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ABSTRACT

Bayesian filtering approximates the true underlying behavior of a time-varying
system by inverting an explicit generative model to convert noisy measurements
into state estimates. This process typically requires either storage, inversion, and
multiplication of large matrices or Monte Carlo estimation, neither of which are
practical in high-dimensional state spaces such as the weight spaces of artificial
neural networks. Here, we frame the standard Bayesian filtering problem as op-
timization over a time-varying objective. Instead of maintaining matrices for the
filtering equations or simulating particles, we specify an optimizer that defines
the Bayesian filter implicitly. In the linear-Gaussian setting, we show that every
Kalman filter has an equivalent formulation using K steps of gradient descent. In
the nonlinear setting, our experiments demonstrate that our framework results in
filters that are effective, robust, and scalable to high-dimensional systems, compar-
ing well against the standard toolbox of Bayesian filtering solutions. We suggest
that it is easier to fine-tune an optimizer than it is to specify the correct filter-
ing equations, making our framework an attractive option for high-dimensional
filtering problems.

1 INTRODUCTION

Time-varying systems are ubiquitous in science, engineering, and machine learning. Consider a
multielectrode array receiving raw voltage signals from thousands of neurons during a visual per-
ception task. The goal is to infer some underlying neural state that is not directly observable, such
that we can draw connections between neural activity and visual perception, but raw voltage signals
are a sparse representation of neural activity that is shrouded in noise. To confound the problem
further, the underlying neural state changes throughout time in both expected and unexpected ways.
This problem, and most time-varying prediction problems, can be formalized as a probablistic state
space model where latent variables evolve over time and emit observations (Simon, 2006). One
solution to such a problem is to apply a Bayesian filter, a type of probabilistic model that can infer
the values of latent variables from observations.

Typically, Bayesian filters require matrix storage, inversion, and multiplication or the storage of
particles, which are samples from the filtering distribution at every time step. In large state and
observation spaces, the computational costs associated with both of these approaches render them
impractical (Raitoharju & Piché, 2019). In addition, since most time-varying systems do not have
ground-truth states available, accurately estimating the process noise – the variability of the under-
lying latent variables – is nearly impossible. This problem is exacerbated in continuous systems
where we need to perform numerical integration, which introduces additional uncertainty. Existing
Bayesian filters are sensitive to process noise and dynamics misspecification, making them hard to
use in these settings (Mehra, 1972). Most filters are highly structured, requiring explicit specifica-
tion of distributional assumptions. To be usable in practical settings, we need a system that remains
effective when scaled to large state spaces (being applicable to weather systems, neural recording, or
even modeling the evolving weights of an artificial neural network) and is robust to misspecification
of the process noise and dynamics (which is almost guaranteed).
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The practical problems that arise when training deep neural networks (DNNs) are not dissimilar
from those that make Bayesian filters difficult to work with: high-dimensional state spaces, nonlin-
earities, and nonconvexity. These pressures have made way for adaptive optimizers (Duchi et al.,
2011; Tieleman & Hinton, 2012; Zeiler, 2012; Kingma & Ba, 2015) that offer a largely prescriptive
solution for training DNNs, succeeding many previous approaches to optimizing neural networks
that include applying Bayesian filtering equations (Haykin, 2004). To efficiently and effectively
overcome the difficulties of training DNNs (Glorot & Bengio, 2010), modern optimizers invariably
make use of (i) the empirical Fisher information to crudely incorporate curvature at very little com-
putational cost (Martens, 2020) and (ii) momentum to increase stability and the rate of convergence
(Sutskever et al., 2013). We show that these same methods can be applied to Bayesian filtering in an
extremely practical and theoretically-motivated framework.

In the following sections, we cast Bayesian filtering as optimization over a time-varying objective
and show that much of the information that is explicitly defined by structured filters can be implic-
itly internalized by optimizer hyperparameters. In doing so, we can solve many of the scalability
challenges associated with Bayesian filters and make Bayesian filtering easier to implement, espe-
cially for the well-versed deep learning practitioner. We show that our proposed method, Implicit
Maximum a Posteriori (IMAP) Filtering, is robust to misspecification and matches or outperforms
classical filters on baseline tasks. We also show that it naturally scales up to high-dimensional prob-
lems such as adapting the weights of a convolutional neural network, and that it performs particularly
well in this setting. We argue that it is easier to specify an optimizer than it is to correctly identify
classical filtering equations, and our results illustrate the benefits of this implicit filtering approach.

