
Under review as a conference paper at ICLR 2024

BOOSTING TEMPORAL GRAPH LEARNING
FROM GLOBAL AND LOCAL PERSPECTIVES

Anonymous authors
Paper under double-blind review

ABSTRACT

Extensive research has been dedicated to learning on temporal graphs due to its
wide range of applications. Some works intuitively merge GNNs and RNNs to
capture structural and temporal information, while recent works propose to ag-
gregate information from neighbor nodes in local subgraphs based on message
passing or random walk. These methods produce node embeddings from a global
or local perspective and ignore the complementarity between them, thus facing
limitations in capturing complex and entangled dynamic patterns when applied to
diverse datasets or evaluated by more challenging evaluation protocols. To address
the challenges, we propose the Global and Local Embedding Network (GLEN)
for effective and efficient temporal graph representation learning. Specifically,
GLEN dynamically generates embeddings for graph nodes by considering both
global and local perspectives. Then, global and local embeddings are elegantly
combined by a cross-perspective fusion module to extract high-order semantic re-
lations in graphs. We evaluate GLEN on multiple real-world datasets and apply
several negative sampling strategies. Sufficient experimental results demonstrate
that GLEN outperforms other baselines in both link prediction and dynamic node
classification tasks.

1 INTRODUCTION

Graph representation learning (Hamilton et al., 2017b; Battaglia et al., 2018) has attracted tremen-
dous research interest in both academic (Perozzi et al., 2014; Tang et al., 2015) and industrial (Wang
et al., 2018; Rossi et al., 2019) communities owing to its powerful capabilities of mining and discov-
ering abundant information in the non-Euclidean space (Asif et al., 2021; Wu et al., 2020). However,
general methods consider the graphs to be static. Nothing is eternal except change itself. In the real
world, most graph systems are usually dynamic and constantly change over time, making temporal
graphs ubiquitous (Longa et al., 2023; Ma et al., 2020). In such temporal graphs, the topologies of
networks evolve as nodes and edges appear or disappear across different timestamps, along with the
attributes of nodes and edges changing dynamically (Zhu et al., 2022; Du et al., 2018). Learning on
temporal graphs has received substantial research attention (Kazemi et al., 2020) since the ability to
process dynamic networks can be useful for a wider range of scenarios like recommender systems
(Wang et al., 2021a; Zhang et al., 2021), biology and medicine (Loo et al., 2023; Lim et al., 2019),
traffic forecasting (Zhao et al., 2019), pandemic forecasting (Panagopoulos et al., 2021), etc.

There has been a surge of solutions for temporal graph learning (Souza et al., 2022; Wang et al.,
2021c; Rossi et al., 2020). Many works sophisticatedly combine graph neural networks (GNNs)
(Kipf & Welling, 2016; Velickovic et al., 2017) and recurrent neural networks (RNNs) (Medsker
& Jain, 1999) to obtain structural and temporal information. These GNN-RNN methods take the
entire graph at each time step as the input of GNNs and dynamically update the weight parame-
ters of GNNs (Pareja et al., 2020; Chen & Hao, 2023) or the node features (Liu et al., 2020; Chen
et al., 2022) through RNNs. Whereas temporal graph networks (TGNs) (Souza et al., 2022) gen-
erate dynamic node representations through aggregating temporal subgraphs triggered by events.
Such approaches utilize memory modules with message passing mechanism (MP-TGNs) (Xu et al.,
2020; Rossi et al., 2020) or aggregate temporal walks (WA-TGNs) (Wang et al., 2021c; Bastas et al.,
2019b). GNN-RNN methods model temporal graphs from a global perspective, but lack the infor-
mation of micro variation. TGNs obtain the features of each node by aggregating information from
a limited neighboring region without perceptions of global structural dependencies. The unidimen-

1

Under review as a conference paper at ICLR 2024

A

B

C
D

𝑒𝐴𝐵(𝑡1)

𝑒𝐴𝐶(𝑡1)

𝑒𝐶𝐷 (𝑡2)

𝑡3?

(b)GNN-RNN Methods

(c)TGNs Methods

(a)Temporal Graph

GNN RNN

𝑡1 𝑡2

Message Passing

MP-TGNs

WA-TGNs
walk1

walk2

Sample a certain

number of

neighbor nodes

Retain all events

of each time step
Temporal graph

learning methods

Preservation of neighborhood information
when generating node embeddings

Modeling of temporal information
Integrity of

graph structure

Enables all edges
to be utilized

Possible to discard
noisy edges

Possible to discard
useful edges

Form Granularity

Global
graph

Local
subgraphRNNs

Time
Encoding

Coarse Fine

Global
Perspective

GNN-RNN
methods ✓ ✓ ✓ ✓

Local
Perspective

MP-TGNs ✓ ✓ ✓ ✓ ✓

WA-TGNs ✓ ✓ ✓ ✓ ✓

Figure 1: In the temporal graph example (a), edges eAB and eAC occur at t1, while eCD occurs
at t2. Different methods (b) and (c) produce node embeddings in different ways and have different
properties. Node embeddings are used to capture the correlation between nodes, so as to make
predictions (e.g., whether nodes B and D will interact at t3).

sionality of the aforementioned methods could result in less accurate inferences (Lu et al., 2019).
In this paper, we present that modeling temporal graphs from both global and local perspectives is
advantageous (Jin et al., 2019) in the following aspects.

The neighborhood information gathered in two ways has certain complementarities. Different
methods retain or discard different neighborhood information. As shown in Figure 1, GNN-RNN
methods (Pareja et al., 2020; Liu et al., 2020; Manessi et al., 2020) retain all events of each time step
without filtering, so that all edges are fully utilized when generating node embeddings, but noisy or
useless edges are also retained. As for TGNs methods, the neighborhood size is generally limited by
a given constant via sampling operations (Rossi et al., 2020; Wang et al., 2021c; Zheng et al., 2021).
Sampling of the temporal neighbors provides the opportunity to avoid noisy and irrelevant edges but
may cause some interactions to be ignored or futilely reused when updating the states of nodes.

The temporal information acquired from two perspectives complements each other. The di-
versity of graph topologies across different domains leads to the complexity of temporal properties.
Due to the regularity and abruptness of events, the pattern of events can also vary across time.
Therefore, modeling at different time granularities have to be taken into account. RNNs learn the
evolution patterns between adjacent graph snapshots at a coarse level. In contrast, MP-TGNs and
WA-TGNs encode timestamps simultaneously while aggregating neighborhood contextual informa-
tion (Xu et al., 2020; Rossi et al., 2020; Wang et al., 2021c). These two types of approaches model
the temporal relevance of event occurrence in different forms and with different granularities as
indicated in Figure 1, thus the acquired temporal information can complement each other.

The two types of methods retain different integrities of graph structures. Since the endogenous
and exogenous factors driving the generative process of networks are frequently complex and vari-
able, temporal graphs across diverse domains tend to exhibit a variety of properties (Zheng et al.,
2021). For instance, social networks and international trade networks may have extremely different
characteristics (e.g., varying sparsities and edge recurrence patterns) (Poursafaei et al., 2022). GNN-
RNN methods with the global perspective are more likely to consider the overall nature of a temporal
graph since GNNs maintain the complete graph structure at different time steps. In contrast, fine-
grained patterns in motifs (Paranjape et al., 2017; Liu et al., 2021) such as the triadic closure process
(Zhou et al., 2018; Liu et al., 2022) are better reflected in the encoding of local subgraphs by TGNs.

Based on the aforementioned insights, we propose GLEN 1 (short for Global and Local Embedding
Network) to learn representations for temporal graphs by considering both global and local perspec-
tives. Our method fills the research gap in existing temporal graph methods that only focus on one
perspective and highlights the importance of considering both perspectives. Unlike conventional
global-view methods that model sequences using RNNs, we employ a temporal convolution net-
work (TCN) for more efficient and stable training. From the local perspective, we devise a weighted
sum algorithm based on time interval to distinguish the impact of events at different time. Since nei-
ther GNN-RNN methods, MP-TGNs, nor WA-TGNs can extract high-order features in graphs (Mao
et al., 2023; Xu et al., 2018; Talati et al., 2021), simply fusing embeddings of two perspectives via
summation or concatenation is empirically less than ideal. To tackle this issue, we devise a cross-
perspective fusion module for GLEN to combine the node features embedded from global and local
perspectives. The fusion module employs a devised attention mechanism to capture the semantic
relevance between each two nodes’ global and local embeddings. We summarize our contributions
as follows:

1GLEN is available at https://anonymous.4open.science/r/GLEN/

2

https://anonymous.4open.science/r/GLEN/

Under review as a conference paper at ICLR 2024

• New Finding. We innovatively present that modeling from both global and local per-
spectives is indispensable for temporal graph representation learning. To the best of our
knowledge, we are the first in the subfield of temporal graph learning to propose a method
that simultaneously models the graph structure from an entire global perspective and a local
subgraph perspective, and fuses all node embeddings across views.

• New Method. From the global perspective, we innovatively employ TCN instead of con-
ventionally adopted RNNs for more stable and efficient training. From the local perspec-
tive, a new weighted sum algorithm based on time interval is devised to effectively ag-
gregate neighborhood information. To better combine globally and locally acquired node
embeddings, we introduce a cross-perspective fusion module based on a devised attention
mechanism.

• SOTA Performance. Extensive experimental results on diverse real-world datasets for
several predictive tasks demonstrate the advantages of GLEN. Moreover, multiple negative
edge sampling strategies are employed for link prediction, which are proved to reflect real-
world considerations for temporal graphs.

2 RELATED WORKS

Static graph methods. With a wide variety of applications, graph embedding has emerged as a
focal point of increasing research interest (Zhou et al., 2020). Classical methods leverage matrix
factorizations (Cao et al., 2015; Ou et al., 2016) or autoencoders (Pan et al., 2018; Hajiramezanali
et al., 2019) to generate node embeddings. Random-walk-based methods such as DeepWalk (Perozzi
et al., 2014), Node2Vec (Grover & Leskovec, 2016), LINE (Tang et al., 2015), and SDNE (Wang
et al., 2016) employ a flexible and stochastic measure of node similarity and preserve the structural
identity of nodes. Recent years have witnessed a burst of GNNs (graph neural networks) like GCN
(Kipf & Welling, 2016), GAT (Velickovic et al., 2017), and GraphSAGE (Hamilton et al., 2017a)
that automatically learn to encode graph structure by aggregating neighboring features.

Temporal graph methods. GNN-RNN-based temporal graph methods such as EvolveGCN (Pareja
et al., 2020), CTGCN (Liu et al., 2020), and GCRN (Seo et al., 2018) learn constituent represen-
tations through GNNs in each snapshot and capture the temporal patterns across snapshots through
RNNs. Message-passing temporal graph networks (MP-TGNs) such as JODIE (Kumar et al., 2019),
TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), APAN (Wang et al., 2021b), and TPGNN (Wang
et al., 2022) aggregate local information through the message passing machnism. Walk-aggregating
temporal graph networks (WA-TGNs) such as evolve2vec (Bastas et al., 2019a), STWalk (Pandhre
et al., 2018), and EVONRL (Heidari & Papagelis, 2020) rely on temporal walks unfolding as the
evolution of the graph. CAWN (Wang et al., 2021c) proposes causal anonymous walks using relative
node identities. There are also some methods (Souza et al., 2022; Makarov et al., 2021) that leverage
the advantages of both MP-TGNs and WA-TGNs.

