distance monotonicity (DM) as a relaxation of isometric embeddings and show
that this property is sufficient to provably recover an optimal actor-critic policy. In particular, we propose
to pair this approximation of the value function with a weighted imitation learning actor, a method we refer
to as MetricRL, to recover an optimal policy regardless of the dataset quality. This is made possible by
avoiding the out-of-distribution issue caused by the max operator used in dynamic programming solutions,
without requiring any additional conservative (e.g., as in CQL (Kumar et al., [2020)) or behavioral (e.g., as
in BCQ (Fujimoto et al 2019, BEAR (Kumar et all [2019))) regularization.

In this work, we define the learned embedding as a Euclidean metric space. This effectively limits the applica-
bility of the model to reversible processes (Steccanella & Jonsson, 2022)). On the other hand, we empirically
show that this induced bias can ease the learning process in offline RL for many established environments.
We evaluate MetricRL across a wide range of literature-standard goal-conditioned reinforcement learning
tasks. We show how MetricRL outperforms prior goal-conditioned offline reinforcement learning methods
in learning near-optimal behavior from severely sub-optimal datasets. Additionally, we show how MetricRL
easily scales to high-dimensional observations.

In summary, our contributions are the following:

e MetricRL: We propose a novel method that exploits symmetries in latent representation spaces for
reversible goal-conditioned offline reinforcement learning.

e Distance Monotonicity: We define a new property of these latent representation spaces. We show
that, under invertible actions, preserving such a property provably leads to policy optimality.

e Learning from Sub-Optimal Offline Data: We demonstrate how MetricRL is able to recover
optimal behaviors in severely sub-optimal data conditions, outperforming prior state-of-the-art offline
RL methods across literature-standard environments.

2 Preliminaries and Assumptions

Goal-Reaching Reinforcement Learning: We consider standard Markov Decision Processes (MDPs) for
goal-reaching tasks, M = (S, A, T, r,~), where S is the state space, A is the action space, T: S x A — S is
a deterministic transition function (a common assumption in recent offline RL methods (Ma et al., 2022b}
[Park et al., 2023a; Wang et all [2023))), r : S x A — R is a goal-conditioned, sparse reward, i.e., r(s,a) # 0
iff T(s,a) = s4 (where s, is the goal-state), and v € [0,1) is a discount factor on the future rewards of the
agent. We additionally define the goal states to be absorbing and consider the process terminated once these
are reached.

The goal of the process is to find an optimal policy 7*(a|s,sy) that, given goal state s;, maximizes
the cumulative discounted reward of the agent for any possible starting state. To evaluate the op-
timality of the policy we resort to the goal-conditioned value function V7(s,sy), defined as the ex-
pected discounted cumulative reward starting in a particular state and acting according to a policy
T V(s,80) =Ex [>,v're]s0 = s,a =7(s,s4)] Vs €S. The value function associated with the optimal
policy is referred to as the optimal value function V* = V™ and, as such, is always greater or equal to any
other value functions, i.e., V*(s,s4) > V7(s,s4) Vs,m.

Offline Reinforcement Learning: In the offline RL setting, we assume we have access to a dataset D
of interactions with the environment described by the MDP and collected by some unknown policy 7g,
ie, Dy, ={(s,a~mg(al|s),r,s =T(s,a))}. A major issue in Offline RL stems from the way dynamic
programming methods estimate the optimal value function of the MDP. Most of the current algorithms rely
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Figure 2: We explore a form of symmetry in representation learning for goal-conditioned offline reinforcement
learning: we learn a metric space in which Euclidean distances between the representation of states (z, 2/, 2”)
are related to the value function of the agent. We call our approach MetricRL. In the Minigrid Doorkey
environment, moving greedily to adjacent states translates to the optimal policy (red line) to reach the goal
(in green). Our objective is to preserve the local structure of adjacent representations (orange arrows, left)
while maximizing the separation between non-adjacent ones (blue arrows, left).

on temporal difference techniques to learn the critic function, e.g., DQN (Muih et all |2013), CQL
2020), BEAR (Kumar et al} [2019), BCQ (Fujimoto et all, [2019). However, the max operator used to
estimate the target value has been shown to result in an overestimation of the expected return,
. While this is not an issue in Online RL, as the agent has the possibility of exploring overestimated
states, it results in catastrophic effects in Offline RL. In this paper, we rely on an alternative technique
for learning the critic. As discussed in prior work (Wang et all 2023; [Yang et all 2020), the dataset D
implicitly defines a graph G = (S, A) where the nodes correspond to the states and the edges to the actions
of the agent. Here, we assume that this graph only has one connected component, i.e., any two states in
the dataset are connected through a path on the graph. Furthermore, we assume that there always exists
an inverse action, i.e., 3a’ € A: T(s',a’) =s V(s,a,s =T(s,a)). Note that a’ doesn’t necessarily need to
correspond to the actual opposite action and it can be any viable action. By endowing the graph G with
a metric dg, we can define a corresponding finite metric space (G,dg). For the tuple to be a valid metric
space we need to define the metric dg : S x S — R to respect the axioms of a metric space (Burago et al.

. In particular, we can define the distance between any two states to be the number of edges on the
shortest path connecting them (geodesic distance).

