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Abstract

In various complex question-answering scenarios, large-scale model agents have
achieved remarkable performance by leveraging external tools for reasoning and
planning. Despite incessant exploration in this domain, current large-scale model
agent systems still suffer from issues such as high costs, difficulties in relying
on repeatable prior knowledge, and the challenge of enabling a single model to
fulfill multiple functions in open-world environments. To address these issues,
we propose RAR-Agent (Retrieval Augmented Reflection Agent), a framework
that learns from scratch for reasoning and knowledge update through retrieval-
augmented reflection, without relying on vast annotated data or requiring fine-
tuning. Given limited prior knowledge data and a tool library, RAR-Agent first
autonomously synthesizes trajectory data for reasoning decisions, bypassing the
need for manual annotation or assistance from powerful closed-source models.
Subsequently, RAR-Agent autonomously constructs a prior knowledge base and
provides with task-specific prior knowledge through retrieval. Through interactive
dialogue with users, RAR-Agent collects a small amount of human feedback and
leverages a continuous learning mechanism to update its prior knowledge base. We
conduct comprehensive experiments with diverse LLMs (Large Language Models),
demonstrating that RAR-Agent can achieve better or comparable performance
to many benchmarks, all with very little annotated data and no extra fine-tuning
required.

1 Introduction

Agents based on Large Language Models (LLMs)[1, 2, 3], leveraging their powerful reasoning
capabilities and interacting with executable tools, have emerged as an effective paradigm for designing
AI agent systems to tackle complex tasks in open-world settings[4, 5, 6, 7]. However, concerns
regarding the interleave reasoning and decision-making capabilities of such agents have garnered
increasing attention. Within the reasoning and decision-making process, planning plays a pivotal
role[8], decomposing complex tasks into simpler subtasks[9, 10, 11, 12], determining the invocation
of external tools[13, 14, 15], and reflecting on past thought trajectories to ultimately accomplish
tasks efficiently[16, 17]. Given the low cost and customizability of open-source LLMs, recent
efforts[18, 19] have aimed to enhance their planning capabilities through fine-tuning[20, 21].
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Figure 1: The basic framework of RAR-Agent. Armed with just prior knowledge database and
toolkit, the RAR-Agent can reason and reflect based on the retrieval augmented prior knowledge that
can collaborate to complete the task. Different colors represent the outcomes of each reasoning step
performed by the RAR-Agent. The reasoning at each step is achieved through retrieval-augmented
reflection, taking into account both the current contextual situation and the prior knowledge.

Nevertheless, despite the successes achieved by existing fine-tuning-based approaches, they are still
subject to limitations. On one hand, training open-source models necessitates a certain amount of
manually annotated data. In open-world scenarios, such as personal assistant robots or traffic flow
management on highways, satisfying these conditions can be extremely challenging. On the other
hand, constructing agents based on fine-tuning essentially forces a single model to learn the planning
capabilities for all scenario tasks[22]. While some work has achieved success through division-of-
labor approaches[22, 23], they still require substantial computational resources for fine-tuning the
models.

Methods based on Retrieval-Augmented Generation (RAG)[24, 25] have attempted to alleviate
these issues by exploring collaborative RAG, leveraging retrieved information for long-horizon
reasoning[25, 26]. The original intention of such approaches is to assist agents’ intermediate reasoning
processes with external knowledge bases. However, key questions remain regarding how to collaborate
with RAG for reasoning and decision-making and how to continuously learn and update the knowledge
base.

To this end, we propose RAR-Agent, a Retrieval-Augmented Reflection Agent learning framework,
which does not rely on large-scale manually annotated data or closed-source models while augmented
reasoning and continuous learning, as illustrated in Figure 1. Given a small set of example data
from task scenarios, RAR-Agent leverages self-instruction[27, 23] to obtain a data-augmented
scenario dataset and automatically generates planning trajectory data. Subsequently, we design
an advanced RAG system, which serves as prior knowledge for reasoning and decision-making.
The prior knowledge is the key to addressing the issue of low-cost scenario adaptation. Finally,
we adopt a division-of-labor [23] strategy to enable RAR-Agent to progressively execute tasks.
Utilizing task templates, LLMs integrate historical trajectories and prior knowledge to reason and
make decision of the next step. Similar to human reasoning processes, this strategy leverages prior
knowledge to iteratively reflect, reason, and adjust the process of solving complex long-horizon
problems[25, 26]. Furthermore, we propose an interactive continuous learning mechanism that
updates the prior knowledge base with minimal human feedback, addressing the issue of updating
prior knowledge in RAR-Agent’s collaborative reasoning. Table 1 summarizes the differences
between RAR-Agent and previous work.

