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Abstract
We consider the following problem: we are given
ℓ heuristics for Metrical Task Systems (MTS),
where each might be tailored to a different type
of input instances. While processing an input in-
stance received online, we are allowed to query
the action of only one of the heuristics at each
time step. Our goal is to achieve performance
comparable to the best of the given heuristics.
The main difficulty of our setting comes from
the fact that the cost paid by a heuristic at time
t cannot be estimated unless the same heuristic
was also queried at time t − 1. This is related
to Bandit Learning against memory bounded ad-
versaries (Arora et al., 2012). We show how to
achieve regret of O(OPT2/3) and prove a tight
lower bound based on the construction of Dekel
et al. (2013).

1. Introduction
Metrical Task Systems (MTS) (Borodin et al., 1992) are a
very broad class of online problems capable of modeling
problems arising in computing, production systems, power
management, and routing service vehicles. In fact, many
fundamental problems in the field of Online Algorithms
including Caching, k-server, Ski-rental, and Convex Body
Chasing are special cases of MTS. Metrical Task Systems
are also related to Online Learning from Expert Advice,
see (Blum & Burch, 2000) for the comparison of the two
problems.

In MTS, we are given a description of a metric space (M,d)
and a starting point s0 ∈ M beforehand. The points in
M are traditionally called states and, depending on the
setting, they can represent actions, investment strategies,
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or configurations of some complex system. At each time
step t = 1, . . . , T , we receive a cost function ct : M →
R+ ∪ {0,+∞}. Seeing ct, we can decide to stay in our pre-
vious state st−1 and pay its cost ct(st−1), or move to some
(possibly cheaper) state st and pay ct(st) + d(st−1, st),
where the distance function d represents the transition cost
between two states. Our objective is to minimize the total
cost paid over time.

MTS is very hard in the worst case. This is due to its
online nature (st has to be chosen without knowledge of
ct+1, . . . , cT ) and also due to its generality. The perfor-
mance of algorithms is evaluated using the competitive ra-
tio which is, roughly speaking, the ratio between the algo-
rithm’s cost and the cost of the optimal solution computed
offline. Denoting n the number of points in the metric space
M , the best competitive ratio achievable for MTS is 2n− 1
and Θ(log2 n) in the case of deterministic and randomized
algorithms, respectively (Borodin et al., 1992; Bartal et al.,
2006; Bubeck et al., 2022a; 2019). Note that n is usually
very large or even infinite (e.g., M = Rd).

This worst-case hardness motivates the study of MTS and
its special cases in the context of Learning-Augmented Algo-
rithms (Lykouris & Vassilvitskii, 2021). Here, the algorithm
can use predictions produced by an ML model in order to
exploit specific properties of input instances. By augment-
ing the algorithm with the ML model, we obtain a heuristic
with an outstanding performance, well beyond the classi-
cal worst-case lower bounds, on all inputs where the ML
model performs well. One of the key techniques used in this
context is Combining Heuristics which is used to achieve
robustness (Lykouris & Vassilvitskii, 2021; Wei, 2020; An-
toniadis et al., 2023a), adjust hyperparameters (Antoniadis
et al., 2021), and recognize the most suitable heuristic for
the current input instance (Emek et al., 2021; Anand et al.,
2022; Antoniadis et al., 2023b).

Combining heuristics. In this basic theoretical problem,
we are given ℓ heuristics H1, . . . ,Hℓ which can be simu-
lated on the input instance received online. We want to
combine them into a single algorithm which achieves a cost
comparable to the best of the heuristics on each individual
instance. The difficulty of the combination problem is given
by the online setting: because we receive the input online,
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we cannot tell beforehand which heuristic is going to per-
form better. Moreover, steps performed while following a
wrong heuristic cannot be revoked.

We can combine a heuristic deploying an ML prediction
model with a classical online algorithm in order to obtain a
new algorithm that satisfies worst-case guarantees regardless
of the performance of the ML model (this property is called
robustness). Similarly, we can use it to deploy a portfolio of
very specialized ML models in a broader setting, where each
model corresponds to a separate heuristic. The combination
technique ensures that we achieve very good performance
whenever at least one of the models performs well on the
current input instance.

Full-feedback setting. Most of the previous works on
Combining Heuristics query the state of each heuristic at
each time step, observe their costs, and choose between
their states, see (Wei, 2020; Antoniadis et al., 2023a; Blum
& Burch, 2000; Fiat et al., 1991). We call this the full-
feedback setting and, indeed, methods from Online Learning
in the full-feedback setting can be directly integrated in
the combination algorithms. For example, Blum & Burch
(2000) showed that by choosing between heuristics using
the HEDGE algorithm (Freund & Schapire (1997)) with a
well-chosen learning rate we can be (1 + ϵ)-competitive
with respect to the best heuristic.1

Bandit-feedback setting. In this paper, we consider what
can be seen as a bandit-feedback setting of Combining
Heuristics. At each time step, we are allowed to query
the current state of only one heuristic. This setting allows
us to study the impact of restricting information about the
heuristics on our ability to combine them effectively. Fur-
ther motivation is the fact that querying all the heuristics is
costly, especially if they utilize some heavy-weight predic-
tion models. This issue was already considered by Emek
et al. (2021) and Antoniadis et al. (2023b) whose works
inspired our study. Note that the combination algorithm
retains full access to the input instance. This is required
by any positive result for general MTS, since the cost func-
tions ct usually do not satisfy any natural properties such
as Lipschitzness or convexity; see further discussion in Sec-
tion 2. Moreover, ct is often easy to encode. For example,
in Caching, ct is fully determined by the page requested at
time t.

In contrast to the full-feedback setting, classical learning
methods cannot be directly integrated in combination al-
gorithms operating in the bandit setting. The main reason
is that the state sit of the heuristic Hi is not enough to es-
timate its cost at time t: the cost paid by Hi at time t is

1In fact, one can achieve cost H∗ + O(D
√
H∗), where H∗

denotes the cost of the best heuristic and D the diameter of the
metric space M .

ct(s
i
t) + d(sit−1, s

i
t), i.e., we cannot calculate this cost2 un-

less we have queried Hi in both time steps t− 1 and t. We
also consider the case where each heuristic needs to be boot-
strapped for m − 2 ≥ 0 time steps before we can see its
state. This way, to receive the state of Hi in time steps t− 1
and t, and to be able to calculate its cost at time t, we have
to query Hi in the m time steps t−m+ 1, . . . , t.