3 Method

In this work we focus on learning near-optimal goal-conditioned behavior from sub-optimal offline data. In
these conditions, two main problems arise. The first is to learn an optimal behavior without depending
on the quality of the distribution of the data used. The second is to avoid the out-of-distribution shift
commonly faced in offline reinforcement learning (Levine et al., [2020). We propose to address both using
a metric learning approach to estimate the optimal value function. To do so, we start by defining distance
monotonicity (Section, a novel property on representations needed to recast the problem of optimal value
function estimation into metrics. We propose a loss function to learn maps that respect such a property
and show how to build an approximation of the value function using distances in this learned representation
(Section[3.2). Finally, we define an actor-critic method to learn policies over this approximation and formally
prove their optimality (Section . We call our approach MetricRL.
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3.1 Distance Monotonicity

Consider a continuous map between the state space of an MDP for goal-reaching tasks and a latent rep-
resentation space: ¢ : S — Z C R"™. We can equip this latent vector space with a Euclidean norm to
obtain a Euclidean metric space (Z,|.||,). Here we consider distances in the original space, dg as the
minimum number of actions an optimal policy needs to reach one state from the other. We say ¢ is iso-
metric if relative distances in the original state space dg and the latent metric space dz are preserved, i.e.,
dz (6(s),0(s")) = ds(s,s'), Vs, s’ € S. In fact, if ¢ is isometric then the value function can be defined as sim-
ply the norm of the distance between the current state and the goal state, i.e., V*(s,s4) = 'de(‘b(s)"ﬁ(s/))rg
where r, represents the reward at the goal and the expectation has been dropped as we assume deterministic
transitions. We present an extended discussion of this observation in Appendix [A71]

However, estimating an isometry between these two metric spaces is known to be not always possible (Bour-
gain|, (1985; Matousek), 2002). To overcome such an issue, we consider a relaxation of isometries between
metric spaces. Given two metric spaces (5, dg) and (Z,dz)(e.g., ds the geodesics in the state space and dz
a simple fo-norm) and the corresponding map ¢ between them, we can define the following property of ¢:

Definition 3.1. We say ¢ is distance monotonic (DM) if for all s1, $2,83 € S, the following holds:

ds(s1,83) < ds(s2,s3) = dz(d(s1),d(s3)) < dz(p(s2), d(s3))-

We propose to parameterize the map ¢y and learn it by minimizing the following objective on the dataset
D:

Lo(D) =Ep [([6e(s) = da(s)lly = 1)* = M|de(s") — da(s)ll2] , (1)

where (s, s’) are any two states connected by an ac-
tion sampled from D and s” are other states sampled

independently from the dataset at random. 927 o
Our loss function balances two requirements on the 0.89 - 0.40
learned representation: the first term forces the rep- o
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ange arrows), the representation of connected states 0.82 o8
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second term of the loss maximizes the distance of 0797 ot
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ure [2[ (right, blue arrows). This term of the loss is p
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unbounded if the graph defined by the dataset is not
composed of a single connected component. As we
discuss in Section[3.4] in cases where the dataset de-
fines multiple connected components (e.g., with im-
age observations) we can always define a synthetic
super-node to connect every termination state.

Figure 3: Optimizing Equation [l| increases the ratio
of distance monotonic triplets (blue curve) on Maze2D
(Large). Distance monotonicity is also correlated with
an increase in the average return of the agent (orange

curve).
The minimization of Equation [1| enforces the learn-

ing of a distance monotonic map: in Figure [3] we highlight that the ratio of distance monotonic triplets
significantly increases as a function of the training of the map. This can be approximated by discretizing
the state space, building an e-graph and the resulting distances in the state space as geodesics on the graph,
comparing these distances with distances in the learned representation Z. In Appendix we provide
a more formal intuition of this relationship as well as additional details on the evaluation of the distance
monotonicity ratio.
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Figure 4: Estimated value function for different methods using a dataset collected from a random policy in
Maze2D Large. We highlight (in red) how MetricRL is the only method able to correctly assign low values
to states that are close in the Euclidean space but not in terms of distance to the goal. Additionally, we
highlight (in orange) that our proposed distance monotonicity in complex topologies is not equivalent to
isometries, yet we are still able to recover provably optimal policies (as we discuss in Section. All values
are normalized.

3.2 Value Function Approximation

Distance monotonic representations (Definition [3.1]) allow us to recast the original goal-conditioned RL
problem as a distance one: similarly to the case of isometric maps, we can approximate the optimal value
function using distances in the learned latent representation:

V(s) _ ,de(¢9(3)7¢9(Sg))rg’ (2)

where s, is the goal state and r, is its associated sparse reward (only given at the goal state). This
approximation would be identical to the true optimal value function only when the representation is an
isometry of the graph.

However, distance monotonicity is enough to retain relative distances between states. Figure [] shows the
estimated value function of different algorithms for a maze-like problem, using offline datasets collected with
a random policy. In such problems the value function should retain the topology of the maze and estimate
the value of each position in the maze based on the distance to the goal within the maze.

Figure [4| (red) highlights that a distance monotonic representation (MetricRL) is the only value function
able to correctly estimate the low value of the bottom left corner of the maze when the goal is on the other
branch of the maze. Equations [I] and [2] allow us to abstract the estimate of the value function from the
distribution of the policy that collected the dataset, as we highlight in Figure [I1] for policies of different
values. Note that, for more complex topologies (Figure @ orange), distance monotonicity is not equivalent
to isometries. However, as we show in the next subsection, our approximation still allows us to estimate a
provably optimal policy.

3.3 MetricRL

Enforcing distance monotonicity in the latent representation allows us to learn an approzimation of the
true value function, not fully recover it. However, when distance monotonicity is preserved, a greedy policy
built on this value function is optimal given some assumptions. Define the greedy policy according to the
value function V as m}/ (s) = argmax, V(T'(s, a)), note that in general the argmax results in a set of possible
actions. We have the following;:

Theorem 3.2. If the MDP is deterministic, sparse, and goal-conditioned, then

<Q<l

7r (s)gwg*(s), Vse S

holds if ¢ is distance monotonic.
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Intuitively, Theorem states that every policy greedy on the value function defined in Equation [2] is
optimal. A proof can be found in Appendix When the actions space is too large or continuous, we pair
the learned representation with a parametric policy.