Experiments with various LLMs on complex question-answering and mathematical reasoning tasks
demonstrate that RAR-Agent achieves better or comparable performance to many benchmarks.
Specifically, we observe improved performance over fine-tuned models, with gains of 1.03% on
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Figure 2: The overview of our proposed framework RAR-Agent. It comprises four integral com-
ponents: the PAR-Agent (Plan-Action-Reflection Agent), responsible for reasoning, decision-making,
and reflection; the PKA-Agent (Prior Knowledge Augmentation Agent), tasked with retrieving and
augmenting prior knowledge; the KCL-Agent (Knowledge Continuous Learning Agent), designed to
facilitate continuous learning through minimal human feedback; and the Toolkit, which supports the
agent in accomplishing open-world tasks with exceptional performance. We initiate the task prior
knowledge with self-instruct to extend few task examples from scratch.

HotpotQA and 0.9% on ScienceQA for complex question-answering tasks. For mathematical
reasoning tasks, we achieve comparable results with gains of 2.32%. Extended experimental analyses
validate the effectiveness of prior knowledge augmentation and the continuous learning strategy.

2 RAR-Agent

The RAR-Agent (Retrieval Augmented Reflection Agent) framework (see Figure 2) comprises four
primary components: the PAR-Agent (Plan-Action-Reflection Agent) , the PKA-Agent (Prior
Knowledge Augmentation Agent), the KCL-Agent (Knowledge Continuous Learning Agent) and
an additional Toolkit. In RAR-Agent, the sub-agents can be initialized with any kind of open-source
model.

Objective Task Specification. The central emphasis of this research endeavor lies in the exploration
of agent learning from scratch, signifying that the available task information is inherently constrained
and primarily encompasses three pivotal aspects: task name T , task description D, task data examples
E. Concretely, D represents a detailed description of the task’s characteristics. E = {ti, ai}|E|

i=1
indicates |E| objective and outcome pairs of the task, where |E| is very small which users can
effortlessly provide (e.g., a few demonstrations or human feedback).

2.1 Toolkit

To excel in open-world tasks, RAR-Agent necessitates a comprehensive toolkit comprising essential
tools tailored to specific scenarios, along with tool descriptions, invocation parameters, and formats.
The tool library can be denoted as A = {ai, fi, ui}|A|

i=1 , where a represents the tool name, f defines
the tool functionality, u details the tool usage instruction, and |A| stands for the tool amount of the
library. Detailed descriptions can be found in the experimental design section.

2.2 KCL-Agent

The KCL-Agent (Knowledge Continuous Learning Agent) is crucial for continuous learning prior
knowledge within the RAR-Agent framework, as shown in Figure 2. During system cold start, it
initializes prior knowledge through data augmentation of a small set of manually annotated data E,
expanding them with LLM for data augmentation Ex . Then, we execute reasoning tasks in Ex with
the PAR-Agent (initially as a traditional agent without prior knowledge augmentation). In order to
obtain high-quality synthesized trajectories, we filter out all the trajectories with reward < 1 and
collect trajectories with exactly correct answers (reward = 1) as the prior knowledge, as depicted in
Figure 2.
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We propose updating prior knowledge through interactive human feedback. Specifically, the KCL-
Agent samples human feedback during interactive task execution (e.g., satisfaction with answers
in QA tasks in Figure 1). It treats this feedback as new prior knowledge, which is updated into the
PKA-Agent (Figure 2). Through iterations, the KCL-Agent continuously learns from minimal human
feedback to adapt to scene tasks.

2.3 PKA-Agent

The PKA-Agent (Prior Knowledge Augmentation Agent) significantly enhances the reasoning and
decision-making process by leveraging prior knowledge. Inspired by [26], we propose a reasoning
trajectory augmentation method based on the advanced Retrieval Augmented Generation (RAG),
optimizing for reasoning trajectories through sparse and dense representations. We treat correctly
executed reasoning trajectories as prior knowledge and embed them into vector database.

