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ABSTRACT

Recent developments have sought to overcome the inherent limitations of tradi-
tional associative memory models, like Hopfield networks, where storage capacity
scales linearly with input dimension. In this paper, we present a new extension of
Hopfield networks that grants precise control over inter-neuron interactions while
allowing control of the level of connectivity within the network. This versatile
framework encompasses a variety of designs, including classical Hopfield net-
works, models with polynomial activation functions, and simplicial Hopfield net-
works as particular cases. Remarkably, a specific instance of our construction,
resulting in a new self-attention mechanism, is characterized by quasi-exponential
storage capacity and a sparse network structure, aligning with biological plausibil-
ity. To our knowledge, our proposed construction introduces the first biologically-
plausible associative memory model with exponential storage capacity. Further-
more, the resulting model admits a very efficient implementation via vectoriza-
tion; therefore, it can fully exploit modern numerical computation hardware like
GPUs. This work not only advances the theoretical foundations of associative
memory but also provides insights into the development of neurobiologically in-
spired associative memory systems with unprecedented capabilities.

1 INTRODUCTION

Hopfield networks Amari (1972); Little (1974); Hopfield (1982) are widely recognized as one of
the most prominent mathematical models for associative memory. In this model, the retrieval of an
item is possible by merely recognizing a fragment of its content, such as reconstructing a complete
image from a partial view. These models have a rich history which goes back as far as Steinbuch
(1961); Willshaw et al. (1969); Longuet-Higgins et al. (1970); Kohonen (1972). Apart from being
analytically tractable, Hopfield networks are attractive to biologist because in principle, they can be
implemented by the neurons and synapses in the brain. Apart from the necessity of synaptic (neuron-
to-neuron) connections, a model can fail to be biologically plausible because of dense connectivity
structure whereby, each of the N input neurons is connected to at least a constant fraction γN other
nodes. Sparse connectivity means that each input neuron is connected to only a small number of
other neurons (i.e, vanishing edge-density in the connectivity graph). This is the case of so-called
dilute Hopfield networks Derrida & Nadal (1987); Treves & Amit (1988); Bovier & Gayrard (1992);
Löwe & Vermet (2011). Finally, it is well-known that matrix models like Hopfield networks have
limited storage capacity Kohonen (1972); Hopfield (1982); Smolensky (1990); Bovier (1999): they
can only store and reliable retrieve cN memory patterns where c is an absolute constant.

The present study introduces a simple yet powerful approach for constructing general Hopfield net-
works with desirable properties. Our main constributions are summarized as follows.

• Abstract Hopfield Networks. Our proposed models utilize setwise connections based on
collections, called skeletons, of of subsets of input dimensions. We provide analytic ex-
pressions for the energy functional and update rule for such models, which extend the
definition of traditional Hopfield networks Hopfield (1982). These Abstract Hopfield Net-
works (or AHNs for short), encompass the classical Hopfield network Hopfield (1982), and
its various extensions Krotov & Hopfield (2016); Demircigil et al. (2017); Burns & Fukai
(2023). Indeed, we will see in Section 2.2 that these models correspond specific choices of
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the skeleton. As a by-product, we are able to offer a unified analysis of the storage capacity
of the aforementioned networks, and recover known lower-bounds.

• A New Type Self-Attention Layer. As our second contribution, we show in Section 3 that
a specific choice of skeleton leads to an AHN leads to a new type of self-attention layer
which we call Product-of-Sums Hopfield network (PSHN) due to its structure. Note that a
duality between traditional self-attention layers Vaswani et al. (2017) and a certain type of
Hopfield network has also been established Ramsauer et al. (2020). Our proposed PSHN
model enjoys the following desirable properties.

– Exponential Storage Capacity: In Section 4 (Theorem 4.1), we show that our PSHN
model can robustly store and retrieve up to ec

′N memories. We also show (Theorem
4.4) that our network can store and robustly retrieve up to ecN log2(N)/ logN patterns.
Here, c and c′ are absolute positive constants. Thus, the robust storage capacity (for-
mally defined in Section 4) of the model is (quasi-)exponential in the input dimension
N . Refer to Table 1 for details. Apart from being robust to errors and corruption
(e.g due to hardware failure), models with high robust storage capacity integrate long-
range interactions in the input domain allowing strongly correlated patterns which
characterize the real world, to be correctly separated Ramsauer et al. (2020).

– Biological Plausibility. Finally, in Section 5, we provide strong arguments that our
PSHN model can be implemented via two-body sparse synaptic connections between
input neurons and hidden a small number of hidden neurons. This makes our model
aligned with biology, just like the traditional Hopfield network Hopfield (1982). To
the best of our knowledge, our PSHN model is the associative memory model which
simultaneously achieves biological plausibility and high storage capacity.

Type of HN Reference Paper Bio Plausible Robust Storage Capacity
Classical Hopfield (1982) Yes cN/ logN (linear)

Polynomial Krotov & Hopfield (2016) Yes† cNd−1/ logN (poly)
Simplicial Burns & Fukai (2023) Yes∗ cND−1/ logN (poly)

Exponential Demircigil et al. (2017) Yes† exp(cN) (expo)
Exponential Ramsauer et al. (2020) Yes† exp(cN) (expo)

Little-Hopfield 2 Hillar et al. (2021) – exp( cN
logN ) (quasi-expo)

PSHN Our current work (Section 3) Yes exp( cN log2 N
logN ) (quasi-expo)

Table 1: Comparing different types of Hopfield networks (HNs) according to their biological
(im)plausibility and robust storage capacity (formally defined in Section 4). For the polynomial
(resp. simplicial) Hopfield network, d (resp. D) is the degree (resp. dimension). The c’s in the ex-
ponents of the storage capacity bounds are positive constants which typically depend on the level of
robustness required (and also on d and D in the case of polynomial and simplicial Hopfield networks
respectively). Yes† means the corresponding Hopfield network is only biologically plausible in an
indirect sense: it provides an effective description for a more microscopic theory that has additional
(hidden) neurons and only requires two-body interactions between them Krotov & Hopfield (2021).
Finally, the simplicial Hopfield network Burns & Fukai (2023) only becomes biologically plausible
when diluted, i.e a large number of connections are surpressed. This reduces its storage capacity.

Related Work. Extensions of Hopfield networks that break the linear of classical Hopfield net-
works Hopfield (1982) have been proposed. Newman (1988), then Krotov & Hopfield (2016) have
shown that a modification of the energy of the classical Hopfield network leads to a polynomial
increase in memory capacity. This has been followed up by Demircigil et al. (2017), and more re-
cently Ramsauer et al. (2020) who proposed another modification leading to exponential memory
capacity. These so-called modern / dense Hopfield networks use a nonlinear activation function
to make the energy and an update rule that is more sharply peaked around the stored memories
in the space of neuron’s configurations compared to the traditional Hopfield network. See Krotov
& Hopfield (2021) for a detailed review. One of the main insights from this recent resurgence of
Hopfield networks is their connection to transformers Vaswani et al. (2017), which have become
the core components in the design of of large language models (LLMs) for example. Indeed, it was
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shown in Ramsauer et al. (2020) that the update / retrieve function in their proposed Hopfield net-
work amounts to the self-attention layer in a transformer model Bahdanau et al. (2015); Cheng et al.
(2016); Parikh et al. (2016); Lin et al. (2017); Vaswani et al. (2017). This connection provides hope
for a theoretical understanding and explanation of the emergent capabilities of modern LLMs.

Hillar et al. (2021) established a duality between certain error-correcting codes on hyper-graphs, and
Hopfield networks. This link allowed them to derive an extension of Hopfield networks with quasi-
exponential storage capacity. On a similar route, Burns & Fukai (2023) considered an extension of
the traditional Hopfield network wherein the complete graph characterizing the connectivity struc-
ture of the the neurons is replaced by a simplicial complex. Finally, let us also mention Chaudhuri
& Fiete (2019); Smart & Zilman (2021) who have established a direct mapping between Hopfield
networks (and extensions thereof) and Restricted Boltzmann Machines (RBMs) Smolensky (1986);
Salakhutdinov et al. (2007) whereby the memory patterns of stored by the Hopfield network corre-
spond to parameters that control the activity of the hidden layer in the RBM.