A similar phenomenon occurs in the setting of Online Learn-
ing against Memory-Bounded Adversaries (Arora et al.,
2012), which is our main theoretical motivation for consid-
ering non-zero bootsrapping time (i.e., m > 2). There, one
needs to play an action a at least m times in a row to see the
loss of the reference policy which plays a at each time step.
The algorithm of Arora et al. (2012) splits the time horizon
into blocks of length larger than m. In the block i, they keep
playing the same action ai which allows them to observe
the loss of the corresponding reference policy after the first
m time steps in the block. However, this does not work in
our setting. The adversary can set up the MTS instance in
such a way that ct ̸= 0 and the heuristics move only on the
boundaries of the blocks, so that the algorithm would not
observe the cost of any heuristic. This way, the algorithm
cannot be competitive with respect to the best heuristic.

A different bandit-like setting for Combining Heuristics
for MTS was proposed by Antoniadis et al. (2023b). In
their setting, the queried predictor reports both its state and
the declared moving cost incurred at time t. We discuss
their contribution in Section 1.2. Their (1 + ϵ)-competitive
algorithm and absence of lower bounds motivated us to study
regret bounds which can provide more refined guarantees
when the competitive ratio is close to 1. However, we have
decided to pursue these bounds in the more natural setting
where the moving costs are not reported as it does not rely
on the honesty of the predictors.3 Since our algorithms use
a subset of information available in the setting of Antoniadis
et al. (2023b), our upper bounds also apply to their setting.

1.1. Our Results

For m ≥ 2, we say that an algorithm ALG has m-delayed
bandit access to heuristics H1, . . . ,Hℓ if (i) it can query at
most one heuristic Hi at each time step t and (ii) the query
yields the current state of Hi only if Hi was queried also in
steps t−m+2, . . . , t, otherwise it yields an empty result.

2In fact, we cannot even estimate it. In Caching, k-server, and
Convex Body Chasing, to give a few examples, the cost of each
state is either 0 or +∞. Therefore, any algorithm with a finite cost
is always located at some state st such that ct(st) = 0 and the
difference in the performance of the algorithms can be seen only
in the moving costs.

3Alternatively, we could require predictors to certify their mov-
ing cost by providing their state in the previous time step. This
way, however, we end up querying the state of two predictors in a
single time step.
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Our main result is an algorithm with the following regret.

Theorem 1.1. Let D, ℓ, and m ≥ 2 be constant. Consider
heuristics H1, . . . ,Hℓ for an MTS with diameter D. There
is an algorithm ALG which, given an m-delayed bandit
access to H1, . . . ,Hℓ, satisfies the following guarantee. The
expected cost of ALG on any input I is

E[ALG] ≤ OPT≤0 +O
(
OPT

2/3
≤0

)
,

where OPT≤0 = minℓi=1 H(I) denotes the cost of the best
heuristic on input I .

We prove this result in Section 3, where we state explic-
itly the dependence on D, m, and ℓ in the case when they
are larger than a constant. We can interpret our result in
terms of the competitive ratio. Since the regret term in
Theorem 1.1 is sublinear in OPT≤0, the expected cost of
our algorithm is at most E[ALG] ≤ (1 + o(1))OPT≤0. In
other words, its competitive ratio with respect to the best
of the ℓ heuristics converges to 1. Therefore, our algorithm
can be used for robustification. If we include a classical
online algorithm which is ρ-competitive in the worst case
among H1, . . . ,Hℓ, our algorithm will never be worse than
(1+o(1))ρ-competitive. However, on input instances where
some of the heuristics incur a very low cost, the algorithm
can match their performance asymptotically. For example,
if the cost of the best heuristic is only 1.01 times higher
than the offline optimum, our algorithm’s cost will be only
(1 + o(1)) · 1.01 times the offline optimum.

Our algorithm alternates between exploitation and explo-
ration, as in the classical approach for the Multi-Armed
Bandit (MAB) setting, see e.g. (Slivkins, 2019). However,
each exploration phase takes m time steps and we are unable
to build an unbiased estimator of the loss vectors. Moreover,
our algorithm sometimes needs to take improper steps, i.e.,
going to a state which is not suggested by any of the predic-
tors. This is clearly necessary with m > 2, since we may
receive empty answers to our queries. Such improper steps
are crucial for achieving regret in terms of OPT≤0 even for
m = 2.

In Appendix D, we show that our algorithm can be adapted
to the m-memory bounded setting for bandits, where it
achieves a regret of O(T 2/3) comparable to Arora et al.
(2012), while slightly improving the dependence on m. Note
that T can be much larger than OPT≤0.

We extend our result to a setting with a benchmark which
can switch between the heuristics at most k times, while the
algorithm’s number of switches still remains unrestricted.

Theorem 1.2. Let D, ℓ, and m ≥ 2 be constant and k ≥ 1
be a parameter. Consider heuristics H1, . . . ,Hℓ for an
MTS with diameter D. There is an algorithm ALG which,
given an m-delayed bandit access to H1, . . . ,Hℓ, satisfies

the following guarantee. The cost of ALG on input I with
offline optimum cost at least 2k is

E[ALG] ≤ OPT≤k + Õ(k1/3 OPT
2/3
≤k ),

where OPT≤k denotes the cost of the best combination of
heuristics in hindsight that switches between heuristics at
most k times on input I .

Again, we can interpret this regret bound as a competitive
ratio converging to 1. In Appendix C, we show that the
competitive ratio of our algorithm is below (1 + ϵ) for k as
large as Ω̃(ϵ3 OPT≤k) which is worse by a log-factor than
the result of Antoniadis et al. (2023b) in their easier setting.

In Section 4, we show that our upper bound in Theorem 1.1
is tight up to a logarithmic factor even with 0 bootstrapping
time (m = 2). Our result is based on the construction of
Dekel et al. (2013) for Bandits with Switching Costs. Their
lower bound cannot be applied directly, since algorithms
in our setting have an advantage in being able to take im-
proper actions and having one-step look-ahead. Both of
these advantages come from the nature of MTS and are
indispensable in our setting, see Section 2.