Specifically, we assume PKA-Agent as function K = Y (query), where Y is the advanced RAG
system, query is the current trajectory of the PAR-Agent, and K is the prior knowledge retrieved
from the vector database. Notably, K is empty before prior knowledge initialized. The KCL-Agent
module oversees knowledge updates, as detailed in section KCL-Agent.

2.4 PAR-Agent

The PAR-Agent (Plan-Action-Reflection Agent) serves as the main agent within the RAR-Agent
framework. Inspired by [23], we integrate plan, action and reflection for reasoning, decision-making,
and reflection, as depicted in Figure 2.

The Plan phase Rplan, analyzes the context based on the task execution trajectory and augments this
with retrieved prior knowledge. It perceives the current task status and anticipates future states, as
illustrated by the light blue thought in Figure 1.

The Action phase Ract, utilizing the task execution trajectory as a query, retrieves and augments
knowledge from the prior knowledge base. Based on the comprehensive context, it decides the next
action and selects appropriate tools, as indicated by the cyan action and observation in Figure 1.

The Reflection phase Rreflect, occurs after the action is marked as finished. This phase revisits
the reasoning trajectory to reflect the reasoning and decision-making process, as illustrated by the
red color in Figure 1. The RAR-Agent framework boasts reflection capabilities to adjust reason-
ing trajectories through retrieved prior knowledge. Experimental results further substantiate the
conclusion.

We assume that the planning loop at time t can be denoted as (pt, at, ot), where p denotes Thought, a
signifies Action, and o represents Observation. a can be further expressed as (nat,s at), where nat is
the name of the action, and sat is the parameters required to perform the action. Then the historical
trajectory at time t can be signaled as:

Ht = (p0, a0, o0, p1, ..., pt−1, at−1, ot−1) (1)

Eventually, supposing that PKA-Agent is initialized, the prior knowledge Kt at time t is:

Kt = Y (Ht) (2)

Then, the responsibilities of each phase can be defined as:

pt,
n at = Rplan(Ht,Kt) (3)

sat = Raction(Ht,Kt, pt,
n at) (4)

prt , a
r
t = Rreflect(H,K) (5)

where prt and art represent the thought and action of the reflection process, and H,K is the planning
history and prior knowledge after finishing the answer.
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Method Data Acquisition Trajectory Acquisition Multi-Agent Fine-Tuning Generality Reflection Continual Learning
REACT [10] User Prompt × × ✓ × ×
Reflexion [14] User Prompt × × ✓ ✓ ×
Camel [18] User Prompt ✓ × ✓ × ×
Chameleon [14] User Prompt × × ✓ × ×
HuggingGPT [13] User Prompt × × ✓ × ×
AutoGPT [5] User Prompt × × ✓ ✓ ×
BOLAA [28] User Prompt ✓ × ✓ × ×
AgentVerse [29] User Prompt ✓ × ✓ × ×
AgentTuning [20] Benchmark GPT-4 × ✓ × × ×
FIREACT [19] Benchmark GPT-4 × ✓ × ✓ ×
Lumos [21] Benchmark Benchmark+GPT-4 ✓ ✓ × × ×
AUTOACT [23] User + Self-Instruct Self-Planning ✓ ✓ ✓ ✓ ×
RAR-Agent (ours) User + Self-Instruct Self-Planning ✓ × ✓ ✓ ✓

Table 1: Comparison to other baselines. Data and Trajectory Acquisitions refer to the way for
obtaining training data and trajectories. Multi-Agent indicates whether the framework contains multi-
agent. Fine-Tuning stands for whether the method is a fine-tuning-based agent learning framework.
Generality signifies whether the method is applicable to various tasks. Reflection denotes whether
the planning process incorporates reflection. Continual Learning represents whether the method
possesses the ability to continually learn through interactive means.

3 Experiments

We evaluate our proposed RAR-Agent approach on several distinct evaluation benchmarks, demon-
strating its effectiveness in multi-step reasoning and long-horizon reasoning and decision-making.
We cordially recommend readers to refer to Section 3.4 (Analysis) for a more detailed discussion.

3.1 Experimental Setups

We adopt three groups of benchmarks.

