NaviDiv: A Comprehensive Tool for Monitoring
Chemical Diversity in Generative Molecular Design

Mohammed Azzouzi Thanapat Worakul
LCMD, ISIC, LCMD, ISIC,
EPFL, Lausanne, Switzerland EPFL, Lausanne, Switzerland
Mohammed.azzouzi@epfl.ch thanapat.worakul @ epfl.ch

Clémence Corminboeuf
LCMD, ISIC,
EPFL, Lausanne, Switzerland
clemence.corminboeuf@epfl.ch

Abstract

The rapid progress in generative models for molecular design has led to extensive
libraries of candidate molecules for biological and chemical targets. However,
ensuring these molecules are diverse and representative of the broader chemical
space remains challenging. Without proper tools, researchers may over-explore
limited regions or miss promising candidates. This work presents NaviDiv,
a comprehensive set of tools for analyzing and steering chemical diversity in
generative molecular design, introducing multiple complementary metrics that
capture different aspects of molecular diversity through representation distance-
based, string-based, fragment-based, and scaffold-based approaches. Our package
not only monitors diversity evolution but also provides adaptive diversity constraints
that can be integrated into the optimization process to guide generative models
toward maintaining desired levels of chemical space exploration. Through a case
study on singlet fission material discovery using REINVENT4, we demonstrate
how different diversity metrics evolve during reinforcement learning optimization
and show that our diversity constraints can prevent model collapse while preserving
property optimization performance. The package is freely available in NaviDiv
GitHub repository. This initial implementation serves as a foundation for future
extensions to additional molecular representations and generative architectures,
addressing a critical bottleneck in automated molecular discovery.

1 Introduction

Generative molecular models represent a paradigm shift in molecular design, moving beyond fixed
databases and manual construction rules to learn statistical distributions of chemical structures in
high-dimensional latent spaces.[1} 2| [3, 4] These models generate realistic, chemically plausible
molecules that leverage expanding chemical databases to capture broad diversity and enable the
design of novel compounds with desired properties.

Multiple architectures exist for generative molecular design, differing in molecular representations
and neural network structures.[S]] String-based approaches treat molecules as SMILES or SELFIES
sequences, using RNNs to autoregressively predict tokens and achieving over 90% validity rates
for drug-like molecules.[6} [7, 18, |9] Alternative architectures include VAEs, GANSs, transformers,
flow-based models, and diffusion models, operating on 1D (strings), 2D (graphs), or 3D (coordinate)
representations.
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For property-targeted generation, guidance strategies must steer models toward higher-performing
candidates. VAEs employ gradient-based latent space optimization, while RNN models like
REINVENT use reinforcement learning to update parameters via policy-driven approaches.[6, [10]
However, optimization inevitably reduces molecular diversity as models drift from their training
distributions. While regularization terms can maintain alignment with the original model,[11] this
is often insufficient to prevent model collapse. Additional diversity-promoting scoring functions
targeting overrepresented fragments or similar compounds are typically required, but their selection
demands deep understanding of model behavior and careful consideration of the trade-offs between
diversity maintenance and property optimization performance.

This work presents NaviDiv, a comprehensive set of tools for analyzing and steering chemical diversity
in generative molecular design. We introduce multiple complementary diversity metrics spanning
structural fingerprints, string-based analysis, and fragment decomposition, coupled with adaptive
diversity constraints that can be integrated into the optimization process to guide molecular generation.
Through a singlet fission material discovery case study, we demonstrate how different diversity metrics
evolve during reinforcement learning optimization, show how our diversity constraints can prevent
model collapse while maintaining property optimization performance, and provide insights into
property-diversity trade-offs in molecular discovery.
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Figure 1: NaviDiv molecular diversity tool. (a) Representation of a generation step with
reinforcement learning. (b) Overview of the molecular diversity analyser, showcasing the various
metrics and visualizations provided to assess chemical diversity during the generative process. The
generative model produces molecules that are analyzed using multiple diversity metrics, including
representation distance-based, string-based, fragment-based, and scaffold-based approaches. The tool
offers visualizations such as 2D chemical space projections and temporal evolution plots to monitor
diversity changes over time. The results of the analysis can be used to update a diversity constraints
function that can be integrated into the generative model’s optimization process.