2 ABSTRACT HOPFIELD NETWORKS

In this section, we develop a simple and general extension of Hopfield networks. As before, let
N ≥ 1 be the input dimension, that is the number of feature dimensions, or simply input neurons
(e.g number of pixels in an image). Thus, for simplicity [N ] := {1, 2, . . . , N} is the set of (indices
of) neurons. As an example, this could be the number of pixels in an image.

A pattern is an N -dimensional vector y ∈ {±1}N , which encodes a configuration of firing patterns
of the N neurons. Let x(1), . . . , x(M) ∈ {±1}N be a set of M distinct patterns we wish to store /
memorize. Thus, the nth input neuron of the µth memory is x

(µ)
n ∈ {±1}. To specify a Hopfield

network, one needs the to specify the energy functional E : {±1}N → R and the one-step update
run T : {±1}N → {±1}N for retrieving stored patterns. The µth pattern is said to be stored or
memorized if T (x(µ)) = x(µ), i.e if x(µ) is a fixed point of the update operator T . In this study, our
focus is exclusively on single-step retrieval, rather than iterative retrieval methods. Opting for one-
step retrieval brings several advantages, including the ability to seamlessly integrate the resulting
model into a bigger ML model (e.g an LLM) and invoke it during the forward pass.

2.1 THE MODEL

Given an arbitrary pattern y = (y1, . . . , yN ) ∈ {±1}N and a subset σ ⊆ [N ] := {1, 2, . . . , N} of
neurons, define a variable yσ ∈ R by yσ := Πn∈σyn, with the convention that y∅ = 1. Note that yσ
is a monomial in the variables y1, . . . , yN , of total degree |σ|. For example, if σ = {1, 5, 7}, then
yσ is the product y1y5y7. Analogously to Burns & Fukai (2023), define coupling constants ω(σ) by

ω(σ) :=

M∑
µ=1

x(µ)
σ . (1)

These quantities will play a similar role as synaptic weights in Hopfield networks Hopfield (1982).

The Skeleton. Let S be any (nonempty) collection of subsets of [N ]. We shall call S a skeleton,
borrowing terminology from Burns & Fukai (2023) which considered the special case S =

(
[N ]
D

)
,

the collection of all subsets of [N ] which contain D or less elements. A skeleton induces a correla-
tion function on {±1}N given by ⟨x, y⟩S :=

∑
σ∈S xσyσ for every pair of patterns x, y ∈ {±1}N .

This can also be seen as a feature map as an inner-product in the feature space given by the map-
ping y 7→ (yσ)σ∈S. The parameters of the model are the memories x(1), . . . , x(µ), which enter the
picture via the coupling constants (ω(σ))σ∈S given as in (1). For any neuron n ∈ [N ], define

∂nS := {s ⊆ [N ] | n ̸∈ s and s ∪ {n} ∈ S} = {σ \ {n} | σ ∈ S and n ∈ σ}. (2)

In words, ∂nS is the collection of subsets of [N ] which don’t contain the neuron n and can be
turned into an element of S by including n. For example, in the case of classical Hopfield networks
Hopfield (1982), one has

S = {σ ⊆ [N ] s.t |σ| = 2}, ∂nS = [N ] \ {n} for all n ∈ [N ]. (3)
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Thus, in this case |∂nS| = N − 1 ≤ N for all n ∈ [N ], and we shall see later that this accounts for
the linear storage capacity (defined formally in Section 4) of the classical Hopfield network. One
can therefore hope to obtain higher storage capacity by appropriate choices for the skeleton S.

Energy and One-Step Update Rule. The energy functional for our abstract model is defined by

E(y) := −
∑
σ∈S

ω(σ)yσ = −
M∑
µ=1

⟨x(µ), y⟩S, for any pattern y ∈ {±1}N . (4)

The (onse-step) update rule T : {±1}N → {±1}N is defined component-wise by

Tn(y) := sign

(
M∑
µ=1

x(µ)
n

∑
s∈∂nS

x(µ)
s ys

)
, (5)

for any neuron n ∈ [N ]. This construction is a generalization of the energy of the classical Hopfield
network Hopfield (1982) by considering arbitrary multi-neuron interactions. For the particular case
of classical Hopfield networks Hopfield (1982), it is easy to see from (3) that the energy (4) reduces
to E(y) = −

∑M
µ=1

∑
n,n′∈[N ], n′ ̸=n x

(µ)
n x

(µ′)
n′ ynyn′ , while the update rule (5) reduces to update

rule Tn(y) = sign
(∑M

µ=1 x
(µ)
n
∑

n′∈[N ], n′ ̸=n x
(µ)
n′ yn′

)
, both of which are well-known formulae.

Definition 2.1. Given a nonempty collection S of subsets of neurons [N ], the energy (4) and update
rule (5) define an Abstract Hopfield Network (AHN) with skeleton S.

Thus, once the skeleton S is prescribed, everything else about an AHN is completely determined.
In particular, when S is the collection of subsets of [N ] with at most D elements, i.e a simplicial
complex of dimension D, we obtain the model proposed in Burns & Fukai (2023).

2.2 GENERALITY OF OUR CONSTRUCTION

We now show that for specific choices of the skeleton S, various well-known extensions of Hopfield
networks are instances of our AHNs .
Theorem 2.1. The classical Hopfield network Hopfield (1982), the polynomial Hopfield network
Krotov & Hopfield (2016); Demircigil et al. (2017), and the simplicial Hopfield network Burns &
Fukai (2023),as well as all diluted versions of these networks are all instances of AHNs correspond-
ing to specific choices for the skeleton S.

Proof. Indeed, as already discussed, for the classical Hopfield network Hopfield (1982), the ap-
propriate skeleton S is the collection of all two-element subsets of [N ]. The polynomial Hopfield
networks Krotov & Hopfield (2016); Demircigil et al. (2017) correspond to taking the skeleton S to
be the collection of all d-element subsets of [N ]. Also, as mentioned earlier, the simplicial Hopfield
network Burns & Fukai (2023) corresponds to taking S to all subsets of [N ] with ≤ D elements.

3 THE PRODUCT-OF-SUMS HOPFIELD NETWORK (PSHN)

In this section, we construct an instance of AHNs (Section 2) with remarkable properties like high
storage capacity, biological plausibility, and connections to transformers Vaswani et al. (2017).

3.1 THE MODEL

Skeleton of the Model. Let G1, . . . , Gk form a partition of [N ]. Consider an AHN whose skeleton
S is the collection of all subsets of [N ] which contain exactly one item from each Gi, i.e

S = T (G1, . . . , Gk) := {σ ⊆ [N ] s.t |σ ∩Gi| = 1 for all i}. (6)

We call the resulting network a Product-of-Sums Hopfield network (PSHN), a terminology which
will become clear later once we make its energy functional explicit. Notice that T (G1, . . . , Gk) can
be seen as a bipartite graph with one part (Left) consisting of the set of input neurons [N ], and the
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other part (Right) corresponding to the set of group indices [k] acting as hidden neurons; there is
an edge between each input neuron [n] and the index i(n) of the group Gi containing n. Thus, in
this graph, each Left node has degree 1, while the ith Right node has degree Ni = |Gi|. For fixed
groups of equal size Ni = N/k for all i, we simply write T (N, k) for T (G1, . . . , Gk), which then
corresponds to a (1, N1)-biregular graph.

The inherent product structure of suc a skeleton enables it to integrate information across long-range
interactions among input neurons. For example, we show in Appendix C.3 that these models can
solve XOR problem Minsky & Papert (1969), a 3-dimensional problem known to be unsolvable with
Hopfield networks comprising fewer than 4 neurons. See also Krotov & Hopfield (2016).

Energy and Update Rule. The energy functional (4) now takes on a special form.

Lemma 3.1. For S = T (G1, . . . , Gk), the energy (4) is given by E(y) =
∑M

µ=1 Eµ(y), where

Eµ(y) = −
k∏

i=1

∑
n∈Gi

x(µ)
n yn, for any input pattern y ∈ {±1}N . (7)

The RHS of (7) justifies the name of the resulting network, namely: Product-of-Sums Hopfied
network (PSHN). Figure 5 (Appendix A.3) gives a schematic illustration of (7).

Next, we expand the update rule (5) for the case of our PSHN model. It turns out that the resulting
update rule a very admits an efficient algorithmic representation which lends itself well practical
implementation as we shall see.