HotpotQA [30] is a multi-hop QA task challenging for rich background knowledge, the answer of
which is usually a short entity or yes/no. Following [28], we randomly select 300 dev questions
divided into three levels for evaluation, with 100 questions in each level.

ScienceQA [31] is a multi-modal QA task spanning various scientific topics. We also divide the test
set into three levels based on the grade, with 120 randomly sampled data in each level. Note that due
to the limitations of LMs in generating images, for ScienceQA, during the prior knowledge initiation,
we directly generate captions for the images instead.

GSM8K and GSM-HARD [32, 33], which comprises thousands of multi-step mathematical prob-
lems. We conduct mathematical reasoning evaluation on both datasets.

Evaluation Metrics. For HotpotQA, the reward ∈ [0, 1] is defined as the F1 score grading
between the prediction and groundtruth answer. For ScienceQA, since it is a multi-choice task, the
reward ∈ {0, 1} is exactly the accuracy. For GSM8K and GSM-HARD, we compute accuracy to
evaluate every question in mathematical reasoning tasks, aligning with the established metric for the
GSM8K [26].

Baselines. We choose the open-source ChatGLM4-9B [34], Llama-2 models [35] as the backbones
of our RAR-Agent and its sub-agents. The compared baselines include CoT [9], REACT [10],
Chameleon [14], Reflexion [16], BOLAA [28], ReWOO [36], FIREACT [19], AutoAct [23], RAT
[26]. To ensure fairness, we maintain an equal training trajectory volume of 200 for FIREACT and
AUTOACT (200 synthesized data). We use 200 synthesized trajectory data as prior konwledge for
RAR-Agent without fine-tuning. As Reflexion provides answer correctness labels during reflection
but other methods including RAR-Agent do not, we test all the other methods twice and choose the
correct one for evaluation. For all the prompt-based baselines, we uniformly provide two examples in
the prompt. For mathematical reasoning, we choose the open-source ChatGLM4-9B [34] as base
model for RAR-Agent and other baselines. Similar to [26], DIRECT is the original language models.

Other Setups. Despite no fine-tune for RAR-Agent, we fine-tune other baseline models [20, 19, 21,
23] with LoRA [37] in the format proposed in Alpaca [38]. All the training and inference experiments
are conducted on 8 V100 GPUs within 16 hours.
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Backbone Method HotpotQA ScienceQA
Easy Medium Hard All G1-4 G5-8 G9-12 All

GPT-3.5 CoT 48.21 44.52 34.22 42.32 60.83 55.83 65.00 60.56
Zero-Shot Plan 50.71 45.17 38.23 44.70 76.67 61.67 78.33 72.22

Llama-2 13B-chat

CoT 37.90 25.28 21.64 28.27 61.67 52.50 69.17 61.11
ReAct 28.68 22.15 21.69 24.17 57.50 51.67 65.00 58.06

Chameleon 40.01 25.39 22.82 29.41 69.17 60.83 73.33 67.78
Reflexion 44.43 37.50 28.17 36.70 67.50 64.17 73.33 68.33
BOLAA 33.23 25.46 25.23 27.97 60.00 54.17 65.83 60.00
ReWOO 30.09 24.01 21.13 25.08 57.50 54.17 65.83 59.17
FireAct 45.83 38.94 26.06 36.94 60.83 57.50 67.50 61.94

AUTOACT 47.29 41.27 32.92 40.49 70.83 66.67 76.67 71.39
RAR-Agent 42.39 38.28 21.34 34.00 62.59 52.55 66.49 60.54

ChatGLM4-9B

CoT 37.90 25.28 21.64 28.27 61.67 52.50 69.17 61.11
ReAct 28.68 22.15 21.69 24.17 57.50 51.67 65.00 58.06

Chameleon 40.01 25.39 22.82 29.41 69.17 60.83 73.33 67.78
Reflexion 44.43 37.50 28.17 36.70 67.50 64.17 73.33 68.33
BOLAA 33.23 25.46 25.23 27.97 60.00 54.17 65.83 60.00
ReWOO 30.09 24.01 21.13 25.08 57.50 54.17 65.83 59.17
FireAct 45.83 38.94 26.06 36.94 60.83 57.50 67.50 61.94