To learn such policy we take a three-stage approach, which we call MetricRL: (i) we learn a distance
monotonic map, using the loss function of Equation [} (ii) we define the value function using Equation
(iii) we estimate a policy using the following loss function:

L= Euunp [~(V(s') — V(s)) log(m(a | )] (3)

This optimization procedure for the policy is akin to the family of weighted maximum likelihood
or weighted imitation learning [Wang et al.| (2018)). A key difference is that the advantage is not
exponentiated. Empirically, this didn’t have particular effects on the learning of the policy and allowed the
removal of the additional hyper-parameter controlling the temperature of the exponential, thus simplifying
the training procedure. Using a value function from a distance monotonic representation ensures the term
V(s') — V() is positive only for actions that bring the agent closer to the goal. This approach for the policy
update is particularly suitable for offline RL: actions are sampled from the dataset which guarantees us
to consider only in-distribution actions. Moreover, using the proposed distance monotonic representation
instead of Temporal Difference methods for the critic solves the classic offline RL issue of out-of-distribution

transitions (Levine et all [2020). We provide a pseudocode of our approach in Appendix

3.4 Practical Implementation

Stabilizing the loss In practice, the negative term of the loss[l|is unbounded. In practice, we propose to
take the logarithm of this contrastive term. This effectively changes the dynamics of the learning, resulting in
a weaker pull from the negative terms. We have found this formulation to stabilize the training, in particular
for environments with longer episode horizons:

Lo(D) =Ep [(¢e(s) = ¢a(s)ll, — 1)* = Mog|lde(s") — do(s)ll,] - (4)

Learning with images When learning with images, often the goal information is present in the image,
e.g., the position of the green square in the grid experiment in Figure [5] which can break the connectivity
assumption: two images with different goal positions are not connected by any path. This can be a problem
in practice as the second term in Equation [I] can grow indefinitely when comparing representations of images
with different goals. However, in the case of finite MDPs, we can easily recover it by introducing an additional
super-state that connects every termination state together. We present the implementation details of such
a super-state in Appendix [A:4] The introduction of this super-state and the consequent connection of the
environments with different goals leads to a modification of the learned representation. Figure [5] shows this
learned representation. On the left is the distribution of the states for one single goal, while on the right is
the distribution of all the goals connected by the super-state (red star). The solution to this representation
is a radial distribution of the states connected in the middle by the super-state. All the states with the same
goal (orange dots in the image) compose one ray of the overall distribution.

4 Results

We evaluate MetricRL against state-of-the-art baselines in offline reinforcement learning across multiple
environments. In all experiments we consider three types of offline datasets: a low dataset, often collected
using a random policy or an untrained agent; a medium dataset, collected using the policy of an online RL
agent during training or adding stochasticity to a fully trained agent, and a high dataset, collected using the
policy of a fully-trained online RL agent.

For baselines, we consider the following: CQL (Kumar et al.,|2020)), BCQ (Fujimoto et al.|[2019)), BEAR
mar et al. [2019), PLAS (Zhou et al. [2021)), IQL (Kostrikov et al.,[2021)), ContrastiveRL (Eysenbach et al.,
2022), QRL (Wang et al., 2023), GoFAR (Ma et al| 2022b), HIQL (Park et al., |2023al). More details in

Appendix [A26]
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Figure 5: Visualization of the two-dimensional latent space of MetricRL in the DoorKey environment when
considering state features (left) and image (right) observations. We observe that the addition of a super-
state (red star on the right figure) for image observations results in a significant change in the structure of
the embedded graph as each set of states with a different (and visible) goal gets separated (orange dots).
Nonetheless, in both cases, the optimal policy still follows a geodesic in the graph: from the starting state
(blue) the agent needs to pick up the key (yellow) to open the locked door (orange) and move to the goal
state (green).

For each model, we perform standard hyperparameter tuning or use the author’s suggested hyperparameters
(if available). The complete list of training hyperparameters is available in Appendix CQL, BCQ,
BEAR, PLAS, IQL are implemented using [Seno & Imai| (2022). For the remaining models, we use the
author’s provided code.

For environments, we consider:

e Maze2D : a navigation task within a two-dimensional maze, with continuous actions
and Newtonian physics. We consider three sizes of the maze: u-maze, medium and large. For each
size, we use a uniform random policy to collect the low dataset, a policy with Ornstein-Uhlenbeck
noise (Uhlenbeck & Ornstein [1930) to collect the medium dataset, and we use the Minari dataset

provided in D4RL for the high dataset (Fu et al., 2020);

e Reach (Plappert et all 2018): a manipulation task with a 7-DoF robot with continuous actions to
reach a randomly-selected goal position in the workspace. To collect the datasets we employ a PPO
agent trained on dense rewards along three different stages of training. For the low dataset, we use
the policy of the randomly-initialized agent, for the medium dataset we use a PPO agent achieving
half of the optimal expected reward, and for the high dataset we use the policy of the fully-converged
agent;

o Hypermaze: a novel navigation task on a grid-like n-dimensional maze with discrete actions. To
collect the offline datasets we employ a DQN agent trained online performing actions using an e-
greedy policy: for the low dataset we use purely uniformly random actions, for the medium dataset
we sample random actions half of the time and optimal actions the other half, and for the high
dataset we use the policy of the fully-trained agent;

o Minigrid (Chevalier-Boisvert et al., 2023)): a navigation task on a grid-like 2D room with discrete
actions. We restrict the action space of the agent to navigation actions and remove rotations. To
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Figure 6: Average reward returns on offline RL tasks with different types of datasets. All results are averaged
over 5 randomly-selected seeds. Higher is better. We present extra results in Appendix[A29] MetricRL is the
only model able to consistently learn near-optimal behavior from sub-optimal datasets (low and medium),
outperforming the baselines, while performing on par with optimal datasets (high).

collect the offline datasets we employ the same strategy as above, that is e-greedy on a fully trained
DQN agent. We consider 2 tasks, Minigrid Empty consists of an open grid with external walls as
the only obstacles. Minigrid DoorKey is a three-step task where the agent must first pick-up a key,
then open a door, then reach a goal position;

We present our main results in Figure For a complete list of hyperparameters employed in the data
collection procedure, please refer to Appendix [A-6]

4.1 Discussion

MetricRL outperforms other methods in learning from sub-optimal datasets: The results highlight
that MetricRL is the only model able to maintain a consistent level of performance, regardless of the type of
dataset used for training. Additionally, MetricRL outperforms the other baseline methods when learning a
policy from datasets collected using sub-optimal policies (low and medium datasets). In particular, for low
datasets, MetricRL consistently outperforms all other baselines.