Lemma 3.2. For any pattern y ∈ {±1}N , group index i ∈ [k], and memory index µ ∈ [M ], define
a
(µ)
i (y) :=

∑
n′∈Gi

x
(µ)
n′ yn′ . Then, for any n ∈ Gi, the update (5) is Tn(y) = sign(∆n(y)), where

∆n(y) =

M∑
µ=1

c
(µ)
i (y)x(µ)

n , c
(µ)
i (y) :=

A(µ)(y)

a
(µ)
i (y)

, A(µ)(y) :=

k∏
j=1

a
(µ)
j (y). (8)

3.2 A NEW TYPE OF SELF-ATTENTION LAYER

As already mentioned in the introduction, transformers (aka self-attention layers) are the core com-
ponent of LLMs. We now show that a specific instance of our proposed PSHN model corresponds to
a new type of self-attention layer. Thus our proposed model provides new perspectives for building
transformers. So, sonsider the special case where the skeleton is S = T (N, k), i.e where

Ni = N1 = N/k for all i. (9)

Thus, N = k ×N1. Thanks to Lemma 3.2, the update rule T for our PSHN model admits a simple
and efficient implementation based on optimized matrix multiplication (e.g GPUs) that we now
describe. Let X be an M ×N matrix whose rows represent M memory patters x(1), . . . , x(M), and
let Q be an m×N be a matrix whose rows represent a batch of m input queries y(1), . . . , y(m). An
implementation of the update rule T is given by the following code in PyTorch Paszke et al. (2017).

1 X = X.reshape((M, k, N1)) # database of memories (e.g clean images)
2 Q = Q.reshape((m, k, N1)) # incoming queries (e.g noisy/occluded images)
3 Z = torch.einsum("mkg,Mkg->mMk", Q, X) # correlate
4 C = Z.prod(axis=2, keepdims=True) / Z # this replaces softmax operator
5 C = torch.nan_to_num(C, nan=0.) # This is a trick to compute the ci’s
6 TQ = torch.sign(torch.einsum("mMg,Mkg->mkg", C, X)) # output
7 TQ = TQ.reshape((m, N)) # original shape of input query matrix Q

Code Listing 1: PyTorch GPU-friendly implementation of our PSHN model / self-attention layer.

See Appendix A.2 for implementation tips. We come to the realization that in the case of equally
sized groups (9), our proposed PSHN model is a new type of self-attention layer schematized in
(10), where values (V ) = keys (X), and the traditional softmax operator Vaswani et al. (2017) is

5



Under review as a conference paper at ICLR 2024

replaced with σ which maps the m×M × k tensor Z to the m×M × k tensor C in the the above
code snippet. Thus, given query matrix Q ∈ Rm×N , the model outputs T (Q) = sign(∆(Q)), where

∆(Q)︸ ︷︷ ︸
m×k×N1

= σ( Q̃︸︷︷︸
m×k×N1

· X̃︸︷︷︸
M×k×N1

) · X̃︸︷︷︸
M×k×N1

, (10)

where X̃ and Q̃ are reshaped versions of X and Q, and ’.’ is einsum reduction over the second axis.

A Learnable Version of PSHN Models. We leave it to future work to experiment extensions of
our PSHN models involving embedding matrices, i.e a full-blown self-attention layer of the form

Xe = XEK , Q = QEQ, Ve = V EV , ∆(Q)︸ ︷︷ ︸
m×k×N1

= σ( Q̃e︸︷︷︸
m×k×N1

· X̃e︸︷︷︸
M×k×N1

) · Ṽe︸︷︷︸
M×k×N1

, (11)

where EK , EQ, EV ∈ RN×de , are de-dimensional embedding matrices for keys, queries, and values
respectively, learnable via back-propagation. Here , and X̃e, Q̃e, and Ṽe would be reshaped versions
of Xe, Qe, and Ve, and (k,N1, de) is such that de = k ×N1.

4 ANALYSIS OF STORAGE CAPACITY

We now turn to the question of storage capacity, i.e how many memory patterns x(1), . . . , x(M) can
our proposed models store and reliably retrieve ? For this analysis, it is assumed henceforth that
the memories are iid, with components x

(µ)
n which are iid Rademacher random variables, so that

P(x(µ)
n = ±1) ≡ 0.5, for all µ ∈ [M ], n ∈ [N ]. Let a pattern y ∈ {±1}N be a pattern obtained

from x(1) by forcing a fraction θ ∈ [0, 1) of its input neurons to the value −1. That is, let sθ ⊆ [N ]
be a uniformly random subset of ⌊θN⌋ out of N neurons, and for any neuron n ∈ [N ], set

y(µ)n = −1 if n ∈ sθ and y(µ)n = x(µ)
n otherwise. (12)

If T (y(µ)) = x(µ), we say that the network has θ-robustly stored x(µ). When θ = 0 (i.e the
nonrobust case), we simply say the network has stored x(µ). We shall use the following notion of
storage capacity which is now standard Hopfield (1982); Bovier (1999); Krotov & Hopfield (2016).
Definition 4.1 (Robust Storage Capacity). Given a noise level θ ∈ [0, 1), we say a Hopfield network
has θ-robust storage capacity MN,θ if for M ≤ MN,θ and every µ ∈ [M ], it holds that

lim
N→∞

P(The Network θ-robustly stores x(µ)) = 1. (13)

MN := Mθ,0 is nonrobust storage capacity (i.e for retrieving uncorrupted memories).

As explained in the introduction (Section 1), the classical Hopfield network Hopfield (1982) only
attains linear storage capacity cN , for a constant c. Over the years, a number of extensions have been
proprosed which achieve polynomial Krotov & Hopfield (2016); Demircigil et al. (2017); Burns &
Fukai (2023) and even exponential Demircigil et al. (2017); Ramsauer et al. (2020) capacity.

4.1 A GENERIC LOWER-BOUNDS FOR ABSTRACT HOPFIELD NETWORKS

We now give capacity bounds for our AHNs (Section 2) in terms of the topology of the skeleton S.
Definition 4.2 (Degrees). The out-degree of a neuron n ∈ [N ] w.r.t to the collection of subsets S is
defined by d(n) := |∂nS|, where ∂nS is as defined in (2). Also, let d(S) be the minimal out-degree
of a neuron w.r.t S, i.e d(S) = min{d(n) | n ∈ [N ]}.

These are measures of complexity of the skeleton S will play a crucial role for storage capacity. The
following result (proved in the appendix) is one of our main theoretical findings.
Theorem 4.1. For any AHN with skeleton S, we have the lower-bound MN (S) ≥ d(S)/(2 logN).

In the case of nonzero corruption level θ ∈ (0, 1), quantitative analysis of storage capacity must
exploit further information about the topology of the skeleton S. Indeed, we cannot generally hope
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to get nontrivial lower-bounds for robust storage capacity of an AHN without assumptions on the
skeleton S. For example, the AHN induced by the largest possible collection of subsets of neurons,
namely S = 2[N ], has exponential nonrobust capacity MN ({0, 1}N ) ≥ ecN . This follows from
Theorem 4.1 and the fact that d{0,1}N (n) = 2N−1 for any n ∈ [N ]. However, the basin of attraction
around each stored pattern has width zero! To see this, note that

∑
σ∈2[N] xσyσ = δx=y by Lemma

C.1. Thus, the corresponding energy E in (4) is either 0 or 1. Consequently, it is unable to recover
any stored pattern with at a nonzero corruption level, i.e MN,θ({0, 1}N ) = 0 for all θ ∈ (0, 1).
Definition 4.3 (Moments). For any n ∈ [N ] and integer i ≥ 0, define

µn,i(S) := max
s0∈([N]

i )
|{s ∈ ∂nS | s0 ⊆ s}|. (14)

Thus, there is no subset of [N ] with i elements, contained in more than µn,i(S) elements of ∂nS.

Note that in particular, µn,i(S) = d(n) := |∂nS|. Under the following condition, we can derive a
generic lower-bound for the robust storage capacity of an abstract Hopfield network.
Condition 4.1 (Smooth Skeleton). (A) maxσ∈S |σ| − 1 ≤ q with q/ logN → 0 as N → ∞. (B)
max1≤i≤q N

i
1µn,i = O(d(n)), for all n ∈ [N ] and some N1 ≥ N c0 and positive constant c0.