AUTOACT 49.96 44.27 35.92 43.38 72.90 68.97 79.07 73.65
RAR-Agent 50.09 45.76 35.01 43.62 73.66 69.32 78.23 73.74

Llama-2 70B-chat

CoT 45.37 36.33 32.27 37.99 74.17 64.17 75.83 71.39
ReAct 39.70 37.19 33.62 36.83 64.17 60.00 72.50 65.56

Chameleon 46.86 38.79 34.43 40.03 77.83 69.17 76.67 74.56
Reflexion 48.01 46.35 35.64 43.33 75.83 67.50 78.33 73.89
BOLAA 46.44 37.29 33.49 39.07 70.00 67.50 75.00 70.83
ReWOO 42.00 39.58 35.32 38.96 65.00 61.67 76.67 67.78
FireAct 50.82 41.43 35.86 42.70 72.50 68.33 75.00 71.94

AUTOACT 56.94 50.12 38.35 48.47 82.50 72.50 80.83 78.61
RAR-Agent 58.29 51.36 38.84 49.50 83.84 73.49 81.19 79.51

Table 2: Main results of RAR-Agent compared to various baselines on HotpotQA and ScienceQA.
The FireAct, AUTOACT are fine-tuning-based agent learning, while other methods are prompt-based
agent learning without fine-tuning. Refer to Table 1, methods are based on single-agent learning
and symbolizes multi-agent learning. The best results of each model are marked in bold and the
second-best results are marked with underline.

3.2 Results

Comparison with Template-based Agent Learning Baselines. As shown in Table 2 , the RAR-
Agent, leveraging either the ChatGLM4-9B or the LLaMA-2-70B model, consistently outperforms
various template-based baselines. Notably, the RAR-Agent based on LLaMA-70B even surpasses
the performance of GPT-3.5-based agents, achieving an average improvement of 4.5% on HotpotQA
and 7.21% on ScienceQA. However, RAR-Agents utilizing LLaMA-2-13B models exhibit slightly
inferior results compared to some template-based baselines. This underscores the challenge of
accurately customizing agent behavior through template-based methods, whether in single-agent or
multi-agent frameworks. Nevertheless, the RAR-Agent’s outstanding performance hinges critically
on the robust reasoning and decision-making capabilities of the underlying LLMs.

Comparison with Fine-tuning-based Agent Learning Baselines. As evident in Table 2, AUTOACT
decomposes the planning process into division-of-labor sub-agents, achieving better performance
gains than FireAct, albeit at the cost of requiring fine-tuning the model. The RAR-Agent based
on LLaMA-2-70B outperforms all fine-tuning based baselines, without the need for fine-tuning or
extensive manually annotated data. This paves the way for continuous agent learning from scratch
using open-source models. Similarly, we observe that the RAR-Agent’s advantages diminish when
the LLMs’ reasoning capabilities are insufficient.

Comparison with Retrieval-Augmented Agent Baselines. For mathematical reasoning tasks
in Table 3, the RAR-Agent demonstrates remarkable performance, achieving a 14.86% accuracy
improvement on GSM8K and a 37.57% boost on GSMHard, reaching SOTA results comparable to
RAT. Notably, the RAR-Agent, grounded in ChatGLM4-9B, attains performance parity with GPT-3.5.
We speculate that this is attributed to the synergy of retrieval-augmented prior knowledge and the
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Figure 3: Performance of RAR-Agent on HotpotQA, comparing to fine-tune based method.
The (13,70)B represents Llama-2-(13,70)B-chat models and 9B indicates ChatGLM4-9B model
respectively. (a-c) shows the results of the RAR-Agent augmented by prior knowledge and the fine-
tune based models trained on synthesized trajectories. The dashed line is the results of RAR-Agent.

Method Math Reasoning Accuracy
GSM8K GSMHard Average(△)

GPT-3.5 DIRECT 65.85% 51.26% 58.56%
DIRECT 60.85% 46.26% 53.56%

CoT 57.82% 39.72% 48.77(-8.94)%
RAG-1 shot 58.89% 48.26% 53.58(+0.01)%
RAG-5 shot 58.81% 52.78% 55.80(+4.17)%

RAT 66.56% 62.34% 64.45(+20.33)%
RAR-Agent 69.89% 63.64% 66.77(+24.66)%

Table 3: Evaluation results on mathematical
reasoning. For mathematical reasoning, we use
ChatGLM4-9B as base model of RAR-Agent and
other baselines. △ represents the relative improve-
ments than DIRECT.

division-of-labor sub-agents’ capabilities. Furthermore, the RAR-Agent’s continuous learning ability
endows it with richer prior knowledge across diverse task scenarios, as detailed in our analysis and
discussions in Section 3.4.