MetricRL provides more stable training across different data distributions in offline datasets:
We conduct an additional experiment on the Minigrid DoorKey environment and consider a finer discretiza-
tion of the distribution of rewards. We collect multiple datasets using an increasing value of € for an e-greedy

1We present in Appendix additional results. The conclusions remain the same for those additional environments.
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optimal DQN agent. As shown in Figure I} MetricRL (red line) requires datasets with a smaller average
reward than the baselines to achieve optimal performance. Additionally, the results show that MetricRL
does not suffer from out-of-distribution data when the dataset has a very narrow distribution (almost all or
all optimal trajectories).

MetricRL outperforms QRL in tasks with large action spaces: MetricRL is able to estimate good
policies in both discrete action spaces and continuous ones. In particular, it manages to converge in very
high-dimensional action spaces like the Hypermaze where there are 81 possible actions with low datasets.

MetricRL can learn from sub-optimal datasets of images: To evaluate the performance of MetricRL
when provided with high-dimensional observations (images) we reuse the MiniGrid Empty and DoorKey
environments and introduce a super-state following the discussion in Section [3.4 For every model, we
introduce a CNN architecture that maps the images to a lower-dimensional representation. This highlights
that MetricRL maintains its performance, and remains the only model able to learn optimal behavior from
sub-optimal datasets. We present additional results in line with this on multiple environments, see Figure
in Appendix.

In Appendix [A77] we explore the sample efficiency of MetricRL in scenarios with large state spaces. The
results show that our method significantly outperforms temporal-difference (TD) methods (e.g., DQN (Mnih
et al., |2015)): to solve larger state space problems, we require a linear increase in the number of training
iterations against the exponential increase of TD methods. In Appendix [A-8] we show how MetricRL can
be used in multi-goal tasks without modifications, considering changing multiple goals and discount factors
at execution time.

4.2 Metric Space Ablation

We further ablate the impact of the symmetry bias

and the use of a Euclidean embedding for value Taple 1: Ablation on symmetrizing data in the Maze2D
function approximation. Specifically, we compare Targe environment.

MetricRL against an equivalent model that employs

a quasimetric critic, following |Wang et al.| (2023)). Dataset QRL QRL - sym  MetricRL
For a fair comparison, we use the same actor op-

timization as in Equation @ We also evaluate a Low 013 £005 0.25+004 051+005
symmetrized variant of the quasimetric model b Medium 022 4 0.03 0.52 4 0.020.56 + 0.05
y a y High 0.28 £ 0.08 0.56 & 0.12  0.60 & 0.09

augmenting the dataset with synthetic reverse tran-
sitions, i.e., (s’,a,s). Results on the Maze2D-large
environment (Table show that incorporating symmetry can significantly enhance performance when it
reflects a valid inductive bias. Moreover, Euclidean embeddings often prove easier to optimize, particularly
in low-quality or sub-optimal data regimes.

4.3 Limitations

MetricRL recasts the computation of the value function as a problem of measuring distances in an appropriate
learned metric space. To do so, it requires two additional assumptions on the MDPs it is applied to: the
existence of inverse actions and the connectivity of the dataset used to learn the value function. As stated in
Section [3-4] the connectivity assumption can be solved using “super-states” to join the states into a unique
connected component. The existence of inverse actions, on the other hand, defines a trade-off. It limits the
applicability of the proposed method to MDPs where the assumption is respected. On the other hand, it
greatly simplifies the learning process by imposing a relevant bias on the representation. MetricRL, in fact,
requires significantly fewer data points as it can interpolate missing transitions when the inverse transition is
present in the data. This allows to estimate effective policies even in severely sub-optimal data conditions.
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5 Related Work

Offline RL: The challenge of learning a policy from a static sub-optimal dataset of transitions and rewards
has been extensively studied (Levine et all [2020). The problem of exploration is not considered as it is
assumed that the dataset given contains all the relevant information to estimate an optimal policy. Methods
can be roughly divided into four main categories. The first one is constraining the learned policy to not
deviate much from the policy that collected the dataset: Kumar et al| (2019) restrict policies to have the
same support as the behavior policy rather than the policy itself; Zhou et al. (2021) implicitly constrain the
policy by learning it using latent representations of actions with Gaussian prior (VAE), the constraint given
by the KL divergence term; [Siegel et al.| (2020)) learns the behavioral policy explicitly. The second category
introduces a penalty in the reward function based on the uncertainty of the transitions or the reward function.
This penalty has been defined as the uncertainty of the learned @ function, (Kidambi et al., 2020; Yu et al.,
2020, or a measure of pessimism (regularization of the highest Q) (Kumar et al., [2020). A third family of
methods instead uses model-based RL and explicitly computes a model of the environment that can be used
in different forms to regularize the learned policy (Matsushima et all, [2020; [Yu et all [2021} Rigter et al.
[2022; |[Fujimoto et al., 2019). The last category includes in-sample algorithms which restrict the learning of
the policy only on data within the provided dataset and reweighted by an estimate of the advantage function.
This family of methods has been referred to as weighted supervised learning (Wang et al. 2018)) or maximum
likelihood . It has been extended with different forms of regularization including expectile
regression for the critic (Kostrikov et al., 2021), penalizing out-of-distribution actions in the critic (Chebotar]
2021)), trust regions (Mao et al., 2023), goal relabeling (Yang et all,[2022)) and Generative Adversarial
Networks (Wang et all 2024). The policy estimate of our proposed method falls in this last category, as
can be seen in Equation [3] The use of Temporal Difference learning for the critic, however, subjects these
methods to the problem of distribution shift in Offline RL. In this work, we propose a method that can
estimate a high-return policy independently from the distribution of the data used even when the quality of
the data decreases substantially.