The above condition means for any i ≤ q, there is no i-element subject of [N ] which is contained in
more than a fraction N−Ci of s ∈ ∂nS, where C is an absolute positive constant.
Theorem 4.2. Fix a corruption level θ ∈ [0, 1), and consider an AHN with skeleton S verifying
Condition 4.1. The θ-robust storage capacity is given by MN,θ(S) ≥ c(1 − θ)2qd(S)/ logN , for
some positive constant c which only depends on θ.

As shown in Section 2.2, the Hopfield network Hopfield (1982); Bovier (1999), polynomial Hopfield
networks Krotov & Hopfield (2016); Demircigil et al. (2017), and simplifical Hopfield networks
Burns & Fukai (2023) are all instances of our AHNs with appropriate choices of the skeleton S.
Moreover, the skeletons of these models verify Condition 4.1 with (q,N1) as given in Table 4.1,
provided q = o(logN), i.e q/ logN → 0 as N → ∞.
Corollary 4.1. If k, d,D = o(logN) as N → ∞, the storage capacity bounds in Table 4.1 hold.

Type of HN S d(S) q N1 Robust Storage Capacity
Classical N 1 N MN,θ ≥ c(1− θ)2N/ logN

Polynomial Nd−1 d− 1 N MN,θ ≥ c(1− θ)2(d−1)Nd−1/ logN

Simplicial ND−1 D − 1 N MN,θ ≥ c(1− θ)2(D−1)ND−1/ logN

PSHN Nk−1
1 k − 1 N1 MN,θ ≥ c(1− θ)2(k−1)Nk−1

1 / logN

Table 2: Combined with Theorem 2.1, our Corollary 4.1 recovers lower-bounds previously estab-
lished in Hopfield (1982); Newman (1988); Krotov & Hopfield (2016); Demircigil et al. (2017);
Burns & Fukai (2023). The PSHN model listed in the table is with k equally sized groups (9).

From the corollary, we see that in the small k regime, the storage capacity of our PSHN model with
k equally sized groups behaves like that of a polynomial Hopfield network of degree k.

4.2 STORAGE CAPACITY OF OUR PRODUCT-OF-SUMS HOPFIELD NETWORKS

Figure 1: Theorem 4.3, Empir-
ical Verification (N = 200).
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We now establish lower-bounds for the storage capacity (Defini-
tion 4.1) of our proposed PSHN described in Section 3. Let us
first consider the case of retrieving a clean / uncorrupted patterns.
Theorem 4.3. The nonrobust storage capacity of the PSHN
model with k groups each of size N1 = N/k verifies MN ≥
Nk−1

1 /(2 logN). In particular, if N1 = O(1) in the limit
N → ∞, then MN ≥ ecN for some positive constant c.

The result is empirically verified in Figure 1. Notice the excellent
agreement with experiment. Moreover, it appears the lower-bound is also an upper-bound.
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We now turn to robust storage capacity (Definition 4.1). Fix a corruption level θ ∈ [0, 1) and let
p := 1− θ/2, a := 1− θ, and b := e−1/(2a). The next theorem is one of our main results.

Theorem 4.4. Consider the PSHN model with k equal groups each of size N1 ≥ C logN with
C ≥ 73/p where p := 1−θ/2. Then, the θ-robust storage capacity verifies MN,θ(S) ≥ (abN1)

k−1.

In particular, for N1 = C logN , we have the following lower-bound MN,θ(S) ≥ ecN · log log N
log N ,

where c is a positive constant that only depends on θ and C.

The Role of the Hyper-Parameters N1 and k. The logarithmic scaling N1 ≍ logN is crucial
for achieving the quasi-exponential robust storage capacity boasted by our proposed PSHN. For
example, if k = N/N1 remains bounded as N goes to ∞, then the out-degree d(n) := |∂nS| =
Nk−1

1 is not large enough to achieve the claimed quasi-exponential lower-bound. On the other hand,
if N1 remains bounded in the limit N → ∞, then each group Gi is not large enough to correct for
errors and achieve the claimed quasi-exponential lower-bound on storage capacity.

5 BIOLOGICAL PLAUSIBILITY OF PSHN MODELS

We now provide strong arguments which show that our proposed PSHN model (Section 3) can be
implemented in neurobiology (the brain), at least in principle.

Synaptic Connections. Note that our PSHN model can be realized with O(k) hidden neurons
for computing sums and products in (8), with direct synaptic connections to input neurons. Unlike
the biological plausibility of the ”sum” neurons, the ”product neurons” which implement k-fold
multiplication in (8), need some explanation because such an operation might not be implementable
biologically by a single neuron. However, this operation can be carried out via a series of k 2-fold /
binary multiplication neurons (a, b) → a∗b, which are known to be biologically plausible Groschner
et al. (2022); Valle-Lisboa et al. (2023). In fact, k-fold multiplication is the basis of so-called sigma-
pi networks Feldman & Ballard (1982) and pi-sigma networks Ghosh & Shin (1992), which are
well-known in computational neuroscience.

Sparsity of Connexions. Concerning the connectivity structure, we see from (8) with M = 1 (i.e
a single memory pattern) that the graph representing an PSHN model only contains O(Nk) edges in
total, corresponding to an edge density of O(Nk/N2) = O(k/N). If the number of groups k is of
order o(N) (e.g k = O(N/ logN)), then the computation graph for the corresponding PSHN model
is extremely sparse (vanishing edge density), and thus is biologically plausible. Importantly our
construction can simultaneously achieve sparsity and (quasi-)exponential robust storage capacity. In
contrast, diluted Hopfield networks Derrida & Nadal (1987); Bovier & Gayrard (1992); Burns &
Fukai (2023), which enjoy sparsity but only have polynomial storage capacity.

Thus, simultaneously, our proposed PSHN model is biologically plausible and with (quasi-) ex-
ponential robust storage capacity. Note that by default, the dense network proposed in Ramsauer
et al. (2020) achieves exponential capacity, it is not biologically plausible by design as it requires
many-body connections. Krotov & Hopfield (2021) has shown that this network can be seen as an
effective description of a more microscropic theory involving only two-body synaptic connections
between input and hidden neurons. However, the arguments in favor of the biological plausibility of
our model are considerably stronger, as they apply across all scales, not just the microscopic level.

6 AN EXPERIMENT: STORING AND RETRIEVING CORRELATED PATTERNS

We empirically demonstrate our theoretical results by running a small experiment on the popular
MNIST dataset LeCun et al. (2010). For this computer vision dataset, each of the 70K examples
is a gray-scale image of resolution 28 × 28 pixels. We sample M = 10K out of 70K images from
this dataset and examine how these can be stored and retrieved by our Product-of-Sums Hopfield
network (PSHN) model described in Section 3.

Experimental Setup. We normalized the intensity values of the image so that they are ±1. Thus
each of the M = 10K images is now a vector in {±1}N with N = 784. For each memory pattern

8
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Figure 2: Comparing storage capacity on MNIST. Our proposed PSHN model (Section 3) is
instantiated with k groups each of size N1 = N/k, where N = 784. The y-axis represents how
many memory patterns are perfectly recovered. Error bars are variations across 10 runs (different
sub-samplings of 10K out of 70K images). For this experiment, we see that the optimal number of
groups is k = 112, each of size N1 = N/k = 7. We also show results for the classical Hopfield
network, exponential, and polynomial Hopfield networks discussed in the introduction (Section 1).

Figure 3: Visual Inspection of reconstructed image for each method. As the order of the long-
range interactions in the model (k for our PSHN model and degree ”deg” for Poly HN) increases, the
model moves from feature-extractors to prototype-builders. This is in accordance with the ”Feature
vs Prototype” theory advocated in Krotov & Hopfield (2016). Appendix A.1 for additional results.

x(µ) ∈ {±1}N , the pixel intensities of the rightmost 100θ% portion is set to −1. We do this for
θ = 0 (corresponding to nonrobust storage), θ = 0.25, and θ = 0.35. We create instances of our
PSHN model with k equally sized groups, for different values of k ranging in {7, 16, 28, 112}. The
experiment is run 10 times (on a machine with a single T4 GPU), each time with a different random
sub-sampling of M = 10K out of the 70K images in the MNIST dataset.

