
Balancing Multimodal Training Through
Game-Theoretic Regularization

Konstantinos Kontras1∗ Thomas Strypsteen1 Christos Chatzichristos1

Paul Pu Liang3 Matthew Blaschko1 Maarten De Vos1,2

1Department of Electrical Engineering, KU Leuven, Leuven, Belgium
2Department of Development and Regeneration, KU Leuven, Leuven, Belgium

3MIT Media Lab and EECS, Cambridge, MA, USA

Abstract

Multimodal learning holds promise for richer information extraction by capturing
dependencies across data sources. Yet, current training methods often underperform
due to modality competition, a phenomenon where modalities contend for training
resources leaving some underoptimized. This raises a pivotal question: how can
we address training imbalances, ensure adequate optimization across all modalities,
and achieve consistent performance improvements as we transition from unimodal
to multimodal data? This paper proposes the Multimodal Competition Regularizer
(MCR), inspired by a mutual information (MI) decomposition designed to prevent
the adverse effects of competition in multimodal training. Our key contributions are:
1) A game-theoretic framework that adaptively balances modality contributions by
encouraging each to maximize its informative role in the final prediction 2) Refining
lower and upper bounds for each MI term to enhance the extraction of both task-
relevant unique and shared information across modalities. 3) Proposing latent space
permutations for conditional MI estimation, significantly improving computational
efficiency. MCR outperforms all previously suggested training strategies and
simple baseline, clearly demonstrating that training modalities jointly leads to
important performance gains on both synthetic and large real-world datasets. We
release our code and models at https://github.com/kkontras/MCR.

1 Introduction

Exploiting multimodal data has made significant progress, with advances in generalizable representa-
tions and larger datasets enabling solutions to previously unattainable tasks [28, 33, 30, 39, 45, 44,
46, 52, 55, 66]. However, studies indicate that jointly trained multimodal data is often utilized subop-
timally, underperforming compared to ensembles of unimodal models, jointly trained modalities, or
even the best single modality [56, 64]. The expectation that adding a new modality should improve
performance, assuming independent errors and above-chance predictive power [16], is frequently
contradicted in practice.

Huang et al. [20] attribute this issue to modality competition, where one modality quickly minimizes
training error, misdirecting and suppressing the learning of others. To counteract this effect, monitor-
ing each modality’s contribution during training and applying corrective measures is crucial. To this
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Figure 1: (Left) Illustration of the conditional mutual information (CMI) terms, CMI1 : I(X1;Y |
X2) and CMI2 : I(X2;Y | X1), representing the unique contributions (U1, U2) of each modality.
The shared task-relevant information (S) is defined as I(X1;X2)− I(X1;X2 | Y ). (Right) Accuracy
on a synthetic dataset designed to induce multimodal competition. We vary the ratio of unique
information from modality 1 (U1) to shared information (S), while keeping the contribution of
modality 2 (U2) constant. As the imbalance increases (moving right on the x-axis), the performance
of most methods drops. The standard Joint Training (Singleloss) approach shows a steep decline,
highlighting its vulnerability to modality competition where one modality dominates and suppresses
the other. In contrast, our method, MCR, demonstrates greater robustness by maintaining the highest
accuracy and exhibiting the slowest performance degradation. See Section 4.1 for more details.

end, several balancing strategies have been proposed [5, 6, 9, 10, 21, 27, 29, 42, 43, 56, 61, 64, 57,
59, 69, 19, 58]. Some ignore a modality’s contribution beyond its independent unimodal performance,
while others address this by measuring output differences under input perturbation, but at the cost of
increased sensitivity to these perturbations and significant computational overhead. Moreover, it is
crucial to examine whether enhancing one modality’s influence on the output does not come at the
expense of others, as this could undermine overall performance.

Given these challenges, how can we efficiently regularize multimodal competition to ensure balanced
and effective learning across modalities?

This paper introduces a loss function encouraging the exploration of task-relevant information across
modalities, the MULTIMODAL COMPETITION REGULARIZER (MCR). The approach incorporates
the following key contributions:
1. MI Bounds: We decompose joint mutual information into task-relevant shared and unique compo-

nents, using refined lower and upper bounds to promote informative signals and suppress noise.
2. Game-Theoretic Modality Balancing: We frame modality interaction through a game-theoretic

framework, allowing each modality to adjust its contribution throughout training.
3. Efficient CMI Estimation: We introduce latent-space perturbations for low-cost conditional MI

estimation, avoiding repeated full-model passes.
We extensively evaluate MCR on synthetic datasets and several established real-world multimodal
benchmarks, including action recognition on AVE [51] and UCF [47], emotion recognition on
CREMA-D [4], human sentiment on CMU-MOSI [65], human emotions on CMU-MOSEI [67], and
egocentric action recognition on Something-Something [14]. Our results demonstrate that MCR
outperforms all previous methods and simple baselines across various datasets and models, improving
multimodal supervised training.

2 Problem Analysis and Related Work

Consider a dataset of N independent and identically distributed (i.i.d.) datapoints sampled from a
distribution D, where each datapoint has M modalities X = (X1, . . . , XM ) and a target Yt. Our
goal is to learn a parameterized function f : X; θ → Yt, where θ denotes all the model’s learnable
parameters. The unimodal encoder for each modality is defined as fm : Xm; θm → Zm, encoding
input Xm into a latent representation Zm. The fusion network fc : [Z1, . . . , ZM ]; θc → Yt predicts
Yt from the latent representations, as do the unimodal task heads fcm : Zm; θcm → Ym. Model
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families are defined as, unimodal models for m = [1, ..,M ] modalities:
Fum

: fum
(Xm; θm, θcm) = fcm (fm (Xm; θm) ; θcm) , (1)

and for multimodal models:
F : f(X; θ) = fc ([f1 (X1; θ1) , .., fM (XM ; θM )] ; θc) . (2)

For simplicity, we continue our analysis with M = 2, focusing on models with two modalities.

2.1 The limitation of supervised multimodal training

In supervised learning, the goal is to learn representations Z1 = f1(X1; θ1) and Z2 = f2(X2; θ2)
when fused via fc([Z1, Z2]), yield accurate predictions. This is achieved by minimizing the task loss
or, equivalently, by maximizing the MI between the fused representation and the target:

argmax
Z1:=f1(X1;θ1),
Z2:=f2(X2;θ2)

I(fc([Z1, Z2]);Yt). (3)

During training, models often over-rely on the stronger or more accessible modality, limiting the
contribution of others. This leads to mutual information being dominated by one modality, e.g.,
I(fc([Z1, Z2]);Y ) ≈ I(Z1;Y ) with I(Z2;Y | Z1) ≈ 0, indicating that Z2 adds little once Z1 is
learned. See Appendix A.1 for an illustrative experiment and Appendix A.2 for a formal definition of
the resulting generalization gap.

This kind of imbalance is well-known in single-modality learning, where dominant features can
overshadow others, harming generalization. Regularization techniques like l1 / l2 penalties and
dropout promote balanced feature use [40, 48], but their adaptation to multimodal settings is nontrivial.
For example, applying modality-specific dropout [62] offers limited benefits [42]. The core challenge
remains: how to effectively regulate interaction and competition between modalities.

2.2 Related Work

Prior research has explored various strategies for multimodal learning, ranging from simple unimodal
and ensemble-based approaches to more sophisticated methods for balancing modality contributions.
Unimodal training optimizes each modality separately, while ensemble methods combine unimodal
predictions without additional training. Joint training optimizes all modalities under a single-loss
objective but does not explicitly ensure sufficient training for each modality. To address this, Multi-
Loss [54] introduces additional unimodal task losses, and MMCosine [63] equalizes modality
influence by standardizing features and weights. Pre-trained unimodal encoders are often used,
either with frozen weights (Uni-Pre Frozen) or fine-tuned jointly (Uni-Pre Finetuned). Other adaptive
strategies include MSLR [64], which adjusts learning rates based on unimodal validation performance,
OGM [42], which modulates gradients by comparing unimodal performance across modalities, and
MLB [27], which combines unimodal task losses and modulates gradients from both unimodal
and multimodal objectives, MMPareto [57] that mitigates gradient conflicts between modalities
by equalizing the contribution of unimodal and multimodal gradient and D&R [59] suggest a new
strategy where modalities that overfit get their part of the network partially reweighted with the initial
weights of the training.

