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ABSTRACT

We investigate the joint distillation of in-context learning and reasoning from ad-
vanced large language models (LLMs) to their smaller counterparts. We introduce
Autoregressive In-Context Distillation (AICD), a simple yet effective paradigm
for this purpose. AICD employs meta-teacher forcing on chain-of-thought (CoT)
examples and leverages the autoregressive nature of LLMs to jointly optimize the
likelihood of all rationales in-context. Experiments on both mathematical and
commonsense reasoning tasks demonstrate the efficacy of AICD. Furthermore,
AICD enhances the capability of student LLMs in generating meaningful CoTs.

1 INTRODUCTION

The rise of LLMs (OpenAI, 2023) gives birth to a plethora of promising emergent capabilities, like
in-context learning (Brown et al., 2020) and complex reasoning (Kojima et al., 2022). Limited by
the computation budget, it remains empirically heavy to host and tune LLMs. To overcome this
limitation, an emerging line of work study distilling these desirable capabilities to its smaller LMs
with knowledge distillation (Hsieh et al., 2023; Wang et al., 2023c; Mukherjee et al., 2023). On this
front, a plethora of work delved into distilling and specializing smaller models on a desired task or
capability, including instruction following (Taori et al., 2023; Xu et al., 2023; Zheng et al., 2023)),
math reasoning (Wang et al., 2023a; Hsieh et al., 2023; Luo et al., 2023a; Yu et al., 2024), coding
Luo et al. (2023b) etc. However, these current works remain on distilling a single capability, i.e.
task performance on a skill set or domains.

As a step beyond, this work presents a novel preliminary study on joint distillation of in-context
learning and reasoning capability. Our primary focus lies in seeking a unified learning objective
that connects the two distilling goals. Inspired by in-context tuning approaches (Min et al., 2022;
Gu et al., 2023)1, we adapt in-context exemplars when distilling task-related examples from LLM
to smaller models. We present AICD, namely Autoregressive In-Context Distillation, an objective
to align these two goals of distillation. Specifically, AICD performs meta teacher-forcing on each
in-context example, and jointly trains the likelihood of all generated reasoning chains in-context.
Leveraging the autoregressive nature of LMs, we achieve a one-pass optimization, better utilizing the
long context of modern language models. Furthermore, the structured few-shot format also fosters
the capability of in-context learning of student language models. Comprehensive experiments on
both math and commonsense reasoning demonstrate the effectiveness of AICD.

2 AUTOREGRESSIVE IN-CONTEXT DISTILLATION

To overcome the limitations of in-context tuning approaches above, we propose Autoregressive In-
Context Distillation (AICD), a training objective that aligns the distillation of in-context learning
and reasoning. Denote {xi, yi}ni=1 a n-shot training instance sampled from dataset D. AICD is
formulated as:

LAICD =

n∑
i=1

ωi log p(yi|x1, y1, ..., xi), (1)

1We discuss the limitations of these existing methods in Appendix A.
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Models GSM8K SVAMP MultiArith StrategyQA

Vanilla Performance
GPT-J 6B 2.7 20.7 9.0 47.2

In-Context Tuning Methods
Finetune w/o Chain-of-Thoughts 8.4 32.3 18.6 61.9
STaR Zelikman et al. (2022) ‡ 10.7 26.7 53.9 60.0
Meta-ICL (distill w/ Cond. Gen. Loss) 21.2 47.0 76.4 62.2
P-ICL (distill w/ LM Loss) 22.2 48.3 75.8 60.8
AICD (Ours) 23.6 51.7 80.9 63.3

Table 1: Performance of AICD objective on distilling math and commonsense reasoning capability
in-context. ‡ denote results cited from (Wang et al., 2023c).

where ωi denote weights for a pair of in-context sample (xi, yi). Note that yi represents a rationale
from LLM. We highlight the key improvements of AICD over existing objectives as follows:

1) No Semantic Shifts. P-ICL implements in-context tuning as a pre-training task through utilizing
the language modeling loss (i.e., log p (x1, y1, · · · , xn, yn)). However, since the in-context ex-
amples are manually assembled, the oracle probability of transition from yi to xi+1 is low, which
leads to an undesired shift from pre-training semantics. Worse, Xie et al. (2021) proves that such
a low likelihood between transitions contributes to in-context learning, which should be kept.