3 PRELIMINARIES

A temporal graph contains a set of nodes: V = {1, 2, . . . , n}. To simplify the problem and be
consistent with other works, we assume that the number of nodes in the graph remains constant
(Wang et al., 2021b; Xu et al., 2020; Rossi et al., 2020). Throughout we use l (l ∈ {0, 1, ..., L}) to
denote the layer index of the network. Interaction events occur temporally between nodes, which is
represented as an event stream E = {euv(t)} ordered by time. euv(t) denotes a featured interaction
between node u and node v at timestamp t and is modeled as an edge in the graph. Each edge may
disappear if it is not present in the dataset at some time. When two nodes interact at t, they are
each other’s temporal neighbor and multiple interactions can occur between each two nodes. We
follow TGN (Rossi et al., 2020) to keep a memory module su(t) ∈ Rd for each node u, which is a
d-dimensional vector that summarizes the history information of u and is updated as events occur.
According to the message passing mechanism, when an interaction event euv(t) between u and v
occurs at t, two messages are generated:

mu(t) = msg
(
su(t

−), sv(t
−), ϕ(t− tu), euv(t)

)
,

mv(t) = msg
(
sv(t

−), su(t
−), ϕ(t− tv), euv(t)

)
.

(1)

3

Under review as a conference paper at ICLR 2024

Here, su(t−) denotes the memory of node u just before t. tu is the time of the last event involving
u. ϕ(·) is a generic time encoding method (Xu et al., 2020; Rossi et al., 2020) that maps the time
interval into a d-dimensional vector:

ϕ(t) = [cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)], (2)

where ωi is learnable. msg is a message function such as concatenation or MLPs. Due to the batch
processing in temporal graphs, all events involving node u in a batch need to be aggregated as:

mu(t) = agg(mu(ti) | ti ≤ t), (3)

where agg is implemented by keeping only the most recent message for a given node u, which is the
same as TGN-attn (Rossi et al., 2020). Then, the memory of node u is updated as:

su(t) = upd
(
mu(t), su(t

−)
)
, (4)

where upd indicates a recurrent neural network (Chung et al., 2014). For another node v involved
in the event, its memory sv(t) is updated in the same way.

4 PROPOSED METHOD

4.1 OVERALL FRAMEWORK

As shown in Figure 2, the framework of GLEN includes three major components: a GCN-TCN-
based global embedding module, a local embedding module based on time interval weighting, and
a cross-perspective fusion module. The global and local embedding modules respectively generate
node embeddings from the global or local perspective. The cross-perspective fusion module is
designed to effectively fuse the global and local node embeddings based on the attention mechanism,
allowing the high-order information in a temporal graph (Liu et al., 2022) to be captured.

GCN Layers
(b)Local Embedding Module

(c) Cross-Perspective Fusion Module

…

Attentive

Fusion

𝑥0 𝑥1 𝑥Γ−2 𝑥Γ−1

𝛿 = 4, 𝑘 = 2

ො𝑦0 ො𝑦1 ො𝑦Γ−2 ො𝑦Γ−1

𝑧𝑢
𝐺𝑙𝑜𝑏𝑎𝑙

…

…

𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

…

Global

Embeddings

s𝑣2

s𝑣1

s𝑣3 s𝑣4

s𝑣5

𝑧𝑢
𝐿𝑜𝑐𝑎𝑙

…

Local

Embeddings

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑣1 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑒𝑢𝑣1 𝑡𝑖𝑚𝑒 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔

Linear1

…

Input Temporal Graph

v1

u
v2

v3
v4

v5

v1 u

Node Embeddings

𝛿 = 2, 𝑘 = 2

𝛿 = 1, 𝑘 = 2

𝑡 − 𝑡𝑢𝑣

𝑤

(a)Global Embedding Module

𝑧𝑢𝑣1(𝑡)

𝐻𝑏[𝑢]𝐻𝑏−1[𝑢]𝐻𝑏−2[𝑢]

…

…

𝒢𝑏𝒢𝑏−1𝒢𝑏−2

𝑧𝑢

…

𝑇𝑖𝑚𝑒

Weighted

Summationℎ𝑢
(𝑙−1)

(𝑡)

ℎ𝑢
(𝑙)

(𝑡)

෨ℎ𝑢
(𝑙)

(𝑡)

𝑡𝑢𝑣1

𝑤(𝑣,𝑢,𝑡𝑢𝑣)

Linear2

…

…

Figure 2: The overall framework of the proposed Global and Local Embedding Network (GLEN).

4.2 GCN-TCN-BASED GLOBAL EMBEDDING MODULE

The global embedding module of GLEN applies GCN (Kipf & Welling, 2016) to the graph com-
posed of edges within a period (i.e., interaction events of a batch) to generate embeddings for graph
nodes. The main reason for choosing GCN rather than other GNNs (e.g., GAT) is that GCN has
higher computation efficiency. The obtained embedding matrices of several time steps are fed into
TCN (Bai et al., 2018) to capture the temporal patterns of global graph evolution.

Graph Convolutional Network (GCN). Let b denote the index of each batch and the events a batch
occur at the same time step. The corresponding input of GCN includes the adjacency matrix Ab of

4

Under review as a conference paper at ICLR 2024

the graph consisting of edges in the b-th batch and the matrix of node features Xb ∈ Rn×d. Since
each row of Xb represents the attributes of a corresponding node, we take the sum of memory su
and its temporal node features as the d-dimensional representation of node u in Xb. su indicates the
updated node memory of u after the events of the b-th batch, as temporal graph models assume that
events of a single batch arrive simultaneously (Wang et al., 2021b).

GCN consists of L layers of graph convolution. At each time step b, the l-th GCN layer takes Ab

and the node embedding matrix Hl
b as input. The node embedding matrix is updated to H

(l+1)
b using

the weight matrix W
(l)
b . In each GCN layer, Ab is normalized to Âb first, defined as (for brevity,

here we omit the subscript b):

Ã = A+ I, D̃ = diag

(∑
v

Ãuv

)
, Â = D̃− 1

2 ÃD̃− 1
2 , (5)

where I is the identity matrix for adding self-loops and D̃ is the diagonal matrix used for propagating
the features of each node’s neighbors. Then the process of a single graph convolutional layer in GCN
is described as the mathematical formula below:

H
(0)
b = Xb,H

(l+1)
b = σ

(
ÂbH

(l)
b W

(l)
b

)
, (6)

where σ(·) is the relu activation function. The output of GCN is denoted as H(L)
b .

Temporal Convolutional Network (TCN). RNNs (Medsker & Jain, 1999; Chung et al., 2014;
Hochreiter & Schmidhuber, 1997) generally suffer from inefficiency and unstable training (Ribeiro
et al., 2020; Bengio et al., 1994). To avoid the problems, we innovatively adopt TCN (Bai et al.,
2018) to model the sequential effect across snapshots, since it allows for parallel computation and
uses techniques such as residual connection (He et al., 2016) and weight normalization (Salimans &
Kingma, 2016) to make training more stable. For the output of GCN, we consider the chronological
embeddings {H(L)

0 [u],H
(L)
1 [u], ...,H

(L)
b [u]} of node u as a temporal sequence with d channels. To

mitigate the so-called staleness problem, we set a time window constraint with a length of Γ to
limit the temporal range. Only the sequence elements of the b and preceding (Γ− 1) time steps are
input into TCN. If the window size is 1, the current output of GCN is directly used as global node
embeddings. For node u and each channel c ∈ {1, 2, ..., d}, the input sequence of TCN is:

X = {x0, x1, ..., xΓ−1} = {H(L)
(b−Γ+1)[u][c],H

(L)
(b−Γ+2)[u][c], ...,H

(L)
b [u][c]}. (7)

Then TCN applies the dilated convolution operation (Oord et al., 2016) on the sequence at each
layer, and the formula is as follows:

ŷi = (X ∗δ f) [i] =
k−1∑
j=0

f(j) · xi−δ·j , (8)

where ∗ is the convolution operator, k is the size of the filter f : {0, 1, ..., k−1} → R and δ is the di-
lation factor of each layer increasing exponentially with the depth of TCN (i.e., at the l-th TCN layer,
δ = 2l). TCN predicts the corresponding sequence {ŷ0, ŷ1, ..., ŷΓ−1} = TCN({x0, x1, ..., xΓ−1})
and we take ŷΓ−1 as the output. The receptive field of one TCN layer is (k − 1) × δ, thereby
increasing the kernel size or using a deep network for a larger dilation factor enables richer histor-
ical information to be captured. Both the numbers of input channels and output channels of TCN
are set to d. For node u, the outputs of d kernels are considered the global embedding zGlobal

u that
evolves over time. For time step b, the global embeddings of nb nodes involved in the events of the
corresponding b-th batch are denoted as:

ZGlobal ∈ Rnb×d = {zGlobal
1 , zGlobal

2 , . . . , zGlobal
nb

}. (9)

4.3 LOCAL EMBEDDING MODULE BASED ON TIME INTERVAL WEIGHTING

This module generates the local embedding zLocal
u that evolves over time for each node u from the

local perspective. There is a common pattern in temporal graphs: recent events tend to have more
important potential information. Therefore, we devise a weighted sum algorithm based on time
interval to effectively aggregate the information of temporal neighbors.

5

Under review as a conference paper at ICLR 2024

To control the computation cost and ensure a fair comparison, we restrict the neighborhood size of
each node like other works (Rossi et al., 2020; Wang et al., 2021c). We denote the neighbor set of u
at t as Nu(t), which contains a certain number |N | of the most recent neighbors that interact with u
before t. If the timestamp tuv of the event euv is far from the current time t, the impact of euv and
v on node u should be reduced. Thus, different temporal weights for neighbors are computed as:

w(v,u,t) =
exp(−(t− tuv))∑

(v′,tuv′)∈Nu(t)
exp(−(t− tuv′))

. (10)

The temporal weight decreases as the time interval increases. We generate the corresponding repre-
sentation vector for the neighbor v and event euv through a linear layer:

z(l)uv(t) = Tanh
(
Linear1(h

(l−1)
v (t)∥euv(t)∥ϕ(t− tuv))

)
, (11)

where h
(l−1)
v (t) is the input of the l-th network layer, and h

(0)
v (t) is the sum of sv(t) and temporal

node features. The activation function Tanh is used to provide nonlinear transformations and limit
the values in a certain range to facilitate the subsequent summation. We then utilize the temporal
weights to aggregate neighborhood information for node u through a weighted sum:

h̃(l)
u (t) =

∑
(v,tuv)∈Nu(t)

w(v,u,t) · z(l)uv(t). (12)

The node embedding of u is generated by combining its own representation with aggregated neigh-
borhood information through a linear layer:

h(l)
u (t) = Linear2(h

(l−1)
u (t)∥h̃(l)

u (t)). (13)

After all events of the b-th batch are processed, the output of the module is taken as the local em-
bedding of node u: zLocal

u = h
(L)
u (t) that evolves over time. Similar to Eq. 9, the local embedding

matrix of the b-th time step is denoted as:

ZLocal ∈ Rnb×d =
{
zLocal
1 , zLocal

2 , . . . , zLocal
nb

}
. (14)

4.4 CROSS-PERSPECTIVE FUSION MODULE

L
in

e
a

r

𝑍𝐺𝑙𝑜𝑏𝑎𝑙

MatMul Scale Softmax

F
F

N

Layer

Norm

C
o

n
c
a

t

Q

K

V

𝑍

Head1

Head2

Head3 …

𝑍𝐿𝑜𝑐𝑎𝑙

L
in

e
a

r
L

in
e

a
r

MatMul

L
in

e
a

r

Figure 3: The cross-perspective fusion module of
GLEN calculates embeddings Z according to the
relavance between zGlobal

u and zLocal
v of each two

nodes u and v.