Theorem 1.3. For any algorithm ALG with 2-delayed ban-
dit access to ℓ predictors, there is an input instance I such
that the expected cost of ALG is

E[ALG] ≥ OPT≤0 +Ω̃(OPT
2/3
≤0 ),

where OPT≤0 = minℓi=1 H(I) denotes the cost of the best
heuristic on input I .

In Appendix B.1, we also show that the dependence on D, ℓ
and k in our bounds is (almost) optimal. In particular, our
regret bound in Theorem 1.1 scales with (Dkℓ ln ℓ)1/3m2/3

and we show that this dependence needs to be at least
(Dkℓ)1/3 with m = 2.

1.2. Related Work

Arora et al. (2012) introduced the problem of Bandit Learn-
ing against Memory-Bounded Adversaries. Here, the loss
functions depend on the last µ + 1 actions taken by the
algorithm. This setting captures, for example, Bandits with
Switching Costs (Amir et al., 2022; Rouyer et al., 2021).
They propose an elegant algorithm with regret O(µT 2/3)
that partitions the time horizon into blocks of equal size and
let a classical online learning algorithm (e.g., EXP3) play
over the losses aggregated in each block. Their result was
shown to be tight by Dekel et al. (2013) who provided a
sophisticated lower bound construction showing that any
algorithm suffers regret at least Ω̃(T 2/3) already for µ = 1.
Our results are also related to Non-Stationary Bandits and
Dynamic Regret (Auer et al., 2002, Section 8).

3



Learning-Augmented Algorithms for MTS with Bandit Access to Multiple Predictors

Antoniadis et al. (2023b) studied dynamic combination of
heuristics for MTS. By reducing to the Layered Graph
Traversal problem (Bubeck et al., 2022b), they achieved
a competitive ratio O(ℓ2) with respect to the best dynamic
combination of ℓ heuristics. Then, they focused on the sce-
nario where the input instance is partitioned into k intervals
and a different heuristic excels in each of the intervals. They
provided bounds on how big k can be to make (1 + ϵ)-
competitive algorithms possible. Finally, they also studied
this question in the bandit-like setting which is strictly easier
compared to ours.

First works on Combining Heuristics were by Fiat et al.
(1990) for k-server, Fiat et al. (1991) for Caching, and Azar
et al. (1993); Blum & Burch (2000) for MTS. More recently,
Emek et al. (2021) studied Caching with multiple predictors
and achieved regret sublinear in T , while also tackling a
bandit-like setting. Further results on other online problems
are by Anand et al. (2022); Dinitz et al. (2022); Bhaskara
et al. (2020); Gollapudi & Panigrahi (2019); Almanza et al.
(2021); Wang et al. (2020); Kevi & Nguyen (2023).

Learning-augmented algorithms were introduced by Lyk-
ouris & Vassilvitskii (2021); Kraska et al. (2018) who de-
signed algorithms effectively utilizing unreliable machine-
learned predictions. Since these two seminal works, many
computational problems were studied in this setting, in-
cluding Caching (Rohatgi, 2020; Wei, 2020), Scheduling
(Lindermayr & Megow, 2022; Benomar & Perchet, 2024b;
Balkanski et al., 2023; Bamas et al., 2020), graph problems
(Eberle et al., 2022; Bernardini et al., 2022; Dong et al.,
2025; Davies et al., 2023) and others. Several works con-
sider algorithms using the predictions sparingly (Im et al.,
2022; Drygala et al., 2023; Sadek & Eliáš, 2024; Benomar
& Perchet, 2024a). See the survey (Mitzenmacher & Vas-
silvitskii, 2022) and the website by (Lindermayr & Megow,
2023).

Metrical Task Systems were introduced by Borodin et al.
(1992) who gave a tight competitive ratio of 2n − 1 for
deterministic algorithms (n is the number of states). The
best competitive ratio for general MTS is Θ(log2 n) by
Bubeck et al. (2019) and Bubeck et al. (2022a).

2. Notation and Preliminaries
We consider MTS instances with a bounded diameter and
denote D = maxs,s′∈M d(s, s′) the diameter of the under-
lying metric space. For example, D in caching is equal
to the size of the cache. At each time step, the algorithm
receives the cost function ct first, and then it chooses its new
state st, i.e. there is a 1-step look-ahead. This is standard
in MTS definition and it is necessary for existence of any
competitive algorithm, since ct is potentially unbounded,
see (Blum & Burch, 2000, Section 2.3). We denote ∆d the

d-dimensional probability simplex, and [d] = {1, . . . , d}.

m-delayed bandit access to heuristics. Given ℓ heuristics
H1, . . . ,Hℓ, we denote sit the state of Hi at time t and
ft(i) = ct(s

i
t) + d(sit−1, s

i
t) the cost incurred by Hi at

time t. Let m ≥ 2 be a parameter. At each time t, the
algorithm is allowed to query a single heuristic Hi. If Hi

was also queried in time steps t−m+ 2, . . . , t, the result
of the query is the state sit. Otherwise, the result is empty.
While the access to the states of the heuristics is restricted,
the algorithm has full access to the input instance which
is not related to acquiring costly predictive information.
Moreover, the input instance can be often described in a
very compact way. For example, ct in Caching is completely
determined by the page requested at time t. Access to
the input instance is necessary because the cost functions
are not required to satisfy any natural assumptions (like
boundedness, Lipschitzness, convexity). For example, if the
queried heuristic reports a state s with ct(s) = +∞, the
algorithm needs to know ct in order to choose a different
state and avoid paying the infinite cost. Note that a similar
situation can easily happen in Caching, k-server, Convex
Body Chasing, or Convex Function Chasing.

We assume that ft(i) ∈ [0, 2D]. This is without loss of
generality for the following reason. First, we can assume
that at each time t there is a state with zero cost, since
subtracting mins ct(s) from the cost of each state affects
the cost of any algorithm (including the offline optimum)
equally. Second, any predictor can be post-processed so
that, in each time step where its cost is higher than 2D, it
serves the request in the state with 0 cost and returns to the
predicted state, paying at most 2D for the movement.

Benchmarks and performance metrics. Let OPT≤0 =

minℓi=1

∑T
t=1 ft(i) be the static optimum, i.e., the cost of

the best heuristic. For k > 0, we define

OPT≤k = mini1,...,iT
∑T

t=1

(
ct(s

it
t ) + d(s

it−1

t−1 , s
it
t )
)

≥ mini1,...,iT
∑T

t=1 ft(it)− kD,

where the minimum is taken over all solutions i1, . . . , iT
such that the number of steps where it−1 ̸= it is at most k.