2 BACKGROUND

We begin with an introduction to the filtering problem. Assume a discrete-time state space model
with a Markov process over the states x0:T , x0,x1, . . . ,xT and a sequence of observations
y1:T , y1,y2, . . . ,yT which are conditionally independent given the corresponding state. The
joint probability of the states and observations is

p(x0:T ,y1:T ) = p(x0)
TY

t=1

p(xt|xt�1)p(yt|xt), (1)

where p(x0) is the initial distribution, p(xt|xt�1) is the transition distribution, and p(yt|xt) is the
likelihood. The posterior over the joint state x1:t of the system given all of the observations up until
the current time y1:t is given by:

p(x1:t|y1:t) =

Z
p(x0)

tY

s=1

p(xs|xs�1)p(ys|xs)

p(ys|y1:s�1)
dx0, (2)

where p(y1|y1:0) , p(y1). In sequential estimation, we are often only interested in the marginal
of the current state p(xt|y1:t), known as the filtering distribution. We normally want to compute or
approximate this distribution such that the requisite computational resources do not depend on the
length of the sequence. This can be accomplished by first initializing p(x0|y1:0) , p(x0), and then
forming a predictive distribution via the Chapman-Kolmogorov equation,

p(xt|y1:t�1) =

Z
p(xt|xt�1)p(xt�1|y1:t�1)dxt�1, (3)

and updating that predictive distribution, in light of measurements yt, by a simple application of
Bayes’ rule for every time step t = 1, . . . , T ,

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t�1)

p(yt|y1:t�1)
. (4)

2.1 KALMAN FILTER FOR LINEAR-GAUSSIAN SYSTEMS

When the transition distribution and likelihood are linear and Gaussian, we can compute optimal
estimates in closed-form via the Kalman filtering equations (Kalman, 1960). Assume the following
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state space model:
p(x0) = N (x0 | µ0,⌃0), (5)

p(xt | xt�1) = N (xt | Ft�1xt�1,Qt�1), (6)
p(yt | xt) = N (yt | Htxt,Rt), (7)

where Ft�1 and Ht are the transition and observation matrices, respectively, with process noise
Qt�1 and measurement noise Rt. The Kalman filter propagates the filtering distribution from the
previous timestep p(xt�1 | y1:t�1) = N (xt�1 | µt�1,⌃t�1) with the predict step,

p(xt|y1:t�1) = N (xt|µ
�
t ,⌃

�
t ), where µ

�
t = Ft�1µt�1,⌃

�
t = Ft�1⌃t�1F

>
t�1 +Qt�1, (8)

and then updates that distribution as follows:

p(xt|y1:t) = N (xt | µt,⌃t), where µt = µ
�
t +Ktvt,⌃t =

⇥
(⌃�

t )
�1 +H

>
t R

�1
t Ht

⇤�1
, (9)

vt = yt �Htµ
�
t is the prediction error, and Kt = ⌃

�
t H

>(Ht⌃
�
t H

>
t +Rt)�1 is known as the

Kalman gain. We discuss further details in Appendix A.1.1.

2.2 APPROXIMATE BAYESIAN FILTERING FOR NONLINEAR SYSTEMS

In real-world systems, guarantees for optimality break down due to inherent nonlinearities and their
(at best) approximate Gaussianity. The broader Bayesian filtering community has been motivated
by developing methods that can operate in these more realistic settings (Särkkä & Svensson, 2023).
Classical solutions include the extended Kalman filter (EKF) and iterated extended Kalman filter
(IEKF) that make use of Jacobian matrices to linearize both the dynamics and observation mod-
els, and subsequently use the Kalman filtering equations (Gelb, 1974). These are arguably the
most popular filtering implementations but only work well in mildly nonlinear systems on short
timescales (Julier & Uhlmann, 2004). The unscented Kalman filter (UKF) (Julier et al., 1995; Julier
& Uhlmann, 2004), like the particle filter (PF) (Doucet et al., 2001), is better equipped to handle
highly nonlinear systems but both of these methods suffer from the curse of dimensionality and sen-
sitivity to misspecified dynamics. Nonetheless, EKFs, IEKFs, UKFs, and PFs are the most promi-
nent filtering solutions found throughout industry and research, leveraging expensive linearization
techniques or particle approximations to treat nonlinearities. We provide complete details for these
classical approaches to nonlinear filtering in Appendix A.1.