Empirical Results. Figure 2 reports robust storage capacity for our model alongside alongside
other types of high-capacity Hopfield network discussed in Section 1. Notice how the performance
for our PSHN model matches a polynomial Hopfield network of degree k, in accordance to Corol-
lary 4.1. For k = 7, we observe the best performance for our model, which is consistent with the
(quasi-)exponential storage capacity in established in Theorem 4.4. The good performance for the
exponential Hopfield network Demircigil et al. (2017); Ramsauer et al. (2020) observed in the figure
is also consistent with its exponential storage capacity. These models and ours rely on long-range in-
teractions between features to cope with the strong correlations present in the data. This is unlike the
classical Hopfield network Hopfield (1982) which only relies on short-range (pairwise) interactions.

All the models had comparable running times. The entire experiment (10 runs of all models) exe-
cutes in under 30 minutes on a single T4 GPU. See supplemental for code to reproduce all figures.

7 CONCLUDING REMARKS

In this study, we have introduced a versatile framework for extending classical Hopfield networks
by incorporating long-range interactions defined via collections of subsets of input features, called
”skeletons”. We have also demonstrated that many classical Hopfield network extensions are specific
examples of our broader construction corresponding to specific choices of the skeleton. Importantly,
one specific instantiation of our model introduces a novel self-attention layer (PSHN) with expo-
nential storage capacity. Moreover, we show that the later model is biologically-plausible: it can
be implemented by sparse two-body synaptic connections between neurons. Our findings open new
possibilities for enhancing machine learning models with powerful associative memory modules.

9
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Appendix

A MISCELLANEOUS

A.1 ADDITIONAL RESULTS: VISUAL INSPECTION FOR RETRIEVAL OF MNIST IMAGES

Figure 4 is a longer version of Figure 2 of the main text (Section 6). See supplemental for code to
reproduce all figures.

Figure 4: Observe that, as the order of the long-range interactions in the model (k for our PSHN
model and degree ”deg” for Poly HN) increases, the model moves from feature-extractors to proto-
type builders. This is in accordance with the ”Feature-Extractor vs Prototype” theory advocated in
Krotov & Hopfield (2016; 2021).
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A.2 TECHNICAL DETAILS FOR IMPLEMENTING OUR PSHN SELF-ATTENTION LAYER

Observe that the code snippet in Code Listing 1 (Section 3 of the main text) is vectorizable and can
take full advantage of optmized linear algebra on GPUs. Also, line 3 of Code Listing 1 is effectively
doing matrix multiplication of k pairs of m ×N1 and M × N1 matrices, and can be carried out in
parallel on GPUs, for example. In particular, the case k = 1 reduces to the usual matrix product
Z = QX⊤. A similar comment applies to line 6. All in all, the complexity of our proposed PSHN
model is comparable to a traditional self-attention layer Vaswani et al. (2017), and to classical dense
associative memory models Krotov & Hopfield (2016); Demircigil et al. (2017); Ramsauer et al.
(2020).

A.3 SOME ILLUSTRATIONS

Figure 5: Energy Computation for PSHN Model. Diagram Showing computation of the energy
E(y) according to (7) for an input ±1-pattern y in N = 9 dimensions, according to formula (7).
Here, there are M = 3 memory patterns x(1), x(2), and x(3). Each of the M horizontal blocks of N
cells each corresponds to an element-wise product z(µ) = x(µ) ⊙ y ∈ {±1}N , for each µ ∈ [M ].
For this example, the skeleton of the PSHN model is as in (6), with k = 2 groups of neurons
G1 = {1, 2, 3, 4, 5} and G2 = {6, 7, 8, 9}. Each colered subgraph can be seen as a tokenizer which
correlates the input y and memory patterns x(µ) along a the input dimensions corresponding to
subset of neurons Gi. There is an analogous schema (not shown) for computing the update rule
Tn(y) defined in (5) according to (8).

E(y)

+

∗

+ +

∗

+ +

∗

+ +

B PRELIMINARIES ON THE ANALYSIS OF STORAGE CAPACITY

B.1 NOTATIONS

Let us recall some notations used in the manuscript and define others which will be used in the
appendix specifically. We use [N ] to denote the set of integers {1, 2, . . . , N}. The collection of
subsets of [N ] with d exactly d elements is denoted

(
[N ]
d

)
, while

(
[N ]
≤D

)
:= ∪D

d=0

(
[N ]
d

)
is the collection

of subsets of [N ] with D elements or fewer. As simplicial complex K on [N ] is a collection of
subsets of subsets of K such that if s0 ⊆ s ∈ K, then s0 ∈ K. For example,

(
[N ]
≤D

)
is a simplicial

complex of dimension D.

Given nonnegative real functions f and g, we write f(N) ≲ g(N), or equivalently f(N) =
O(g(N)) to mean that there exists an absolute constant C such that f(N) ≤ Cg(N) for suffi-
ciently large N , while f(N) ≍ g(N) means f(N) ≲ g(N) ≲ f(N). Finally, f(N) = o(g(N)),
or equivalently f(N) ≪ g(N), means f(N)/g(N) → 0 as N → ∞. In particular, f(N) = O(1)
means f is bounded, while f(N) = o(1) means f(N) → 0 in the limit N → ∞. For example,
logN = o(N) since log(N)/N → 0 in the limit N → ∞.

X
D
= Y denotes equality in distribution of two random variables X and Y .

13
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B.2 GENERIC SIGNAL TO NOISE RATIO COMPUTATION

Let us consider the problem of robustly storing the first pattern x(1) ∈ {±1}N . Let the pattern y be a
corrupted version of x(1) as in (12). That is we will to study the probability that P(T (y) = x(1)). The
following argument is adapted from Bovier (1999) which established sharp bounds on the storage
capacity of classical Hopfield network (corresponding to S =

(
[N ]
2

)
in our case). First observe that

the update Tn(y) for the the nth neuron satisfies Tn(y)x
(1)
n = sign(∆n), where

∆n =

M∑
µ=1

∑
s∈∂nS

x(µ)
n x(µ)

s ysx
(1)
n =

∑
s∈∂nS

(x(1)
n )2x(1)

s ys +
∑

s∈∂nS

M∑
µ=2

x(1)
n ysx

(µ)
n x(µ)

s

=
∑

s∈∂nS

x(1)
s ys +

∑
s∈∂nS

M∑
µ=2

x(µ)
n x(µ)

s , since x(1)
n ysx

(µ)
n x(µ)

s
D
= x(µ)

n x(µ)
s (Lemma B.2)

= An︸︷︷︸
signal

+ Zn︸︷︷︸
noise

(15)

where the signal term An and the noise term Zn (also known as the crosstalk term) are given by

An :=
∑

s∈∂nS

x(1)
s ys, (16)

Zn :=
∑

s∈∂nS

M∑
µ=2

x(µ)
n x(µ)

s . (17)

Note that the noise term Zn as given in (17) is a sum of (M − 1) · |∂nS| = iid Rademacher random
variables x

(µ)
n x

(µ)
s , and so in terms of (anti)concentration, we expect it to behave like a properly

scaled Gaussian random variable. In fact,

Lemma B.1. An and Zn are statistically independent, and we have the following identities

EZn = 0, (18)
var(Zn) = (M − 1)d(n), (19)

EAn =
∑

s∈∂nS

(1− θ)|s|. (20)

In particular, if θ = 0, then An = d(n) := |∂nS|, i.e deterministic.

The hard part of the business is that, in the noisey regime where θ = 0, the variance of An will in
general depend intricately on the topology of the skeleton S.

Proof. Note that x(1)
s ys =

∏
n′∈s x

(1)
n′ yn′ , which is a product of |s| idd random variables, each with

mean (1− θ). The claimed expression for EAn follows.

We now analyze the noise term Zn. Observe that Zn and −Zn have the same distribution. In
particular, Zn has zero mean. Also, the sum in the equation defining Zn is a sum of (M−1)·|∂nS| =
(M − 1) · d(n) iid Rademacher random variables x(µ)

s x
(µ)
n , where and 2 ≤ m ≤ M and s ∈ ∂nS.

We deduce that Zn has mean 0 and variance given b var(Zn) = (M − 1) · d(n).