Contrastive Learning: Representation learning techniques have been used to aid the RL problem. Sev-
eral works have used contrastive learning models to speed up or improve the generalization of a classic RL
algorithm, (Laskin et al) 2020; Oord et all |2018} |Anand et al., 2019; |Stooke et al., 2021). Other appli-
cations include reward function estimation from demonstrations (Ma et al., [2022a; |Sermanet et all, [2018)
or generating intermediate goals for curriculum learning (Venkattaramanujam et al) [2019). In [Eysenbach|
let al.| (2022); Hatch et al| (2023) contrastive learning is used to estimate the discounted state occupancy
measure which is equivalent to the Q function in some particular cases. This method however works only
when the reward function can be expressed as a goal reaching density and doesn’t estimate the optimal Q
value but rather the Q value of a current policy, thus still requiring the concurrent learning of a policy in
a classic RL fashion. [Zhu et al. (2022)) proposes the use of contrastive learning to build a representation
of states where distances are correlated with reachability in terms of actions. After the representation is
learned, they propose to explicitly build the graph of the offline dataset and apply value iteration to get an
estimate of the value function. The policy can be obtained by applying Dijkstra on the learned graph. More
similar to this work [Wang et al, (2023); [Yang et al.| (2020) estimate the optimal value function rather than
the policy one. In |[Yang et al| (2020 the authors use contrastive learning to find a representation where
connections between states in action terms can be estimated in terms of Euclidean distances. The value
function can then be recovered as the sum of the shortest path distances between the goal and the current
state using classical depth-first search algorithms. |Wang et al| (2023)) learns a map between pairs of states
and a quasimetric representing the estimated optimal value function of a goal-conditioned MDP. This is
done by setting the distance between two consecutive states to be equal to the reward between them and the
distance between random pairs of states to be maximized. The optimal value function can then be defined as
the distance between each state and the goal state. While being more general, quasimetrics cannot capture
the appropriate bias induced by the inverse actions assumption. We show empirically that our proposed
method is more effective in estimating a policy when data is severely sub-optimal. In this paper, we describe
a property of representations needed to ensure the optimality of the critic function and propose a simple
method to recover such a representation for a particular class of MDPs. Moreover, differently from the works
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above, we study the effectiveness of this methodology in handling offline datasets collected by policies that
are not necessarily optimal.

Other metrics: Other measures of state similarity from a control perspective have been explored before.
Bisimulation metric defines a measure of similarity between states in terms of future transitions and re-
wards, (Ferns & Precup, 2014; [Castro, [2020). These methods are theoretically grounded but particularly
difficult to make them work in practice. This is especially true in the case of continuous spaces. Older
work has explored different forms of value function approximation. By parametrically approximating the
map between each state and its value, (Ormoneit & Sen| 2002) approximates a notion of similarity (in a
value sense) between states with an appropriate kernel and rewrite the Bellman operator as a function of
this kernel. This still needs to solve the optimization problem with value iteration techniques. Proto-value
functions, (Parr et al.| |2008]), instead express the transition and reward functions as linear matrices, the
value function problem has exact solutions and can be estimated with an appropriate kernel method at the
cost of expressivity.

6 Conclusions

In this paper, we proposed MetricRL, a novel approximation method for the optimal value function of sparse,
deterministic, goal-conditioned MDPs. MetricRL relies on learning a distance monotonic representation of
the state space, allowing it to define a value function that is correlated with the distance of each state
to the goal. We have proved that, when the representation is indeed distance monotonic, a greedy policy
on this approximated value function is optimal for the class of MDPs stated above. Experimentally, we
have shown that MetricRL outperforms prior offline RL methods in learning near-optimal behavior from
severely sub-optimal datasets. For future work, we plan on generalizing the notion of distance monotonicity
to quasimetrics (Durugkar et all 2021} Durugkar, |2023)), extending our method to stochastic MDPs and
adapting it to online reinforcement learning problems.
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A Appendix

A.1 Sparse Goal-Conditioned Value Functions in Isometric Spaces

Recall the definition of the optimal value function described above as the maximum over the possible policies
of the expectation of the discounted cumulative reward: V*(s, s,) = max, Ex [}, v'7¢|so = s,a = 7(s, s¢)].

In the particular case of a deterministic MDP with a sparse goal-conditioned reward function, the value
function simplifies as there is only one state for which the reward is non-zero (the goal state). Moreover, in
the optimal value function, the estimated discounted cumulative reward becomes equivalent to the reward at
the goal discounted by % (5:59)  where da(s, sg) is the geodesic. In this setting, the optimal value function
estimation can be reduced to a shortest path estimation problem.