The number of GNN layers is generally lim-
ited, and neighborhood-based aggregation im-
pairs the ability to propagate messages to dis-
tant nodes, which means only short-range sig-
nals can be captured (Mao et al., 2023). Al-
though the longer walk length of WA-TGNs in-
dicates the deeper depth of the sampled neigh-
borhood, some studies indicate that longer ran-
dom walks do not necessarily imply better per-
formance (Talati et al., 2021). WA-TGNs such
as CAWN (Wang et al., 2021c) only use short
walk lengths, preventing long-range dependen-
cies in graphs from being captured. To ex-
tract high-order features in the graph and fur-
ther yield semantic proximities between node

embeddings, we devise a cross-perspective fusion module based on attention (Vaswani et al., 2017a)
for GLEN to combine global and local node embeddings, as illustrated in Figure 3. Multi-head
attention allows the model to jointly attend to crucial information in different representation sub-
spaces. We use η to indicate the number of heads and i to denote the index of each head. In each
single attention head, we forward global embeddings to a linear projection to obtain the ’query’, and
local embeddings to another two different linear projections to obtain the ’key’ and ’value’:

Qi = ZGlobalWQ
i , Ki = ZLocalWK

i , Vi = ZLocalWV
i , (15)

where WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk ,WV
i ∈ Rd×dv are three transformation matrices and dk =

dv = d/η. The attentive output of each head is denoted as:

Z̃i = softmax(
QiK

T
i√

dk
)Vi. (16)

6

Under review as a conference paper at ICLR 2024

The attention coefficient of each two nodes u and v implies the correlation between zGlobal
u and zLocal

v
and increases with relevance. The outputs of all heads are concatenated as the output of the attention
mechanism:

Z̃ = MultiHead(Q,K,V) = Concat(Z̃1, Z̃2, ..., Z̃η)W
O, (17)

where WO ∈ Rηdv×d. Since GLEN chooses the linear projection of local embeddings as the
’value’, Z̃ actually gives hidden representations of the local embeddings. To further combine these
latent representations with global node embeddings, we concatenate z̃u ∈ Z̃ with zGlobal

u and input
them to a feedforward neural network to further capture the nonlinear correlation between local and
global embeddings of the same node:

zu = FFN(z̃u||zGlobal
u). (18)

The attention mechanism captures the correlation between each two nodes, allowing for the retention
of high-order information in temporal graphs. The intent representations influenced by the affinity
weight matrix enable the model to selectively focus on pairs of nodes with high relevance and ignore
mostly unimportant information.

To empirically prove that both global and local perspectives are important and enhance the inter-
pretability of our fusion module, we additionally conduct a case study on the correlation of node
embeddings in Appendix A. Experimental results reveal that both global and local views are essen-
tial since considering only one is not comprehensive.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

We totally use seven public real-world temporal graph datasets to extensively validate the effec-
tiveness of GLEN, including Wikipedia (Kumar et al., 2019), Reddit (Kumar et al., 2019), Enron
(Shetty & Adibi, 2004), UCI (Panzarasa et al., 2009), UN Trade (MacDonald et al., 2015), MOOC
(Kumar et al., 2019), and Flights (Schäfer et al., 2014). Descriptions and statistics of the datasets
are reported in Appendix C.1. We choose eight state-of-the-art approaches for temporal graph rep-
resentation learning as strong baselines to compare with, including DyRep (Trivedi et al., 2019),
JODIE (Kumar et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al.,
2021c), PINT (Souza et al., 2022), GraphMixer (Cong et al., 2023), and TIGER (Zhang et al., 2023).
Introductions of baselines are available in Appendix C.2. For the settings of baselines, we use their
recommended configurations. We use the same data processing and splitting procedures as TGAT
(Xu et al., 2020) and TGN (Rossi et al., 2020). For fairness, we evaluate all the methods in the same
environment and on the same Nvidia Tesla V100-SXM2 GPU to obtain experimental results.

5.2 IMPLEMENTATION DETAILS AND EVALUATION PROTOCOL

We conduct experiments on two predictive tasks: link prediction (Zhang et al., 2020; Srinivasan &
Ribeiro, 2019; Lü & Zhou, 2011) and dynamic node classification (Aggarwal & Li, 2011; Xu et al.,
2019). For all datasets, we split edges chronologically by 70%, 15%, and 15% for training, valida-
tion, and testing. We use the Adam optimizer and early stopping with a patience of 5 for training.
For both link prediction and dynamic node classification, we use BCE loss. All the settings are
consistent with those set by baselines (Xu et al., 2020; Rossi et al., 2020; Wang et al., 2021c). More
implementation details of GLEN can be found in Appendix C.3. The pseudo-code of GLEN can be
seen in Appendix C.4. In addition, random, historical, and inductive negative sampling strategies
(Poursafaei et al., 2022) are applied for evaluation, which proves to reflect real-world considerations
for temporal graphs. More details of the evaluation protocol are introduced in Appendix C.5.

5.3 QUANTITATIVE RESULTS

Table 2 presents the results of inductive link prediction experiments, where NS is the abbrevia-
tion of negative sampling. Since PINT takes too long on the largest Flights dataset, we did not
include PINT’s results on Flights in Table 2. In the link prediction task, GLEN obviously out-
performs the baselines on all datasets under the evaluation of all negative sampling strategies.

7

Under review as a conference paper at ICLR 2024

Table 1: Average ROC AUC (%) of dy-
namic node classifiction (over 5 runs). (First
second)

Methods Wikipedia Reddit MOOC

DyRep 80.79±1.86 50.01±2.27 66.08±0.24
JODIE 84.46±2.84 61.57±4.34 69.46±0.51
TGAT 85.98±1.45 65.87±1.45 54.05±0.20
TGN 87.33±0.30 60.09±1.64 64.09±0.68

GraphMixer 86.26±1.83 63.24±1.91 68.65±1.09
TIGER 85.55±0.30 68.83±1.62 70.99±0.05
GLEN 90.16±0.32 70.21±0.27 71.49±0.33

Baselines have a significant performance drop with
both historical and inductive sampling strategies, as
their one-sidedness makes it difficult to correctly
predict the pattern of interactive appearance in tem-
poral graphs. Whereas, GLEN can keep the perfor-
mance relatively stable owing to the complementar-
ity between information acquired globally and lo-
cally, and the effective cross-perspective fusion. The
results of dynamic node classification are shown in
Table 1, where GLEN also obtains the best results
on all datasets. The results of transductive link pre-
diction are reported in Appendix D.1, where GLEN also shows the state-of-the-art performance.

Table 2: Average Precision (%) of link prediction under different negative sampling strategies in the
inductive setting (over 5 runs). (First second)

NS Strategy Methods Wikipedia Reddit Enron UCI UN Trade MOOC Flights

Random

DyRep 72.17±1.14 55.13±1.04 59.99±3.77 60.55±1.29 59.22±0.75 64.21±0.59 92.47±0.72
JODIE 97.97±0.00 99.26±0.74 81.68±0.10 98.06±0.23 57.96±6.18 83.23±6.50 94.85±0.64
TGAT 94.03±0.20 96.62±0.15 56.01±2.46 74.39±5.33 59.80±0.83 71.21±0.41 89.02±0.06
TGN 98.00±0.18 94.09±1.07 75.28±3.37 83.04±2.37 57.42±1.73 81.51±3.31 84.11±0.61

CAWN 99.64±0.34 99.82±0.10 92.05±1.77 98.45±0.66 91.64±0.92 87.59±1.88 98.67±0.14
PINT 98.50±0.08 97.90±0.39 88.29±0.23 96.20±0.25 69.10±0.60 96.11±4.15 -

GraphMixer 96.49±0.08 95.22±0.03 75.67±0.55 90.79±0.32 56.47±2.82 80.95±0.65 83.00±0.07
TIGER 98.30±0.02 98.64±0.53 83.40±1.13 92.98±0.23 55.29±0.11 84.72±1.48 91.84±0.86
GLEN 99.95±0.05 99.85±0.28 96.15±1.61 99.11±0.30 96.09±0.12 96.48±4.02 99.36±0.17

Historical

DyRep 69.45±1.16 52.40±1.68 56.96±3.12 52.67±0.87 59.55±0.81 60.93±0.58 62.00±1.81
JODIE 40.64±0.32 49.68±0.22 51.26±0.67 54.23±2.32 58.07±2.47 47.14±5.81 60.41±2.39
TGAT 71.35±0.93 63.25±0.78 53.45±2.52 61.62±0.49 51.85±3.03 59.60±0.59 64.43±0.32
TGN 81.96±1.10 61.99±1.30 61.90±2.01 72.31±1.54 54.41±1.00 63.70±2.02 58.27±1.73

CAWN 80.14±8.52 82.10±1.33 58.58±4.36 81.13±12.5 87.10±0.75 97.23±4.22 51.84±0.13
PINT 64.97±7.12 68.27±7.53 78.66±0.68 84.73±0.91 58.50±6.18 67.35±4.25 -

GraphMixer 88.02±0.39 64.48±0.36 73.18±1.20 80.29±0.31 58.92±2.67 74.07±0.73 65.23±0.23
GLEN 96.25±0.27 97.31±2.46 97.28±0.53 95.94±2.00 95.78±2.32 99.53±0.93 76.96±0.54

Inductive

DyRep 69.36±1.20 52.48±1.41 57.16±3.34 52.68±0.90 59.57±0.90 60.92±0.62 61.99±1.81
JODIE 40.58±0.18 49.73±0.16 51.46±0.42 54.16±2.58 57.88±2.56 47.15±5.77 59.47±1.36
TGAT 71.46±0.79 63.29±0.64 53.98±3.02 62.66±0.84 51.94±2.83 59.65±0.68 64.42±0.32
TGN 81.90±1.28 62.15±1.46 62.37±2.47 72.25±1.55 54.48±1.07 63.61±2.00 58.14±1.77

CAWN 68.70±1.48 78.34±1.37 62.22±6.60 83.32±7.21 89.83±1.64 90.93±1.38 53.48±0.04
PINT 64.86±7.09 72.79±5.75 78.59±0.73 84.72±1.03 54.39±1.88 67.36±4.33 -

GraphMixer 83.91±0.54 63.96±0.26 73.19±1.19 80.33±0.31 58.89±2.66 74.08±0.73 63.13±0.15
GLEN 96.13±0.29 97.28±2.48 97.38±0.46 95.43±2.63 95.76±2.32 99.54±0.91 77.23±0.61

5.4 EFFICIENCY

0 50 100 150 200 250 300

Average training time(s) per epoch
60

65

70

75

80

85

90

95

100

AP
 (%

) o
f i

nd
uc

tiv
e

lin
k

pr
ed

ict
io

n
wi

th
 ra

nd
om

 sa
m

pl
in

g
st

ra
te

gy

UCI

DyRep
JODIE
TGAT
TGN
CAWN
PINT
NAT
GraphMixer
TIGER
GLEN

0 500 1000 1500 2000 2500 3000

Average training time(s) per epoch

65

70

75

80

85

90

95

AP
 (%

) o
f i

nd
uc

tiv
e

lin
k

pr
ed

ict
io

n
wi

th
 ra

nd
om

 sa
m

pl
in

g
st

ra
te

gy

MOOC

DyRep
JODIE
TGAT
TGN
CAWN
PINT
NAT
GraphMixer
TIGER
GLEN

Figure 4: Trade-off between AP (%) in link
prediction and training time.