Lemma B.2. Suppose n ∈ [N ] and s ⊆ [N ] such that n ̸∈ s. Then, for any memory pattern index

µ ̸= 1, it holds that x(1)
n ysx

(µ)
n x

(µ)
s

D
= x

(µ)
n x

(µ)
s , where y ∈ {±1}N is obtained from the pattern x(µ)

according to (12).

B.3 PROOF OF THEOREM 4.1

Thanks to (15), in order to ensure the ”good” event Tn(x
(1))x

(1)
n ≥ 0, we need the std of An + Zn,

to be dominated by its mean. Thanks to Lemma B.1 we know that in the nonrobust regime (θ = 0),
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the former is
√
(M − 1)d(n) and the former is d(n). Thus, it would from Chebychev’s inequality

that

P(T (x(1)) ̸= x(1)) = P(∃n ∈ [N ] s.t Tn(x
(1))x(1)

n ≤ 0) ≤
N∑

n=1

P(Zn ≥ d(n))

≤
N∑

n=1

M

d(n)
≤ N · M

d(S)
.

This would give the storage capacity bound MN (S) ≳ d(S)/N1+o(1), which is sub-optimal with
regards to our target. Instead, we use a slightly more involved argument, following a line thought
similar to Bovier (1999). First, a standard union-bound gives

P(T (x(1)) ̸= x(1)) = P(∃n ∈ [N ] s.t Tn(x
(1))x(1)

n ≤ 0)

≤ P(∃n ∈ [N ] s.t Zn ≥ d(n)) ≤
N∑

n=1

P(Zn ≥ d(n)).

Now, for any n ∈ [N ], we know that Zn =
∑

s∈∂nS
x
(µ)
n x

(µ)
s has the same distribution as∑

s∈∂nS
x
(µ)
s , because x(µ)

n and x
(µ)
s are independent. Moreover, the later is a sum of (M−1) ·d(n)

idd Rademacher random variables x
(µ)
s , and so exhibits Gaussian concentration around zero

Boucheron et al. (2013). We deduce that

P(T (x(1)) ̸= x(1)) ≤
N∑

n=1

P

( ∑
s∈∂nS

x(µ)
s ≥ d(n)

)

≤
N∑

n=1

exp

(
− d(n)2

2Md(n)

)
=

N∑
n=1

exp

(
−d(n)

2M

)
≤ N · exp

(
−d(S)

2M

)
.

(21)

To make the RHS go to zero in the limit N → ∞, it suffices that d(S)/M ≥ (2 + γ) logN ,

i.e M ≤ d(S)

(2 + γ) logN
where γ is a positive constant. We conclude that the storage capacity is

lower-bounded as claimed.

C SOME CALCULATIONS RELATED TO OUR PSHN MODEL

C.1 PROOF OF LEMMA 3.1

Starting from the general formula (4), we have

E(y) =
∑
σ∈S

ω(σ)yσ =
∑
µ

∑
σ∈S

zσ, where zσ :=
∏
n∈σ

zn and zn := x(µ)
n yn. (22)

Now, by basic algebra, one has
k∏

i=1

∑
n∈Gi

zn =
∑

n1∈G1,...,nk∈Gk

zn1
zn2

. . . zn2
=
∑
σ∈S

zσ, (23)

and the result follows upon combing with (22).

C.2 PROOF OF LEMMA 3.2

Indeed, from (5), we know that Tn(y) = sign(∆n(y)), where ∆n(y) :=∑M
µ=1 x

(µ)
n
∑

s∈∂nS
x
(µ)
s ys, where ∂nS is as defined in (2). Now, because S = T (G1, . . . , Gk) :=

{σ ⊆ [N ] s.t |σ ∩Gj | = 1∀j}, it is clear that if n ∈ Gi, then
∂nS = {s ⊆ [N ] s.t |s ∩Gi| = 1∀j ̸= i} = T (G1, . . . , Gi−1, Gi+1, . . . , Gk). (24)

We deduce that ∆n(y) =
∑

µ x
(µ)
n
∏

j ̸=i

∑
n′∈Gj

y
(µ)
n′ x

(µ)
n′ =

∑
µ c

(µ)
i x

(µ)
n , as claimed.
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C.3 SOLVING THE XOR PROBLEM

Let us present the simplest example of a problem which can be solved by our proposed SPS model,
but cannot be solved by a classical associative memory model (e.g traditional Hopfield networks
Hopfield (1982)) on the same input space: the XOR problem Minsky & Papert (1969). Note that
the problem was also considered in Krotov & Hopfield (2016) and shown to be solvable by their
polynomial networks as soon as the degree of the polynomial is at least 3. This is because higher-
order polynomials induce a capacity limit which surpasses the number of neurons N . Indeed, the
XOR problem corresponds to M = 4 memory patterns of N = 3 dimensions given by

x(1) = (−1,−1,−1), x(2) = (−1, 1, 1), x(3) = (1,−1, 1), x(4) = (1, 1,−1), (25)
with the identification 0 7→ −1 and 1 7→ 1. The 3rd (output) neuron is the XOR of the first two.

Now, consider a partition {G1, G2} of [N ] = {1, 2, 3} given by G1 = {1, 3}, G2 = {2} and
S = T (G1, G2). Then, it is easy to see that for any n ∈ {1, 2, 3}, then (2) becomes

∂nS = {{n′} | n′ ∈ G}, with G = G1 if n ∈ G2; G = G2 if n ∈ G1.

Thus, for any pattern y ∈ {±1}3, the update (5) for the 3rd neuron is T3(y) = sign(∆3(y)), where

∆3(y) =

4∑
µ=1

x
(µ)
3

∑
n∈G1

z(µ)n

∑
m∈G2

z(µ)m =

4∑
µ=1

x
(µ)
3 (z

(µ)
1 + z

(µ)
3 )z

(µ)
2

=

4∑
µ=1

x
(µ)
1 x

(µ)
2 x

(µ)
3 y1y2 +

4∑
µ=1

x
(µ)
2 y2y3 = −4y1y2,

where we have used the fact that
∑4

µ=1 x
(µ)
2 = 0 and x

(µ)
1 x

(µ)
2 x

(µ)
3 = −1 for all µ. Thus, T3(y) =

−sign(y1y2) = XOR(y1, y2). We deduce that our PSHN model with skeleton S = T (G1, G2)
solves the XOR problem.

C.4 A BOOLEAN BINOMIAL IDENTITY

Lemma C.1. For every pair of patterns x, y ∈ {±1}N , it holds that
∑

σ⊆[N ] xσyσ = δx=y , where
xσ :=

∏
n∈σ xn as usual.

Proof. The proof is by induction on N . The case N = 1 is trivial since
∑

σ⊆[1] xσyσ = 1+x1y1 =∏
n∈[1](1+xnyn). Suppose the result is true for N = N ′. We will prove if for N = N ′+1. Indeed,

observe that∑
σ⊆[N ′+1]

xσyσ =
∑

σ⊆[N ′]

xσyσ +
∑

σ⊆[N ′]

xσ∪{N ′+1}yσ∪{N ′+1}

=
∑

σ⊆[N ′]

xσyσ +
∑

σ⊆[N ′]

xσxN ′+1yσyN ′+1

= (1 + xN ′+1yN ′+1)
∑

σ⊆[N ′]

xσyσ

= (1 + xN ′+1yN ′+1)
∑

σ⊆[N ′]

∏
n∈[N ′]

(1 + xnyn) by the induction hypothesis

=
∏

n∈[N ′+1]

(1 + xnyn),

which completes the proof.