We evaluate the performance of our algorithms using ex-
pected pseudoregret regret (further abbreviated as regret).
For k ≥ 0, we define

Regk(ALG) = E[ALG]−OPT≤k,

where ALG denotes the cost incurred by the algorithm on
the given input instance with access to the given heuristics.
We assume that the adversary is oblivious and has to fix
the MTS input instance and the solutions of the heuristics
before seeing the random bits of the algorithm. We say
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that an algorithm is ρ-competitive with respect to an offline
algorithm OFF, if E[ALG] ≤ ρOFF+α holds on every
input instances, where α is a constant independent on the
input instance and we use OFF to denote both the algorithm
and its cost. If OFF is an offline optimal algorithm, we call
ρ the competitive ratio of ALG.

Rounding fractional algorithms. A fractional algorithm
for MTS is an algorithm which, at each time t, produces a
distribution pt ∈ ∆M over the states in M . These distri-
butions do not yet say much about the movement costs of
the algorithm. But there is a standard way to turn such a
fractional algorithm into a randomized algorithm for MTS.
Proposition 2.1. There is an online randomized algorithm
for MTS which, receiving online a sequence of distributions
p1, . . . , pT ∈ ∆M , produces a solution s1, . . . , sT ∈ M
with expected cost equal to

E[ALG] =
∑T

t=1

(
cTt pt + EMD(pt−1, pt)

)
,

where EMD denotes the Earth mover distance with respect
to the metric space M .

We include the proof of this standard fact in Appendix E
together with the following, very similar, proposition, where
we overestimated the cost of switching between the states
of two heuristics by D.
Proposition 2.2. There is an online randomized algo-
rithm which, receiving online a sequence of distributions
x1, . . . , xT ∈ ∆ℓ over the heuristics, queries at each time t
a heuristic it with probability xt(it) such that

E
[ T∑
t=1

ct(s
it
t )+d(s

it−1

t−1 , s
it
t )
]
≤

T∑
t=1

fT
t xt+

D

2
∥xt−1−xt∥1.

Basic learning algorithms. We use the classical algo-
rithms for online learning with expert advice HEDGE (Fre-
und & Schapire (1997)) and SHARE (Herbster & Warmuth
(1998)). Both satisfy the following property with η being
their learning rate. For both of them, the proof is contained
in (Blum & Burch, 2000), we discuss more details, as well
as the learning dynamics in Appendix F.
Property 2.3. There is a parameter η such that the following
holds. Denoting xt−1 and xt the solutions of the algorithm
before and after receiving loss vector gt−1, we have

∥xt−1 − xt∥1 ≤ ηgTt−1xt−1.

We use the bounds for HEDGE tuned for “small losses”, see
(Cesa-Bianchi & Lugosi, 2006).
Proposition 2.4. Consider x1, . . . , xT ∈ ∆ℓ the solution
produced by HEDGE with learning rate η and denote γ :=
1− exp(−η). For any x∗ ∈ ∆ℓ, we have
T∑

t=1

gTt xt ≤
η
∑T

t=1 g
T
t x

∗ + ln ℓ

1− exp(−η)
≤ (1+γ)

T∑
t=1

gTt x
∗+

ln ℓ

γ
.

3. Algorithm for m-Delayed Bandit Access to
Heuristics

3.1. Basic Approach and Comparison to Previous Works

Arora et al. (2012) use the following approach to limit the
number of switches between arms (or heuristics): split the
time horizon into blocks of length τ and use some MAB
algorithm to choose a single arm (or heuristic) for each
block which is then played during the whole block. The
number of switches is then at most T/τ . This is a common
approach to reduce the number of switches, see (Rouyer
et al., 2021; Amir et al., 2022; Blum & Mansour, 2007).
However, this approach does not lead to regret sublinear
in OPT≤0 which can be much smaller than T . In order to
have the number of switches T/τ ≤ o(OPT≤0), we have
to choose τ = ω(T/OPT≤0) which can be ω(OPT≤0) for
small OPT≤0. However, with blocks so large, already a
single exploration of some arbitrarily bad heuristic would
induce a cost of order τ ≥ ω(OPT≤0).

In turn, our algorithm is more similar to the classical MAB
algorithm alternating exploration and exploitation steps, see
(Slivkins, 2019). However, there are three key differences
and each of them is necessary to achieve our performance
guarantees:

• Our algorithm makes improper steps (i.e., steps not
taken by any of the heuristics);

• We use MTS-style rounding to ensure bounded switch-
ing cost instead of independent random choice at each
time step;

• Exploration steps are not sampled independently since
our setting requires m ≥ 2.

In particular, the last difference leads to more involving
analysis. This is because we cannot assume that we have an
unbiased estimator of the loss vector and consequently need
to do extensive conditioning on past events. Moreover, the
cost of only one of the time steps during each exploration
phase can be directly charged to the expected loss of the
internal full-feedback algorithm. We need to exploit the
stability property of the internal full-feedback algorithm in
order to relate the costs incurred during the steps of each
exploration block.

During each exploitation step t, our algorithm follows the
advice of the exploited heuristic which is sampled from the
algorithm’s internal distribution xt over the heuristics. Each
exploration step t is set up so that the algorithm discovers
the cost of the heuristic Het chosen uniformly at random
and updates its distribution over the heuristics. However, the
algorithm does not follow Het . Instead, it makes a greedy
step from the last known state of the exploited heuristic.
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3.2. Description

Let Ā be an algorithm for the classical learning from expert
advice in full feedback setting (e.g. HEDGE or SHARE),
and ϵ be a parameter controlling our exploration rate. For
each time step t = 1, . . . , T , we sample βt ∈ {0, 1} such
that βt = 1 with probability ϵ and et is chosen uniformly
at random from {1, . . . , ℓ}. We set β0 = 0 since the al-
gorithm starts querying predictors from t = 1. Moreover,
we assume all heuristics reside in s0 at t = 0. If t is an
exploitation step (t ∈ X) and βt = 0, the next step will be
again exploitation. Otherwise, the algorithm skips m time
steps which are needed to bootstrap the explored heuristic
Het+m and performs exploration in step t + m. At this
latter step, the algorithm receives the cost ft+m(et+m) of
Het+m

and uses it to update its distribution xt+m+1 over
the heuristics. This update is performed using the algorithm
Ā receiving as input a loss vector get+m

t+m defined as follows:
g
et+m

t+m (i) = ft+m(et+m)/2D if i = et+m and 0 otherwise.
Thanks to the assumption that ft+m ∈ [0, 2D]ℓ, we have
gt+m ∈ [0, 1]ℓ. Each exploration step is followed by an ex-
ploitation step. See the summary of this learning dynamics
in Algorithm 1. With m = 1, up to the scaling of the loss
function, this dynamics would correspond to the classical
algorithm for MAB which performs exploration with proba-
bility ϵ and achieves regret O(T 2/3) (Slivkins, 2019). Note
that our setting requires m ≥ 2.