3 BAYESIAN FILTERING AS OPTIMIZATION

The update step (4) in a Bayesian filter is a straightforward application of Bayes’ rule with the
predictive distribution p(xt|y1:t�1) playing the role of the prior. In linear-Gaussian systems, this
posterior distribution is available in closed-form (9) but one could alternatively achieve an equivalent
result via gradient descent due to its connection to regularized least-squares (Santos, 1996). In this
section, we describe this connection and how an optimization procedure can implicitly define a
prior distribution, a kind of dual formulation of Bayes’ theorem (see Figure 1). Such a formulation
reduces Bayesian inference to point estimates, but this can be more practical for nonlinear systems
whose filtering distributions p(xt|y1:t) are not analytically tractable in general.

3.1 FINDING THE POSTERIOR MODE VIA TRUNCATED GRADIENT DESCENT

The mode of the filtering distribution can be expressed as the minimizer of the negative log posterior:
µt = argmin

xt

¯̀
t(xt), where ¯̀

t(xt) = � log p(yt|xt)� log p(xt|y1:t�1). (10)

In the case of the linear-Gaussian system, the regularized loss function is (up to an additive constant):

¯̀
t(xt) =

1

2
kyt �Htxtk

2
Rt

+
1

2
kxt � µ

�
t k

2
⌃�

t

., (11)

where kzk2P , z
>
P

�1
z. Santos (1996) observed that the minimizer of a regularized least squares

problem as in (11) can be recovered by performing truncated gradient descent on the likelihood term
alone. Specifically, let µ(0)

t = µ
�
t and define the recursion

µ
(k+1)
t  µ

(k)
t +MtH

>
t R

�1
t (yt �Htµ

(k)
t ), for k = 1, . . . ,K � 1. (12)
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Figure 1: Explicit Bayesian inference (left) uses Bayes’ rule to balance information from the like-
lihood and explicitly defined priors. x⇤

i are MAP estimates of three different posteriors, respective
to the priors shown in blue, yellow, and purple. Implicit Bayesian inference (right) defines an opti-
mization procedure that reverses the directionality of Bayes’ rule by defining a procedure to estimate
the posterior mode, which corresponds to an implicitly defined prior. Three trajectories (x(0)

1 , . . .),
(x(0)

2 , . . .), (x(0)
3 , . . .) of gradient descent are shown with a fixed learning rate over 3, 4, and 5 steps,

respectively. Taking the solutions produced by gradient descent as MAP estimates, we can use the
corresponding gradient steps to determine the prior distributions that they implied (Santos, 1996).

Let Bt simultaneously diagonalize (⌃�
t )

�1 and H
>
t R

�1
t Ht such that B>

t (⌃
�
t )

�1
Bt = I and

B
>
t H

>
t R

�1
t HtBt = diag(r1, . . . , rn). Such a matrix Bt is guaranteed to exist since both (⌃�

t )
�1

and H
>
t R

�1
t Ht are symmetric and (⌃�

t )
�1 is positive definite (Golub & Van Loan, 2013, Sec. 8.7).

The columns of Bt are the generalized eigenvectors of H>
t R

�1
t Ht with respect to (⌃�

t )
�1 and

r1, . . . , rn are the corresponding eigenvalues. By Theorem 3.1 of Santos (1996) µ(K)
t defined in (12)

is the minimizer of (11) when Mt = Btdiag(�1, . . . ,�n)B>
t , where �i = (1/ri)(1�(1+ri)�1/K)

if ri 6= 0 and �i = 1 otherwise. This suggests an optimization wherein µt is computed via K steps
of gradient descent on the likelihood, where Mt is the learning rate matrix induced by ⌃

�
t .

3.2 TRUNCATED GRADIENT DESCENT AS PRIOR SPECIFICATION

Instead of computing the learning rate matrix Mt for a given ⌃
�
t , consider specifying Mt directly.