D PROOF OF THEOREM 4.2: STORAGE CAPACITY OF A CLASS OF AHNS

D.1 CONTROLLING THE SIGNAL TERM An IN (15)

We will prove something more general than Theorem 4.2. Let K be a nonempty collection of subsets
of [N ]. Ultimately, we are interested in the case where K = ∂sS. Note that K can be seen as an
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unweighted hyper-graph with vertex-set [N ] and edge-set K. Define a random variable A(K) by

A(K) :=
∑
s∈K

zs, (26)

where zs :=
∏

n∈s zn as usual. It is clear that the mean of A(K) is given by

EA(K) =
∑
s∈K

(1− θ)|s| (27)

Let q = q(K) ≥ 1 be the maximal cardinality of an element of K, i.e

q(K) := max
s∈K

|s|. (28)

Thus, the random variable A(K) is a random multi-linear polynomial of degree q. Moreover, it is
clear that

EA(K) ≥ (1− θ)q|K|, (29)

with equality if K is regular in the sense that |s| = q for all s ∈ K. Now, for any integer 0 ≤ i ≤ q,
define µi = µi(K) ≥ 0 by

µi := max
s0∈([N]

k )

∑
s∈K|s0⊆s

∏
n∈s\s0

E |zn| = max
s0∈([N]

k )
|{s ∈ K | s0 ⊆ s}|, (30)

where we have used the fact that |zn| = 1, since zn only takes the values ±1, for any n ∈ [N ]. It
is clear that µ0 = |K|. The other µi’s control the size (on average) of the ”partial derivatives” of
A(K) w.r.t to the elements of K. We have the following proposition which is a direct consequence
of the main result in Schudy & Sviridenko (2012).
Proposition D.1. With all variables defined as above, it holds for any λ > 0 that

P
(
|A(K)− EA(K)| ≥ max

1≤i≤q
max(

√
λ|K|µiCq, λiµiC

q)

)
≤ e2e−λ, (31)

where C ≥ 1 is an absolute constant.

The appearance of Cq in the result is troublesome and somewhat unavoidable. A very high degree
polynomial cannot be concentrated in any meaningful way. Thus, we will focus on the case where
the degree q is low in the following sense.
Condition D.1 (Smoothness). For some N1 ≥ 1 (which may depend on N, q) and absolute positive
constant C1, it holds that

max
1≤i≤q

N i
1µi ≤ C1|K|. (32)

Note that the above condition only depends on the topology of the underlying collection K of subsets
of [N ]. For example, it is satisfied in the case where K is a simplicial complex on KN,≤D with
D = O(1) (here (N1, q) = (N,D)), or a transversal of an equi-partition partitioning of [N ], with
k = O(1) groups (here, (N1, q) = (N/k, k)).

Proposition D.2. Under Condition D.1 with N1 = NΩ(1) and q = o(logN) as N → ∞, it holds
that

P
(∣∣∣∣ A(K)

EA(K)
− 1

∣∣∣∣ ≥ t

)
≤ e2e−t2NΩ(1)

, for any t ∈ (0, 1). (33)

Proof. WLOG, take C1 = 1. Observe that

max
1≤i≤q

√
λ|K|µiCq ≤ |K| max

1≤i≤q

√
λN−i

1 Cq = |K|
√

Cqλ/N1. (34)

On the other hand, one has

max
1≤i≤q

λiµiC
q ≤ |K| max

1≤i≤q
λiN−i

1 Cq = Cq|K| · max
1≤i≤q

(λ/N1)
i

= |K|Cq

{
λ/N1, if λ ≤ N1,

(λ/N1)
q, else.

17
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Thus, for any t ∈ (0, Cq/2), taking λ = t2N1/C
q ≤ N1 gives

max
1≤i≤q

max(
√

λ|K|µiCq, λiµiC
q) ≤ |K|max(

√
Cqλ/N1, C

qλ/N1) = max(t, t2)|K|. (35)

Combining this with (31) then gives the following concentration inequality

P
(
|A(K)− EA(K)| ≥ max(t, t2)|K|

)
≤ e2e−λ = e2e−t2N1/C

q

= e2e−t2NΩ(1)

, (36)

because N1 = NΩ(1) and q = o(logN) by hypothesis. In particular, taking t ∈ (0, 1) gives

P (|A(K)− EA(K)| ≥ t|K|) ≤ e2e−t2NΩ(1)

, (37)

Noting that EA(K) =
∑

s∈K(1− θ)|s| ≥ |K|(1− θ)q = |K|No(1) because q = o(logN), we get

P (|A(K)− EA(K)| ≥ tEA(K)|) ≤ e2e−t2NΩ(1)−o(1)

= e2e−t2NΩ(1)

,

which completes the proof.

D.2 PROOF OF THEOREM 4.2

For any neuron n ∈ [N ], applying Proposition D.2 with K = ∂nS, A(K) = An (the signal term in
(15)), and (N1, q) as in the statement of Theorem 4.2 we obtain that: w.p 1−O(e−t2NΩ(1)

), it holds
that

|An/EAn − 1| ≤ t with EAn = (1− θ)q|K| = (1− θ)qd(n).

Note that the conditions for Proposition D.2 are verified thanks to Lemma D.1. We thus obtain

P(Tn(y) ̸= x(1)
n ) = P(Tn(y)x

(1)
n ≤ 0) ≤ P(Zn ≥ An) ≤ P(Zn ≥ (1− θ)qd(n)/2) + e−NΩ(1)

. (38)

A union-bound in the spirit of the proof of Theorem 4.1 then gives

P(T (y) ̸= x(1)) ≤
N∑

n=1

P(Zn ≥ (1− θ)qd(n)/2) +Ne−NΩ(1)

= N · exp(− (1− θ)2qd(n)2

2(M − 1)d(n)
) + o(1)

= exp(− (1− θ)2qd(n)

2(M − 1)
+ logN) + o(1),

(39)

and the claimed lower-bound follows.
Lemma D.1. For large N and any positive integer q ≤ N , it holds for any 1 ≤ i ≤ q that

µi(

(
[N ]

q

)
) =

(
N − i

q − i

)
≲ O(N)q−i, (40)

µi(

(
[N ]

≤ q

)
) =

∑
d≤q

(
N − i

d− i

)
= O(N)q−i, (41)

where the functionals µi are as defined in (30). Consequently, if q = o(logN), then
(
[N ]
q

)
and

(
[N ]
≤q

)
satisfy Condition 4.1.

D.3 PROOF OF COROLLARY 4.1

The proof follows from combining Theorem 4.2 with Lemma D.1. We only need to compute
d(S) := maxn∈[N ] |∂nS| for all the networks considered in the corollary.

Classical Hopfield Networks. If S is the collection all singletons of [N ], then q = 1 and d(S) =
N − 1.

Polynomial Hopfield Networks. If S is the collection of d-element subsets of [N ], then q = d−1

and d(S) =
(
N−1
d−1

)
. Furthermore, if N ≫ d, then

(
N−1
d−1

)
≈ Nd−1/d!.
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Simplicial Hopfield Networks. The model proposed in Burns & Fukai (2023) corresponds to
taking S to be a D-skeleton on the set of neurons, i.e the collection of subsets of neurons with
cardinality D or less, then q = D − 1 and d(S) =

∑D−1
d=0

(
N−1
d

)
≍ ND−1.

E PROOF OF THEOREM 4.3: NONROBUST CAPACITY OF PSHN MODEL

The theorem is a direct consequence of the following lemma.
Lemma E.1. If the subsets G1, . . . , Gk with |Gi| = Ni ≥ 1 for all i, form a partitioning of the set
of neurons [N ], then for the abstract Hopfield network with skeleton S = T (G1, . . . , Gk), it holds
that d(S) = (

∏
i Ni)/maxi Ni.

Proof. It is clear that |S| = |G1 × . . . × Gk| =
∏d

i=1 Ni. Now, for any n ∈ [N ] let Gi(n) be the
unique cluster of neurons which contains n. It is clear that ∂nS is isomorphic to

∏
i̸=i(n) Gi, and so

d(n) := |∂nS| =
∏

i ̸=i(n) Ni = |S|/Ni(n), from which it follows that d(S) = (
∏

i Ni)/maxi Ni

as claimed.

Proof of Theorem 4.3. For such a partition of N , we must have k = N/N1 = Θ(N) and so∏
i Ni/maxi Ni ≥ 2k/O(1) ≥ eΘ(N) thanks to Lemma E.1. The result then follows directly

from Theorem 4.1.