2) Training Efficiency. Compared with the vanilla conditional generation learning objective uti-
lized by Meta-ICL and the most others - log p (yi|x1, y1, · · · , xi−1, yi−1, xi) , AICD simultane-
ously trains a superposition of n in-context samples, with one back-propagation call, thanks to
the autoregressive nature of LMs. We figuratively denote this feature as meta-teacher forcing.
This enables a better utilization of long context of modern LMs.

3) Weight Assignment. As in Eq.1, each in-context exemplar is assigned with a distinct weight
ω. This enables calibration on the focus of in-context learning, which helps to improve the
generalization capability of student models.

3 EXPERIMENTS AND DISCUSSION

We select GPT-J 6B (Wang & Komatsuzaki, 2021) as student LM, and GPT-3.5-turbo as teacher
model for obtaining CoTs. We experiment on GSM-8K (Cobbe et al., 2021), SVAMP (Patel et al.,
2021) and MultiArith (Roy & Roth, 2016) for math, and StrategyQA (Geva et al., 2021) for com-
monsense reasoning. We set ωi to 0.1 for i<n and ωn = 1, in-context size n = 4 for math and 6
for commonsense, learning rate of 7e − 6, and a maximum of 10 training epochs. All models are
trained on 8 NVIDIA V100 GPUs in FP16, with a global batch size of 16. Please refer to Appendix
B for detailed experimental setup.

As illustrated in Table 1, AICD significantly outperforms existing approaches like STaR and tuning
w/o CoT. Besides, AICD also outperforms models trained with conditional generation loss or LM
loss, demonstrating its superiority over existing baselines. Similarly, AICD also improves the perfor-
mance of student model on commonsense reasoning, by achieving superior results on StrategyQA.
These results highlight the generalization capability of the proposed AICD learning objective. We
conduct further experiments on the improvement on in-context learning, interpretability of generated
CoTs, and sensitivity to hyperparameters, which we defer to Appendix C doe to space limitations.

4 CONCLUSION

We present Autoregressive In-context Distillation (AICD), a novel learning objective for jointly dis-
tilling reasoning capability and in-context learning. AICD perform meta-teacher forcing on chain-
of-thoughts of in-context examples, and leverages the autoregressive nature of LLMs to jointly opti-
mize the likelihood of all rationales simultaneously in-context. Experiments on both math reasoning
and commonsense reasoning tasks demonstrate the effectiveness of proposed AICD. We believe
AICD would further contribute to the realm of LLM specialization and distillation.
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A PRELIMINARIES

First introduced in (Kojima et al., 2022), chain-of-thoughts (or reasoning paths) demonstrated strong
empirical merits in guiding LLMs towards correct reasoning. Consequently, existing works on rea-
soning distillation primarily focus on the learning of chained reasoning capability from LLM (Wang
et al., 2023a; Hsieh et al., 2023; Wang et al., 2023c; Yu et al., 2024; Luo et al., 2023a), which we
consider a good starting point. Below, we briefly summarize and discuss related works on in-context
fine-tuning and/or distillation.

In-Context Tuning As the earliest and most straightforward method, Meta-ICL (Min et al., 2022)
and In-Context Tuning (Chen et al., 2022) treat a set of in-context demonstrations as a conditional
prefix during training, and maximize the following log-likelihood maximization objective:

logP (yk+1|x1, y1, · · · , xk, yk, xk+1) .

Essentially, this objective treats in-context demonstrations as a conditional prefix, and one may argue
whether this objective is equal to ‘learning to learn in context’, since no explicit clues other than the
conditional prefix are given.

Channel In-Context Tuning As an alternative to In-Context Tuning, Min et al. (2022) alters the
order of x and y, and train to maximize the negative log-likelihood of xk+1 given yk+1 and precursor
(y, x) pairs. The predicted class is selected w.r.t the largest probability of channel C during inference:

argmaxc∈C P (x|y1, x1, · · · , yk, xk, c) .