For example, Mt = ⇢I recovers gradient descent on the likelihood with learning rate ⇢. Let Ct be
chosen such that C>

t M
�1
t Ct = I and C

>
t H

>
t R

�1
t HtCt = diag(s1, . . . , sn). As for Bt above,

such a Ct will exist since both M
�1
t and H

>
t R

�1
t Ht are symmetric and M

�1
t is positive definite.

Then, by Theorem 3.2 of Santos (1996), µ(K)
t as defined by (12) is the minimizer of (11) where

⌃
�
t = Ctdiag(�1, . . . ,�n)C>

t , where �i = (1/si)((1�si)�K
�1) if si 6= 0 and �i = 1 otherwise.

Thus, in a linear-Gaussian system, specifying the learning rate matrix Mt implicitly defines an
equivalent predictive covariance ⌃

�
t and truncated gradient descent on the likelihood recovers the

mode of the filtering distribution.

3.3 ALTERNATIVE INTERPRETATION AS VARIATIONAL INFERENCE

The procedure shown above can be alternatively motivated by positing a variational distribution
qt(xt) = N (xt | mt,Mt) with fixed covariance Mt. We show in Appendix A.2 that the truncated
optimization of (12) is equivalent to natural gradient ascent on the ELBO. The choice of Mt then
specifies the covariance of the variational approximate to the filtering distribution, the learning rate
matrix of the optimization, and the effective prior covariance. More generally, Khan & Rue (2023)
demonstrates that many popular adaptive optimization techniques such as RMSprop and Adam can
be interpreted as performing variational inference with different choices of qt(xt). In this light, the
choice of the optimization algorithm when combined with k steps of optimization implicitly defines
a corresponding prior distribution. In the next section, we propose a simple yet effective filtering
algorithm based on this interpretation of the update step.
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4 IMPLICIT MAXIMUM A POSTERIORI FILTERING

In this section, we state the Bayesian filtering steps of our approach, which (partially) optimizes
the likelihood p(yt|xt) at every time step. The filtering distribution at each time t is represented
by its mean estimate µ̂t. In addition to the likelihood, we also assume knowledge of a sequence
of transition functions ft(xt�1) , E[xt|xt�1]. This is less restrictive than fully specifying the
transition distribution, as done in standard Bayesian filtering. The overall algorithm for the Implicit
MAP Filter is summarized in Algorithm 1.

Algorithm 1 Implicit MAP Filter
Input: Timesteps T , initial state estimate µ̂0,

sequence of loss functions `1, . . . , `T where
exp(�`t(x)) / p(yt | xt = x), sequence of
transition functions f1, . . . , fT where ft(x) =
E[xt|xt�1 = x], optimizer M, number of opti-
mization steps K.

Output: Filtering state estimates µ̂1, . . . , µ̂T .
for t = 1 to T do

µ
�
t  ft(µ̂t�1)

µ̂t  IMAP-UPDATE(µ�
t , `t,M,K)

end for

Algorithm 2 Update step of Implicit MAP
Filter: IMAP-UPDATE(µ�, `,M,K)

Input: Initialization µ
�, loss function `, op-

timizer M, number of optimization steps
K.

Output: State estimate µ̂.
m

(0)
 µ

�

for k = 0 to K � 1 do

g
(k)
 rx`(x)|x=m(k)

m
(k+1)

 m
(k) +M(g(k);g(0:k�1))

end for

µ̂ m
(K)

4.1 PREDICT STEP

The predictive distribution for the Implicit MAP Filter is obtained by applying the first-order delta
method (Dorfman, 1938; Ver Hoef, 2012) to the Chapman-Kolmogorov equation (3):

p(xt | y1:t�1) =

Z
p(xt | xt�1)p(xt�1 | y1:t�1)dxt�1 ⇡ p(xt | xt�1 = µt�1). (13)

The mean of the predictive distribution is thus obtained by applying the transition function to the
previous state estimate: E[xt|y1:t�1] ⇡ ft(µt�1). This negates the need for matrix-matrix products
as is commonly required for the predict step.