F PROOF OF THEOREM 4.4: ROBUST STORAGE CAPACITY OF PSHN MODEL

F.1 WARMUP: A WEAK LOWER-BOUND VIA CHEBYCHEV’S INEQUALITY

Fix θ ∈ [0, 1/2). Let x ∈ {±1}N be uniformly random pattern and let y ∈ {±1}N be a pattern
obtained from x as in (12). Let d and N1 be positive integers and set N = dN1. Partition [N ] :=
{1, 2, . . . , N} d disjoint from G1, . . . , Gd of each of size N1, and let T = T (d,N1) be a transversal
of the Gi’s, i.e the collection of subsets of [N ] which contain exactly one element from each Gi.
Note that T is isormophic to G1 × . . . × Gd in an obvious way, and thus |T | = Nd

1 . Finally, let
z = x⊙ y ∈ {±1}N be the component-wise product of x and y, and define a random variable A by

A(T ) :=
∑
T∈T

zT , (42)

where zT :=
∏

t∈T zt as usual. Note that A(T ) is a random multilinear polynomial of total degree
d. The objective is to design N1 and (thus d too) as a function of N such that A(T ) is as large as
possible (and positive !) w.p 1− o(1) in the limit N → ∞.

First observe that we can alternately write for every i ∈ [d],

A(T ) =
∏

1≤i≤d

Si, with Si :=
∑
t∈Gi

zt. (43)

Now, it is clear that

• The Si’s are iid random variables taking integral values in the range [−N1, N1].
• Each Si is itself a sum of iid random variables which take values ±1, with P(zt = 1) =
1− θ/2 and E zt = 1− θ/2− θ/2 = a := 1− θ ∈ [0, 1]. Thus, ESi = aN1, and

EA(T ) = (aN1)
d. (44)

Proposition F.1. In the limit N1 → ∞ such that d = o(N1), it holds w.p 1 − o(1) that A(T ) ≍
EA(T ) = (aN1)

d

Proof. Indeed, setting a := 1− θ, one computes

ES2
i =

∑
t∈Gi

∑
t′∈Gi

E [ztzt′ ] = Ni +
∑

t,t′∈Gi, t′ ̸=t

E ztE zt′

= Ni +Ni(Ni − 1)a2 = Ni(1− a2) + (Nia)
2

= Ni(1− a2) + (ESi)
2,

(45)
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and so var(Si) = Ni(1− a2). It follows from the independence of the Si’s that

var(A(T )) =

d∏
i=1

ES2
i −

d∏
i=1

(ESi)
2 = ((aN1)

2 +N1(1− a2))d − ((aN1)
2)d

= ((aN1)
2)d

((
1 +

1/a2 − 1

N1

)d

− 1

)
= (EA(T ))2 ·R(T ),

(46)

where R(T ) := var(A(T ))/(EA(T ))2 =

(
1 +

c

N1

)d

− 1, with c := 1/a2 − 1 ≥ 0. Now, one

computes

0 ≤ R(T ) =

(
1 +

c

N1

)d

− 1 ≤ ecd/N1 − 1.

Thus, if N1 → ∞ such that d = o(N1) (i.e d/N1 → 0), then R(T ) = o(1), and Chebychev’s
inequality gives

P(|A(T )− EA(T )| ≥ (1/2)EA(T )) ≤ 4R(T ) = o(1),

and the claim is proved.

F.2 A STRONGER LOWER-BOUND VIA CHERNOFF

Let us now remove the troublesome requirement ”d = o(N1)” from Proposition F.1. First observe
that, in the definition of Si, we can further write zt = 2bt − 1, where bt is Bernoulli with parameter
p = p(θ) := 1−θ/2 ∈ (1/2, 1]. Thus, Si =

∑
t∈Gi

(2bt−1) = 2Bi−N1, where Bi :=
∑

t∈Gi
bt ∼

Bin(N1, p). By well-known concentration results Boucheron et al. (2013), we have

P(Bi ≥ (1 + t)N1p) ≤ e−
t2pN1
2+t , for all t > 0,

P(Bi ≤ (1− t)N1p) ≤ e−
t2pN1

2 , for all 0 < t < 1.

(47)

We deduce that

P(Si ≥ (2p(1 + t)− 1)N1) ≤ e−
t2pN1
2+t , for all t > 0,

P(Si ≤ (2p(1− t)− 1)N1) ≤ e−
t2pN1

2 , for all 0 < t < 1.

(48)

Therefore: for any t ∈ (0, a) and i ∈ [d], it holds w.p 1− e−t2pN1/2 that

Si ≥ ((2p− 1)− t)N1 = (a− t)N1,

where a = a(θ) := 2p − 1 = 1 − θ ∈ (1/2, 1] as before. A union-bound over i ∈ [d] then gives:
w.p 1− δ(N1) = 1− de−t2pN1/2 it holds that

A(T ) ≥ (aN1)
d (1− t/a)

d
= (aN1)

d ((1− t/a)
a
)
d/a ≥ (aN1)

de−td/a = (ab(t)N1)
d,

where b(t) := e−t/a ∈ (0, 1/e). Further taking t = 1/2 gives: w.p 1− de−pN1/8,

A(T ) ≥ (abN1)
d, (49)

where b = e−1/(2a). Now, we want d to be as large as possible, and the RHS of the above to be as
large as possible too. We can achieve by ensuring that δ(N1) := e−pN1/8+log d → 0 in the limit
N1 → ∞. To satisfy this constraint (perhaps non-optimally!) it suffices to take

N1 ≥ (9/p) log d, (50)

so that δ(N1) ≤ e−pN1/72. We have proved the following.

Proposition F.2. If N1 ≥ (9/p) log d, then it holds w.p 1− e−pN1/72 that A(T ) ≥ (abN1)
d, where

a := 1− θ, p := 1− θ/2, and b := e−1/(2a).

The following result is the last technical step towards the prove of Theorem 4.1.
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Proposition F.3. Fix a corruption level θ ∈ [0, 1/2) and let N1 ≥ C logN , where C ≥ 73/p. Then,
for large N , it holds w.p 1− o(1/N) that

A(T ) ≥ (abN1)
d, (51)

where a := 1− θ, p := 1− θ/2, and b := e−1/(2a).

Proof. Indeed, observe that Ne−pN1/72 = e−pN1/72+logN = e−(N1−(72/p) logN)p/72 = o(1) if
N1 ≥ (73/p) logN . The result then follows from Proposition F.2 since logN ≥ log d.

Note that the constant 73 appearing in Proposition F.3 (and also in Theorem 4.4) has not been
optimized an could potentially be made much smaller with a bit of more work.

F.3 PROOF OF THEOREM 4.4

We are now ready to prove Theorem 4.4 proper. Fix a corruption level θ ∈ [0, 1), and let y = y(θ) ∈
{±1}N be a corrupt version of a memory x(1) which is formed by chosen a subset sθ of size θN of
neurons, uniformly at random and independently of the memories x(1), . . . , x(µ), and then setting

yn =

{
x
(1)
n , if n ∈ sθ,

−1, else.
(52)

For any neuron n ∈ [N ], the signal term in (15) is given by

An :=
∑

s∈∂nS

x(1)
s ys. (53)

Observe that ∂nS is precisely the collection of subsets of [N ] which contain exactly one element
of each group of neurons Gi except the group which contains the neuron n. Applying Proposition
F.3 with T = ∂nS, d = k − 1, and An = A(T ) one has An ≥ (abN1)

k−1 = (ab)k−1d(n) w.p
1− o(1/N) as soon as N1 ≥ C logN , where d(n) = Nk−1

1 , a := 1− θ and b := e−1/(2a).

Reasoning analogously to (21), we see that

P(T (y) ̸= x(1)) ≤
N∑

n=1

P (Zn ≥ An)

≤
N∑

n=1

(
P
(
Zn ≥ (ab)k−1d(n)

)
+ o(1/N)

)
≤

N∑
n=1

exp

(
(ab)2(k−1)d(n)2

2(M − 1)d(n)

)
+N · o(1/N)

=

N∑
n=1

exp

(
(ab)2(k−1)d(n)

2(M − 1)

)
+ o(1)

≤ N · exp
(
− (a2b2N1)

k−1

2(M − 1)

)
+ o(1)

= exp

(
− (a2b2N1)

k−1

2(M − 1)
+ logN

)
+ o(1),

(54)

To make the RHS go to zero in the limit N → ∞, it suffices that (a2b2N1)
k−1/M ≥ (2+γ) logN ,

or equivalently,

M ≤ (a2b2N1)
k−1

(2 + γ) logN

where γ is a positive constant.

In particular, taking N1 = C logN and k = N/N1, and then lower-bounding the logarithm of the
function f(N) := (a2b2C logN)N/(C logN)−1 by Ω(N log2 N/ logN) gives the result.
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