Although this method demonstrates empirical improvements over In-Context Tuning, it increases
the inference cost from O(1) to O(C), and could only be applied to niche scenarios where |C| are
finite and small in scale (e.g., True/False classification). Therefore, it could not be applied to broader
scenarios where we have sequential outputs.

In-Context Pre-Training / Language Modeling Instead of regarding demonstration pairs as con-
ditions, P-ICL (Gu et al., 2023) treat in-context tuning as a language modeling task. Specifically, a
language modeling loss over all demonstrations

logP (x1, y1, · · · , xk, yk, xk+1, yk+1)

is applied, under the motivation that the intrinsic tasks are already in the natural language format.
However, this loss forms alter in-context tuning to a pretraining task (Gu et al., 2023), which de-
mands significantly larger amounts of data and greater training steps. Such limitation is even crucial
when training data is limited and costly to obtain (e.g., annotated reasoning chains).

B DETAILED EXPERIMENTAL SETUP

Models We select GPT-J 6B (Wang & Komatsuzaki, 2021) as student LM, and GPT-3.5-turbo
as teacher model for obtaining CoTs. We apply the following prompt template:

”Question: {question} Hint: The answer should be {answer}. Answer: Let’s think step by step.”

where the correct answer is prompted to improve the quality of teacher’s annotations. Three diverse
CoTs are collected for an arbitrary sample, with temperature sampling at 1.0. All in-context training
examples are wrapped within a simple prompt “Question:x Answer:y ...” during training.

Datasets We test AICD on two reasoning domains: math reasoning (solving math word prob-
lems) and commonsense reasoning (true/false classification based on commonsense facts). We se-
lect GSM-8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021) and MultiArith (Roy & Roth, 2016)
for math, and StrategyQA (Geva et al., 2021) for commonsense reasoning.

Implementation We set ωi to 0.1 for i<n and ωn = 1, learning rate of 7e − 6, and a maximum
of 10 training epochs. We set in-context size n = 4 for math reasoning and 6 for commonsense
reasoning. All models are trained on 8 NVIDIA V100 GPUs in FP16, with a global batch size
of 16, cosine decay, and Adam optimizer. Code is available at https://anonymous.4open.
science/r/COT-1892. Please refer the repo for complete prompt templates.
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MultiArith 3-shot Pass@1Figure 1: Performance of AICD on MultiArith and SVAMP, varying α (weights of in-context sam-
ples during AICD training), averaged over 5 random trials.

C ADDITIONAL EXPERIMENTAL RESULTS

To test the effect of AICD in improving ICL capability, we compare AICD-tuned models against
two baselines:

1) vanilla ICL, where we do not fine-tune the student model on any supervised data

2) Fine-tune the student model with in-context examples, with conditional generation objective.

Figure 2: ICL performance varying in-context
sizes after tuning w/ AICD, on SVAMP.

As illustrated in Figure 2, AICD-tuned model sig-
nificantly outperforms vanilla model with ICL, and
also ones tuned with conditional generation objec-
tive. Specifically, the performance at 0,1,2,3 shots
kept increasing, demonstrating the effectiveness of
AICD training. Noteworthy, AICD’s performance
on 1 and 2 shots largely outperforms baselines, in-
dicating that the AICD objective positively con-
tributes to the learning of ICL capabilities, since
it achieves better performance with fewer samples.
These results demonstrate that AICD successfully
aligns the learning of ICL and reasoning.

Finally, we study the sensitivity of AICD to the
weight w of in-context samples. As illustrated
in Figure 1, most AICD variants outperforms the
baseline (i.e. assigning zero weights). Particularly,
a smaller (0.1) or medium (0.5) weighted paradigm
yields stronger results, while the latter has im-
proved generalizability to different in-context sam-
ples (smaller variance).

We believe such configuration better balances the learning of demonstration samples as well as the
final one (which is most crucial to the test results), leading to better distillation.