Algorithm 1: Learning dynamics

1 Initialization:
2 β0 := 0, t := 0, X := ∅, E := ∅
3 β1, . . . , βT ∼ Bernoulli(ϵ)
4 e1, . . . , eT ∼ U({1, . . . , ℓ})
5 x0 is chosen by Ā
6 while t ≤ T do
7 add t to X // Exploitation step
8 if βt = 1 then
9 t := t+m // Skip m steps

10 add t to E // Exploration step
11 xt+1 chosen by Ā after feedback gett

12 t++

Now, it is enough to describe how to turn the steps of Algo-
rithm 1 into a solution for the original MTS instance. First,
we define xt+1 = xt for any t /∈ E. At t = 1, we sam-
ple the exploited heuristic from the distribution x1 and at
each update of xt, we switch to a different heuristic with
probability 1

2∥xt−1−xt∥1 using the procedure Round from
Proposition 2.2 in order to ensure that, at each time step
t, we are following heuristic i with probability xt(i). The
state of the exploited heuristic is not known to us m steps
before each exploitation step and another m steps after. Dur-
ing these time steps, we make greedy steps from the last

known state s
it′
t′ of the heuristic Hit′ exploited at time t′.

Namely, we choose st := argmins∈M (d(s
it′
t′ , s) + ct(s)).

This procedure is summarized in Algorithm 2.

Algorithm 2: Producing solution for MTS

1 Input: x0, . . . , xT produced by Algorithm 1
2 i0 ∼ U({1, . . . , ℓ})
3 for t = 1, . . . , T do
4 if xt ̸= xt−1 then it∼ Round(it−1, xt−1, xt)
5 else it := it−1

6 if sitt is known then
7 go to state st := sitt and set bt := st
8 else /* m states before and after exploration */
9 set bt := bt−1 /* last successful query */

10 st := argmins∈M (d(bt, s) + ct(s))

Lemma 3.1. Given x1, . . . , xT ∈ [0, 1]ℓ produced by Algo-
rithm 1, the expected cost of Algorithm 2 is at most(

1 +O
(
ϵm2

))∑T
t=1

(
fT
t xt +D∥xt−1 − xt∥1

)
.

A similar statement is proved in (Antoniadis et al., 2023b).
We include our proof in Appendix A.1.

Choice of hyperparameters. To achieve the regret
bound in Theorem 3.9, we choose the parameter ϵ :=

(Dℓ ln ℓ)1/3m−4/3 OPT
−1/3
≤0 for Algorithm 1 and the learn-

ing rate η of HEDGE which is used as Ā is chosen based on
γ := (Dℓ ln ℓ)1/3m2/3 OPT

−1/3
≤0 , where γ = 1−exp(−η).

While D, ℓ,m are usually known from the problem descrip-
tion, OPT≤0 can be guessed by doubling as described in
Appendix G.

3.3. Analysis

We introduce the following random variables which will be
useful in our analysis. We define Xt as an indicator variable
such that Xt = 1 if t ∈ X and 0 otherwise. Similarly, Et

is an indicator of t ∈ E. These variables are determined
by β1, . . . , βT . We also define gt = Et · gett which is 0
for any t /∈ E. We consider a filtration F0 ⊆ F1 ⊆ · · · ⊆
FT , where Ft is a σ-algebra generated by the realizations
of β1, . . . , βt and e1, . . . , et. Note that these realizations
determine Xt′ , Et′ , gt′ , and xt′+1 for any t′ ≤ t. Moreover,
we have the following observations.

Observation 3.2. For any t = 0, . . . , T − m, we have
Et+m = βtXt.

This is because t+m ∈ E if and only if t ∈ X and βt = 1.

Observation 3.3. For any i = 1, . . . ,m and t = 0, . . . , T−
i, we have Xt+i ≥

∏i−1
j=0(1− βt+j)Xt.
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This holds because if Xt = 1 and βt = · · · = βt+i−1 = 0,
then also Xt+i = 1.
Observation 3.4. For i = 1, . . . ,m and t = i, . . . , T , we
have E[gt | Ft−i] = Etft/(2Dℓ).

This follows from E[gt | Ft−i] = E[Etg
et
t | Ft−i] =

E[βt−mXt−mgett | Ft−i] = Et · E[gett | Ft−i].

Using Observation 3.4, we estimate the cost of the optimal
solution OPT≤0. Missing proofs are in Appendix A.
Lemma 3.5. Let x∗ ∈ ∆ℓ be a solution minimizing∑T

t=1 f
T
t x∗. We have

E

[
T∑

t=1

gTt x
∗

]
≤ ϵ

2Dℓ
OPT≤0 .

The next lemma will be used to bound the costs perceived
by Algorithm 1 at time steps t such that Xt−m = 1.
Lemma 3.6. For each i = 0, . . . ,m, we have

E

[
T∑

t=m+1

gTt xt

]
=

ϵ

2Dℓ
E

[
T∑

t=m+1

fT
t xt−iXt−m

]
.

Bounding costs in time steps t when Xt−m = 0 is more
involving. In such case, there is Et−i = 1 for some i ∈
{1, . . . ,m}. We will use the following stability property.
Lemma 3.7. If Ā satisfies Property 2.3, the following holds
for every t ≥ m+ 1 and i ∈ {1, . . . ,m}:

E[fT
t xtEt−i] ≤ E[fT

t xt−iEt−i] +
η

ℓ
E[fT

t−ixt−iEt−i].