We further evaluate the ability to trade off the preci-
sion and efficiency of GLEN, which is illustrated in
Figure 4. The AP (Average Precision) is computed
with the random negative sampling strategy and the
inductive setting in a percentage format. Methods
closer to the upper left corner of the figure are more
ideal. Note that the training time of PINT here
does not include precomputing the positional fea-
tures, otherwise its training time will be unbearably
long. The efficiency of GLEN is comparable to the
fastest baselines, and the performance is improved.

The complexity analysis and more experimental results about efficiency are reported in Appendix B
and Appendix D.2 respectively. Overall, GLEN strikes an impressive balance between inference
precision and training speed, which can be attributed to the training efficiency of TCN.

5.5 HYPER-PARAMETER INVESTIGATION

We systematically analyze the effect of hyper-parameters related to GLEN, including the time win-
dow size Γ, number of sampled neighbors |N |, number of layers in TCN, kernel size of TCN,
number of heads η in the multi-head attention mechanism, and the dropout ratio. Figure 5 illus-
trates the impact of various hyper-parameters on GLEN. We combine the hyper-parameters in pairs.

8

Under review as a conference paper at ICLR 2024

1 2 4 43

Number of attention heads

0.7

0.5

0.3

0.1

Dr
op
ou
t
ra
ti
o

98.71 99.05 99.24 98.81

99.59 99.19 99.18 98.20

99.24 99.43 99.10 98.02

98.96 99.11 98.79 98.81

 AP (%) of inductive link prediction
 with random sampling strategy on UCI

2 3 4 5

Number of layers in TCN

2

3

4

5

Ke
rn
el
 s
iz
e
of
 T
CN

98.35 98.76 97.32 99.39

99.34 99.55 99.54 99.46

99.47 98.45 99.02 98.82

99.36 99.11 99.27 98.99

 AP (%) of inductive link prediction
 with random sampling strategy on UCI

98.2

98.4

98.6

98.8

99.0

99.2

99.4

97.0

97.5

98.0

98.5

99.0

99.5

Figure 5: Performance of GLEN on the UCI
dataset with different hyper-parameters.

The reason for jointly considering dropout and
attention heads is that they both mainly affect
the cross-perspective fusion module of GLEN.
Both the number of layers in TCN and the ker-
nel size of TCN affect the receptive field and the
temporal convolution operations of TCN, so we
consider them together. GLEN exhibits its ro-
bustness as the fluctuation of AP is small. The
effect of Γ and |N | on GLEN is shown in Fig-
ure 6. An interesting insight is that GLEN tends
to achieve the maximum AP with a small time
window size, which means crucial recent infor-
mation is sufficient for GLEN to capture the evolution patterns of tamporal graphs. |N | barely
makes a difference to GLEN, while other local-view TGNs methods typically require a certain num-
ber (usually 10 or 20) of neighbor nodes to achieve their best performance (Rossi et al., 2020;
Wang et al., 2021c). This indicates that global embeddings supplement local embeddings through
GLEN’s fusion module. More experimental results on hyper-parameter investigation are reported in
Appendix D.3.

1 2 4 8 16 32 64 128

Time window size
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

UCI

random sampling
historical sampling
inductive sampling

1 2 4 8 16 32 64 128

Time window size
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

MOOC

random sampling
historical sampling
inductive sampling

1 2 5 10 20 30 40 50

Number of sampled neighbors
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

UCI

random sampling
historical sampling
inductive sampling

1 2 5 10 20 30 40 50

Number of sampled neighbors
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

MOOC

random sampling
historical sampling
inductive sampling

Figure 6: Performance of GLEN with different time window sizes and numbers of sampled neigh-
bors with different negative sampling strategies.

5.6 ABLATION STUDY

We further analyze GLEN by performing an ablation study to manifest the contributions of different
components of GLEN. More details of the ablation study are reported in Appendix C.6. We summa-
rize the results of the ablation study on link prediction in Table 3. From the results, we can observe
that removing any of GLEN’s components will cause performance degradation, indicating that the
modules we designed are indispensable for temporal graph representation learning. The ablation
study further proves the effectiveness of the cross-perspective fusion module and provides a certain
degree of interpretability for the complementarity between global and local modeling of temporal
graphs. Results of the ablation study on dynamic node classification are reported in Appendix D.4.

Table 3: Average Precision (%) for ablation study of GLEN in inductive link prediction.
Ablation Enron UCI UN Trade MOOC

Random Historical Inductive Random Historical Inductive Random Historical Inductive Random Historical Inductive

w/o GCN 85.87 73.74 75.09 96.28 95.42 95.42 91.61 91.72 91.73 87.26 84.88 84.88
w/o TCN 87.40 70.09 71.23 95.36 81.97 81.97 95.79 95.33 95.32 94.87 97.02 97.01

w/o Global 84.62 73.21 75.28 81.20 70.01 70.01 84.00 84.35 84.37 75.15 67.09 67.09
w/o Local 90.58 93.00 93.07 80.31 70.95 70.95 90.45 90.59 90.70 62.66 56.29 56.29
w/o Fusion 85.55 89.75 89.78 81.16 69.23 69.23 90.95 91.07 91.07 77.42 66.43 66.43

GLEN 96.15 97.28 97.38 98.47 95.94 95.43 96.09 95.78 95.76 96.48 99.53 99.54

6 CONCLUSION

In this paper, we proposed the Global and Local Embedding Network (GLEN), an adventurous
method for temporal graph representation learning. Specifically, GLEN consists of three main com-
ponents: the GCN-TCN-based global embedding module, the local embedding module based on
time interval weighting, and the cross-perspective fusion module. The global embedding module
models temporal graphs from a global perspective, while the local embedding module does so from
a local perspective. Then, the fusion machanism combines global and local embeddings based on
a novel attention mechanism. By taking both global and local perspectives, GLEN outperforms all
the baselines in extensive experiments.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Charu C Aggarwal and Nan Li. On node classification in dynamic content-based networks. In
Proceedings of the 2011 SIAM international conference on data mining, pp. 355–366. SIAM,
2011.

Nurul A Asif, Yeahia Sarker, Ripon K Chakrabortty, Michael J Ryan, Md Hafiz Ahamed, Dip K
Saha, Faisal R Badal, Sajal K Das, Md Firoz Ali, Sumaya I Moyeen, et al. Graph neural network:
A comprehensive review on non-euclidean space. IEEE Access, 9:60588–60606, 2021.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Nikolaos Bastas, Theodoros Semertzidis, Apostolos Axenopoulos, and Petros Daras. evolve2vec:
Learning network representations using temporal unfolding. In MultiMedia Modeling: 25th In-
ternational Conference, MMM 2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings,
Part I 25, pp. 447–458. Springer, 2019a.

Nikolaos Bastas, Theodoros Semertzidis, Apostolos Axenopoulos, and Petros Daras. evolve2vec:
Learning network representations using temporal unfolding. In MultiMedia Modeling: 25th In-
ternational Conference, MMM 2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings,
Part I 25, pp. 447–458. Springer, 2019b.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on informa-
tion and knowledge management, pp. 891–900, 2015.

Hanqiu Chen and Cong Hao. Dgnn-booster: A generic fpga accelerator framework for dynamic
graph neural network inference, 2023.

Jinyin Chen, Xueke Wang, and Xuanheng Xu. Gc-lstm: Graph convolution embedded lstm for
dynamic network link prediction. Applied Intelligence, pp. 1–16, 2022.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
257–266, 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
arXiv preprint arXiv:2302.11636, 2023.

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network: Embedding
user and item features for recommendation. arXiv preprint arXiv:1609.03675, 2016.

Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. Dynamic network embedding:
An extended approach for skip-gram based network embedding. In IJCAI, volume 2018, pp.
2086–2092, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

10

Under review as a conference paper at ICLR 2024

Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou,
and Xiaoning Qian. Variational graph recurrent neural networks. Advances in neural information
processing systems, 32, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Farzaneh Heidari and Manos Papagelis. Evolving network representation learning based on random
walks. Applied network science, 5:1–38, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Autoregressive
structure inference over temporal knowledge graphs. arXiv preprint arXiv:1904.05530, 2019.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. The Journal of Machine
Learning Research, 21(1):2648–2720, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Jaechang Lim, Seongok Ryu, Kyubyong Park, Yo Joong Choe, Jiyeon Ham, and Woo Youn Kim.
Predicting drug–target interaction using a novel graph neural network with 3d structure-embedded
graph representation. Journal of chemical information and modeling, 59(9):3981–3988, 2019.

Jingxin Liu, Chang Xu, Chang Yin, Weiqiang Wu, and You Song. K-core based temporal graph con-
volutional network for dynamic graphs. IEEE Transactions on Knowledge and Data Engineering,
34(8):3841–3853, 2020.

Yunyu Liu, Jianzhu Ma, and Pan Li. Neural predicting higher-order patterns in temporal networks.
In Proceedings of the ACM Web Conference 2022, pp. 1340–1351, 2022.

Zhijun Liu, Chao Huang, Yanwei Yu, and Junyu Dong. Motif-preserving dynamic attributed network
embedding. In Proceedings of the Web Conference 2021, pp. 1629–1638, 2021.

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio, Franco
Scarselli, and Andrea Passerini. Graph neural networks for temporal graphs: State of the art, open
challenges, and opportunities. arXiv preprint arXiv:2302.01018, 2023.

Junn Yong Loo, Sin-Yee Yap, Fuad Noman, Raphael CW Phan, and Chee-Ming Ting. A deep prob-
abilistic spatiotemporal framework for dynamic graph representation learning with application to
brain disorder identification. arXiv preprint arXiv:2302.07243, 2023.