3.3 Ablation Study

Table 4 presents the performance of RAR-Agent on the Llama-2-70B model after removing certain
key processes.

Ablation Study on Prior Knowledge Retrieval Augmentation in RAR-Agent ( - knowledge).
As evident from Table 4, removing the augmentation of prior knowledge retrieval has a significant
negative impact on the overall performance of the RAR-Agent. We hypothesize that this is due to
two primary factors: firstly, the prior knowledge may contain relevant questions or content snippets
that serve as valuable references; secondly, the execution traces of other specific tasks, as a form of
prior knowledge, enable LLMs to draw upon similar experiences for reasoning and decision-making.
Without this component, LLMs are solely reliant on historical trajectories for inference, devoid of the
beneficial prior knowledge.

Ablation Study on Reflection in RAR-Agent ( - reflection). Our observations indicate that ablating
the reflection component has minimal impact on the overall performance of the RAR-Agent. In the
zero-shot scenario, we find that the model tends to overconfidently make reasoning decisions, echoing
similar conclusions reported in (Huang et al. 2024a; AutoAct 2024). Typically, it can only identify
obvious formatting errors or repetitive patterns in reasoning decisions. However, in our experiments,
when combined with retrieval-augmented prior knowledge, the RAR-Agent is capable of reflecting
not only during each step of the reasoning process but also on the task execution trajectory and
outcomes.

HotpotQA ScienceQA
RAR-Agent 49.50 79.51
- knowledge 38.36 ↓ 11.14 61.39 ↓ 18.12
- reflection 46.53 ↓ 2.97 75.94 ↓ 3.57
- learning 37.69 ↓ 11.81 60.12 ↓ 19.39

Table 4: Approach ablations of RAR-Agent. -
knowledge denotes ablation study on prior knowl-
edge retrieval augmentation in RAR-Agent. - re-
flection symbolizes removing the reflection com-
ponen in RAR-Agent. - learning indicates knowl-
edge continual learning for updating prior knowl-
edge defined in RAR-Agent.

7



Figure 4: Performance of RAR-Agent on HotpotQA based on different degrees of interactive human
feedback. The (13,70)B represents Llama-2- (13,70)B-chat models and 9B indicates ChatGLM4-9B
model respectively. (a-c) shows the results of the RAR-Agent augmented by prior knowledge. The
horizontal axis represents different feedback iteration rounds to RAR-Agent.

Ablation Study on Knowledge Continual Learning in RAR-Agent ( - learning). To underscore
the necessity of continual learning for updating prior knowledge, we specifically removed the process
of continual knowledge learning to test the RAR-Agent’s effectiveness. We simulated varying degrees
of continual learning by using different proportions of prior knowledge. Based on human feedback
during task execution, it represents the extent to which prior knowledge is updated . As shown
in Table 4, the prior knowledge accumulated through continual learning under task scenarios is
crucial for the overall system, its importance being on par with that of prior knowledge retrieval
augmentation.

3.4 Analysis

Here we employ the HotpotQA task within the complex question answering scenario for our analysis
and discussion.

Fine-tuning based on scenario-specific tasks does not necessarily mean better choice. We
evaluate the performance disparity between fine-tuning methods based on various foundation models
and our RAR-Agent on HotpotQA, as illustrated in Figure 3(a-c). It can be observed that when the
reasoning capacity of the foundation model is insufficient, the fine-tuning-based approach exhibits
a notable advantage. As the foundation model becomes larger or its inherent reasoning capability
strengthens, the superiority of RAR-Agent promptly manifests, swiftly outperforming the fine-
tuning-based method. Furthermore, across different foundation models, it is discernible that the
fine-tuning-based approach necessitates over 150 manually annotated data points to yield satisfactory
results. Notably, once the number of manually annotated data exceeds 200, the overall performance
of fine-tuning-based methods across models plateaus, failing to demonstrate further improvement.
In contrast, RAR-Agent is capable of enhancing performance even with minimal annotated data,
and its performance continues to improve as the data volume increases. This enables RAR-Agent-
based intelligent systems to swiftly cold-start in novel task scenarios and adaptively align with the
characteristics of tasks within those scenarios.