Assuming ¢ is an isometry, dg (s, s,) = dz(¢(s), 6(s")) resulting in: V*(s,s,) = vz )0y

A.2 Distance Monotonicity Measure

We provide a more formal intuition on the increase in distance monotonicity of a representation that mini-
mizes Equation [Il As such, consider the following modification of the objective:

minEp [ [|¢e(5") — Pa(s)|l,] (5)
subject to: [|gg(s") — dp(s)[ly = 1. (6)

This can be seen as the second term of the loss in Equation[I] with the first
term as an explicit constraint. As defined before, the distance between
any two points, s;, s;, is the length of the geodesic on the graph defined
as the offline dataset. This is equivalent to the sum of the intermediate
steps within the geodesic path. Using the constraint in Equation [A22] we
can use triangular inequality to bound the distance between points in the
learned representation:

dz(zi, 25) = |9 (s;) — da(si)ll, € [0, ds(si, s5)] - (7)

The representation’s ¢y distance monotonicity can be measured as the ra-
tio of triplets that respect the definition That is, if dg(s1,s3) <
ds(s2,s3) then dz(z1,23) < dz(ze,23), where z = ¢(s). The dis-
tance monotonicity of ¢ increases for each triplet for which this be-
comes true. Graphically this can be seen in Figure [} As the distance Figure 7: The optimization
dz(z1,23) is bounded, the distance monotonicity of ¢ increases when in[A.2]increases the distance be-
dz(z9,23) € [dz(z1,23),ds(s2,83)] (or equivalently zo goes outside the tween the representations. As
blue circumference in the figure). As such, distance monotonicity increases long as 2z is outside of the cir-
by stretching the distance between any two states. This is equivalent to cumference, the triplet s¢; o 3y is
the objective described in Equation distance monotonic.

A.2.1 Experiment on Distance Monotonicity Measure

We tested quantitatively the effects of minimizing the loss defined in Equation [[]and the increase in distance
monotonicity of the learned representation. To do so we used the environment defined in Maze2D large with
the high dataset. Figure |3| (blue curve) shows the increase in distance monotonicity of a representation
throughout the learning process. We computed the measure as follows:

o Before starting the training we compute a discretization of the positions of the maze and an adjacency
matrix based on whether two positions are connected or not. This effectively defines a graph of the
states of the maze.
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o During every epoch of training we sample 1000 triplets of these nodes (s1, s2, s3) at random and
compute the distances on the graph between the two pairs using breath-first search, i.e., dg(s1, s3)
and dg(s2, s3).

e Concurrently we map these three points in Z using the representation that’s being learned and
compute the distances using a Euclidean norm, i.e., dz(¢(s1), ¢(s3)) and dz(¢(s2), ¢(s3)).

o We then compute the distance monotonicity (DM) ratio as the number of triplets among these
1000 for which if dg(s1, s3) < dg(s2,s3) then dz(d(s1),d(s3)) < dz(d(s2), d(s3)) or if dg(s2,s3) <
dg(s1,s3) then dz(d(s2), d(s3)) < dz(p(s1), d(s3)).

e The plot is also paired with the average reward a MetricRL agent achieves during training (orange
curve).

More results on this are provided in Figure

A.3 Proof of Theorem

Proof. Here we prove that, assuming a deterministic, sparse, goal-conditioned MDP, every optimal solution
defined as the greedy policy based on the value function defined as in Equation [2|is contained in the greedy
policy based on the optimal value function.

We start by rewriting the statement of the Theorem in the argmax form:

71';7(5) = argmax V(s = T(s,a)), (8)

a

7V (s) = argmax V*(s' = T(s, a)). (9)

g
a

Given that the MDP is deterministic, the transition function 7'(s, a) injectively maps (s, a) to a unique next
state s'.

From the definition of V and the Bellman equation, we have:

V(S/) — ,de(¢(5/)»¢(sg))r,«g7 (10)
V(') = max (5", a') + 4V (s")], ()

where s = T(s',a’). In a sparse, goal-conditioned MDP, the reward r(s’,a’) is zero unless s’ = s4, V*(s') is
equal to the discount factor raised to the power of the minimal number of actions needed to reach the goal

and thus simplifies to: ,
V*(s') = nds(shsa)y (12)

Substituting the value functions into the greedy policy definitions, we get:

arg max 'ydzw(sl)"b(sg))rg C arg max 'de(Sl’sg)rg. (13)
a a

Since v < 1 and 7 is constant, this reduces to:

argmindz(p(s"), d(s,)) C argmindg(s’, sy). (14)

a

Assume, by contradiction, that there exists a state § = T'(s,a) such that the action @ is in wg(s) but not in

W;/* (s). This implies:

dz(6(3), d(s9)) < dz(d(s), d(sg)), Vs € T(s,), (15)
ds(8,s4) > ds(3,s4), for some § € T(s,-). (16)

16



Under review as submission to TMLR

By the distance monotonicity of ¢, ds(8,sy) > ds(3,sy) implies dz(¢(5), ¢(sg)) > dz(¢(5), ¢(sg)), which
contradicts the assumption that a € ) (s).

Thus, the actions minimizing dz(¢(s’), ¢(s4)) are contained in the actions minimizing dg(s’, s4), implying:
wV(s) St (s), VseSs. (17)

This completes the proof.

A.4 Incorporating Super-States in the Dataset

Here we provide a short description on how to add super-states in the dataset to connect it. The steps can
be summarized as follows:

e Define super-states: These can be defined synthetically by creating a state that is not present in
the dataset. In the experiments, we always defined it as a vector of all zeros of the same dimension-
ality of the state space.

e Add transitions: The offline dataset can then be augmented with synthetic transitions. For each
trajectory in the dataset, we can append a new transition from the terminating state to the meta
state. The action connecting these states is not relevant as it will not be used in the representation.
In the experiments, we set the action value to a random (but valid) value.

A.5 Pseudocode

We provide the pseudocode of our approach below.

Algorithm 1 MetricRL.