Most of these methods assume distributional independence and measure modality contributions
through unimodal performance, which can be a limited indicator, missing cases where modality
correlation is crucial. Other approaches estimate influence based on prediction differences after
perturbations [29, 21, 10]. AGM [29] uses zero-masking Shapley values directly optimizing them
as unimodal predictors, Wei et al. [58] use a permutation-based Shapley values and resampling of
the training set to affect the training, while other methods address similar problems by introduc-
ing perturbations such as Gaussian noise [10] or task-specific augmentations [21, 32]. However,
perturbation-based approaches increase the network’s sensitivity to the chosen perturbations and
hinder scalability due to their higher computational demands.

A line of work keeps unimodal training as the primary strategy. MLA [69] uses a shared task head
and dynamic weighted summation during validation, while ReconBoost [19] alternates unimodal
updates with agreement and diversity regularization before finetuning the ensemble. However, these
approaches avoid multimodal training in the earlier steps to mitigate conflicts, yet overlook the
potential benefits of direct multimodal interactions in those steps.
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Figure 2: Multimodal Competition Regularizer (MCR): The diagram illustrates the MCR frame-
work, which mitigates modality competition in multimodal learning. Raw data (X1 and X2) are
encoded into latent representations (Z1 and Z2), which are then permuted to create Z̃1 and Z̃2 and
the paired combinations. These combinations are passed through the Fusion Network to produce pre-
dicted outputs (Y , Ỹ1, Ỹ2). The comparison between predictions reveals each modality’s contribution.
For example, if Y ≈ Ỹ1, it shows that X1 has little impact, and the model relies on X2. The MCR
loss includes three components: LMIPD maximize the Jensen-Shannon divergence (JSD) between
task output and permuted modality predictions. LCon aligns modality representations, while LCEB

penalizes task-irrelevant information by reconstructing back to the latent space.

3 Multimodal Competition Regularizer

Multimodal competition arises when a model trained on multiple modalities prioritizes one, leading
to over-reliance and reducing the contribution of others. This imbalance limits the model’s ability to
fully utilize all available information. In this section, we introduce LMCR, a set of loss components
designed to address multimodal competition. Each component of the loss is motivated by the
following MI decomposition:

I(X1;X2;Y ) = I(X1;Y | X2) + I(X2;Y | X1)︸ ︷︷ ︸
Task-Relevant Unique Information

of each modality∼LMIPD

+ I(X1;X2)︸ ︷︷ ︸
Shared Information

LCon

− I(X1;X2 | Y )︸ ︷︷ ︸
Task-Irrelevant

Shared Information∼LCEB

. (4)

This decomposition is illustrated by the Venn diagram in Figure 1. The CMIs I(X1;Y | X2)
and I(X2;Y | X1) capture modality-specific information for predicting the target. Maximizing
them with the Mutual Information Perturbed Difference (MIPD) loss, LMIPD, which assesses each
modality’s contribution via output variations under input perturbations (elaborated in Sec. 3.3) and
encourages the extraction of modality-specific, task-relevant features. The third term, I(X1;X2),
quantifies shared information between modalities. Maximizing it with a contrastive loss, LCon,
aligns representations and leverages their shared information effectively [22, 41, 46]. The final term,
I(X1;X2 | Y ), represents task-irrelevant shared information. Penalizing it with the conditional
entropy bottleneck (CEB) [8] and the corresponding loss LCEB to filter out irrelevant information,
focusing the model on features relevant to the downstream task. Each term has a corresponding loss,
as illustrated in Figure 2, forming the regularizer with three key losses:

LMCR = LMIPD + LCon + LCEB (5)

3.1 Approximating MI Terms

I(X1;Y | X2) : To approximate each CMI and capture the unique contribution of each modality,
the MIPD serves as a surrogate function, measuring how input perturbations affect the model’s
output. By comparing predictions with and without these perturbations, MIPD estimates how much
information each modality provides. If a modality is crucial, altering its input should significantly
change the output, revealing its importance.

Estimating the CMI directly through I(X1;Y | X2) = H(Y | X2) −H(Y | X1, X2) is typically
intractable. Instead we use the MIPD as a lower bound, defined as:

MIPD(X1;Y | X2) = I(X1;Y | X2)− I(X̃1;Y | X2) ≤ I(X1;Y | X2), (6)
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Figure 3: This figure illustrates a key aspect of our training process, showing how competition
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response to Audio Importance (Importance2). When k = 1, the video encoder enhances Importance2;
at k = 0, it remains neutral, and at k = −1, it competes by reducing Importance2 to prioritize its
own (Importance1). This reflects the principle that increasing the importance of one modality can
reduce the importance of the other.

where the perturbed version of modality X1 is denoted as X̃1. Interpreting MI via entropy, each CMI
can be expressed as the difference of the log probabilities with and without the perturbations:

MIPD(X1;Y | X2) = H(Y | X2, X̃1)−H(Y | X2, X1)

= E
y∼p(y)

x1,x2∼p(x1,x2,y)

[
− E
x̃1∼p(x1)

[log p(y | x2, x̃1)] + log p(y | x2, x1)
]
. (7)

Instead of this log-likelihood ratio, we use the symmetrically bounded Jensen-Shannon divergence
(JSD) [34] to prevent training instabilities, leading to the following:

LMIPD1 = −MIPD(X1;Y | X2) = − E
y∼p(y)

x1,x2∼p(x1,x2,y)
x̃1∼p(x1)

[JSD(p(y | x2, x1), p(y | x2, x̃1))] .
(8)

Similarly, LMIPD2
can be computed symmetrically.

I(X1;X2) : The next MI term measures how much information the two modalities share, capturing
the common patterns between the modalities and aligning the representations of these shared aspects.
We exploit the available label information employing the supervised contrastive loss LCon [25]:

LCon = E
x1,y∼p(x1,y)

x+
2 ∼p(x2|y)

x−
2 ∼p(x2|¬y)

2

[
log

ψ(x1, x
+
2 )∑

k ψ(x1, x
−
2k
)

]
, (9)

where ψ is the critic function, which, in our case, is the exponential dot product. Minimizing the
LCon, maximizes a lower bound on both the MI between the two modalities and the CMI terms:

I(X2;Y |X1) + I(X1;Y |X2) + 2I(X2;X1) ≥ logN − LOpt
Con. (10)

As N increases, the bound becomes tighter, while the bound is not affected by the number of positive
samples (same class datapoints). More details are provided in Appendix B.

I(X1;X2 | Y) : The final term captures irrelevant shared information between modalities, and
minimizing an upper bound on this ensures the model retains only task-relevant content. For this pur-
pose, we exploit the idea of Conditional Entropy Bottleneck (CEB) LCEB [7], targeting superfluous
information in multimodal representations via a reconstruction loss. A small reconstruction head,
h : Y ; θh → Z = (Z1, Z2), predicts back the latent space, effectively filtering out irrelevant content:

LCEB = E
x1,x2,y∼p(x1,x2,y)

∥[f1(x1), f2(x2)]− h(y; θh)∥2 (11)

The exact derivation of this loss term can be found in Appendix A.6. Penalizing irrelevant information
has been shown to enhance calibration and robustness [8], but it must be carefully evaluated, as it can
introduce constraints that may hinder overall performance.