Only robust models are capable of acquiring high-quality prior knowledge. Similarly, on
HotpotQA, we evaluate the quality of prior knowledge (reasoning trajectories) generated by models
with varying levels of capabilities and its direct impact on the performance of RAR-Agent, as depicted
in Figure 3(a-c). The prior knowledge generated from different models exhibits quality variations,
with the 70B model yielding the highest quality data and thus the best performance. As the quality
of prior knowledge generated by the models improves, the overall performance of RAR-Agent also
enhances, as indicated by the dashed lines in Figure 3(a-c).

The advantage of RAR-Agent is unleashed by powerful models. From the experimental results in
Table 2 and Figure 3, we observe that when the base LLM has a relatively small parameter size or
insufficient reasoning ability, RAR-Agent’s performance is moderate. However, as the size of the base
LLM’s parameters increases or its inherent reasoning ability strengthens, the quality of generated prior
knowledge improves. Through retrieval-augmented reflection, RAR-Agent’s reasoning capability
is rapidly fortified, leading to a swift improvement in performance on the evaluation set. We can

8



conclude that although RAR-Agent does not require fine-tuning, it heavily relies on the reasoning
and decision-making capabilities of the base model itself.

The continually accumulated prior knowledge through learning can effectively and consistently
enhance the overall performance. When RAR-Agent interacts with humans to execute tasks, we
evaluate the impact of the volume of receiving human feedback on its continuous learning ability.
As shown in Figure 4(a-c), once the reasoning capability of the base model reaches a certain level,
as the number of human feedback interactions increases, RAR-Agent learns more prior knowledge,
resulting in progressively better performance on HotpotQA. This continuous learning capability
offers the potential for RAR-Agent to be extended and applied to other real-world scenarios in open
environments.

4 Related work

LLM-Powered Agent Fine-Tuning. The rise of LLMs has positioned them as the most promising key
to providing robust support for the development of LLM-centered AI agents [1, 39, 40, 41] . Despite
the vast interest in LLM-powered agents, the construction of agents through fine-tuning has received
limited attention. Recently, more works have emphasized endowing open-source LLMs with agent
capabilities through fine-tuning [19, 20, 21, 42]. However, these works suffer from the need for a
large amount of annotated data and trajectory annotation. Our approach enables the RAR-Agent to
synthesize trajectories and continually learn knowledge from few human feedback, without relying
on fine-tuning.

Retrieval-augmented Generation (RAG). RAG is a cost-effective way for LLMs to interact with the
external world [43, 24] . RAG is widely applied to downstream tasks, such as code generation[44, 45,
46], question answering [47, 48], and creative writing [49, 50] .

RAG-enhanced Reasoning. Some recent works also leverage RAG [18] to enhance the performance
of LLM-based reasoning. For example, IRGR [51] performs iteratively retrieval to search for suitable
premises for multi-hop QA, GEEK [52] can choose to query external knowledge or perform a single
logical reasoning step in long-horizon generation tasks, and ITRG [53] performs retrieval based
on the last-step generation. However, these previous RAG methods simply adopt a single query
to retrieve the knowledge for question-answering tasks [53, 33] , while our proposed RAR-Agent
performs retrieval using reasoning trajectory in an autoregressive way, which significantly improves
the performance of open-world reasoning and decision-making in various tasks as demonstrated in
Figure 2.

5 Conclusion and Future Work

In this paper, we introduce RAR-Agent, a retrieval-augmented reflection agent learning framework
that synergizes retrieval augmentation and continual learning, without relying on large-scale man-
ually annotated data or closed-source model-generated planning trajectory data. We aim to tackle
the challenges of long-horizon reasoning in open-world settings and cost-effective scenario task
adaptation. Our key idea revolves around augmenting the reasoning process of Large Language
Models (LLMs) through the incorporation of retrieved prior knowledge, while leveraging the inherent
powerful reasoning capabilities of LLMs.
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