Require: Initialize 6,
Require: Offline dataset B, hyperparameters A, 7
1: repeat
2 Sample batch (s, a,s’,s4)x5 ~ D
3 sr = shuffle(s) > shuffle states in the batch
£ Lo=(I6a(s) — do(s")ll2 — 1) = Mog(ll60(s) — do(s.)l2)
5: Update 0 < 6 — nVoLy
6
7
8

V = lga(s) — da(sg)ll2
V' =[¢o(s") = pa(sg)ll2
o Lp=—(V' = V)log(my(als))
9: Update 9 <~ ¢ —nVy Ly
10: until convergence

A.6 Experimental Details

For each experiment, we provide the results for 5 runs with different seeds. Each model is trained for 100
epochs consisting of 500 batches of 256 data points each. Every model is trained using the Adam optimizer
with a learning rate of 1073. All experiments have been conducted using an NVIDIA RTX 3080 GPU
accelerator.

Both the policy and the value function are parameterized using a simple Multi-Layer Perception architecture
consisting of 3 layers with 64 neurons each and a ReLU activation function. In the case of MetricRL, the
policy outputs the mean of a Gaussian distribution with fixed variance when the actions are continuous and
the logits of a Categorical distribution when the actions are discrete. When the observations are images we
use a CNN architecture consisting of 4 layers with 64 filters each of size 3 by 3 to preprocess the images.
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.

Figure 8: Wall positions (yellow) in the HyperMazes in 2D and 3D, in blue are free cells.

A.6.1 Models Description and Hyperparameters

MetricRL: The representation of the metric space has always dimension 128. The regularization term A in
Equation [[]is 1 and the variance of the policy when actions are continuous is 1.

CQL (Kumar et al. [2020), which introduces a conservative term in the estimation of the Q value. This term
penalizes the highest values of the estimated Q function; hyperparameters: v = 0.95, we use a conservative
weight of 5.0.

BCQ (Fujimoto et al. [2019), which perturbs the policy learned with a VAE with a DDPG term; hyperpa-
rameters: v = 0.95, action flexibility: 0.5, we sample 10 actions per step and use 2 critics.

BEAR (Kumar et al. [2019)), that constrains the learned policy to the behavioral one estimated with BC;
hyperparameters: v = 0.95, we use an adaptive o with an initial value of 0.001 and a threshold of 0.05, we
use 2 critics modules and sample 10 actions per step.

PLAS (Zhou et all |[2021]), which trains the policy within the latent space of a conditional VAE trained on
the Offline dataset; hyperparameters: v = 0.95, we use 2 critics modules.

IQL (Kostrikov et al., 2021), that avoids sampling out-of-distribution actions using a SARSA like critic
update with quantile regression; hyperparameters: v = 0.95 , we use 2 critics modules and an expectile value
of 0.9.

ContrastiveRL (Eysenbach et al.||2022)), which approximates the value function of the policy that collected
the dataset using contrastive learning. To adapt it to offline RL, the objective is coupled with a behavioral
cloning term. hyperparameters: v = 0.95, an offline regularization of 0.05 and a fixed variance for the policy
of 1.

QRL (Wang et al.,|2023)), that estimates a quasimetric to approximate the value function using a contrastive
learning formulation. The model is paired with a learned policy regularized with a behavioral cloning term
to avoid out-of-distribution state-actions pairs in offline RL conditions. hyperparameters: e = 0.25, initial
A = 0.01, offset softplus 500 and 5 = 0.01 and an offline regularization of 0.05.

GoFAR (Ma et al., 2022b), that estimates an offline goal-conditioned RL policy by recasting it as a state
occupancy matching problem. hyperparameters: v = 0.98 and a discriminator gradient penalty of 0.01. For
the f-divergence we use the x2-divergence.

HIQL (Park et al., 2023a)), which reformulates IQL to an action-free hierarchical model. hyperparameters:
v=0.99 8 = 1.0, we use 2 critics modules and an expectile value of 0.7.
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A.6.2 Evaluation Scenarios

Maze2D: The goal of the environment is to navigate an agent (actuated ball) to a target position inside
a maze of varying complexity. The state space is 4-dimensional consisting of position and velocity in the
plane, the action space is the torque applied to the ball in the two directions. The reward function is
defined to be 1 when the agent reaches a position within 5 cm from the goal state and zero otherwise.
Transitions take into consideration the momentum of the ball, frictions in the environment and collisions
with the walls. For the low dataset we collect a dataset of 1000 trajectories of the agent performing uniform
random actions, on average around 5% of successful trajectories. For the medium dataset we collect actions
according to an Ornstein-Uhlenbeck process with parameters: § = 0.1 and o = 0.2, on average 10% of
successful trajectories. For the high dataset we rely on the Minari dataset provided by [Younis et al.| (2024),
99% successful trajectories.

Reach: The task consists of moving the end-effector of a simulated 7-DoF arm to a desired position in 3D.
The state space consists of positions and velocities in 3D of the end effector and gripper of the robot and
the goal refers to the desired position of the end-effector and zero velocity. Actions are translations of the
end-effector. We first train a PPO agent online to solve the task and collect datasets at different stages of
the training to define different qualities. Specifically, low has 20% successful trajectories, medium 60% and
high 90%.

Hypermaze: Defines a generalization of the classic Grid Maze navigation task. The environment consists of
a hypercube of n dimensions of m cells per dimension where every cell can either be empty or wall. The
agent occupies one cell at a time if it is empty and can translate to adjacent cells if they are not walls. The
positions of the wall are initialized in an S-like shape similar to Figure [8| when the hypermaze is defined in
either 2 or 3 dimensions. The goal of the environment is to reach a goal placed on the other side of the maze.

For the results in Figure [6] we fix the maze to be 4 dimensional with 20 cells per dimension. We collect the
datasets by first training a DQN agent online to solve the task and then collect 3 datasets using an e-greedy
policy with e respectively of values 0.9 (success rate 2%), 0.5 (success rate 60%) and 0.1 (success rate 99%).