Lynn H Loomis. Introduction to abstract harmonic analysis. Courier Corporation, 2013.

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150–1170, 2011.

Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S Yu, and Yanfang Ye. Temporal network embedding
with micro-and macro-dynamics. In Proceedings of the 28th ACM international conference on
information and knowledge management, pp. 469–478, 2019.

11

Under review as a conference paper at ICLR 2024

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pp. 719–728, 2020.

Graham K MacDonald, Kate A Brauman, Shipeng Sun, Kimberly M Carlson, Emily S Cassidy,
James S Gerber, and Paul C West. Rethinking agricultural trade relationships in an era of global-
ization. BioScience, 65(3):275–289, 2015.

Ilya Makarov, Andrey Savchenko, Arseny Korovko, Leonid Sherstyuk, Nikita Severin, Aleksandr
Mikheev, and Dmitrii Babaev. Temporal graph network embedding with causal anonymous walks
representations. arXiv preprint arXiv:2108.08754, 2021.

Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.
Pattern Recognition, 97:107000, 2020.

Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. Hinormer: Representation learning on
heterogeneous information networks with graph transformer. arXiv preprint arXiv:2302.11329,
2023.

Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and applications. CRC
press, 1999.

Silvio Micali and Zeyuan Allen Zhu. Reconstructing markov processes from independent and
anonymous experiments. Discrete Applied Mathematics, 200:108–122, 2016.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1105–1114, 2016.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. Transfer graph neural net-
works for pandemic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 4838–4845, 2021.

Supriya Pandhre, Himangi Mittal, Manish Gupta, and Vineeth N Balasubramanian. Stwalk: learning
trajectory representations in temporal graphs. In Proceedings of the ACM India joint international
conference on data science and management of data, pp. 210–219, 2018.

Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In Proceed-
ings of the tenth ACM international conference on web search and data mining, pp. 601–610,
2017.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5363–5370, 2020.

James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

12

Under review as a conference paper at ICLR 2024

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better eval-
uation for dynamic link prediction. arXiv preprint arXiv:2207.10128, 2022.

Antônio H Ribeiro, Koen Tiels, Luis A Aguirre, and Thomas Schön. Beyond exploding and vanish-
ing gradients: analysing rnn training using attractors and smoothness. In International Conference
on Artificial Intelligence and Statistics, pp. 2370–2380. PMLR, 2020.

Emanuele Rossi, Federico Monti, Michael Bronstein, and Pietro Liò. ncrna classification with graph
convolutional networks. arXiv preprint arXiv:1905.06515, 2019.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Matthias Schäfer, Martin Strohmeier, Vincent Lenders, Ivan Martinovic, and Matthias Wilhelm.
Bringing up opensky: A large-scale ads-b sensor network for research. In IPSN-14 Proceedings
of the 13th International Symposium on Information Processing in Sensor Networks, pp. 83–94.
IEEE, 2014.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th
International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Pro-
ceedings, Part I 25, pp. 362–373. Springer, 2018.

Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief statistical report.
Information sciences institute technical report, University of Southern California, 4(1):120–128,
2004.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal graph
networks. Advances in Neural Information Processing Systems, 35:32257–32269, 2022.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. arXiv preprint arXiv:1910.00452, 2019.

Nishil Talati, Di Jin, Haojie Ye, Ajay Brahmakshatriya, Ganesh Dasika, Saman Amarasinghe, Trevor
Mudge, Danai Koutra, and Ronald Dreslinski. A deep dive into understanding the random walk-
based temporal graph learning. In 2021 IEEE International Symposium on Workload Character-
ization (IISWC), pp. 87–100. IEEE, 2021.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In International conference on learning representations, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017b.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1225–1234, 2016.

13

Under review as a conference paper at ICLR 2024

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee. Billion-scale
commodity embedding for e-commerce recommendation in alibaba. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 839–848,
2018.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via contrastive
learning. arXiv preprint arXiv:2105.07944, 2021a.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for
real-time temporal graph embedding. In Proceedings of the 2021 international conference on
management of data, pp. 2628–2638, 2021b.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974,
2021c.

Zehong Wang, Qi Li, and Donghua Yu. Tpgnn: Learning high-order information in dynamic graphs
via temporal propagation. arXiv preprint arXiv:2210.01171, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Yameng Gu, Xiao Liu, Jingchao Ni, Bo Zong, Haifeng
Chen, and Xiang Zhang. Adaptive neural network for node classification in dynamic networks.
In 2019 IEEE International Conference on Data Mining (ICDM), pp. 1402–1407, 2019. doi:
10.1109/ICDM.2019.00181.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Revisiting graph neural networks
for link prediction. 2020.

Yao Zhang, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. Learning node embeddings in inter-
action graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 397–406, 2017.

Yao Zhang, Yun Xiong, Dongsheng Li, Caihua Shan, Kan Ren, and Yangyong Zhu. Cope: modeling
continuous propagation and evolution on interaction graph. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 2627–2636, 2021.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangy-
ong Zhu. Tiger: Temporal interaction graph embedding with restarts. arXiv preprint
arXiv:2302.06057, 2023.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn:
A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent
transportation systems, 21(9):3848–3858, 2019.

Tongya Zheng, Zunlei Feng, Yu Wang, Chengchao Shen, Mingli Song, Xingen Wang, Xinyu Wang,
Chun Chen, and Hao Xu. Learning dynamic preference structure embedding from temporal net-
works. In 2021 IEEE International Conference on Big Knowledge (ICBK), pp. 1–9. IEEE, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

14

Under review as a conference paper at ICLR 2024

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding by
modeling triadic closure process. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Yuecai Zhu, Fuyuan Lyu, Chengming Hu, Xi Chen, and Xue Liu. Learnable encoder-decoder archi-
tecture for dynamic graph: A survey. arXiv preprint arXiv:2203.10480, 2022.

15

Under review as a conference paper at ICLR 2024

A INTERPRETABILITY

In order to empirically prove that both global and local perspectives are important as motivation and
enhance the interpretability of our method, we additionally conduct a case study on the correlation
of node embeddings by multiplying them through the inner-product to obtain the correlation matrix.
Link prediction is the main task of temporal graph representation learning. The way to improve the
performance of link prediction is to learn high-quality embeddings for graph nodes such that the
correlation between the embeddings of the node pairs that will establish a connection is higher. In
Figure 7 and Figure 8, we show this in the form of heat maps. The deeper color indicates a stronger
correlation and a higher connection probability. In Figure 7, associated events are (1,2), (3,4), and
(5,2). With the exception of each node itself, the global embeddings of nodes 2, 5 have the maximum
correlation. However, the global embeddings cannot reflect the associations between nodes 1, 2 and
nodes 3, 4. Similarly, the local embeddings of nodes 1, 2 and nodes 3, 4 have strong correlations, but
local embeddings cannot reveal the association between nodes 2, 5. After the process of the Cross-
Perspective Fusion Module of GLEN, the strong correlations between all node pairs can be reflected
through fused embeddings. In Figure 8, associated events are (9,10), (9,11), and (12,13). This case
can be analyzed similarly to Figure 7. Global and local embeddings can capture some correlations
between linked nodes, but also ignore some. The strong correlations between all linked nodes can
be reflected in fused embeddings. Thus both global and local views are essential as motivation since
considering only one is not comprehensive.

(1,2)

(1,2)

(3,4)

(5,2)

(5,2)

(3,4) (3,4)

(3,4)

(1,2)

(1,2)

(5,2)

(5,2)

Embedding correlation analysis on the UCI dataset (𝑛𝑜𝑑𝑒𝑠 = {1,2,3,4,5})

Figure 7: Case study about the correlation of node embeddings on UCI. Associated nodes are {1,
2, 3, 4, 5}. Associated events are (1,2), (3,4), and (5,2). The deeper color indicates a stronger
correlation and a higher connection probability.

(9,10)

(9,10)

(12,13)

(12,13)

(9,10)

(9,10)

(12,13)

(12,13)

(9,10)

(9,10)

(9,11)

(9,11)

(12,13)

(12,13)

Embedding correlation analysis on the UCI dataset (𝑛𝑜𝑑𝑒𝑠 = {9,10,11,12,13})

Figure 8: Case study about the correlation of node embeddings on UCI. Associated nodes are {9, 10,
11, 12, 13}. Associated events are (9,10), (9,11), and (12,13). The deeper color indicates a stronger
correlation and a higher connection probability.

16

Under review as a conference paper at ICLR 2024

B TIME COMPLEXITY ANALYSIS

In order to adequately understand the complexity of different temporal graph learning methods and
thus analyze why GLEN achieves impressive efficiency compared to recent works despite employ-
ing multiple modules, we perform a detailed complexity analysis of training different models. We
mainly focus on the computational complexity of the core procedures of each method, omitting the
time spent on inconsequential operations such as time encoding, linear transformations, MLPs, etc.
Throughout we use T to denote the number of time steps (batches) and |E| to denote the number of
events that have been processed. The number of nodes in the graph is denoted as n = |V|.

B.1 TIME COMPLEXITY OF MP-TGNS

To fix the computational pattern, MP-TGNs generally sample |N | neighbors for each node when
an event involving it occurs, and we use CSampling to denote the time complexity required for each
sampling operation. Common sampling strategies include the most recent neighbor sampling (Rossi
et al., 2020), uniform sampling (Rossi et al., 2020), time decay sampling (Zheng et al., 2021), and
gumbel sampling (Zheng et al., 2021).

Next, MP-TGNs aggregate information for each node u from its |N | neighbors. The information
disseminated includes features of neighboring nodes, features of edges, and time encoding vectors.
We denote the time complexity of message passing as CMessge Passing. For example, TGN (Rossi et al.,
2020) uses the multi-head attention (Vaswani et al., 2017b) mechanism for information propagation.
The ’query’ is the linear projection of the concatenation of the node’s own feature vector as well
as the time encoding vector. The ’key’ and ’value’ are both the linear projection of concatenations
of |N | neighboring nodes’s features, the features of corresponding edges, and time encodings. We
use η to denote the number of heads and d to denote the dimension of ’queue’, ’key’, and ’value’.
Then, in each head, QKT is first calculated, where Q ∈ R1×(d/η) and K ∈ R|N |×(d/η). The
corresponding computational complexity is:

O(|N | · d/η). (19)

The time complexity of the following scaling operation and the softmax function is O(|N |). Then
the obtained weight matrix is multiplied by V ∈ R|N |×(d/η), and the time complexity is also O(|N |·
d/η). Therefore, the total time complexity of the multi-head attention mechanism is:

(O(|N | · d/η) +O(|N |) +O(|N | · d/η)) · η
= O(|N | · d/η) · η
= O(|N | · d).

(20)

That is, the estimated time complexity of the message passing operation of TGN (Rossi et al., 2020)
is:

CTGN
Message Passing = O(|N | · d). (21)

Since the sampling and message passing operations are performed for each element in the event
stream, the time complexity of MP-TGNs can be calculated as:

CMP-TGNs = |E| · (CSampling + CMessage Passing). (22)

Specifically, we denote the time spent on each neighbor sampling operation of TGN as CTGN
Sampling.