2¬y = {y′ ∈ Y | y′ ̸= y}, where Y is the set of target labels.
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3.2 The Game of Multimodal Fusion

We adopt a game-theoretic approach to balance the terms of the proposed LMIPD. The key idea
is that increasing one modality’s importance (e.g., via MIPD1) can inherently reduce the other’s
(e.g., MIPD2). Thus, an underutilized encoder i (with parameters θi) can boost its relevance both by
minimizing LMIPDi

and by maximizing LMIPD¬i
. This twofold strategy helps prevent suppression

of weaker modalities. We frame LMIPD as a game where each encoder (player) selects a strategy,
minimize, maximize, or ignore. Figure 3 illustrates how the video modality, via a hyperparameter
k, can choose to assist, ignore, or diminish the audio modality. Each encoder applies this logic
selectively as formalized below:

∇θ1LMIPD = λM (∇θ1LMIPD1
+ k∇θ1LMIPD2

) , (12)

∇θ2LMIPD = λM (∇θ2LMIPD2
+ k∇θ2LMIPD1

) .3 (13)

where λM is a Lagrange multiplier, and k ∈ {−1, 0, 1} sets the modality’s strategy:

• Collaborative (k = 1): All modalities work together to increase each other’s contributions. The
LMIPD terms are applied across all parameters, resulting in min

θ
LMIPD.

• Independent (k = 0): Each modality focuses on maximizing its own contribution by optimizing
solely its respective LMIPD term, leading to min

θi
LMIPDi

.

• Greedy (k = −1): Each modality seeks to maximize its own contribution by: 1) minimizing its
own LMIPD term, and 2) maximizing the LMIPD terms of other modalities, resulting in a min-max
game, min

θi
max
θ¬i

LMIPDi
4.

Following the results in Appendix A.8, we adopt the greedy strategy as default, as it showed the most
consistent performance in our setting.

3.3 Perturbations

To assess the importance of modality X1, we define LMIPD1 , which captures changes in the model’s
output when X1 is perturbed (i.e., {X̃1, X2} vs. {X1, X2}). Instead of traditional input-space
perturbations, which can be computationally expensive and task-dependent, we apply a within-batch
permutation σe ∼ Uniform(P) in the latent space, yielding X̃1 = σe(X1). This approach avoids
extra forward passes and reduces computational and memory overhead. Further analysis of this
technique and comparisons with prior methods are provided in Appendix A.10 and A.14.

The complete algorithm is presented in Algorithm 1, with an extension of LMCR to M modalities
described in Appendix A.7. In Appendix A.9, we analyze various combinations of loss components,
revealing that penalizing task-irrelevant information benefits models with extensive SSL pretraining
but proves detrimental for those without it.

4 Experiments

4.1 Synthetic Dataset

We create a scenario where mutual information varies, showcasing modality competition. While
various factors can contribute to such a phenomenon, we focus on modality informativeness imbalance
to motivate our approach.

Data: We generate task-irrelevant information for each modality by sampling N1, N2 ∼ N (0, I)
and the 5-class label Yt from a uniform distribution Yt ∼ Uniform(5). Each modality is converted
into a high-dimensional vector using fixed transformations, similar to Liang et al.[32]. We relate
both modalities to the label through a linear relationship: X1 = N1 + Yt and X2 = N2 + Yt. Data
points are distributed in such a way that either both modalities contain label information (Shared
Information) or only one of the modalities (Unique Information). In cases where only one modality
contains label information, the other modality is defined as X1 = N1 and X2 = N2 respectively. We

3The parameter set under the loss indicates where backpropagation applies.
4The notation ¬i refers to the rest of the modalities except i.
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Algorithm 1 Multimodal Training with MCR
Input: Training dataset D with modalities X1, X2, . . . , XM , labels Yt, multimodal model f ∈ F ,
initialized unimodal encoders θi, reconstruction model h, λuni, λM Lagrangian coefficients:

1: for each batch (X1, .., XM , Yt) of each epoch do
2: Compute Ltask(f(X1, .., XM ), Yt) and Luni

task = λuni
∑M

m=1 Ltask(f
u
m(Xm), Yt)

3: Extract (Z1, .., ZM ) from f(X1, .., XM )
4: Assess the LCon with Eq. 9 and LCEB with Eq. 11
5: Sample σe permutations and compute permuted pairs on the latent space Z
6: Pass each pair through the fusion model fc to get predictions Ỹm with modality m permuted
7: Compute LMIPD using Eq. 8, 13 and selecting k by strategy (default: Greedy)
8: Determine LMCR from Eq. 5
9: Update the model parameters based on

Ltotal = Ltask + Luni + LMCR

10: end for

vary the percentage of data points with shared and unique information to analyze model performance
under different conditions.

Results: Figure 1 shows the performance on synthetic data, comparing our method (MCR) with
several baselines. As the shared information S among the modalities decreases, and the unique
information of one modality U1 increases while the U2 remains constant, we observe a performance
drop for all methods. MCR maintains the highest accuracy across all combinations, demonstrating
the slowest decline and highlighting its robustness to such imbalance.

4.2 Real-World Datasets

Datasets: We explore several real-world datasets, primarily with video, optical flow, audio, and text
modalities, that either exhibit significant imbalance among modalities or serve as standard multimodal
benchmarks. Detailed descriptions are provided in Appendix A.3, with brief summaries below:
1. CREMA-D [4]: An emotion recognition dataset with 91 actors expressing 6 distinct emotions.
2. AVE [51]: A collection of videos with temporally aligned audio-visual events across 28 categories.
3. UCF [47]: An action recognition dataset of real-life YouTube videos.
4. CMU-MOSEI [67]: Multimodal sentiment analysis dataset with 23k monologue clips.
5. CMU-MOSI [65]: Multimodal sentiment analysis dataset with over 2k YouTube video clips.
6. Something-Something (V2) [14]: 220k clips of individuals performing 174 hand actions.

Models: We employ a variety of models and backbone encoders to examine the behavior of both
smaller-scale models trained from scratch and larger, more complex models pretrained with self-
supervised learning (SSL). This combination demonstrates that our method is effective in both limited
data scenarios without pretraining and in cases with ample data where the goal is fine-tuning. We
utilize ResNet-18 and small-scale Transformers (from thousand to 20M parameters) alongside state-
of-the-art models such as Swin-TF [35] and Conformer [13], incorporating backbone encoders like
Wav2Vec2, HuBERT, and ViViT, resulting in model sizes approaching 200M parameters. Detailed
model configurations for each dataset are provided in Appendix A.4 and experimental details in
Appendix A.5. These choices aim to bridge the gap between theoretical work and practical application.

Results: Table 1 reports accuracy comparisons across baseline methods on our evaluation datasets.
We highlight two key observations:

a) Most prior methods, including recent multimodal approaches, fail to outperform simpler alterna-
tives such as Ensembles or unimodal encoders (either frozen or finetuned). While some of these
methods partially address modality competition, they often fall short of effectively leveraging
multimodal data.

b) MCR is the only method that consistently surpasses all baselines across datasets, model archi-
tectures, number of modalities, and task types (classification and regression), with an exception
on AVE with Conformer model. This consistent advantage highlights MCR’s ability to balance
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Table 1: Performance comparison of MCR against prior multimodal training methods across six
datasets. MCR consistently achieves top results across various modality combinations (V-A, V-T,
V-A-T, V-OF) and model architectures. MOSI and MOSEI use three modalities and are trained
as regression tasks (converted to binary accuracy); the rest are classification tasks. All baselines
were rerun under our evaluation protocol to ensure fair comparison and address data leakage issues
identified in previous evaluation setups.