2 NaviDiv Framework

NaviDiv is a comprehensive tool designed to monitor, analyze, and actively steer chemical diversity
in generative molecular design workflows. The tool integrates seamlessly into existing reinforcement
learning-based generation pipelines, providing real-time diversity assessment and adaptive constraint
mechanisms. The use of other generative architectures (e.g., VAEs, GANSs, diffusion models) or
molecular representations (e.g., graphs, 3D coordinates) is not yet supported but can be implemented
in future versions.

Figure(I|illustrates the core architecture of NaviDiv. In a typical generative molecular design workflow
(Figurelp), a generative model produces candidate molecules at each iteration, which are evaluated
using a predefined scoring function that assesses property criteria. These scores update the model
through reinforcement learning, iteratively improving molecular quality over successive generations.



NaviDiv extends this workflow by introducing a comprehensive diversity analysis layer (Figure[Tp)
that operates in parallel with property evaluation. The framework receives generated molecules and
performs diversity assessment using multiple complementary metrics, capturing different aspects
of chemical diversity. The analysis results are visualized through intuitive plots and dashboards,
enabling researchers to monitor diversity trends in real-time. The framework also includes an adaptive
diversity constraint module that can generate penalty functions based on the analysis results. These
penalties can be integrated into the scoring function to actively guide the generative model toward
maintaining desired diversity levels while optimizing for target properties. Below we present the key
components of NaviDiv.

i) Assessing chemical diversity Chemical diversity is context-dependent and varies across
fields.[[12} [13]] In Organic electronics, the focus is on m-conjugated building blocks and molecular
symmetry,[[14] while catalysis emphasizes ligand modifications around catalytic cores,[15}[16] and
drug discovery targets scaffold and stereochemical variation.[[17, [18]. Our framework implements
four complementary approaches for comprehensive diversity assessment (Implementation details are
provided in the appendix D.):[19} 20]

* Representation distance-based analysis employs molecular fingerprints (e.g., Morgan,
RDAK:it) and similarity metrics (e.g., Tanimoto coefficient) to quantify structural diversity.

» String-based analysis examines SMILES or SELFIES representations using n-gram
frequency distributions to capture syntactic and semantic diversity in molecular encoding.

* Fragment-based analysis decomposes molecules into chemically relevant substructures,
tracking fragment frequency and distribution to identify overrepresented motifs and assess
substructural diversity.[21]]

» Scaffold-based analysis identifies core molecular frameworks after systematic side-chain
removal, monitoring scaffold diversity and evolution to understand how generative models
explore fundamental chemical architectures.[22]

ii) Visualization and Monitoring Capabilities NaviDiv provides rich visualization tools through
an interactive web application built with Streamlit and a Python backend, enabling researchers to
understand and interpret diversity evolution in real-time (see appendix F for screenshots). Key
features include:

* Chemical space projections: Interactive 2D visualizations of molecular distributions
using dimensionality reduction techniques (t-SNE) that reveal clustering patterns and space
exploration trajectories.[23]] Users can hover over or click individual points to visualize the
corresponding chemical structures directly within the interface.

» Temporal evolution plots: Dynamic time-series analysis showing how different diversity
metrics evolve throughout the optimization process, with real-time updates and interactive
controls for identifying potential model collapse.

¢ Fragment frequency analysis: Interactive visualization of molecular substructure
distributions enabling identification of overrepresented fragments and emerging chemical
motifs. The tool displays fragment occurrence frequencies, ranks substructures by
prevalence, and provides molecular structure viewing for fragments exceeding user-defined
thresholds, facilitating targeted diversity constraint design.

iii) Adaptive Diversity Constraints A key innovation of NaviDiv is its ability to actively guide
the generative process through adaptive diversity constraints. Based on real-time diversity analysis,
the framework dynamically generates penalty functions that can be integrated into the optimization
objective. These constraints operate by (Implementation details are provided in the appendix E.):

1. Monitoring over-representation: Identifying molecular clusters, fragments, or sequence
patterns that exceed predefined frequency thresholds.