Then the time complexity of TGN is estimated as:

CTGN = |E| · (CTGN
Sampling + CTGN

Message Passing)

= |E| · (CTGN
Sampling +O(|N | · d)).

(23)

B.2 TIME COMPLEXITY OF WA-TGNS

WA-TGNs also sample the neighbors of each node involved in an event. We also use CSampling
to denote the time complexity required for each sampling operation. WA-TGNs encode the sam-
pled temporal walks to generate representations of nodes, and the corresponding model complexity
depends mainly on the walk length and the number of walks. In fact, WA-TGNs need to perform

17

Under review as a conference paper at ICLR 2024

multiple wanderings for each node over the time span and select an exact neighbor node at each wan-
dering step. Therefore, the time complexity of WA-TGNs is extraordinarily high. For the sampled
walks, different methods encode walks in different ways. Here we take CAWN (Wang et al., 2021c)
as a specific example and denote the time spent on each neighbor sampling operation of CAWN as
CCAWN

Sampling. It is worth noting that CAWN samples a set of M walks for each node to anonymize the
walks by generating relative node identities. We denote the length of each walk as m, the same as
the official paper of CAWN. Then the complexity of sampling a walk set is O(M · m · CCAWN

Sampling),
which means sampling each step of the M walks. Then, CAWN anonymizes a target walk with
O(M ·m) complexity since the relative node identities are obtained based on the counts that nodes
appear at a certain position according to the sampled walks of the set. CAWN uses a simple RNN to
encode each anonymized walk with O(m) time complexity. Then the time complexity to complete
the sampling, anonymization, and encoding of M walks in a set is:

O(M ·m · CCAWN
Sampling) +M · (O(M ·m) +O(m))

=O(M ·m · (CCAWN
Sampling +M)).

(24)

For each event, the two encoded walk sets of the involved nodes are aggregated with time complexity
O(M ·m). Similar to MP-TGNs, the sampling and walk encoding operations are performed for each
element in the event stream. Thus, the time complexity of CAWN can be computed as:

CCAWN = |E| · (O(M ·m · (CCAWN
Sampling +M)) +O(M ·m))

= |E| ·O(M ·m · (CCAWN
Sampling +M)).

(25)

B.3 TIME COMPLEXITY OF GLEN

B.3.1 TIME COMPLEXITY OF THE GLOBAL EMBEDDING MODULE

According to the formulas of GCN (Kipf & Welling, 2016) in Section 3.2, the time complexity of
GCN is related to the number of nodes n, the dimension of node features d, and the number of GCN
layers LGCN. The time complexity formula of GCN is (Chiang et al., 2019):

CGCN = O(n · d2 · LGCN). (26)
Here we assume that the graph is sparse, thus ignoring the computational overhead of normalizing
the adjacency matrix. The time complexity of TCN (Bai et al., 2018) is related to the number of TCN
layers LTCN, the size of convolutional kernels k, the number of channels of each convolutional kernel
(i.e., the number of input channels d), and the number of convolutional kernels (i.e., the number
of output channels d). According to Section Local Embedding Module Based on Time Interval
Weighting, in each layer of TCN, the number of convolution operations for each 1-D convolution
kernel is Γ−1

(k−1)·δ . The time complexity of each kernel’s convolution operation is O(k · d) and there
are d kernels. The expansion factor of the l-th TCN layer is δ = 2l, so the time complexity of TCN
is:

CTCN =

LTCN−1∑
l=0

O(k · d) · Γ− 1

(k − 1) · δ
· d

=

LTCN−1∑
l=0

O(
Γ

2l
· d2)

= O(Γ · (1− 2−LTCN) · d2).

(27)

If we use an RNN (Medsker & Jain, 1999) with LRNN layers to update the feature matrix of nodes
at each time step, the time complexity can be estimated as:

CRNN = O(T · n2 · d · LRNN). (28)
By comparing Eq.27 and Eq.28, it can be seen that the time complexity of TCN is reduced compared
to RNN, and TCN also eliminates the time-dependent problem of RNN. So TCN can be easily
parallelized and computed more efficiently using GPUs. The time complexity of GLEN’s global
embedding module can be computed as:

CGlobal = T · (CGCN + CTCN)

= T · (O(n · d2 · LGCN) +O(Γ · (1− 2−LTCN) · d2))
= T ·O(d2 · (n · LGCN + Γ · (1− 2−LTCN))).

(29)

18

Under review as a conference paper at ICLR 2024

B.3.2 TIME COMPLEXITY OF THE LOCAL EMBEDDING MODULE

In the local embedding module of GLEN, we use the time-saving weighted sum for neighborhood
aggregation, which only requires a time complexity of O(|N |). Thus, the complexity of GLEN’s
local embedding module is:

CLocal = |E| · (CGLEN
Sampling +O(|N |)), (30)

where CGLEN
Sampling is the complexity of each neighbor sampling operation of GLEN. The sampling

strategy of GLEN is the most recent neighbor sampling, which is not very time consuming.

B.3.3 TIME COMPLEXITY OF THE FUSION MODULE

Similar to the time complexity of the multi-head attention mechanism computed in Appendix B.1,
the time complexity of GLEN’s fusion module is:

CFusion = T ·O(n2
b · d), (31)

where nb is the number of nodes involved in the events of a batch. By summing up Eq.29, Eq.30,
and Eq.31, the time complexity of GLEN can be computed as:

CGLEN =CGlobal + CLocal + CFusion

=T ·O(d2 · (n · LGCN + Γ · (1− 2−LTCN)))

+ |E| · (CGLEN
Sampling +O(|N |))

+ T ·O(n2
b · d)

(32)

B.4 CONCLUSION OF TIME COMPLEXITY

By analyzing Eq.23, Eq.25, and Eq.32, the complexity of CAWN is undoubtedly the largest due to
the extensive sampling and anonymization operations. GLEN mainly spends more computation on
GCN, TCN, and fusion per time step compared to MP-TGNs. The computation at the time step
granularity is much more time-saving than the computation for each specific event. i.e., |E| >> T .
Thus, GLEN doesn’t spend much more time than MP-TGNs. In addition, the use of TCN brings a
substantial increase in efficiency, and the attention-based fusion module of GLEN is also suitable for
parallel computing on GPUs. The time complexity of temporal graph approaches depends mainly on
the operations related to the number of events because the models focus on each event for processing,
and the number of events |E| is much larger than the number of time steps T or the number of
neighbors |N |. Therefore, we can focus mainly on the terms multiplied by |E|, since they are the
dominant part of the time complexity. Thus, the time complexity of our method GLEN is mainly
due to |E| · (CGLEN

Sampling +O(|N |)). And the time complexities of TGN and CAWN are |E| · (CTGN
Sampling +

O(|N | · d)) and |E| · O(M · m · (CCAWN
Sampling + M)), respectively. Typically, M = 64, m = 2, and

d = 172. So M ·m ·M > |N | · d > |N |. Therefore, GLEN achieves competitive efficiency, which
can be proved by our experiments in Section 5.4 and Figure 9.

C FURTHER DETAILS OF EXPERIMENTS

C.1 DESCRIPTIONS AND STATISTICS OF DATASETS

Here we introduce the seven datasets used in the paper.

• Wikipedia (Kumar et al., 2019) dataset is a temporal graph containing edits on wiki pages within
one month. Users and pages are modeled as nodes, and each timestamped interaction edge repre-
sents a user editing a page. Edge features are LIWC-feature vectors (Pennebaker et al., 2001) of
edit texts with a length of 172. Dynamic labels of user nodes are available in this dataset, which
indicate whether a user is temporarily banned from editing.

• Reddit (Kumar et al., 2019) collects the interactions between users and posts on subreddits, and
the time span is also one month. Users and subreddit posts are modeled as nodes, and each
timestamped interaction edge represents a user’s posting request. Edge features are LIWC-feature
vectors (Pennebaker et al., 2001) of edit texts with a length of 172. Dynamic labels of user nodes
are available in this dataset, which indicate whether a user is temporarily banned from posting.

19

Under review as a conference paper at ICLR 2024

• Enron (Shetty & Adibi, 2004) dataset models emails exchanged among employees of ENRON
energy company over three years as a temporal graph.

• UCI (Panzarasa et al., 2009) is an unattributed online communication network among students of
University of California at Irvine, along with timestamps with a temporal granularity of seconds.
The nodes in this dataset represent university students, and temporal edges represent messages
posted by the students.

• UN Trade (MacDonald et al., 2015) is a temporal food and agriculture trading graph among 181
countries spanning over 30 years. The weight of each edge contained in this dataset is the total
sum of normalized agriculture import or export values between two particular countries.

• MOOC (Kumar et al., 2019) contains interactions between students and online course content
units, where the nodes are the two types of entities. Each edge of the temporal graph represents a
student accessing a specific content unit such as problem sets and videos.

• Flights (Schäfer et al., 2014) is a dynamic flight network that depicts the evolution of air trans-
portation during the COVID-19 pandemic. Each node represents an airport, and each edge repre-
sents a monitored flight. The number of flights between two given airports in a day is specified by
the edge weights.

Table 4 gives detailed statistics of the datasets.

Table 4: Summary statistics of the datasets.
Dataset Domain #Nodes #Events Attributes for Nodes and Edges Time Granularity Duration Average training time of GLEN per epoch
UCI Social 1,899 59,835 0&0 Unix timestamp 196 days 14.10s
Enron Social 184 125,235 0&0 Unix timestamp 3 years 23.10s
Wikipedia Social 9,227 157,474 172&172 Unix timestamp 1 month 50.81s
MOOC Interaction 7,144 411,749 0&4 Unix timestamp 17 month 206.33s
UN Trade Economics 255 507,497 172&1 years 32 years 221.85s
Reddit Social 10,984 672,447 172&172 Unix timestamp 1 month 324.25s
Flights Transport 13,169 1,927,145 172&1 days 4 months 1117.92s

C.2 DESCRIPTIONS OF BASELINES

We totally use nine strong baselines in the paper:

• DyRep (Trivedi et al., 2019): DyRep uses a two-time scale temporal point process model and
parameterizes it with an inductive representation network, which subsequently models the latent
mediation process of learning node representations. When an event is observed between two
nodes, information flows from the neighborhood of one node to the other and affects the represen-
tations of the nodes accordingly.

• JODIE (Kumar et al., 2019): JODIE learns embedding trajectories of user nodes and item nodes
in temporal interaction networks through two mutually recursive RNNs (Dai et al., 2016; Zhang
et al., 2017). Each user or item has a static embedding and a dynamic embedding. The static
embedding represents the entity’s long-term stationary property, while the dynamic embedding
represents the time-varying property. Both embeddings are used to generate the trajectory, which
enables Jodie to make predictions from both the stationary and time-varying properties of the user.