CREMA-D AVE UCF MOSI MOSEI Sth-Sth
ResNet Conformer ResNet Conformer ResNet Transformer Swin-TF

Method V-A V-A V-A V-A V-A V-T V-A-T V-T V-A-T V-OF

Unimodals V: 55.4±3.0

A: 60.6±2.3

V: 69.4±2.0

A: 76.0±2.6

V: 45.7±1.6

A: 62.6±0.9

V: 75.5±1.2

A: 76.5±2.4

V: 38.5±0.9

A: 30.3±1.5

V: 54.1±3.7

A: 53.7±0.6

T: 72.1±3.3

V: 64.8±0.2

A: 64.4±0.2

T: 78.9±1.7

V: 61.4±0.2

OF: 50.8±0.1

Ensemble 71.7±2.2 84.6±1.0 70.5±0.2 88.4±2.2 52.8±0.5 70.5±2.1 67.2±1.5 78.4±0.7 77.2±0.6 64.6±0.2

Joint Training 62.6±5.8 74.6±2.2 66.7±1.5 82.2±0.8 47.7±1.5 73.0±1.3 73.6±1.3 80.5±0.2 80.8±0.3 57.5±0.1

Multi-Loss 69.2±1.8 82.6±0.9 70.1±0.9 86.3±1.1 51.1±1.8 72.1±0.4 73.6±2.9 80.0±0.7 80.2±0.5 61.5±0.1

Uni-Pre Frozen 72.4±1.8 85.0±1.8 72.2±0.3 87.2±2.4 53.0±0.9 73.3±1.8 72.7±1.6 79.9±0.5 79.8±0.3 64.0±0.2

Uni-Pre Finetuned 73.3±1.8 82.4±2.0 72.5±1.3 86.5±0.8 53.5±1.3 73.1±2.3 73.7±0.7 80.3±0.4 80.3±0.2 62.1±0.2

MSLR [64] 56.5±2.4 77.1±2.4 67.3±2.2 81.0±1.4 50.9±3.9 × × × × −
MMCosine [63] 59.3±1.5 74.0±0.3 65.0±1.4 83.8±0.8 47.3±4.1 × × × × −
OGM [42] 65.6±3.8 82.4±1.0 67.3±0.6 79.7±1.4 51.8±1.9 73.9±1.1 ⊗ 79.7±0.6 ⊗ 57.8±0.5

AGM [29] 69.3±1.4 78.5±1.6 68.4±1.1 85.3±0.5 51.0±1.6 74.0±1.3 73.9±1.9 79.3±0.4 80.2±0.3 56.6±0.4

MLB [27] 71.9±2.2 85.2±0.9 71.6±0.2 86.7±0.3 52.2±1.7 72.4±1.7 74.2±1.7 80.1±0.5 80.5±0.4 61.6±0.2

ReconBoost [19] 69.0±2.4 84.8±1.8 68.4±1.7 86.1±0.7 50.2±4.0 × × × × 56.1±0.3

MMPareto [57] 69.0±2.5 83.8±0.8 73.0±1.3 87.4±1.3 51.4±2.2 73.4±1.0 73.7±0.6 79.3±0.6 79.5±0.8 59.2±0.5

D&R [59] 70.6±1.3 85.0±0.4 72.3±1.5 91.0±0.7 49.3±1.0 × × × × 61.7±0.2

MCR 76.1±1.6 85.7±0.2 73.4±0.0 88.8±1.0 55.2±1.8 75.2±1.7 76.5±1.4 80.8±0.4 81.1±0.4 65.0±0.1

× method not applicable to regression tasks;
⊗ method not applicable to trimodal inputs;
− result not reported.

modality contributions during training under diverse settings, positioning it as a strong and
generalizable approach for multimodal learning.

4.3 Analysis of Multimodal Error

Methodology: To understand how MCR improves over existing methods, we perform a post-hoc
error analysis by categorizing each sample based on the correctness of the unimodal predictions.
Specifically, we consider four groups: (1) both unimodal models are correct, (2) only the first is
correct, (3) only the second is correct, and (4) both are incorrect. This breakdown allows us to
compare how different multimodal methods behave across these categories and identify whether
gains arise from selective reliance on unimodal cues or from synergistic integration.

Results: The error analysis of Figure 4 reveals key strengths and limitations of the proposed method.
MCR consistently outperforms other methods in routing information favouring both modalities in
the cases that only one of the modalities is correct maintaining competitive performance on both of
them and in the case that all modalities correctly predict the label. This demonstrates MCR’s ability
to effectively route information to the appropriate modality, in line with its design choice to model
and control training via this modality-independent, task-relevant information through the mutual
information terms.

However, MCR does not exhibit significant gains in capturing synergetic information in the datapoints
that all unimodal models fail, underperforming relative to AGM and MLB. This suggests MCR
excels in routing decisions but may be less effective at leveraging synergies across modalities when
all individual models falter. This trend holds across other datasets (see Appendix A.11), with the
exception of MOSI, where MCR improves synergy. Our initial assumption that concurrent modality
training would foster synergy thus did not hold in practice.
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Figure 4: Error comparison on the CREMA-D dataset across unimodal and multimodal models
(MCR, Ensemble, Joint Training, AGM, MLB). Each matrix summarizes model performance based
on unimodal prediction correctness. MCR performs best when at least one unimodal branch is correct
(brown box), effectively preserving modality-specific signals. However, AGM and MLB outperform
MCR when both unimodal predictions fail, in the "Both Wrong" (purple box), indicating stronger
synergy in those edge cases. Trends across other datasets are shown in Appendix A.11, with MOSI
being a notable exception where MCR also excels in synergy.

5 Discussion

This paper examines the challenge of modality competition in multimodal learning, where certain
modalities dominate the training process, resulting in suboptimal performance. We introduce the
Multimodal Competition Regularizer (MCR), a novel approach inspired by information theory, which
frames multimodal learning as a game where each modality competes to maximize its contribution
to the final output. MCR efficiently computes lower and upper bounds to optimize both unique
and shared task-relevant information for each modality. Our extensive experiments show that MCR
consistently outperforms existing methods and simple baselines on both synthetic and real-world
datasets, providing a more balanced and effective multimodal learning framework. MCR paves the
way for fulfilling the long-standing promise of multimodal fusion methods to achieve performance
that surpasses the combined results of unimodal training.

We explored different game strategies and observed that directly encouraging competition between
modalities in the overall objective function positively impacts performance, as detailed in Appendix
A.8. Future work could investigate more refined strategies to enable individualized and adaptive
decisions for each modality to unlock greater performance gains.

Lastly, we conduct a post-hoc error analysis found both in Section 4.3 and Appendix A.11, examining
overlaps between the errors of multimodal models and their unimodal counterparts. The results show
that MCR excels at routing decisions to the correct unimodal information but does not promote
synergetic behavior accordingly, compared to previous methods. Our initial assumption that the
simultaneous progress of unimodal encoders during training would naturally enhance synergy was not
supported in practice, highlighting the need for future work to promote this behavior explicitly. Finally,
this analysis highlights the potential for performance improvements through enhanced multimodal
training, motivating further exploration in this area.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe the abstract and introduction accurately reflect the ideas, contribu-
tion and the scope of our presented research.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have conducted a series of experiments in the error analysis section that
provide the limitations of our method, which are also included in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We believe we provide the full set of assumptions and the complete and correct
proofs for our methodology in the sections that this applies.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included all the experimental details needed to reproduce our results
and claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In the Appendix we provide a full description with the instructions needed to
reproduce our experimental results, from the experimental details, dataset preparation and
time needed. We believe these will be sufficient but after the review process we will make
our code publicly available too.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included all the necessary details in the Appendix to make sure
someone can follow the training and test details. Since we faced issues with previous works,
we believe this is an important part of our contribution.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper report error bars in terms of standard error (STE) for the different
folds which involve cross validation in the datasets without fixed test set and multiple runs
with different seeds in the case of fixed test set. We do not report ste in two cases, in
Something-Something dataset, due to its size running multiple folds was computationally
prohibitive, and on some instances that we tried due to the size of the test set, the STE was
also negligible, the latter reason lead us to skip the reporting of deviation on MOSEI and
MOSI. To the rest of our results, we always include STE reporting.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the corresponding implementation details section we do report about the
maximum computational resources used and the execution time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge we align completely with the Code of Ethics of
NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: We believe our work is foundational research which is not tied to a specific
task or use and therefore there are no direct societal impacts of the worked performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that our paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited and acknowledged the data, code and models used in
our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Our work does not involve crowdsourcing or research with with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not include LLM as core method for developing our research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Material

A.1 Evidence of limitations of supervised multimodal training

Identifying the instances where supervised multimodal training collapses is often easier than resolving
the issue itself. Nevertheless, it is crucial to understand both these limitations and why simple solutions
might not suffice. To explore this, we utilize a ResNet-18 [17] backbone on the CREMA-D dataset,
employing audio and video as the two modalities. These modalities are concatenated just before the
final linear layer. We measure multimodal performance at the end of each epoch and, simultaneously,
perform linear probing on each modality to evaluate their individual contributions throughout training.