The following lemma is the core of our argument. In the
proof, it decomposes the costs perceived by Algorithm 1 in
each step t depending on the value of Xt−m. If Xt−m = 1,
such costs are easy to bound using Lemma 3.6. Those with
Xt−m = 0 need to be charged to some other exploitation
step using the preceding stability lemma.
Lemma 3.8. If Ā satisfies Property 2.3 then
E
[∑T

t=1 f
T
t xt

]
is at most

2m+
(
1 +

mϵ

(1− ϵ)m
+

mηϵ

ℓ

)
· 2Dℓ

ϵ
E
[ T∑
t=1

gTt xt

]
.

Proof. We start with an observation that for any t ≥ m+ 1,
exactly one of the following holds: either Xt−m = 1 or the
step t −m is skipped due to the exploration at time t − i
(i.e., Et−i = 1) for some i ∈ 1, . . . ,m. We can write

E
[ T∑
t=1

fT
t xt

]
≤ 2m+ E

[ T∑
t=2m+1

fT
t xt ·Xt−m

]
+

m∑
i=1

E
[ T∑
t=2m+1

fT
t xt · Et−i

]
.

By Lemma 3.6, the first expectation in the right-hand side
is at most 2Dℓ

ϵ E[
∑T

t=1 g
T
t xt]. In order to prove the lemma,

it is therefore enough to show that, for each i = 1, . . . ,m,
E
[∑T

t=2m+1 f
T
t xt · Et−i

]
is at most

(
ϵ

(1− ϵ)m
+

ηϵ

ℓ

)
· 2Dℓ

ϵ
E
[ T∑
t=1

gTt xt

]
. (1)

First, we use Lemma 3.7 to obtain

T∑
t=2m+1

E[fT
t xtEt−i] ≤

T∑
t=2m+1

E[fT
t xt−iEt−i] (2)

+
η

ℓ

T∑
t=2m+1

E[fT
t−ixt−iEt−i].

The second term is easy to bound: by Observation 3.2, we
have E[fT

t−ixt−iEt−i] = E[βt−i−m]E[fT
t−ixt−iXt−i−m].

Therefore, we can write

η

ℓ

T∑
t=2m+1

E[fT
t−ixt−iEt−i] ≤

ηϵ

ℓ

T∑
t=m+1

E[fT
t xtXt−m].

(3)
Using Observation 3.2, independence of Xt−i−m and
βt−j−m for j = 1, . . . , i, and Observation 3.3, we get

T∑
t=2m+1

E[fT
t xt−iEt−i] (1− ϵ)i

=

T∑
t=2m+1

E[βt−i−m]E[fT
t xt−iXt−i−m]E

[ i∏
j=1

(1−βt−j−m)

]

≤
T∑

t=2m+1

E[βt−i−m]E[fT
t xt−iXt−m].

In other words, we can bound the first term of (2) as

T∑
t=2m+1

E[fT
t xt−iEt−i] ≤

ϵ

(1− ϵ)i

T∑
t=2m+1

E[fT
t xt−iXt−m].

(4)

Now it is enough to apply Lemma 3.6 to the right-hand
sides of (4) and (3). Equation (2) then implies (1) which
concludes the proof.

Theorem 3.9. Algorithm 2 using HEDGE as Ā with m-
delayed bandit access to ℓ heuristics on any MTS input
instance with diameter D such that Dℓm ≤ o(OPT

1/3
≤0 )

satisfies the following regret bound:

E[ALG] ≤ OPT≤0 +O
(
(Dℓ ln ℓ)1/3m2/3 OPT

2/3
≤0

)
.
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Proof. By Lemma 3.1, E[ALG] is at most

(1 +O(m2ϵ))

( T∑
t=1

E[fT
t xt] +

T∑
t=1

E[D∥xt−1 − xt∥1]
)
.

The first term in the parenthesis can be bounded using
Lemma 3.8. The second term can be bounded using Prop-
erty 2.3: denoting η the learning rate of Ā, we have

T∑
t=1

E[D∥xt−1 − xt∥1] ≤ Dη

T∑
t=1

E[gTt xt].

Altogether, using (1− ϵ)m > 1/2 and Dη ≤ mϵ · η · 2Dℓ
ϵ ,

we get that E[ALG] is at most

(
1+O(m2ϵ)

)(
2m+

(
1+O(mϵ)(1+η)

)2Dℓ

ϵ

T∑
t=1

E[gTt xt]

)
.

Now we use the regret bound of Ā (Proposition 2.4). Let
Hi∗ be the best heuristic and x∗ ∈ [0, 1]ℓ be the vector such
that x∗(i∗) = 1 and x∗(i) = 0 for every i ̸= i∗. We have

2Dℓ

ϵ

T∑
t=1

E[gTt xt] ≤ (1 + γ)
2Dℓ

ϵ

T∑
t=1

E[gTt x∗] +
2Dℓ ln ℓ

ϵγ

≤ (1 + γ)OPT≤0 +
2Dℓ ln ℓ

ϵγ
,

where the second inequality used Lemma C.2. In total,
E[ALG] is at most

OPT≤0 +O(m2ϵ+ γ +m2ϵγ)OPT≤0 +O

(
2Dℓ ln ℓ

ϵγ

)
.

It is enough to choose ϵ := (Dℓ ln ℓ)1/3m−4/3 OPT
−1/3
≤0

and γ := (Dℓ ln ℓ)1/3m2/3 OPT
−1/3
≤0 to get the desired

bound.

Theorem 3.10. Algorithm 2 with SHARE as Ā and m-
delayed bandit access to ℓ heuristics on any MTS instance
with diameter D with offline optimum cost at least 2k such
that Dℓm ≤ o(OPT

1/3
≤k ) achieves Regk(ALG) at most

O

(
(Dℓk)1/3m2/3 OPT

2/3
≤k ln

ℓ1/3(OPT≤k)
2/3

(Dk)2/3m4/3

)
.

The proof can be found in Appendix C.

4. Tight Lower Bound: Proof of Theorem 1.3
In this section, we prove a lower bound matching Theo-
rem 3.9. Our proof is based on the construction of Dekel
et al. (2013) for Bandits with Switching Costs, which is
a special case of Bandit Learning against a 1-Memory
Bounded Adversary. In order to use their construction in
our setting, we need to address additional challenges due to
the algorithm having more power in our setting:

1
1

1

1

1

a1

b1

a2

b2

r2r1
M2M1

Figure 1. With ℓ = 2, M is the metric closure of this graph.