4.2 UPDATE STEP

The update step is simply the application of optimizer M for K iterations, considering only an ini-
tialization µ

�
t , observation yt, and loss function `t. Here, M takes as input the history of gradients

and outputs a vector to be added to the current state. This formulation captures many popular op-
timizers, including SGD, RMSProp, and Adam. Our algorithm for the update step of the Implicit
MAP Filter is provided in Algorithm 2.

When choosing M and K, the goal is to specify an inductive bias that corresponds to the true
filtering equations for the system. Choices such as increasing K and the learning rate increase
the Kalman gain (De Freitas et al., 2000). The nature of each optimization step, as well as K,
defines the shape and entropy of the filtering distribution assumed (Duvenaud et al., 2016). Changing
the initialization µ

�
t given by the predict step modifies the location of the implicitly defined prior

distribution within the latent space. This concert of initialization µ
�
t , optimizer M, and number of

iterations K produces a state estimate µ̂t that maximizes the posterior with respect to an implicitly
defined prior. The aim when specifying these quantities is to define the correct posterior.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to assess whether the most popular adaptive optimizers can be used
to design effective, robust, and scalable Bayesian filters. We begin with a simple low-dimensional
system with nonlinear dynamics to establish that our approach is competitive with standard filters.
Then, we turn to a more challenging system that has been used as a benchmark for these algorithms,
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Figure 2: Toy nonlinear system (Qt�1 = 3,Rt = 2) for a single random trajectory (left) and the
respective filter estimates (right). Implicit MAP Filter (MAP) shown uses the Adam optimizer with
50 steps at learning rate ⌘ = 0.1 and exponential decay rates �1,�2 = 0.1.

demonstrating our advantages. Finally, we show how Implicit MAP Filtering can be effective in
high-dimensional settings, such as adapting the weight space of a convolutional neural network.

5.1 TOY NONLINEAR SYSTEM

The equivalence between Kalman filtering and K steps of gradient descent elucidated in Section 3.2
suggests that the proposed framework should produce reliable estimates in approximately linear-
Gaussian systems. To better understand filtering amidst nonlinearites, we first consider the one-
dimensional example used in Doucet et al. (2001); Gordon et al. (1993); Kitagawa (1996), originally
proposed by Netto et al. (1978), which admits highly nonlinear periodic behavior (see Figure 2):

xt =
1

2
xt�1 + 25

xt�1

1 + x
2
t�1

+ 8 cos (1.2t�t) + qt�1, yt =
x
2
t

20
+ rt, (14)

where x0 ⇠ N (0, 1), qt�1 ⇠ N (0,Qt�1), rt ⇠ N (0,Rt), and �t = 0.1. We simulate ground
truth trajectories and their measurements for 200 time steps and evaluate performance using the root
mean square errors (RMSEs) with respect to the simulated true trajectories for every combination of
Qt�1 2 {1, 3, 5} and Rt 2 {1, 2, 3}. The means and 95% confidence intervals of the RMSEs are
computed from 100 independent Monte Carlo (MC) simulations. For each optimizer, we report the
best hyperparameters found by a grid search using 5 separate MC simulations (see Appendix A.4).

Table 1 shows the results for Rt = 2 and Qt�1 = 1, 3, 5. There exist RMSprop and Adam hy-
perparameters that are competitive with the unscented Kalman filter (UKF) under low-to-medium
process noise and better under high process noise. Both the extended Kalman filter (EKF) and iter-
ated extended Kalman filter (IEKF) have the tendency to diverge in this system. The particle filter
(PF) performs the best universally, since 1000 particles can capture uni-modal and bi-modal filtering
distributions in one dimension quite well. Nonetheless, our Implicit MAP Filter tends to produce
estimates that match the modes of the particle filter (see Appendix A.5.1) only struggling on some
parts of the sequence with rapid changes in the state. We describe the implementation details for
these baseline methods in Appendix A.1 and show similar results for Rt = 1, 3 in Appendix A.5.1.

The Implicit MAP Filter does not explicitly use Qt�1 or Rt but internalizes both of these terms by
the choice of optimizer. In fact, our Implicit MAP Filter can always arbitrarily set Rt = I , reducing
the objective to the mean squared error loss (see Appendix A.3 for justification). Compared to
methods that similarly use gradient information (EKF, IEKF), our Implicit MAP Filters with Adam
and RMSprop see a significant performance boost despite the challenge of a non-convex likelihood.
We can attribute this boost to the use of momentum (see Appendix A.5.1). In contrast to methods that
use sigma points (UKF) or particles (PF), we see competitive performance while avoiding covariance
calculations or maintaining many copies of the state.
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Table 1: RMSEs on the toy nonlinear system (Rt = 2). Results show the average RMSE over 100
MC simulations with 95% confidence intervals.