2. Dynamic penalty generation: Computing penalty scores for molecules that contribute to
overrepresented regions of chemical space.



3 Use Case: Singlet Fission Material Discovery

To demonstrate the capabilities of our chemical diversity analysis framework, we consider the case
of discovering molecules for singlet fission applications in solar cells. We employ the evaluation
function established in previous work to explore the chemical space of molecules with singlet fission
character, specifically assessing the difference in energy between the lowest first singly excited state
and the energy of the triplet excited state.[24]] (details about the scoring function can be found in the
appendix F.)

We use REINVENT4 with a prior trained on an extended dataset adapted for organic electronic
molecules (FORMED [25]], GEOM3D [26]) and conduct reinforcement learning for 1000 iterations
with 100 molecules generated per step. Note that NaviDiv’s current implementation is optimized
for string-based generative models using reinforcement learning, making REINVENT4 an ideal
demonstration platform.

Figure[2]shows the evolution of the average molecular score alongside key diversity metrics throughout
the reinforcement learning process. Details about the different diversity metrics considered in this
case can be found in the appendix. As training progresses, the average score increases steadily,
indicating successful optimization toward the design objective. However, this improvement comes at
the cost of reduced diversity among the generated molecules.
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Figure 2: Evolution of molecular optimization and diversity during reinforcement learning. (a)
Average molecular score and negative log-likelihood vs. RL steps, showing successful optimization
and chemical space exploration. (b) Structural diversity via Morgan fingerprints: mean pairwise
similarity (left) and number of clusters with similarity < 0.3 (right). (c) SMILES diversity via 10-
grams: fraction of unique sequences (left) and overrepresented patterns > 10% (right). (d) Fragment
diversity: percentage of unique fragments (left) and overrepresented fragments > 10% (right).

The analysis reveals that the extent of diversity loss varies significantly depending on the
representation used:

* Structural diversity (evaluated using Morgan fingerprints with Tanimoto similarity) shows
a strong increase in the mean internal similarity as the model focuses on structurally similar
high-performing molecules. The number of distinct clusters decreases from 100 % to 10
% at the end of the 1000 iterations. This indicates a convergence toward a narrower set of
molecular structures.

* Sequence-level diversity (measured via 10-gram analysis) exhibits more substantial
reduction in the number of distinct sequences, as well as a strong increase in the number of



sequences present in more than 10 % of the molecules reaching almost 100 sequences at
the end of the reinforcement learning process. This indicates convergence toward similar
SMILES patterns.

* Fragment-based diversity shows gradual decline but maintains better diversity compared to
other metrics, suggesting that while specific fragments become overrepresented, the overall
fragment space remains relatively diverse.

These findings highlight the necessity of employing multiple complementary diversity metrics to
fully capture the evolution of molecules generated by reinforcement learning-induced model changes.
The different behavior across metrics provides insights into how the optimization process affects
different aspects of chemical space exploration, enabling researchers to make informed decisions
about when and how to intervene to maintain desired levels of diversity.

Next, we showcase the impact of introducing diversity constraints on the evolution of chemical
diversity among molecules generated during reinforcement learning (Figure [3). We consider
three different constraint regimes, each defined by specific diversity constraints applied during
the reinforcement learning process. Thresholds are established based on both percentage of molecules
generated in previous steps and absolute numbers, chosen to ensure effectiveness without being
overly restrictive. The three constraint regimes are:

1. Baseline (No Constraints): Standard reinforcement learning without diversity constraints.

2. Fragment-Based Constraints: Avoiding overrepresented molecular fragments. Here the
threshold for adding a fragment to the list of fragments to avoid is set to 5% of the molecules
generated in the previous steps, or a total of 50 molecules generated that contain that
fragment, and we only consider fragments that are larger than 8 non-hydrogen atoms.

3. Combined Constraints: Integration of similarity-based, fragment-based, and n-gram-based
constraint types. Thresholds are set to 10% for similarity-based constraints, 5% for fragments
(considering only fragments larger than 8 non-hydrogen atoms), and 3% for 10-grams in
SMILES sequences.