1. The algorithm can see the full MTS input instance as it
arrives online, and therefore it can take actions on its
own regardless of the advice of the queried heuristic.

2. The algorithm (as it is common in MTS setting) has
1-step lookahead, i.e., it observes the cost function ct
first and only then chooses the state st.

Note that both properties are indispensable in our model,
see Section 2, and any non-trivial positive result would be
impossible without them.

We create an MTS input instance circumventing the advan-
tages of the algorithm mentioned above. Our instance is
generated at random and is oblivious to the construction of
Dekel et al. (2013). However, we make a correspondence
between the timeline in our MTS instance and in their Ban-
dit instance: our instance consists of blocks of length three,
where each block corresponds to a single time step in their
Bandit instance. The construction of Dekel et al. (2013)
itself comes into play when generating the solutions of the
heuristics. We create these solutions in such a way that the
cost of the heuristic Hi can be related to the cost of the
ith arm in (Dekel et al., 2013). Moreover, the state of Hi

depends only on the loss of the ith arm at given time.

Proposition 4.1 (Dekel et al. (2013)). There is a stochastic
instance ℓ1, . . . , ℓT of Bandits with Switching Costs such
that the expected regret of any deterministic algorithm pro-
ducing solution i1, . . . , iT ∈ [ℓ] is

E
[ T∑
t=1

(ℓt(it)+1(it ̸= it−1))
]
−min

i∈[ℓ]

T∑
t=1

ℓt(i) ≥ Ω̃(ℓ
1
3T

2
3 ).

Description of the MTS instance. The metric space M
consists of ℓ parts M1, . . . ,Mℓ, where Mi = {ri, ai, bi}.
The distances are chosen as follows: For j ̸= i, we have
d(ri, rj) = 1, d(ri, aj) = d(ri, bj) = 2, and d(ri, ai) =
d(ri, bi) = 1. We have d(ai, bj) = 2 if i = j and 3 other-
wise. See Figure 1 for an illustration.

The input sequence consists of blocks of length three. We
choose the cost functions in block j as follows. For i =
1, . . . , ℓ, we choose σi

j ∈ {ai, bi} uniformly at random. For
the first step of the block j, we define the cost function c′j(s)
such that c′j(s) = 0 if s ∈ {r1, . . . , rℓ} and c′j(s) = +∞
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otherwise. In the second time step, we issue c′′j (s) = +∞
if s ∈ {r1, . . . , rℓ} and c′′j (s) = 0 otherwise. In the third
time step, we issue c′′′j (s) = 0 if s ∈ {σ1

j , . . . , σ
ℓ
j} and

c′′′j (s) = +∞ otherwise4.

Here is the intuition behind this construction. During block
j, any reasonable algorithm stays in s′ ∈ {r1, . . . , rℓ} in the
first step and in s′′′ ∈ {σ1

j , . . . , σ
ℓ
j} in the third step. Ideally,

the algorithm would move to s′′′ already in the second step.
However, it does not yet know σ1

j , . . . , σ
ℓ
j and therefore

needs the advice of the heuristics. In the first step of each
block, the algorithm pays 1 if it is staying in the same part
Mi of the metric space (for returning to ri). If it is moving
from Mj to Mi, it has to pay 2, i.e., an additional unit cost.

Description of the heuristics. For each i, the heuristic Hi

remains in Mi throughout the whole input instance. In the
first step of the block t, it moves to the state ri. In the third
step, it moves to σi

t. Its position in the second step is derived
from the Bandit instance. With probability (1 − ℓt(i)

2 ), it
is σi

t, and with probability ℓt(i)
2 it is the other point, i.e.,

{ai, bi} \ {σi
t}. In the block t, the heuristic Hi pays 2 for

the movements in the steps 1 and 2 and, with probability
ℓt(i)
2 , another 2 for the movement in the step 3. Therefore,

we have the following observation.

Observation 4.2. The expected cost of the heuristic Hi is
equal to 2T +

∑T
t=1 ℓt(i).

We consider the following special class of algorithms for
our MTS instance called tracking algorithms. This class has
two important properties: firstly, any algorithm on our MTS
instance can easily be converted to a tracking algorithm
without increasing its cost. Secondly, solutions produced by
tracking algorithms can be naturally converted online to the
problem of Bandits with Switching Cost.

Definition 4.3. Consider an algorithm A with a bandit ac-
cess to heuristics H1, . . . ,Hℓ. We say that A is a tracking
algorithm if, while processing the MTS instance described
above, satisfies the following condition in every block. Let
Hi be the heuristic queried in the second step. Then the
algorithm resides in Mi during the whole block and moves
to the state of Hi in its second step.

Lemma 4.4. Any algorithm A with bandit access to
H1, . . . ,Hℓ can be converted to a tracking algorithm Ā
without increasing its expected cost.

Proof can be found in Appendix B.

Lemma 4.5. Consider a tracking algorithm A. For each
block t, define it such that A is located at sitt in its sec-
ond step. The expected cost of A is 2T +

∑T
t=1 ℓt(it) +

4We use infinite costs for a cleaner presentation. But choosing
2D = 6 instead of +∞ does the same job, see discussion in
Section 2.

∑T
t=1 1(it ̸= it−1).

Proof. In each block t = 1, . . . , T , the algorithm pays 2 +
1(it ̸= it−1) in the first two steps. In the third step, it pays 2
only if sitt ̸= σit

t which happens with probability ℓt(it)
2 .

Theorem 1.3 is derived from the following statement by
Yao’s principle and from the fact that we can pad the con-
structed instance with zero cost vectors to get an input in-
stance of length higher than OPT≤0.

Theorem 4.6. There is a stochastic instance I of MTS of
length 3T with heuristics H1, . . . ,Hℓ such that any deter-
ministic algorithm with bandit access to H1, . . . ,Hℓ suffers
expected regret at least Ω̃(ℓ1/3T 2/3).

Proof. Let I be the input instance constructed above from
ℓ1, . . . , ℓT in Proposition 4.1. Consider a fixed deterministic
algorithm A. Firstly, we consider queries made by A. The
queries in the first and the third step of each block have a
trivial answer which are independent of the loss sequence
ℓ1, . . . , ℓT : if A queries Hi, then the answers are ri and σi

t

respectively. For each block t = 1, . . . , T , we denote it the
heuristic queried in its second step. Note that the result of
the query depends only on ℓt(it).