Method RMSE (Qt�1 = 1) RMSE (Qt�1 = 3) RMSE (Qt�1 = 5)

EKF 24.619± 3.988 34.909± 2.732 45.646± 5.629
IEKF (K = 5) 9.277± 0.652 15.321± 0.493 17.898± 0.559

IMAP (Adadelta)* 32.008± 8.650 23.152± 3.973 26.462± 5.058
IMAP (Gradient Descent)* 5.589± 0.219 7.966± 0.180 10.130± 0.196
IMAP (Adagrad)* 5.569± 0.215 6.549± 0.223 9.264± 0.227
IMAP (RMSprop)* 5.304± 0.256 6.000± 0.227 8.527± 0.441
IMAP (Adam)* 5.699± 0.190 5.842± 0.231 7.964± 0.334

UKF 4.550± 0.242 5.762± 0.270 9.555± 0.400

PF (n = 1000) 1.565± 0.047 2.800± 0.108 4.518± 0.160

*Methods where the reported hyperparameters were found via grid search (see Appendix A.4).

5.2 STOCHASTIC LORENZ ATTRACTOR

In the previous section, we show that our approach is competitive with a particle filter (PF) and the
unscented Kalman filter (UKF) in a system that is relatively easy for these methods. Now, we eval-
uate a mildly nonlinear chaotic system that is more complicated because the stochastic differential
equation (SDE) is unreliable for accurately predicting the next state (Evensen, 2009).

Consider a stochastic Lorenz ’63 system (Lorenz, 1963; Li et al., 2020; Zhao & Särkkä, 2021),

d

 
x1,t

x2,t

x3,t

!
=

 
�(x2,t � x1,t)

x1,t(⇢� x3,t)� x2,t

x1,t · x2,t � �x3,t

!
dt+ ↵dWt, yt =

 
x1,t

x2,t

x3,t

!
+ rt, (15)

where x0 ⇠ N (µ0, I3) for µ0 = (10, 10, 10), rt ⇠ N (0, 2 · I3), � = 10, ⇢ = 28, � = 8
3 , ↵ = 10,

and Wt is a three-dimensional Wiener process with unit spectral density. Similar to Zhao & Särkkä
(2021), we simulate numerical ground truth trajectories and their measurements uniformly for 200
time steps with dt = 0.02 using 10000 Euler-Maruyama integration steps between each measure-
ment. We compute RMSEs and 95% confidence intervals from 100 independent MC simulations
and report the best hyperparameters found by a separate grid search (see Appendix A.4).

We report three experimental configurations where we only vary the method used for numerical inte-
gration: 4th order Runge-Kutta (RK4) method, Euler’s method (Euler), and no integration, assuming
a Gaussian random walk (GRW). These methods are presented in decreasing order of accuracy with
respect to the aforementioned Euler-Maruyama integration steps. The objective is to assess robust-
ness to dynamics misspecification, which is an unavoidable reality wherever numerical integration is
required. Unlike the toy nonlinear system, where the true process noise covariance is known exactly,
numerical integration introduces additional unmodeled noise to the process. This presents a realistic
challenge that can significantly distort estimates (Huang et al., 2017; Mehra, 1972).

Table 2 shows the results of these experiments and the number of values stored to describe the
state (N ). For fair comparison, we show the EKF and UKF with Qt�1 optimized by grid search
(see Appendix A.4.1) in addition to the EKF and UKF with the Qt�1 specified by the system.
Performing such a search for the PF is impractical due to the cost of numerically integrating each
particle. The Implicit MAP Filter with gradient descent and the EKF with optimized Qt�1 show
the best performance. Both are relatively robust to worsening estimates of the SDE. The EKF with
optimized Qt�1 is close to optimal due to the convexity of this system.