Figure 3] shows results for the three constraint regimes. All regimes achieve successful optimization
with steadily increasing molecular scores (Figure Eh), but at different rates: baseline (fastest),
Fragment-Based (comparable), and combined constraints (slowest).
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Figure 3: Impact of diversity constraints on molecular optimization and diversity during
reinforcement learning. (a) Average molecular score vs. RL steps for three constraint regimes:
Baseline (no constraints), Fragment-Based constraints, and Combined constraints. (b) Fragment
diversity via percentage of unique fragments over RL steps. (c) Structural diversity via mean pairwise
similarity over RL steps.

Figure [3p shows the evolution of the diversity according to the ratio of unique fragments in the
generated molecules. The baseline regime shows a rapid decline in fragment diversity after 200
iterations (coinciding with the optimization plateau), dropping to around 80% by the end of the
optimization. Fragment-Based and Combined constraints maintain higher fragment diversity, with
Combined constraints preserving nearly 100% of unique fragments throughout the process.



Figure 3t shows the evolution of the diversity according to the mean pairwise similarity. In this case,
both the baseline and Fragment-Based constraints show a rapid increase in similarity, reaching around
0.2 by the end of the optimization. Combined constraints maintain lower similarity levels, around
0.12 like initial levels, indicating better preservation of structural diversity.

The three regimes show distinct trade-offs: 1) baseline achieves rapid optimization but significant
diversity loss, 2) fragment-based constraints maintain optimization speed, reduce the loss of fragment
diversity, but fail to maintain high pairwise diversity, and 3) combined constraints preserve diversity
at the expense of slower optimization. These results highlight the importance of diversity monitoring
tools for understanding constraint impacts and adapting optimization strategies.

Combined constraints provide the best diversity preservation across all metrics, demonstrating that
threshold selection is crucial for balancing optimization performance and diversity preservation.
Monitoring tools are essential for providing feedback to adjust thresholds based on specific
applications and desired diversity levels.

4 Limitations

While NaviDiv advances chemical diversity analysis for generative molecular design, several
limitations should be acknowledged. Our evaluation focuses on a single case study (singlet fission
materials with REINVENT4), and broader validation across different molecular design tasks and
generative architectures would strengthen evidence for general applicability. Optimal diversity
metric selection and threshold determination are context-dependent and require manual tuning,
with automated parameter optimization methods remaining an open challenge. Despite being
designed as model-agnostic, our implementation focuses on REINVENT4 and has limited validation
with other generative architectures or molecular representations. Finally, current metrics may not
capture specialized aspects of chemical diversity such as stereochemistry, conformational flexibility,
or domain-specific structural motifs. These limitations suggest important directions for future
development and indicate areas requiring caution when applying NaviDiv to novel domains or
unprecedented scales.

5 Conclusion

We present NaviDiv, a comprehensive tool for analyzing and steering chemical diversity in generative
molecular design. Our approach introduces four complementary diversity metrics—representation
distance-based, string-based, fragment-based, and scaffold-based analyses—each capturing different
aspects of molecular variation. The framework provides both passive monitoring capabilities through
an interactive Streamlit web application and active steering through adaptive diversity constraints that
can be integrated into optimization processes.

Through a singlet fission material discovery case study using REINVENT4, we demonstrate that
different diversity metrics exhibit varying sensitivities to reinforcement learning optimization. While
structural fingerprint-based diversity shows considerable decline, fragment-based metrics maintain
relative robustness. Our constraint comparison reveals distinct trade-offs: baseline optimization
achieves rapid property improvement but significant diversity loss, while combined constraints
preserve diversity at the cost of slower optimization speed.

The framework addresses a critical bottleneck in automated molecular discovery by providing
standardized tools for monitoring and optimizing chemical space exploration. By enabling real-time
diversity assessment and adaptive constraint generation, NaviDiv empowers researchers to make
informed decisions about when and how to intervene to maintain desired levels of chemical diversity
during optimization campaigns.