In Figure 5, it is clear that the performance of the multimodal model aligns closely with that of the
audio modality alone, suggesting that the model heavily relies on audio while neglecting the video
modality. This lack of exploration results in the video modality remaining at chance-level accuracy
throughout training. As a result, the model fails to leverage any information available in the video
modality and performs significantly worse than an ensemble of the unimodally trained models.
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Figure 5: Accuracy of the multimodal model on the CREMA-D dataset across training epochs,
showing the performance of the full multimodal model (blue) and individual modality linear probing
for audio (orange) and video (green). The dashed red line represents the accuracy of a unimodal
ensemble model, highlighting how the model’s over-reliance on the audio modality negatively impacts
the utilization of the video modality

A.2 Multimodal Competition Error

Multimodal competition occurs when the network primarily optimizes for one modality, leading to a
decline in generalization. One modality dominates the reduction in training error and limits gradient
feedback to the other modalities. Huang et al. [20] proved that in late fusion models (i.e. θc = ∅),
each modality has a probability of causing multimodal competition. They define the phenomenon in
terms of the correlation Γm =

∑
cl max[⟨Xcl

m,W
cl⟩]+ of each input modality and the weights, W ,

of the output layer for each corresponding class cl. If a modality dominates the competition, it causes
the other modality to maintain its initial (i.e. before training) correlation levels. Such correlation
levels do not have a specific target, unlike other problems where equality is the goal [23], making the
solution less straightforward. We proceed with this analysis on late-fusion models by introducing the
generalization error ϵ resulting from the effects of multimodal competition.
Definition A.1. Definition of Multimodal Competition Error (MCE): Let Γ1 and Γ2 represent the
correlations of modalities Z1 and Z2 with the output. If, after training, Γ1 ≫ Γ2, and modalityX2 has
predictive power greater than randomness (R(X2) < R(random)), while making errors independent
from those of X1 (E[e1 · e2] = 0, where e1 and e2 are the errors of X1 and X2, respectively), then
for a trained model f and its optimal solution f∗, there exists a multimodal competition error ϵ, such
that:

ϵ ≥ R(f∗)−Remp(f
∗) and ϵ ≤ R(f)−Remp(f) (14)

where R(·) = E[Ltask(Y, ·)] and Remp(·) denote the generalization and empirical model risks, and
Ltask represents the corresponding task loss, which could vary depending on the objective, such as
cross-entropy for classification or mean-squared error for regression. A higher ϵ indicates a stronger
effect of multimodal competition, implying that the dominance of one modality significantly impacts
the model’s generalization. These inequalities are empirically observed through improvements in
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generalization achieved by adjusting the training objectives to address multimodal competition,
without altering the model or the data. Numerically estimating ϵ would require knowledge of the
optimal solution f∗, which is typically unavailable. Lastly, transitioning from the late-fusion models
of Huang et al. [20] we need to extend this definition by replacing correlation with MI to consider
also non-linear statistical dependencies.

A.3 Datasets

CREMA-D [4]: is an emotion recognition dataset with audio and video modalities. It features
a diverse group of 91 actors, covering a wide range of ages, ethnicities, and genders. To ensure
consistency, each actor is positioned at an equal distance from the camera, expressing six distinct
emotions: Happy, Sad, Anger, Fear, Disgust, and Neutral. In alignment with methodologies from prior
studies [42, 29, 6], video frames are sampled at 1 fps, selecting 3 consecutive frames, while audio
segments are sampled at 22 kHz, capturing 3 seconds that correspond with the chosen video frames.
Audio analysis utilizes a window size of 512 and a step size of 353 samples for Short-Time Fourier
Transform (STFT), creating log-Mel spectrograms. For advanced models, our methodology aligns
with Goncalves et al. [12], incorporating audio signals sampled at 16 kHz and utilizing pre-calculated
facial features. Unlike previous approaches [42, 29, 6], our dataset division follows Goncalves et al.
[12], excluding actor overlap between training, validation, and test sets. We report standard deviation
(std) across folds for consistency.

AVE [51]: contains 4143 videos across 28 event categories with a wide range such as frying food or
playing guitar, each with temporally labeled audio-visual events of at least 2 seconds. Following [6],
video segments where the event occurs are sampled at 1 fps for 4 frames, with audio resampled at 16
kHz using CREMA-D’s STFT settings. AVE provides predefined training, validation, and test splits.
Our std is derived from three random seeds on the same test set.

UCF101 [47]: features real-life action videos from YouTube in 101 action categories, expanding on
UCF50. We select samples that include both video and audio modalities, narrowing our focus to 51
action categories. Data preparation mirrors that of the AVE dataset. For model evaluation, we utilize
the 3-fold split offered [47], reporting the std across these folds.

Something-Something (V2) [14]: presents 220,847 video clips where individuals execute 174
distinct, object-agnostic hand actions, spanning a wide range of simple hand movements without
reliance on specific objects. This extensive collection markedly exceeds the data volume of prior
datasets. In alignment with Radevski et al. [45], we integrate Optical Flow (OF) as the additional
modality for capturing dynamic motions. We sample videos at 1 fps, retaining 16 frames per sample.
Our data preparation adheres to the pipeline outlined in Radevski et al. [45]. Results are reported
based on three random seeds on the same validation set.

CMU-MOSI [65] and -MOSEI [67]: datasets serve as benchmarks for multimodal sentiment
and emotion analysis. MOSI comprises 2,199 video clips with video, audio and text modalities.
MOSEI expands on this with around 10x more YouTube movie review clips from 1000 different
speakers. Both datasets are annotated with sentiment scores (-3 to 3) and following previous works
[52] we employ metrics such as 7-class accuracy, binary accuracy, F1 score, mean absolute error,
and correlation with human annotations for model evaluation. We use for both datasets the aligned
versions following [31]. The reported std is derived from three random seeds on the same test set.

A.4 Models: Backbone Unimodal Encoders

In line with previous research [29, 42, 6, 63], our initial experiments adopt ResNet-18 [17] as the
unimodal encoder for handling both video and audio modalities in the CREMA-D, AVE, and UCF
datasets. These models are randomly initialized and incorporate adaptive pooling to accommodate
diverse input dimensions. For the CMU-MOSEI dataset, we exploit a 5-layer Transformer [53]
similar to previous works [32, 31].

We extend our investigation to include a larger, pre-trained set of unimodal encoders that are optimally
suited for each specific modality. This selection process is designed to rigorously assess whether
state-of-the-art models exhibit susceptibility to the same phenomena under investigation. We exploit
these encoders on the CREMA-D dataset. Following [13] on CREMA-D, we deploy the first 12
layers of the Wav2Vec2 [3, 60] model with self-supervised pretrained weights for speech recognition,
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allowing the Wav2Vec2 model to be finetuned. For the video modality, we extract the facing bounding
boxes with the multi-task cascaded convolutional neural network (MTCNN) face detection algorithm
[68] and afterward the facial features of every available frame exploiting EfficientNet-B2 [50] as a
frozen feature descriptor. The extracted audio features and pre-calculated facial features are further
refined using a 5-layer Conformer [15], initialized from scratch. The total model size is 183M
parameters. Although the model includes additional components, we refer to it as "Conformer" for
simplicity.