The performance of the Implicit MAP Filter and the optimized EKF are statistically equivalent
but with several key differences. Our approach only computes a point estimate over a minimal
state space representation, which decreases space complexity and avoids expensive matrix-matrix
computations. Classical filters such as the EKF are difficult to tune (Chen et al., 2018) whereas
simple adaptive optimizers, like Adam, are fixed to 3 or 4 hyperparameters regardless of the state
space and are faster to evaluate, making search quick and effective. The EKF is not well suited for
nonconvexities, as shown in Section 5.1, whereas the Implicit MAP Filter overcomes this pitfall by
its choice of optimizer.
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Table 2: RMSEs on the stochastic Lorenz attractor (↵ = 10). Results show the average RMSE over
100 MC simulations with 95% confidence intervals. RK4 indicates 4th order Runge-Kutta method.
Euler indicates Euler’s method. GRW indicates a Gaussian random walk. N is the number of values
stored to describe the state space (D = 3).

Method RMSE (RK4) RMSE (Euler) RMSE (GRW) N

EKF (original Qt�1) 0.890± 0.094 2.308± 0.155 3.057± 0.037 D +D2

EKF (optimized Qt�1)* 0.692± 0.014 0.952± 0.011 1.561± 0.010 D +D2

IEKF (K = 5) 0.890± 0.094 2.308± 0.158 3.057± 0.038 D +D2

IMAP (Adadelta)* 6.034± 0.634 7.649± 0.254 10.754± 0.279 D

IMAP (Adam)* 0.982± 0.135 1.153± 0.014 1.885± 0.010 D

IMAP (Adagrad)* 0.907± 0.144 1.096± 0.017 1.765± 0.013 D

IMAP (RMSprop)* 0.881± 0.114 1.081± 0.015 1.757± 0.015 D

IMAP (Gradient Descent)* 0.701± 0.018 0.960± 0.012 1.561± 0.010 D

UKF (original Qt�1) 2.742± 0.059 2.856± 0.066 5.628± 0.067 D +D2

UKF (optimized Qt�1)* 1.402± 0.010 1.417± 0.011 1.736± 0.013 D +D2

PF (n = 1000) 1.568± 0.027 1.725± 0.031 14.346± 0.365 nD

*Methods where the reported hyperparameters were found via grid search (see Appendix A.4).

Accommodating worsening dynamics estimates is straightforward by either increasing the number
of steps or learning rate, each of which corresponds to a weaker prior. In Table 2, our Implicit
MAP Filter with gradient descent uses 3 gradient steps with learning rate ⌘ = 0.05 with RK4, 3
steps with ⌘ = 0.1 for the Euler case, and 10 steps with ⌘ = 0.1 for the GRW case. However,
the same optimizer settings generally show robustness from RK4 to Euler (see Appendix A.5.2).
When visualizing trajectories (see Appendix A.5.2), our approach does a remarkable job of fitting
this system despite every initialization producing a vastly different filtering problem. We report
additional results for this system using ↵ = 1, 5, 20 in Appendix A.5.2.

5.3 YEARBOOK

Suppose we have a pre-trained neural network that performs inference in a time-varying environ-
ment. This could be a recommender system that must evolve with changing seasons or a facial
recognition system that must be robust to temporal shift. Let us assume that data curation is expen-
sive, so we are only given a small number of examples at every time step for adaptation. We can
formalize this as the following state space model (Haykin, 2004):

wt = f(xt�1) + qt�1, yt = h(wt,Xt) + rt (16)

where wt is the network’s ideal weight parameterization, qt�1 is some noise vector that corrupts
estimates from the transition function f , yt is the network’s desired response vector after applying
the transformation h parameterized by wt with feature matrix Xt, and rt is the measurement noise.

In this final experiment, we design a time-varying prediction task as described above using the
Yearbook dataset (Ginosar et al., 2015), which contains 37,921 frontal-facing American high school
yearbook photos that capture changes in fashion and population demographics from 1905 - 2013. We
use the data from 1905-1930 to pre-train a 4 layer convolutional neural network (CNN) to perform
a binary gender classification task. From 1931-2010, we adapt this weight initialization at each
year sequentially using five simple approaches: static weights, direct fit, variational Kalman filtering
(VKF), particle filtering (PF), and our Implicit MAP filtering. 32 randomly chosen training examples
are available at every time step and a held-out test set of roughly 100 images per time step is used
validate the approaches (see Appendix A.5.3 for complete details).