To facilitate adoption, we make the framework freely available with stable versions archived on
Zenodo (DOI: https://zenodo.org/records/16901533) and active development on GitHub
(https://github.com/mohammedazzouzil5/NaviDiv). Future work will focus on three main
directions: (1) extending the framework to additional molecular representations (graph-based, 3D
coordinates) and generative architectures beyond reinforcement learning approaches, including VAEs,
GANS, diffusion models, and transformer architectures; (2) implementing more diverse diversity
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scores that are adapted to different applications; and (3) establishing sophisticated steering methods
for diversity preservation.
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A Additional Package Capabilities

Beyond tracking specific diversity metrics evolution during reinforcement learning, our framework
provides comprehensive analysis and visualization tools for understanding the generative process.
The tool enables:

* interactive molecular visualization with 2D structural representations, sorting and filtering
options based on molecular properties, and side-by-side comparison of molecules from
different generation steps.

* temporal analysis, users can monitor the evolution of specific molecular fragments, track
cluster formation and dissolution patterns, observe scaffold progression, and analyze
SMILES sequence pattern changes throughout optimization.



* global dataset analysis, generating statistical summaries of fragment distributions, detailed
clustering statistics with representative structures, property-structure correlations, and
comprehensive diversity trend reports with statistical significance testing.

* comparative analysis capabilities, include comparison against user-defined reference
sets, similarity assessment with configurable thresholds, identification of novel structures
dissimilar from reference compounds.

These integrated capabilities provide researchers with a comprehensive toolkit for understanding,
monitoring, and optimizing chemical diversity in generative molecular design, enabling informed
decision-making throughout the discovery process.

B Implementation Details

NaviDiv is implemented as a modular Python framework built on standard scientific computing
libraries including RDKit for molecular manipulation, NumPy/SciPy for numerical computations,
and scikit-learn for machine learning algorithms. The architecture follows object-oriented design
principles with clear separation of concerns across four main modules.

B.1 Performance Optimizations

The diversity analysis framework is designed for real-time monitoring during generative model
optimization, with minimal computational overhead. Performance benchmarks on a standard CPU
machine (Intel Core 17, 16GB RAM) demonstrate that analyzing 100 molecules per generation step
requires less than 3 seconds of computation time. For a complete optimization run of 100 steps
with 100 molecules per step (10,000 molecules total), the entire diversity analysis completes in
approximately 5 minutes.

This computational efficiency enables seamless integration into existing generative workflows without
significantly impacting overall runtime. The lightweight nature of the analysis allows for real-time
diversity monitoring, where penalty functions can be computed and applied during the generation
process itself. This capability is particularly valuable for implementing adaptive diversity constraints
that respond to the evolving chemical space exploration patterns, enabling researchers to guide the
generation toward maintaining desired diversity levels throughout the optimization process.

B.2 Extensibility and Modularity

The modular design enables easy extension through abstract base classes and plugin architecture.
New diversity metrics can be integrated by implementing the DiversityMetric interface, while
custom visualization components inherit from BaseVisualizer. Configuration management uses
Hydra framework for hierarchical configuration files, enabling reproducible experimental setups.

C Diversity Metrics

C.0.1 Representation Distance

A variety of molecular representations can be used to assess and visualize chemical diversity,
particularly those based on molecular descriptors or pre-established fingerprints such as Morgan
fingerprints and RDKit fingerprints. These representations encode molecular structures into numerical
vectors, which can then be projected into a lower-dimensional space (e.g., 2D) using dimensionality
reduction techniques such as t-SNE or PCA. This allows for intuitive visualization of the chemical
space and the evolution of generated molecules over time.

To quantify diversity, similarity metrics such as the Tanimoto coefficient or Euclidean distance
can be applied to these fingerprint vectors. These metrics enable the monitoring of diversity trends,
for example, by tracking the mean pairwise distance between molecules or by applying clustering
algorithms to observe changes in the number and distribution of molecular clusters. This approach
is highly versatile and can be tailored to specific applications by selecting or designing molecular
representations that emphasize relevant chemical features.