For the AVE dataset, we use a similar architecture to CREMA-D, where each branch utilizes an
advanced, pretrained model aligned with AVE data, followed by a 5-layer Conformer. For the
video branch, we use the ViViT model [2] pretrained on Kinetics [24], and for the audio branch,
the HuBERT [18] model pretrained on Audioset [11] resulting in a model with 232M parameters.
Ensuring the audio pretraining included non-speech data was important for the pretraining to be
beneficial. We also refer to this model as "Conformer," although it incorporates different large
pretrained models in this instance.

In the case of the Something-Something dataset, our methodology builds upon the insights presented
by Radevski et al. [45], which highlight the importance of modality-specific processing in multimodal
tasks. For both video and optical flow data, we adopt the Swin Transformer [35] as the backbone
encoder to each modality. This state-of-the-art architecture excels in capturing hierarchical and
spatiotemporal features through its shifted window attention mechanism.

A.5 Experimental Details

In this section, we outline the necessary details to reproduce our experiments. Across all datasets, we
follow a consistent procedure: we first determine an appropriate learning rate (lr) for the unimodal
models by testing several candidates until finding one that works across both modalities. While
this step could be avoided by exploiting parameter-specific learning rates, we expected stability
implications which we aimed to avoid. For all the experiments of the same dataset/model pair, we use
the same hyperparameters, except when fine-tuning pretrained encoders, where we apply a learning
rate scaled one magnitude lower.

All models are optimized using Adam [26] with a cosine learning rate scheduler and a steady warm-up
phase, except for the Something-Something dataset, where we use Adaw [36]. Early stopping is
applied for all models, with maximum epochs set to 100 for ResNet and Transformer models, 50 for
Conformer models, and 30 epochs in total for Swin Transformers without early stopping. Batch sizes
are adjusted based on computational resources, with ResNets and Transformers both using a batch
size of 32, Conformers using 8, and Swin-TF using 16. These settings ensure balanced performance
and efficient training across all experiments. In several instances, initializing the encoders with
pre-trained weights from unimodal training proved beneficial. This was particularly effective for
datasets without precomputed features and models without access to larger-scale SSL pretraining.
We use different learning rates (lr) and weight decay (wd) values across experiments, tailored to each
dataset and model. For ResNet models, we use lr = 1e−3 and wd = 1e−4 for CREMA-D, while
both AVE and UCF use lr = 1e−4 and wd = 1e−4. For Transformer models, including MOSI and
MOSEI on two and three modalities, the hyperparameters are consistent lr = 1e−4 and wd = 1e−4.
Similarly, for Conformer models, we set lr = 5e−5 and wd = 5e−6 for CREMA-D, while AVE
uses lr = 1e−4 and wd = 1e−4. Finally, for Swin-TF models trained on the Something-Something
dataset, we configure lr = 1e−4 and wd = 0.02.

Each of the previous methods includes its own set of hyperparameters, typically just one, with some
exceptions such as MSLR or D&R, which requires additional parameters. For each dataset/model
combination, we conduct a brief hyperparameter search, ensuring an equitable number of trials across
methods. Due to the extensive list of hyperparameters, we will provide detailed configurations for
each experiment in our GitHub repository. The repository link will be included here following the
double-blind review process.

Lastly, all of our experiments run on single GPU with different nodes being used for different
experiments. For the largest ones we utilized H100 with 80Gb vram to run the experiments of Sth-Sth
which required the longest of all up to 48 hours per run. For the rest, we would have from some
minutes on the smallest experiment up to 4-5 hours for the datasets CREMA-D, AVE and UCF
depending on the GPU and the available RAM.
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A.6 Bounding task-irrelevant information via CEB

Our objective is to maximize the information shared between modalities that is irrelevant to the
supervised task. Directly estimating the conditional mutual information I(X1;X2 | Y ) is challenging
in high-dimensional settings, so we relax the objective by penalizing both the individual and shared
irrelevant information, leading to the decomposition:

I(X1;X2 | Y ) = H(X1 | Y ) +H(X2 | Y )−H(X1, X2 | Y ) (15)
⇒ −I(X1;X2 | Y ) +H(X1 | Y ) +H(X2 | Y ) = H(X1, X2 | Y ) (16)

We lower-bound the conditional joint entropy using CEB [7] as follows,

H(X1, X2 | Y ) = −Ep(x1,x2,y) [log p(x1, x2 | y)] (17)

= −Ep(x1,x2,y) [log g(x1, x2 | y)]−KL
(
p(x1, x2 | y) ∥ g(x1, x2 | y)

)
(18)

≤ −Ep(x1,x2,y) [log g(x1, x2 | y)] (19)

Assuming a conditional Gaussian model g(x1, x2 | y) = N ((x1, x2);µ(y), σ
2I), we define µ(y) as

a deterministic function h : Y ; θh → Z = (Z1, Z2) that predicts a target joint representation from Y .
Then, the conditional entropy term is upper-bounded as:

H(X1, X2 | Y ) ≤ −Ep(x1,x2,y) [log g(x1, x2 | y)] ∝ Ep(x1,x2,y) ∥[f(x1), f(x2)]− h(y; θh)∥2
(20)

Thus, we approximate the entropy term with an MSE loss, encouraging (x1, x2) to deviate from
any deterministic function when it is not informative for the task. Maximizing H(X1 | Y ) and
H(X2 | Y ) incentivizes each modality to retain information that is task-independent, aligning with
the goal of minimizing I(X1;X2 | Y ) and suppressing task-irrelevant alignment between modalities.

A.7 MCR on M modalities

In this section we provide the analysis of MCR for M number of modalities. In that case, the
total mutual information I(X1, . . . , XM ;Y ) can be decomposed into contributions from individual
modalities and their subsets as:

I(X1, .., XM ;Y ) =
∑

S⊆{X1,..,XM},S≠∅

I(S;Y | {X1, . . . , XM}\S)+ I(X1, .., XM )− I(X1, .., XM | Y ), (21)

where S ⊆ {X1, .., XM} represents a subset of all modalities, excluding the empty set (S ≠ ∅). The
term {X1, .., XM} \ S denotes the complement of S , capturing the set of modalities not included in
S. The mutual information I(S;Y | {X1, .., XM} \ S) quantifies the information shared between
the subset S and the target variable Y , conditioned on the remaining modalities. This formulation
ensures that all modalities, along with their combinations, are accounted for in the summation. It
comprehensively captures interactions at every granularity, from individual modalities (|S| = 1) to
the full set of modalities (|S| =M ).

While we experimented with reducing the number of terms by considering only the cases where
|S| = 1, we observed a slight improvement in performance when including all terms for three
modalities. However, as the number of modalities increases, it might be beneficial to sub-select and
exclude certain terms to mitigate the computational burden and prevent an overflow of terms.

A.8 Ablation Study - Game Strategies

We perform an ablation study to test our hypothesis that framing multimodal competition regulariza-
tion as a game benefits the model by avoiding destructive loss interactions in each backbone encoder.
Table 2 compares among the three strategies: Collaborative, Independent, and Greedy. The results
show that, across the models allowing backbone encoders to maximize their own CMI term and
concurrently minimizing the others (Greedy strategy) consistently yields the best performance. This
result demonstrates that framing multimodal models as competing modalities using game-theoretic
principles in the loss terms can be beneficial in balancing these loss terms.

24



Table 2: Ablation Study: Game Strategies – Comparison of model accuracy on CREMA-D dataset for
different game strategies: Collaborative, Independent, and Greedy, using both ResNet and Conformer
backbones.