• TGAT (Xu et al., 2020): TGAT uses the self-attention mechanism (Vaswani et al., 2017b) and
introduces a novel functional time encoding technique derived from the Bochner’s theorem from
classical harmonic analysis (Loomis, 2013) to propagate temporal neighborhood information. The
temporal graph attention layer takes the temporal neighborhood with hidden representations (or
features) as well as timestamps as input, and the output is the time-aware representation for the
target node at any time point.

• TGN (Rossi et al., 2020): TGN is a generic inductive framework of deep learning on temporal
graph networks. The core modules of TGN include the memory module that memorizes long-term
dependencies for each node, the message function that computes messages for the nodes involved
in events, the message aggregator that aggregates messages, the memory updater that updates the
memories of nodes, and the embedding module that generates temporal node embeddings.

20

Under review as a conference paper at ICLR 2024

• CAWN (Wang et al., 2021c): CAWN extracts temporal random walks and adopts a novel
anonymization strategy that replaces node identities with the hitting counts of the nodes based
on a set of sampled walks to keep the method inductive and simultaneously establish the cor-
relation between motifs. Causal anonymous walks (Micali & Zhu, 2016) guarantees inductive
learning and simultaneously establishes the correlation between motifs (Paranjape et al., 2017;
Liu et al., 2021).

• PINT (Souza et al., 2022): PINT is a position-encoding injective temporal graph network. PINT
defines injective message passing and update steps like MP-TGNs and also augments memory
states with novel relative positional features, and these features can replicate all the discriminative
benefits available to WA-TGNs.

• GraphMixer (Cong et al., 2023): GraphMixer is a conceptually and technically simple archi-
tecture for temporal graph learning. It only adopts three simple components: a link-encoder that
is only based on MLP to summarize the information from temporal links, a node-encoder that
is only based on neighbor mean-pooling to summarize node information, and an MLP-based link
classifier that performs link prediction based on the outputs of the encoders. Despite its simplicity,
GraphMixer is equipped with fast convergence and impressive generalization ability.

• TIGER (Zhang et al., 2023): TIGER focuses on the restarting issue in industrial scenarios and
designs a restarter to efficiently generate estimates of current node embeddings using only a small
portion of previous data. With the help of the restarter, TIGER can re-initialize the memory
warmly at any time such that TIGER can resume training/inference even if our model has been
offline for a while. The restarter also enables our proposed methods to run in parallel.

C.3 IMPLEMENTATION DETAILS OF GLEN

The general default hyper-parameters of GLEN are shown in Table 5. For all attributed and non-
attributed datasets, the dimensions of their node features and edge features are fixed as 172. If a
dataset lacks features of nodes or edges, zero feature vectors will be assigned to ensure equal sizes
of features, which is similar to baselines (Kumar et al., 2019; Xu et al., 2020; Rossi et al., 2020;
Souza et al., 2022). For the hyper-parameters investigated in the paper, the optimal combinations of
hyper-parameters are shown in Table 6 and the remaining training configurations follow the default
values in Table 5.

Table 5: General default hyper-parameters of GLEN.
Hyper-parameters Value

Batch size 200
Learning rate 0.0001

Optimizer Adam
Patience of early stopping strategy 5

Number of GCN layers 1
Number of sampled neighbors 10

Number of attention heads 4
Dropout ratio 0.1

Time window size 2
Number of TCN layers 3

Kernel size of TCN 2

Table 6: Optimal combinations of GLEN’s hyper-parameters for all datasets.
Hyper-parameters Wikipedia Reddit UCI Enron UN Trade MOOC Flights

Number of sampled neighbors 10 10 30 20 20 20 20
Time window size 2 2 2 1 1 8 1

Number of attention heads 2 4 1 4 1 4 1
Dropout rate 0.3 0.3 0.5 0.1 0.1 0.1 0.1

Number of TCN layers 4 4 3 3 3 3 3
Kernel size of TCN 2 3 3 2 2 2 2

21

Under review as a conference paper at ICLR 2024

C.4 PSEUDO-CODE OF GLEN

The pseudo-codes of learning our method GLEN are shown in Algorithm 1.

Algorithm 1 Learning algorithm of GLEN
Input: Set of nodes: V = {1, 2, . . . , n}, observed event stream E = {euv(t)}, number of network
layers L, time window size Γ, number of sampled neighbors |N |, and number of attention heads η.
Output: Embedding zu for each node u involved in events.

1: for each batch b do
2: for each event euv(t) do
3: Generate two meassages using Eq.1;
4: Update su(t) and sv(t) using Eq.4;
5: end for
6: Compose edges of the batch into a graph;
7: Normalize the adjacency matrix Ab to Âb using Eq.5;
8: for l ∈ L do
9: Perform graph convolution operation on H

(l)
b using Eq.6;

10: end for
11: Forward {H(L)

(b−Γ+1),H
(L)
(b−Γ+2), ...,H

(L)
b } into TCN using Eq.7;

12: Apply dilated convolution operation using Eq.8;
13: Get ZGlobal using Eq.9;
14: for each node u involved in events of the batch do
15: for l ∈ L do
16: Sample most recent |N | neighbors Nu(t) for u;
17: for each neighbor node v ∈ Nu(t) do
18: Compute w(v,u,t) using Eq.10;
19: Compute z

(l)
uv(t) using Eq.11;

20: end for
21: Perform a weighted sum to obtain h̃

(l)
u (t) using Eq.12;

22: Compute h
(l)
u (t) using Eq.13;

23: end for
24: zLocal

u = h
(L)
u (t);

25: end for
26: Get ZLocal using Eq.14;
27: for i ∈ η do
28: Compute Qi, Ki, and Vi using ZGlobal, ZLocal, and Eq.15;
29: Compute Z̃i using Eq.16;
30: end for
31: Compute Z̃ using Eq.17;
32: Compute Z = {zu} using Eq.18;
33: end for

C.5 DETAILS OF THE EVALUATION PROTOCOL

We conduct evaluation experiments on link prediction and dynamic node classification tasks, as
elaborated below.

Link prediction (Zhang et al., 2020; Srinivasan & Ribeiro, 2019; Lü & Zhou, 2011) is a fundamen-
tal learning task on temporal graphs that focuses on predicting future connections between nodes.
The prediction is classified into two categories: inductive and transductive (Xu et al., 2020). In
transductive tasks, both node instances of an edge have been observed at training time, and induc-
tive otherwise. As a standard practice used in other works (Xu et al., 2020; Rossi et al., 2020; Wang
et al., 2021c), we concatenate the two eigenvectors of each node pair, apply an MLP to obtain the
link probability, and then compute the BCE loss. Average precision (AP) is used as the evaluation
metric for link prediction. Each method is run 5 times, and the means and standard deviations of the
results are taken for comparison. For each batch of data, we perform three benchmark negative sam-
pling strategies (Poursafaei et al., 2022) to sample an equal amount of negative edges to the positive

22

Under review as a conference paper at ICLR 2024

ones and optimize the BCE loss function. Historical and Inductive strategies are more stringent and
challenging evaluation procedures for link prediction specific to temporal graphs. Existing methods
have significant performance degradation with the evaluation of both historical and inductive strate-
gies. The three kinds of negative edge sampling strategies based on the official implementation of
DGB (Poursafaei et al., 2022) are introduced below as follows.

• Random Negative Sampling: To generate negative edges, the random negative sampling
procedure simply keeps the timestamps, features, and source nodes of the positive edges
while randomly choosing destination nodes from all nodes. This strategy has no collision
check between positive and negative instances and lacks the consideration that previously
observed edges always reoccur in temporal graphs.

• Historical Negative Sampling: Historical negative sampling strategy samples negative
edges from the set of edges that have been observed during previous timestamps but are
absent in the current step in order to evaluate whether a given method is able to correctly
predict an observed training edge would reoccur.

• Inductive Negative Sampling: Unlike historical negative sampling, the objective of induc-
tive negative sampling is to evaluate whether a given method can model the reoccurrence
pattern of edges only seen during test time. Thus, this strategy samples negative edges from
the test instances that were not observed during training and are also absent currently.

The diverse sampling methods are more comprehensive and challenging, allowing for better evalua-
tion and more realistic assessments. Note that if the number of available historical or inductive edges
is insufficient to match the number of positive edges, the remaining negative edges are sampled by
the random sampling strategy, the same as the benchmark (Poursafaei et al., 2022). The key way
to improve link prediction performance is optimizing the node embeddings so that nodes tending to
interact with each other as the graph evolves have similar embeddings.

Dynamic node classification (Aggarwal & Li, 2011; Xu et al., 2019) task is to predict the labels of
nodes that may change over time. Publicly available datasets for node classification in the temporal
graphs are rare, so we only use three datasets (Wikipedia, Reddit, and MOOC) for demonstration.
We also use an MLP as the decoder that maps the node embedding to the class probability. Due to the
skew of label distribution, we employ the area under receiver operating characteristic (ROC AUC)
as the main performance metric. All these settings mentioned above are consistent with baselines
(Kumar et al., 2019; Xu et al., 2020; Rossi et al., 2020).

C.6 DETAILS OF THE ABLATION STUDY

• w/o GCN: We remove the GCN (Kipf & Welling, 2016) in the global embedding module of
GLEN and denote this variant as w/o GCN. In this case, the memories of nodes are not processed
by GCN but are directly input into TCN.

• w/o TCN: We remove the TCN (Bai et al., 2018) in the global embedding module of GLEN and
denote this variant as w/o TCN. In this case, GLEN only utilizes the output of GCN at the current
time step as the global embeddings of nodes. The GCN outputs of the last few time steps are no
longer input into TCN.

• w/o Global: We remove the entire global embedding module of GLEN and denote this variant as
w/o Global. In this case, the memories of nodes rather than global embeddings are directly treated
as the ’query’ of the attention (Vaswani et al., 2017a) mechanism in the cross-perspective fusion
module.

• w/o Local: We remove the entire local embedding module of GLEN and denote this variant as
w/o Local. In this case, the memories of nodes rather than local embeddings are directly treated as
the ’key’ and ’value’ of the attention (Vaswani et al., 2017a) mechanism in the cross-perspective
fusion module.

• w/o Fusion: We remove the cross-perspective fusion module of GLEN and denote this variant
as w/o Fusion. In this case, the global and local embeddings of the same node are fused in
summation form to get the final node representation. The degradation of GLEN performance
when removing the cross-perspective fusion module in our ablation study is somewhat indicative

23

Under review as a conference paper at ICLR 2024

of the effectiveness of this module since it takes into account the high-order information in the
graph.

D SUPPLEMENTARY RESULTS

Due to the limitation of space, we report the results of additional experiments in Table 7, Figure 9,
Figure 10, and Figure 11 respectively.

D.1 SUPPLEMENTARY EXPERIMENTAL RESULTS ON TRANSDUCTIVE LINK PREDICTION

We report the Average Precision (AP) in transductive link prediction under the evaluation of three
negative sampling strategies in Table 7. GLEN also achieves state-of-the-art (SOTA) performance.