C.0.2 String-Based Metrics

Another widely used approach for representing molecules is through string-based formats, such as
SMILES (Simplified Molecular Input Line Entry System). These representations are particularly
common in deep generative models, where molecules are treated as sequences of characters. In this
context, chemical diversity can be assessed through semantic or syntactic analysis of the strings.
One common method involves analyzing the frequency and distribution of n-grams—subsequences
of characters within the SMILES strings. Unlike structural fragments, n-grams do not necessarily
correspond to chemically meaningful substructures but can still capture patterns in how molecules
are encoded. This type of analysis provides a lightweight and flexible way to monitor diversity in
generative models, especially when structural decoding is computationally expensive or unavailable.

C.0.3 Fragment-Based Metrics

Chemical diversity can also be assessed through the analysis of molecular fragments (substructures
obtained by systematically decomposing molecules). This approach becomes particularly relevant
for larger molecules, where recurring subunits may dominate the chemical space. By collecting and
cataloguing the fragments present across a dataset, one can evaluate their frequency of occurrence and
identify overrepresented motifs. Furthermore, fragment-level analysis can be extended to correlate
the presence of specific fragments with molecular properties or performance metrics, offering insights
into how certain substructures influence the overall behaviour or score of a molecule. This method
provides a granular view of diversity and is especially useful for guiding fragment-based design
strategies.

Molecular fragments can also be compared through simplified representations that abstract away
detailed chemical information. For example, fragments can be converted into wireframe models
that omit bond order, or atom types can be replaced with generic placeholders. In some cases, both
simplifications are applied simultaneously. These abstraction techniques allow for a more generalized
comparison of molecular patterns, which can be particularly useful when focusing on topological or
connectivity-based features rather than specific chemical identities.

D Implementation Details of Diversity Metrics

D.1 Representation Distance-Based Metrics

This approach uses molecular representations such as structural fingerprints and distance metrics to
quantify similarity or dissimilarity between compounds based on their overall structure.

D.1.1 Morgan Fingerprints and Tanimoto Similarity
Morgan fingerprints are computed using RDKit with the following parameters:

* Radius: 3 (equivalent to ECFP6)
¢ Number of bits: 2048
e Use features: False

* Use chirality: True

The Tanimoto coefficient between two fingerprints A and B is calculated as:

_|AnB| |AN B
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To evaluate the diversity of a set of generated molecules, we define similarity measures between
molecular structures using molecular fingerprints and apply the Tanimoto similarity to quantify
pairwise molecular distances. Based on this, we calculate metrics such as the internal diversity
(IntDiv), which captures the average dissimilarity within the set.

An alternative approach involves computing the "number of circles" (similar to Renz et al., 2024).
In this method, molecules are sequentially selected from the set, and any other molecule within a
predefined distance threshold is discarded. This process is repeated until no molecules remain, and
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the number of selected molecules provides an estimate of diversity. This technique is conceptually
related to the leader clustering algorithm.

D.1.2 Clustering Algorithm

Molecular clustering is performed using the following algorithm:

Algorithm 1 Molecular Clustering for Diversity Assessment

1:
2:
3:

Input: Set of molecules M, similarity threshold 7
Output: Number of unique clusters n¢pysters
Initialize empty cluster list C' = {}

4: for each molecule m; in M do

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

assigned = False
for each cluster c; in C do
if T'(m;, representative(c;)) > 7 then
Add m; to cluster ¢;
assigned = True
break
end if
end for
if assigned == False then
Create new cluster with m; as representative
Add new cluster to C
end if
end for
return |C|

D.1.3 Fragmentation Algorithm

Molecular fragmentation is performed using the following implementation based on the
rdScaffoldNetwork implementation in RDKit [27]]:

Algorithm 2 Fragmentation Algorithm

Input: Input molecule mol, minimum number of atoms threshold min_num_atoms
Output: List of fragment SMILES strings fragments
Initialize scaffold network parameters
fragments < {MolToSmiles(mol)} > Initialize with original molecule
net < buildScaf foldNetwork([mol], params)
for each sca f fold in net.nodes do
scaf fold_mol < MolFromSmiles(scaf fold)
if scaf fold_mol.Get NumAtoms() > min_num_atoms then
fragments.add(scaf fold)
end if
removed_frags < removeSubstructure(mol, scaf fold)
for each frag in removed_frags do
if frag.Get NumAtoms() > min_num_atoms then
fragments.add(MolToSmiles(frag))
end if
end for

: end for
. Filter out invalid SMILES:
: fragments < {smi € fragments : Mol FromSmiles(smi) # null}

return fragments as list

11



D.2 String-Based Metrics Implementation

Since the generative models used are language-based—typically relying on SMILES (Simplified
Molecular Input Line Entry System) representations—we can quantify molecular diversity through
string-based metrics. This approach analyzes the frequency of recurring substrings, commonly
referred to as n-grams.