Collaborative Independent Greedy
Dataset/Model Setting min

θ
LMIPD min

θi
LMIPDXi

min
θi

max
θ¬i

LMIPDXi

CREMA-D ResNet + MCR 73.4±3.0 76.0±2.0 76.2±1.7

CREMA-D Conformer + MCR 82.9±0.7 82.6±2.6 85.7±0.2

AVE ResNet + MCR 67.9±2.5 72.5±1.0 73.4±0.0

AVE Conformer + MCR 88.9±1.2 88.6±1.1 88.8±1.0

UCF ResNet + MCR 55.1±0.1 54.8±1.6 55.2±1.8

MOSI V-T TF + MCR 73.7±1.3 73.6±1.7 75.2±1.7

MOSI V-A-T TF + MCR 75.7±2.1 74.4±1.1 76.5±1.4

MOSEI V-T TF + MCR 80.4±0.5 80.4±0.5 80.8±0.4

MOSEI V-A-T TF + MCR 80.7±0.2 80.8±0.2 81.1±0.4

Sth-Sth SwinTF + MCR 64.9±0.1 64.9±0.1 65.0±0.1

A.9 Ablation Study - Loss Components

Table 3 presents the model’s performance comparison when different loss components are applied.
The models utilize pretrained initialization: ResNet with unimodal pretraining and Conformer with
SSL. Two key observations can be made:

1. The concurrent exploitation of both LMIPD and LCon is yielding consistent improvement. Ex-
ploiting them separately leads to smaller improvement for LCon and even to a decline for LMIPD.
suggests that alignment in the latent space between the modalities is necessary for the permutations
to be effective.

2. The LCEB term, which penalizes task-irrelevant information, improves the Conformer model’s
performance, likely due to its pretraining on large, unlabelled datasets that introduce such
irrelevant information. In contrast, for the ResNet model, where pretraining already focuses on
task-related information, the LCEB term does not provide additional benefits.

Table 3: Ablation Study: Regularization Components – Accuracy (%) of ResNet and Conformer
models across datasets with different combinations of MCR components: LMIPD, LCon, and LCEB.
Results indicate that combining LMIPD and LCon is crucial for improvement, while LCEB does not
benefit all models.

MCR Components ResNet Conformer SwinTF
LMIPD LCon LCEB CREMA-D AVE UCF CREMA-D AVE Sth-Sth

73.4±2.5 71.1±1.4 50.0±2.0 84.1±0.6 87.9±1.1 64.7±0.1

✓ 74.1±2.9 72.1±0.5 49.4±1.9 83.9±1.8 87.8±1.7 64.8±0.2

✓ 73.4±2.1 72.6±0.6 54.8±1.2 84.5±0.3 88.7±1.4 64.7±0.1

✓ ✓ 76.2±1.7 73.3±0.5 55.1±0.6 84.5±0.3 88.7±1.4 64.8±0.1

✓ ✓ ✓ 75.6±1.9 72.1±0.9 54.7±1.1 85.7±0.2 88.8±1.0 65.0±0.1

A.10 Ablation Study - Perturbation methods

To estimate the importance of a modality, we perturb one modality while keeping the other fixed
and observe the change in the model’s output. Several prior methods have proposed ways to do
this, but each comes with trade-offs. Additive noise has been used to maximize output variance
as a proxy for functional entropy [10], though this increases sensitivity to noise, conflicting with
goals such as smoothness and robustness [49, 1]. Task-specific augmentations [21, 32] rely on
handcrafted strategies that may not generalize across domains or modalities. Zero-masking strategies
used for approximating Shapley values [29] are theoretically grounded but often unreliable in high-
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dimensional settings [37] and require multiple forward passes, increasing computational and memory
demands.

Based on these previous works we explore three types of perturbation methods to analyze their
impact on the performance of MCR: noisy perturbations, zero-masking, and permutations. Each
method was applied in different spaces (input space and latent space) or within the batch structure to
determine how effectively MCR can leverage these perturbations to enhance multimodal learning. In
Table 4, we summarize the different approaches we examine and in Table 5 we present the results of
an ablation study comparing the performance of MCR under these perturbation techniques across
multiple datasets: CREMA-D, AVE, UCF, MOSEI, and MOSI.

Table 4: Overview of the approaches examined for the permutation methods.
Noise in the Input Space Adding noise directly to the input features of each modality, simulating

realistic data corruption. For its implementation we follow [10].
Shapley Input-Space Perturbations Following the approach of [29], Shapley zero-induced values

are used to determine the importance of input modalities.
Noise in the Latent Space Applying noise to the latent representations and encouraging robustness

at the feature extraction level.
Zeros in the Latent Space Zero-masking latent representations to disrupt one modality.
Within-Batch Permutations in the Latent Space Permuting data points within the batch to disrupt alignment.

Table 5: Ablation study comparing different perturbation methods for MCR across multiple datasets.
The table shows the performance of MCRwhen combined with various perturbation techniques,
including input or latent space noise, Shapley values in the input space, and within-batch permutations.

Method CREMA-D AVE UCF MOSEI MOSI

MCR with Noise Input-Space 75.3±2.9 72.1±1.1 54.6±0.8 80.5±0.4 74.7±0.1

MCR with Shapley Input-Space 73.6±2.5 72.6±0.9 55.5±0.6 79.8±0.5 74.3±2.2

MCR with Noise Latent-Space 73.6±1.1 72.6±0.4 54.5±0.7 80.1±0.6 72.3±1.7

MCR with Zero Latent-Space 73.6±1.9 73.3±0.5 54.5±0.4 79.6±0.4 73.6±2.4

MCR with Permutations Latent-Space 76.1±1.1 73.3±0.5 55.2±1.8 80.8±0.4 75.2±1.7

We observe that Shapley-based input-space perturbations show competitive performance, particularly
in datasets like UCF, MOSI, and MOSEI, while noise-based methods (both input and latent spaces)
achieve reasonable performance, they consistently underperform other techniques. While input-space
perturbations could be a viable option, they significantly increase computational complexity, as they
require an additional forward pass through the typically large unimodal encoders for each sample.
This limitation, which we analyze in Appendix A.14, makes them less favorable as a practical solution.
Finally, these findings support the choice of permutations as the preferred perturbation method, while
suggesting that further exploration of alternative strategies could potentially lead to even greater
improvements.

The semantic meaning of this perturbation depends on whether the permuted sample shares the same
label as the original. If the labels match, the perturbation is semantically valid and can be seen as an
implicit augmentation. In this case, a large output change indicates that the model may be relying
on spurious or unstable features within the modality. If the labels do not match, the resulting input
is semantically inconsistent and can be interpreted as out-of-distribution. If the model’s output is
insensitive to such a perturbation, this suggests that the modality is being ignored. Conversely, a
sensitive reaction may indicate an overreliance on features not robust to semantic shifts. Therefore
each category of permuted samples contributes differently to the final output. In practice, we apply
both semantically consistent and inconsistent permutations during training. This choice introduces
minimal computational overhead and appears to slightly improve convergence stability.

We note that the gradients ∇θ1LMIPD2
and ∇θ2LMIPD1

can negatively impact model robustness
depending on the type of perturbation applied. When perturbations yield out-of-distribution unimodal
inputs, such as zero-masking or additive noise, the resulting gradients may encourage the model to
learn spurious patterns. In contrast, our main experiments use within-batch permutations, which
preserve the in-distribution structure of each modality. Under permutation as the perturbation method,
the LMIPD formulation remains symmetric regardless of which modality is perturbed, and the
gradients contribute constructively to learning in all branches.
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A.11 Analysis of Multimodal Error

We extend the error analysis from Section 4.3 by comparing unimodal and multimodal predictions in
Figure 6. The results echo the pattern seen in CREMA-D (Figure 4): MCR excels when at least one
unimodal model predicts correctly, but still trails MLB and AGM when all unimodal models fail. An
exception is the MOSI dataset, where MCR performs well in synergy, even with three modalities.

A.12 Statistical Importance

We assess the statistical significance of the performance differences between our method and each
baseline using the Wilcoxon Signed-Rank Test, applied to per-dataset average results. To control for
multiple comparisons, we apply the Holm correction to the resulting p-values. We consider results
significant if the adjusted p-value is below α = 0.05. Full results are shown in Table 6.

Table 6: Wilcoxon Signed-Rank Test results (two-sided) comparing our method to each baseline
across datasets. Statistically significant comparisons after Holm correction (α = 0.05) are bolded.