This system is complicated by (1) a state space of 28,193 parameters, (2) unknown weight-space
dynamics equations, and (3) unknown process noise and measurement noise covariances. To un-
derstand our capacity for modeling such a system given a VKF, PF, and Implicit MAP Filter, we
test 5 hyperparameter configurations of each method (see Appendix A.5.3). We report classification
accuracies for all five methods in Table 3, grouped into two 40 year blocks. Static weights yields the
worst performance due to the problem being fundamentally non-stationary. On the other extreme,
attempting to exactly fit the data at each time step severely overfits, which proves to be better but
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Table 3: Classification accuracy with 95% confidence intervals over two 40 year blocks in the year-
book dataset.

Method % Correct (Validation Years) % Correct (Test Years)

Static Weights 82.416± 2.270 60.897± 1.615
Particle Filter 86.430± 1.790 66.715± 2.390
Variational Kalman Filter 93.087± 1.038 79.967± 2.204
Direct Fit 94.416± 0.924 80.449± 1.845
Implicit MAP Filter 94.973± 0.837 84.747± 2.030

still suboptimal. The VKF, PF, and Implicit MAP Filter attempt to internalize the system’s true state
space equations via a small grid search, but this is clearly difficult to do exactly in such a state space.
Our implicit approach is less sensitive to this inevitable misspecification. The Implicit MAP Filter
with 50 steps of Adam optimization not only showed the best performance, but also highly desirable
space and time complexity. In cases where we do not start with a pre-trained network, we can simply
fit the first timestep to convergence, which is equivalent to an uninformative prior on the initial state.

6 RELATED WORK

Bayesian filtering, optimization, and neural networks share a long history that dates back to early at-
tempts of using the extended Kalman filter (EKF) algorithm to train multilayer perceptrons (Singhal
& Wu, 1988). Since then, Kalman filter theory for the training and use of neural networks saw rich
development (Haykin, 2004), but fell out of fashion as gradient descent proved to be the more effi-
cient and scalable option for the training of deep neural networks (Bengio et al., 2017). Ruck et al.
(1992) realized a connection between optimization and Bayesian filtering, showing that the stan-
dard backpropagation algorithm can be seen as a degenerate form of the EKF. Several works have
since connected the EKF and the Gauss-Newton method (Bertsekas, 1996; Bell & Cathey, 1993) and
showed that the EKF can be seen as a single iteration of Newton’s method for a specific quadratic
form (Humpherys et al., 2012). Ollivier (2018; 2019) proved equivalence between online natural
gradient descent and the EKF when the dynamics are stationary or the process noise is proportional
to the posterior covariance over states. Aitchison (2020) used the Bayesian filtering formalism to
derive adaptive optimizers like Adam and RMSprop. De Freitas et al. (2000) showed that the process
noise and measurement noise can be viewed as adaptive per-parameter learning rates. In the present
work, we establish similar connections between optimization and Bayesian filtering but focus on
optimization as a tool for Bayesian filtering rather than Bayesian filtering as a tool for optimization.

Several works have similarly used popular optimization methods to address challenges with clas-
sical Bayesian filters. Auvinen et al. (2010) and Bardsley et al. (2013) used limited memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) and conjugate gradients, respectively, to derive vari-
ational Kalman filters with low storage covariance, and inverse covariance, approximations. These
methods scale up classical filters, like low-rank extended Kalman filters Chang et al. (2023), rather
than providing a general filtering approach that is painless to implement. Chen (2003) describes
particle filters that move every particle down their respective gradient prior to sampling from the
proposal distribution. This is reminiscent of our approach in that it uses gradients, but differs in that
it maintains particles, performs sampling, and again falls within the class of explicit filters.

7 CONCLUSION

We have shown that Bayesian filtering can be considered as optimization over a time-varying ob-
jective and that such a perspective opens the door to effective, robust, and scalable filters built from
adaptive optimizers. This framework, however, comes at the cost of interoperability and uncertainty
estimates, which limits use in risk-sensitive environments or situations where the filtering equations
themselves are used for analysis. Nonetheless, our proposed Implicit MAP Filtering approach is an
attractive option for the performance-driven practitioner.
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