D.2.1 N-gram Analysis

An n-gram refers to a contiguous sequence of n characters or tokens in SMILES strings. By examining
how often specific n-grams occur across generated molecules, we can assess redundancy or variation
in the output. High frequency of certain n-grams indicates limited diversity and over-representation
of particular structural motifs, while uniform distribution suggests broader exploration of chemical
space.

E Diversity Constraint Algorithms

A promising approach to promoting chemical diversity involves penalizing molecules when they
exhibit excessive similarity, share common backbones, or contain overrepresented molecular
fragments. These penalties are directly tied to desired chemical diversity and can be quantified
through penalty scores.

Defining these penalties within the fitness function requires thorough analysis of generated molecules.
Based on findings, users can adjust penalization functions accordingly. This section provides detailed
algorithmic procedures for the diversity-aware constraint functions mentioned in the main text.

E.1 Similarity-Based Constraints

Similarity-based constraints focus on penalizing molecules that are too similar to previously generated
compounds, thereby encouraging exploration of new chemical space.

Algorithm 3 Similarity-Based Diversity Constraint
1: Input: Generated molecules M,,.,,, molecules to avoid M ,,0iq, threshold 7g;,,

2: Output: Penalized scores for M,,¢.,
3. for each molecule m; in M,,.,, do
4: penalty = 1.0 > Default score multiplier
5: for each molecule m; in My0iq do
6: if T(mz, mj) > Tgim then
7: penalty = 0.0 > Complete penalty
8: break
9: end if
10: end for
11: Apply penalty to score of m;
12: end for

13: Update M,0iq With cluster representatives from M,,,, if cluster size > threshold

E.2 Fragment-Based Constraints

Fragment-based constraints target overrepresented molecular fragments to maintain substructural
diversity during optimization.
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Algorithm 4 Fragment-Based Diversity Constraint

1: Input: Generated molecules M., fragment frequency dict F'y;.qq, threshold 7¢,q4
2: Output: Penalized scores for M, ¢,
3. for each molecule m; in M,,,, do

4: F; = fragment(m;) > Extract fragments
5: penalty = 1.0

6: for each fragment f in F; do

7: if Ffreq[,ﬂ > Tfrag then

8: penalty = 0.0

9: break

10: end if

11: end for

12: Apply penalty to score of m;

13: Update Ff,..q with fragments from F;
14: end for

E.3 N-Gram-Based Constraints

N-gram-based constraints monitor SMILES sequence patterns to prevent convergence toward similar
string representations.

Algorithm 5 Fragment-Based Diversity Constraint
1: Input: Generated molecules M., fragment frequency dict F'ycq, threshold 77,44
2: Output: Penalized scores for M,,¢.,
3. for each molecule m; in M,,.,, do

4: F; = fragment(m;) > Extract fragments
5: penalty = 1.0

6: for each fragment f in F; do

7: if Fyreq[f] > Tfrag then

8: penalty = 0.0

9: break

10: end if

11: end for

12: Apply penalty to score of m;

13: Update F'¢,, with fragments from F;
14: end for

E.4 Implementation details for the case study

For the singlet fission case study, we employed the REINVENT4 framework with a prior model
trained on an extended dataset tailored for organic electronic molecules. The dataset combines
the FORMED dataset [25] and the GEOM3D dataset [26], ensuring a diverse representation of
relevant chemical structures. The reinforcement learning process was conducted for 1000 iterations,
generating 100 molecules per step. This setup provided a comprehensive dataset for analyzing the
evolution of chemical diversity during the optimization process.