Comparison Raw p-value Holm-adjusted p-value
MCR vs Ensemble 0.00195 0.02148
MCR vs Joint Training 0.00195 0.01074
MCR vs Multi-Loss 0.00195 0.00716
MCR vs Uni-Pre Frozen 0.00195 0.00537
MCR vs Uni-Pre Finetuned 0.00195 0.00430
MCR vs OGM 0.00781 0.00955
MCR vs AGM 0.00195 0.00358
MCR vs MLB 0.00195 0.00307
MCR vs ReconBoost 0.03125 0.03438
MCR vs MMPareto 0.00195 0.00269
MCR vs D&R 0.15625 0.15625

Greedy vs Collaborative 0.00977 0.00977
Greedy vs Independent 0.00195 0.00391
LMIPD + LCon + LCEB vs No Reg 0.03125 0.12500
LMIPD + LCon + LCEB vs LMIPD 0.04311 0.08623
LMIPD + LCon + LCEB vs LCon 0.06789 0.09052
LMIPD + LCon + LCEB vs LMIPD + LCon 0.84375 0.84375

Dynamics of MIPD Components

To illustrate the learning dynamics of the MCR regularizer, we can analyze the evolution of its core
loss components during training. Figure 7 plots the two MIPD terms, corresponding to the video and
text modalities, from a training run on the MOSI V-T dataset.

These MIPD terms, which serve as proxies for the unique contribution of each modality, exhibit a
dynamic, alternating behavior. The fluctuations reflect shifts in which modality is more influential on
the fused output at different stages of training. This plot visualizes MCR’s mechanism for actively
balancing modality importance, preventing one from consistently dominating the other. It is important
to note that while this alternating pattern is the desired behavior, its specific form and prominence
can vary across different training runs and datasets. Therefore, this figure is presented as a clear,
illustrative example of the dynamic interplay MCR encourages. This prevents static dominance by a
single modality, which is key to mitigating modality competition.
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Figure 6: Error comparison matrices across pairs of datasets and models, comparing unimodal predic-
tions with multimodal models trained using various methods, including Ensemble, Joint Training,
AGM, MLB, and MCR for the datasets AVE, UCF, MOSI, MOSEI and Something-Something
(Sth-Sth). Each column of the confusion matrix represents cases where both unimodal predictions
are incorrect, where only one is correct, and where both are correct. The results highlight that MCR
consistently performs well in cases where at least one unimodal prediction is correct. Additionally,
MLB and AGM in many instances outperform MCR in discovering synergetic information, which
refers to the "Both/All Wrong" column, highlighting a current limitation of MCR.

Figure 7: The plots show the two MIPD losses (MIPD1 and MIPD2) for each modality, with (left)
and without (right) regularization. With regularization, the losses exhibit an alternating pattern,
demonstrating MCR’s ability to dynamically explore multiple modality contribution combinations
and prevent collapse into a single modality. Without regularization, the text modality initially
contributes more strongly, but the video modality eventually outperforms and dominates.

A.13 Reproduction Challenges for MLA

We attempted to reproduce the results reported for the MLA method [69] using the authors’ officially
released code. Despite carefully replicating the training procedure, we were unable to reach close to
the reported performance. Specifically, our reproduced accuracy results on our five different settings
are as follows: CREMA-D (ResNet) 61.7±4.1, CREMA-D (Conformer) 75.1±3.5, AVE (ResNet)
44.5±1.9, AVE (Conformer) 72.4±3.5, and UCF (ResNet) 47.9±1.4. These results are substantially lower
than those reported in Table 1 of the original paper. We suspect the discrepancy may be due to
missing implementation details. We include these findings in the interest of transparency and to
support ongoing efforts toward reproducibility in multimodal learning.

A.14 Computational Speed and Memory Analysis of Perturbations

The computational load imposed by any sample that requires an additional pass can be divided into
the encoders f1, f2 and the fusion network fc. The encoders have a computational cost of costenc
per sample, and the fusion network has a cost of costc per sample. Thus, the total computational
complexity is O((M + 1) ∗N ∗ (costenc + costc)), where M is the times we draw noisy samples to
which we add the non-perturbed batch and N is the batch size. If we now use permutation samples
that can be directly drawn from the latent space, the additional computational complexity is reduced
to O(N ∗costenc+(M+1)∗N ∗costc). Compared to the necessity of a supervised forward pass this
translates to an addition of O(M ∗N ∗ costc) computational burden. In most state-of-the-art models,
each modality encoder is significantly larger than the fusion network, resulting in costenc >> costc.
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In such networks, permutations can have almost negligible additional computations. The memory
footprint follows a similar pattern.

B Proof of Supervised Contrastive Loss as Lower Bound

We consider the supervised contrastive loss with ψ being the critic function and we rewrite it as
follows:

LCon(X1, X2) =
∑
i∈D

−1

|Pi|
∑
k∈Pi

[
log

ψ(x1i , x2k)∑
j∈I ψ(x1i , x2j )

]
(22)

where Pi = {p ∈ D | yp = yi}. In supervised contrastive learning, the presence of multiple positive
samples turns this into a multi-label problem, unlike traditional noise contrastive estimation (NCE)
methods [41], which typically assume only one positive sample. By taking the version of supervised
contrastive learning with the expectation over the positives outside of the log, we can interpret each
classification as an average of classifiers, with each classifier focusing on identifying one of the
positive samples.

For each positive sample p ∼ Pi, we aim to derive the optimal probability of correctly identifying
that point, denoted d = p. This is done by sampling the point from the conditional distribution
p(x2p | x1i , yi) while sampling the remaining points from the proposal distribution p(x2l). This
approach mirrors the technique used in InfoNCE [41] and leads to the following derivation:

p(d = p|X2, x1i , yi) =

p(x2p | x1i , yi) Π
l∈D,l ̸=p

p(x2l)∑
j∈D p(x2j | x1i , yi) Π

l∈D,l ̸=j
p(x2l)

(23)

=

p(x2p |x1i
,yi)

p(x2p )∑
j∈D

p(x2j
|x1i

,yi)

p(x2j
)

(24)

The optimal value for the critic function ψ in Equation 24 is proportional to ψ ∝ p(x2p |x1i
,yi)

p(x2p )
. The

MI between the variables can be estimated as follows:

LOpt
Con = − E

i∼D

 E
p∼Pi

log


p(x2p |x1i

,yi)

p(x2p )

p(x2p |x1i
,yi)

p(x2p )
+

∑
j∈D,j ̸=i

p(x2j
|x1i

,yi)

p(x2j
)


 (25)

= E
i∼D

 E
p∼Pi

log

1 + p(x2p)

p(x2p | x1i , yi)
∑

j∈D,j ̸=i

p(x2j | x1i , yi)
p(x2j )

 (26)

= E
i∼D

[
E

p∼Pi

log

[
1 +

p(x2p)

p(x2p | x1i , yi)
(N − 1) E

j∈D

p(x2j | x1i , yi)
p(x2j )

]]
(27)

= E
i∼D

[
E

p∼Pi

log

[
1 +

p(x2p)

p(x2p | x1i , yi)
(N − 1)

]]
(28)

≥ E
i∼D

[
E

p∼Pi

log

[
p(x2p)

p(x2p | x1i , yi)
N

]]
(29)

= logN − I(X2;X1, Y ), using MI properties [38, Chapter 6.3.4] (30)
= logN − I(X2;Y |X1)− I(X2;X1) (31)

Therefore, by taking both sides of the contrastive loss to predict X2 from X1 and X1 from X2 we
derive to I(X2;Y |X1) + I(X1;Y |X2) + 2 · I(X2;X1) ≥ logN − LOpt

Con . This trivially also holds
for other ψ that obtain a worse(higher) LCon. Simarly to InfoNCE, the bound becomes more accurate
as N increases, while due to the the term 1

|Pi| it is not affected by the number of positive pairs.
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