D.2 SUPPLEMENTARY EXPERIMENTAL RESULTS OF EFFICIENCY

We further evaluate the trade-off capability between performance and training efficiency for various
models on Wikipedia and MOOC datasets, which is shown in Figure 9. Note that the training time
of PINT here does not include precomputing the positional features, otherwise the training time
of PINT will be even much longer than CAWN. Since PINT takes too long on the largest Flights
dataset, we did not include PINT’s results on Flights in our experimental results in Table 2 and
Table 7. The results further prove the impressive balance between inference precision and training
speed of GLEN.

D.3 SUPPLEMENTARY EXPERIMENTAL RESULTS FOR THE INFLUENCE OF
HYPER-PARAMETERS

Additional investigation of the time window size Γ is shown in Figure 10. The performance of
GLEN drops as the time window size increases, which demonstrates that the most recent information
is sufficient for GLEN to generate ideal node embeddings. Large Γ may lead to stale information
and performance degradation.

Additional investigation of the number of sampled neighbors |N | is shown in Figure 11. An interest-
ing insight is that the performance of GLEN on several datasets is scarcely affected by the number of
sampled neighbors. However, other TGNs techniques typically require a certain number (usually 10
or 20) of neighbor nodes to achieve their best performanceWang et al. (2021c); Rossi et al. (2020).
This confirms, to some extent, that global embeddings bring complementary information to local
embeddings through the fusion module of GLEN.

D.4 SUPPLEMENTARY EXPERIMENTAL RESULTS OF ABLATION STUDY

The results of the ablation study on dynamic node classification are summarized in Table 8.

0 500 1000 1500 2000 2500 3000 3500 4000

Average training time(s) per epoch

60

70

80

90

AP
 (%

) o
f i

nd
uc

tiv
e

lin
k

pr
ed

ict
io

n
wi

th
 ra

nd
om

 sa
m

pl
in

g
st

ra
te

gy

UN Trade

DyRep
JODIE
TGAT
TGN
CAWN
PINT
NAT
GraphMixer
TIGER
GLEN

0 100 200 300 400 500 600

Average training time(s) per epoch
55

60

65

70

75

80

85

90

95

AP
 (%

) o
f i

nd
uc

tiv
e

lin
k

pr
ed

ict
io

n
wi

th
 ra

nd
om

 sa
m

pl
in

g
st

ra
te

gy

Enron

DyRep
JODIE
TGAT
TGN
CAWN
PINT
NAT
GraphMixer
TIGER
GLEN

Figure 9: Trade-off between AP (%) in link prediction and training time on Wikipedia and Enron
datasets. The reported AP (over 5 runs) is computed with the random negative sampling strategy as
well as the inductive setting in percentage format. The methods closer to the upper left corner of the
figure are more ideal.

24

Under review as a conference paper at ICLR 2024

Table 7: Average Precision (%) of link prediction under different negative sampling strategies in the
transductive setting (over 5 runs). (First second)

NS Strategy Methods Wikipedia Reddit Enron UCI UN Trade MOOC Flights

Random

DyRep 69.37±0.82 56.77±1.36 62.35±2.86 65.86±3.34 60.00±1.70 60.86±0.28 95.22±0.42
JODIE 98.31±0.07 99.86±0.03 87.05±0.56 98.42±0.24 64.31±1.48 82.17±5.45 96.63±0.55
TGAT 95.57±0.13 98.23±0.05 59.03±2.98 77.32±1.10 60.48±1.13 70.72±0.45 94.17±0.04
TGN 97.89±0.17 96.28±0.56 80.97±1.83 88.35±3.59 65.89±0.60 84.31±2.76 91.24±0.42

CAWN 99.56±0.27 99.74±0.24 90.80±1.48 98.45±1.03 91.61±0.50 87.44±2.31 99.59±0.08
PINT 98.16±0.16 98.51±0.10 92.83±0.06 97.20±0.15 65.14±0.61 77.97±1.93 -

GraphMixer 96.99±0.09 97.23±0.02 81.86±0.58 92.91±0.47 57.26±2.62 82.40±0.54 90.99±0.04
TIGER 98.62±1.10 99.04±1.18 84.35±0.39 93.07±0.41 56.98±0.19 84.05±0.72 94.15±0.53
GLEN 99.99±0.01 99.99±0.01 93.67±0.48 99.55±0.90 97.83±0.15 98.39±2.52 99.96±0.01

Historical

DyRep 41.72±0.46 44.97±1.08 56.95±4.77 48.44±1.13 58.48±2.545 41.22±0.43 67.32±1.02
JODIE 42.82±0.20 46.70±0.65 43.76±0.11 44.98±3.24 63.11±1.24 33.50±0.10 65.97±1.49
TGAT 76.09±0.28 77.74±0.57 53.13±2.46 60.25±0.69 51.55±2.83 63.99±2.13 72.29±0.22
TGN 78.47±2.33 73.08±2.07 70.09±1.88 73.69±4.60 60.90±1.03 62.98±4.51 63.86±1.47

CAWN 80.31±9.61 80.08±0.75 58.58±6.46 81.14±0.94 86.96±0.62 96.87±4.91 51.83±0.19
PINT 71.36±6.58 77.80±6.70 84.16±0.52 94.44±0.46 59.08±1.73 72.63±3.15 -

GraphMixer 90.83±0.25 77.96±0.40 78.89±0.96 85.63±0.35 59.64±2.71 77.56±1.05 71.55±0.23
GLEN 97.67±0.16 98.74±1.25 94.35±2.24 98.24±1.13 97.65±0.08 99.89±0.11 85.46±0.39

Inductive

DyRep 63.57±1.24 51.63±2.51 57.55±3.43 52.51±0.61 60.25±0.85 57.96±1.32 70.76±1.00
JODIE 40.95±0.29 47.21±0.61 47.18±0.20 54.11±2.28 64.85±1.25 42.68±4.12 67.74±0.39
TGAT 81.76±0.22 88.28±0.40 56.83±5.05 61.62±0.49 54.67±3.59 56.85±0.41 75.35±0.10
TGN 82.76±1.07 82.77±0.72 68.23±1.55 70.69±0.73 64.50±1.52 58.64±4.17 64.84±1.55

CAWN 70.53±1.52 78.31±1.76 61.81±3.97 80.04±6.61 89.41±1.05 91.26±1.32 53.55±0.17
PINT 65.49±7.09 83.10±0.85 78.39±0.52 86.72±0.52 62.83±2.61 71.28±3.10 -

GraphMixer 88.43±0.40 85.04±0.17 75.14±0.93 77.97±0.31 62.86±3.21 74.34±0.38 74.84±0.20
GLEN 95.20±0.36 99.24±0.82 94.99±1.91 93.30±3.31 97.45±2.11 99.86±0.19 89.83±0.77

Table 8: Average ROC AUC (%) for ablation study of GLEN in dynamic node classification.
Ablation Wikipedia Reddit MOOC

w/o GCN 87.81 63.77 67.00
w/o TCN 86.30 65.62 66.71

w/o Global 86.74 67.08 61.79
w/o Local 87.14 61.29 69.00
w/o Fusion 87.80 59.26 58.90

GLEN 90.16 70.21 71.49

1 2 4 8 16 32 64 128

Time window size
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

UN Trade

random sampling
historical sampling
inductive sampling

1 2 4 8 16 32 64 128

Time window size
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

Enron

random sampling
historical sampling
inductive sampling

Figure 10: Performance of GLEN with different time window sizes Γ in the global embedding
module on UN Trade and Enron datasets. The AP (over 5 runs) in the inductive link prediction task
is reported.

E DISCUSSION OF SCALABILITY

Since link prediction is the main task of temporal graph learning and there are few datasets suit-
able for node classification, we focus mainly on link prediction like other works (Wang et al.,
2021c; Poursafaei et al., 2022). In terms of scalability, our approach actually has potential scal-
ability. Firstly, scalability of GLEN can be improved by replacing the graph neural network in the
global embedding module with an advanced method suitable for large graphs, such as GraphSAGE
(Hamilton et al., 2017a), or by using distributed training, etc. Secondly, the datasets used in our
paper already include the largest dataset (Flights (Schäfer et al., 2014)) of the publicly available
benchmark (Poursafaei et al., 2022). The main focus of our paper is to further improve the model
performance since the presentation of the new benchmark (Poursafaei et al., 2022) has made the

25

Under review as a conference paper at ICLR 2024

1 2 5 10 20 30 40 50

Number of sampled neighbors
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

UN Trade

random sampling
historical sampling
inductive sampling

1 2 5 10 20 30 40 50

Number of sampled neighbors
0.5

0.6

0.7

0.8

0.9

AP
 o

f i
nd

uc
tiv

e
lin

k
pr

ed
iti

on

Enron

random sampling
historical sampling
inductive sampling

Figure 11: Performance of GLEN with different numbers of sampled neighbors|N | in the local
embedding module on UN Trade and Enron datasets. The reported AP (over 5 runs) in the inductive
link prediction task is reported.

prediction precision of existing methods face unprecedented challenges. Especially for baselines,
there is a significant decrease in performance under the evaluation of historical and inductive neg-
ative sampling strategies which prove to reflect real-world considerations for temporal graphs. As
for industry-level temporal graph methods, there are few related works. Thirdly, the ”largeness” of
temporal graph datasets is mainly reflected in the number of edges (Wang et al., 2021c) since tem-
poral graph datasets are modeled as event streams. Existing models also focus on processing each
event. The table of dataset statistics we provided in Table 4 is organized according to the training
time on the dataset from smallest to largest. It can be seen that datasets with more edges take more
time, and there is no correlation with the number of nodes. So the numbers of nodes in the widely
used datasets are limited, and the number of events determines the training overhead (Wang et al.,
2021c). Currently, due to the new benchmark (Poursafaei et al., 2022) being proposed, the predic-
tion precision of temporal graph methods is facing great challenges. So our work focuses more on
further improving the model performance. Scalability seems to be orthogonal to our work, we will
try it in our future work.

26

	Introduction
	Related Works
	Preliminaries
	Proposed Method
	Overall Framework
	GCN-TCN-based Global Embedding Module
	Local Embedding Module Based on Time Interval Weighting
	Cross-Perspective Fusion Module

	Experiments
	Datasets and Baselines
	Implementation Details and Evaluation Protocol
	Quantitative Results
	Efficiency
	Hyper-parameter Investigation
	Ablation Study

	Conclusion
	Interpretability
	Time Complexity Analysis
	Time Complexity of MP-TGNs
	Time Complexity of WA-TGNs
	Time Complexity of GLEN
	Time Complexity of the Global Embedding Module
	Time Complexity of the Local Embedding Module
	Time Complexity of the Fusion Module

	Conclusion of Time Complexity

	Further Details of Experiments
	Descriptions and Statistics of Datasets
	Descriptions of Baselines
	Implementation Details of GLEN
	Pseudo-code of GLEN
	Details of the Evaluation Protocol
	Details of the Ablation Study

	Supplementary Results
	Supplementary Experimental Results on Transductive Link Prediction
	Supplementary Experimental Results of Efficiency
	Supplementary Experimental Results for the Influence of Hyper-parameters
	Supplementary Experimental Results of ablation study

	Discussion of Scalability