We run the reinforcement learning with the three different constraint regimes as described in the main
text. For each regime we run the exploration for 5 independent runs with different random seeds. The
thresholds for the constraints were established based on both percentage of molecules generated in
previous steps and absolute numbers, chosen to ensure effectiveness without being overly restrictive.
Specifically, for the Fragment-Based constraints, the threshold for adding a fragment to the list of
fragments to avoid was set to 5% of the molecules generated in the previous steps, or a total of 50
molecules generated that contain that fragment. For the Combined constraints, thresholds were set to
10% for similarity-based constraints, 5% for fragments (considering only fragments larger than 8
non-hydrogen atoms), and 3% for 10-grams in SMILES sequences.

The results in figure 3 of the main text show the average results over the 5 independent runs. This
approach provides a robust assessment of the impact of diversity constraints on molecular optimization
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and diversity preservation during reinforcement learning. The difference between the different runs
was small and the trends observed were consistent across all runs.

F Singlet Fission Evaluation Function
This section details the singlet fission evaluation function used in the case study.

F.1 Energy-Based Scoring

The singlet fission scoring function evaluates molecules based on the energy difference between the
first singlet excited state (S7) and twice the triplet state energy (271):

AEsp = E(S1) —2- E(Th) @)

For optimal singlet fission, A Fs should be close to zero or slightly negative.

F.2 Machine Learning Model Details

The evaluation uses a pre-trained Graph Neural Network (GNN) using Chemprop [28] to predict
S1 and T3 energies. The model was trained on the Formed dataset [25], which contains a diverse
set of organic molecules with computed excited state energies. The GNN architecture includes
message-passing layers to capture molecular graph information, followed by fully connected layers
for energy prediction. Details of the training procedure, hyperparameters, and performance metrics
can be found in the paper by Worakul et al. [24].

F.3 Additional Molecular Filters

The evaluation function includes additional sorting functions to filter out molecules that do not meet
specific criteria:

* Molecular weight: 300-800 Da

 Synthetic accessibility score: < 3

G Screenshots of the Web Application

Figures @ and [5|show screenshots of the web application interface for molecular design and diversity
analysis, respectively. The first figure illustrates the main interface where users can input molecules,
configure analysis parameters, and visualize generated structures. This first screenshot highlights the
per step metric evolution plots, the chemical space visualization, and the molecular structure viewer.
The second figure showcases the fragment focused analysis results, including fragment frequency
distributions and overrepresented substructures.
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Figure 4: Screenshot of the molecular design interface.
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Figure 5: Screenshot of the diversity analysis results.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the contribution as a
comprehensive framework for analyzing chemical diversity in generative molecular design
with multiple complementary metrics, demonstrated through a singlet fission case study.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations section acknowledges the focus on a single case study, the need
for broader validation, context-dependent metric selection, limited validation with other
architectures, and potential gaps in capturing specialized aspects of chemical diversity.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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10.

Justification: The paper does not include theoretical results requiring formal proofs. It
presents an analysis framework and empirical observations.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides experimental details in the main text and appendix,
including the use of REINVENT4, dataset information (FORMED, GEOM3D), and 1000
iterations with 100 molecules per step.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: The paper provides computational details in the main text and the code to
reproduce the experiments is available in the link provided in the paper. The code includes
instructions for running the experiments and reproducing the results.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: The paper specifies key experimental details: REINVENT4 with
FORMED+GEOM3D training data, 1000 RL iterations, 100 molecules per step, and singlet
fission evaluation function. Additional implementation details are provided in the codebase.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: The paper provides detailed information about the computational resources
used for the experiments and discussed in the computational performance section.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves computational analysis of molecular structures without
human subjects, privacy concerns, or potential for harmful applications. It contributes
positively to scientific knowledge.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The conclusion discusses positive impacts for materials discovery, energy
applications, and sustainability. The work is a tools contribution with minimal negative
impact potential, focusing on improving research methodology.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites REINVENT4, FORMED, and GEOM3D datasets.
However, specific license information should be added for complete compliance.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a chemical diversity analysis framework with
documentation in the main text and appendix. Complete documentation will be provided
with the code release.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology does not involve LLMs as a component. LLMs may
have been used for writing assistance but not for the scientific methodology itself.
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