For the sample complexity analysis our method is coupled with a learned transition function to recover the Q
estimate. We vary the dimensions (from 2 to 5) and the number of cells (from 10 to 50). Here the state space
is defined as the position of the agent in the maze discretized into cells plus whether there are obstacles or
not in the adjacent cells. To train the agents, random states and actions are sampled from the environment.
A reward of 1 is given only if the agent steps into the goal state at the end of the maze.

Minigrid: We experiment with two variations of the minigrid environment. The first is the Empty envi-
ronment where an agent translates freely within a grid-like environment. The state is described by the
2D position of the agent and the actions are the 4 possible translation directions. The reward is 1 once a
randomly selected cell is reached and 0 otherwise. The DoorKey environment introduces bottlenecks in the
MDP. A wall is introduced in the center of the grid separating it into 2 rooms with a closed door in the
middle. In the first room, a key is placed in a random position. The goal is to pick up the key, open the door
and reach a goal cell in the other room. The state space is defined as the position in the grid of the agent
plus the position of the key plus a binary value describing whether the door is open or not. Actions are
translations in the grid plus a pick-up action that has an effect only when the agent is adjacent to the key
plus an open door action that has an effect only when the agent has the key and is adjacent to the door. As
before, The datasets are collected by training a DQN agent online to convergence and collecting the datasets
using e-greedy strategy with the same three different values for € of before. The success rate is respectively of
70%, 100% and 100% for the Empty environment and 10%, 100% and 100% for the DoorKey environment.
Notice how the main difference between the medium and high datasets here is not in the success rate but
rather in the quality of the trajectories. For the high-dimensional observations case we use images rendered
by the environment as the states. These are 80 by 80 pixels with 3 color channels.

A.7 Sample-Efficiency

A main advantage of MetricRL stems from the nature of the loss function. Temporal difference methods
(e.g., DQN) are known for their inefficiency when the time horizon grows considerably (Moore & Atkeson,
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Figure 9: Number of updates required to reliably solve the Hypermaze environment with varying number of
cells (left plot) and dimensions (right plot).

1993). On the other hand, MetricRL mitigates this issue by using neural networks to learn a representation
of a metric space.

To validate our hypothesis, we compare MetricRL against DQN (Mnih et al. [2015) in the Hypermaze
environment, considering a variable number of dimensions and cells. This allows us to control for both the
dimensionality of the action space and the size of the state space of the underlying MDP.

In Figure [9] we present the number of iterations required for the two methods to solve the maze at least 25
times consecutively during training as a function of the size of the maze (state space). The results show that
for MetricRL the number of iterations required to learn to perform the maze grows linearly with the size of
the maze. However, for DQN the number of iterations rises exponentially.

A.8 Multi-goal Tasks

Another advantage of the proposed representation used in Equation [2]is that it does not depend explicitly
on the goal. As long as goals are valid states within the training distribution, they can be arbitrarily used to
estimate the value function. The explicit use of the discount factor allows for reshaping the value function
to increase or decrease long-term reward delay. Moreover, with a slight modification, we can easily consider
multiple competing goals. In this setting, the agent has to consider both the possible reward it can get
in each goal state as well as its relative distance to each goal. As such, the discount factor of the MDP
influences the optimal policy of the agent. For example when the agent has to navigate in a maze toward
a door but there are multiple doors. In this case, the agent has to learn both how to navigate the maze as
well as make the decision of which door to choose based on their reward and the length of the path.

With multiple rewards, the value function approximation can be reformulated by considering the maximum
over the value function of all the possible goals (s;,7;):

V(S) = maX{’de(¢(s)’¢(SL))’r'l}, (18)

A.9 Additional Results

In this section, we provide additional results on the experiments described.

Value Function Estimation in Maze2D Large: Following the discussion of Section we explore value
function estimation in Maze2D Large for different types of datasets. The results of Figure [11] highlight that
MetricRL is the only method able to correctly estimate the low value of the bottom left corner of the maze
when the goal is on the other branch of the maze, regardless of the quality of the policy used to collect the
offline dataset.
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Figure 10: Visualization of the gradient of the value function learned by MetricRL in an environment
containing two fixed goals with different rewards (r1,72), as a function of the discount factor: the green star
has r; = 0.7 and the orange star has ro = 1.0.
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Figure 11: Estimated value function for different methods using a dataset collected from different policies in
Maze2D Large. All values are normalized.

Maze2D: We additionally provide the results for the u-maze and the medium maze described in
(2020), (Figures and . Results confirm the findings described in the paper. MetricRL consistently
outperforms the baselines in the case of low and medium datasets.

Maze2D u-maze

dRTRETI Y

MetricRL BEAR PLAS QL ~gntrastiveRL  QRL GoFAR HIQL
Low M Medium [ High

Reward

Figure 12: Average reward returns on Maze2D u-maze with different types of datasets. All results are averaged
over 5 randomly selected seeds. Higher is better.
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Figure 13: Average reward returns on Maze2D medium maze with different types of datasets. All results are
averaged over 5 randomly selected seeds. Higher is better.

Minigrid: We provide results of the Empty environment with states and images as input, (Figures ﬂ

and [15]).
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Figure 14: Average reward returns on Minigrid Empty with different types of datasets.

All results are
averaged over 5 randomly selected seeds. Higher is better.
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Figure 15: Average reward returns on Minigrid Empty with images with different types of datasets

. Al
results are averaged over 5 randomly selected seeds. Higher is better.

Below (Figure are additional results on the increase in distance monotonicity measure paired with an
increase in the reward for different mazes and datasets of Maze2D.
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Figure 16: Distance monotonicity ratio compared with average reward on Maze2D environments with different
mazes and datasets.
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