D CASE STUDY

To further study the effect of AICD, we present a case study in Table 2. As shown in the table, models
trained with AICD could generate more reasonable and factually correct reasoning chains, showing
AICD’s advantage in batter utilizing in-context samples and producing high-quality reasoning.
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Variant Generated Reasoning Chain and Answer

Case #1 Is calling ABBA the Swedish Beatles a preposterous claim? (Yes)

AICD ABBA is a Swedish pop music group that was formed in the 1970s. The Beatles are a
British rock band that was formed in 1960s. So, the answer is Yes.

CONDGEN ABBA is a Swedish band that was very successful in the 1970s and 1980s. The Beatles
are a British band that was very successful in the 1960s and 1970s. So, the answer is Yes.

LM LOSS ABBA is a Swedish band that was very successful in the 1970s and 1980s. The band had
multiple hits and has been recognized as one of the most successful musical groups in
the world. So, the answer is No. (incorrect answer)

Case #2 Can The Hobbit be read in its entirety in four minutes? (No)

AICD The Hobbit is a novel of more than 400 pages and is considered to be a long novel. The
novel can’t be read in its entirety in four minutes. So, the answer is No.

CONDGEN The Hobbit is a children’s storybook and can be read at a faster pace as it is shorter in
length. The Hobbit can be read in its entirety in four minutes. So, the answer is yes.
(wrong reasoning and answer)

LM LOSS The Hobbit is a fantasy novel of more than 400 pages. It takes more than four minutes to
read it completely. So, the answer is No.

Case #3 Can Darth Vader hypothetically outdunk Bill Walton without using The Force? (No)

AICD Darth Vader is a fictional character and therefore has superhuman abilities. He is a Sith
Lord, who is also known as the Emperor’s Apprentice. Bill Walton is a real person, but
he is an NBA player and has limited abilities. So, the answer is No.

CONDGEN Darth Vader is a fictional character and has the ability to use The Force, which is a power
that allows one to perform supernatural feats. Bill Walton is a real human and cannot use
The Force, therefore Darth Vader cannot outdunk Bill Walton without using The Force.
(wrong reasoning) So, the answer is No.

LM LOSS Darth Vader is a Sith Lord, a member of the Jedi Sith, who uses The Force to increase his
strength and agility. Bill Walton is a retired NBA player who is not known to have any
superpowers. So, the answer is No.

Table 2: Case study on generated reasoning chains for student GPT-J-6B trained varying objectives
(AICD, conditional generation and language modeling loss) on StrategyQA.

E LIMITATIONS

Better Sampling of ICL Examples Currently, in-context examples are randomly sampled from
training datasets. While this straightforward implementation surpasses baselines, multiple recent
works (Zhang et al., 2022; Wang et al., 2023b) suggest that this might be suboptimal, and propose
strategies to mine optimal in-context examples. A promising future direction is to empower AICD
with these strategies to facilitate training and mitigate potential bias in ICL examples.

In-Depth Explorations into Weight Schedules Another possible future direction is to propose
an automatic strategy in assigning weights to each in-context example, which is currently designed
according to experiments. We believe that the weight ω in AICD plays the following two key roles:

1) Aligns with the nature of ICL. Since one may obtain a better result given more ICL exam-
ples, an incremental weight schedule aligns with this inherent nature of ICL (as the confidence
increases). Therefore, we believe a better design of these schedules fosters the learning of ICL
capability for smaller LMs.

2) Adjust the weight for an arbitrary sample. Apart from learning the ICL capability, having
such weight schedules also enables an adjustment to the significance of an arbitrary training
sample. Therefore, it’s possible to further explore schedules to mitigate bias towards a better
generalization to ICL tasks and samples. Existing works on pre-training data-mixture (Thakkar
et al., 2023) would serve as a viable baseline.
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Figure 3: Comparison between learning objectives of AICD and existing in-context tuning methods.

F ILLUSTRATION OF AICD

For a comprehensive understanding of AICD, we provide an illustration of AICD as well as a com-
parison to other baselines in Figure 3. As elaborated in Chapter 2, AICD could be understood as a
meta-teacher forcing, where we ‘autoregressively’ feed in-context samples into LM’s context.
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