We can assume that A is tracking, since making it track-
ing would only decrease its expected cost. Therefore, the
expected cost of A can be written as

T∑
t=1

E
[
1(it ̸= it−1) + 2 + 2 · 1(sitt ̸= σi

t)
]

= 2T +

T∑
t=1

E
[
1(it ̸= it−1) + 2E[1(sitt ̸= σi

t) | ℓt(it)]
]

= 2T +

T∑
t=1

E[1(it ̸= it−1) + ℓt(it)].

Let Hi∗ denote the best heuristic. Using Observation 4.2,
the regret of A with respect to Hi∗ is equal to

T∑
t=1

E[1(it ̸= it−1) + ℓt(it)]−
T∑

t=1

E[ℓt(i∗)].

This is equal to the expected regret of the strategy playing
arms i1, . . . , iT on the sequence ℓ1, . . . , ℓT . By Proposi-
tion 4.1, this regret is at least Ω̃(ℓ1/3T 2/3).
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domized online computation with high probability guar-
antees. Algorithmica, 84(5):1357–1384, May 2022. ISSN
0178-4617. doi: 10.1007/s00453-022-00925-z.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N.
The case for learned index structures. In Proceedings of
SIGMOD’18, pp. 489–504, 2018. doi: 10.1145/3183713.
3196909.

Lattimore, T. and Szepesvari, C. Bandit algorithms.
2017. URL https://tor-lattimore.com/
downloads/book/book.pdf.

Lindermayr, A. and Megow, N. Permutation predictions
for non-clairvoyant scheduling. In SPAA, pp. 357–368.
ACM, 2022.

Lindermayr, A. and Megow, N. Algorithms with predictions.
https://algorithms-with-predictions.
github.io, 2023. URL https://

11

https://doi.org/10.1137/1.9781611975482.6
https://doi.org/10.1137/1.9781611975482.6
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921
https://api.semanticscholar.org/CorpusID:9425790
https://api.semanticscholar.org/CorpusID:9425790
https://proceedings.mlr.press/v206/drygala23a.html
https://proceedings.mlr.press/v206/drygala23a.html
https://www.sciencedirect.com/science/article/pii/019667749190041V
https://www.sciencedirect.com/science/article/pii/019667749190041V
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://arxiv.org/abs/2312.14564
https://arxiv.org/abs/2312.14564
https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io


Learning-Augmented Algorithms for MTS with Bandit Access to Multiple Predictors

algorithms-with-predictions.github.io.
Online: accessed 2023-07-12.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. J. ACM, 68(4):24:1–24:25, 2021.

Mitzenmacher, M. and Vassilvitskii, S. Algorithms
with predictions. Commun. ACM, 65(7):33–35, 2022.
doi: 10.1145/3528087. URL https://doi.org/10.
1145/3528087.

Rohatgi, D. Near-optimal bounds for online caching with
machine learned advice. In SODA, 2020.

Rouyer, C., Seldin, Y., and Cesa-Bianchi, N. An algorithm
for stochastic and adversarial bandits with switching costs.
In Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
9127–9135. PMLR, 18–24 Jul 2021.

Sadek, K. A. A. and Eliáš, M. Algorithms for caching and
MTS with reduced number of predictions. In The Twelfth
International Conference on Learning Representations,
2024.

Slivkins, A. Introduction to multi-armed bandits. Founda-
tions and Trends® in Machine Learning, 12(1-2):1–286,
2019. ISSN 1935-8237. doi: 10.1561/2200000068. URL
http://dx.doi.org/10.1561/2200000068.

Wang, S., Li, J., and Wang, S. Online algorithms for multi-
shop ski rental with machine learned advice. In NeurIPS,
2020.

Wei, A. Better and simpler learning-augmented online
caching. In APPROX/RANDOM, 2020.

12

https://algorithms-with-predictions.github.io
https://doi.org/10.1145/3528087
https://doi.org/10.1145/3528087
http://dx.doi.org/10.1561/2200000068


Learning-Augmented Algorithms for MTS with Bandit Access to Multiple Predictors

A. Omitted Proofs from Section 3
A.1. Proof of Lemma 3.1

We compare the cost of Algorithm 2 to the cost of a hypothetical algorithm A′ which, at each time step t, is located at state
sitt . At time step t, this algorithm pays cost C ′

t = ct(s
it
t ) + d(s

it−1

t−1 , s
it
t ).

As a proxy for the cost of Algorithm 2, we define Ct in the following way. If st = sitt , we set Ct := C ′
t. Otherwise, we set

Ct := d(s
it−1

t−1 , st) + ct(st) + d(st, bt) + d(bt, s
it
t ).

This way, the total cost of Algorithm 2 is at most
∑T

t=1 Ct, since the cost of its movement d(bt, st+1) ≤ d(bt, s
it
t ) +

d(sitt , st+1) at time t+ 1 is split into Ct and Ct+1.

The following statement is part of the proof of Lemma 5.4 in (Antoniadis et al., 2023b), we include it here for completeness.

Proposition A.1 (Antoniadis et al. (2023b)). Consider t ∈ {1, . . . , T} and denote τ ≤ t the last step such that sτ = siττ .
Then Ct ≤ C ′

t +O(1)
∑t

t′=τ+1 C
′
t′ .

Proof. If τ = t, i.e., st = sitt , then we have Ct = C ′
t and the sum

∑t
t′=τ+1 C

′
t′ is empty. Otherwise, τ < t and the

following relations hold due to bt = bτ = siττ , triangle inequality, and the greedy choice of st in Algorithm 2 respectively.

d(bt, s
it
t ) = d(bτ , s

it
t )

d(s
it−1

t−1 , st) ≤ d(s
it−1

t−1 , bt) + d(bt, st)

d(bt, st) + ct(st) ≤ d(bt, s
it
t ) + ct(s

it
t ).

Plugging this in the definition of Ct, we get

Ct = d(s
it−1

t−1 , st) + ct(st) + d(st, bt) + d(bt, s
it
t )

≤ d(bt, s
it−1

t−1 ) + d(bt, st) + ct(st) + d(st, bt) + d(bt, s
it
t )

≤ d(bt, s
it−1

t−1 ) + 2
(
d(bt, st) + ct(st)

)
+ d(bt, s

it
t )

≤ [d(bt, s
it−1

t−1 )] + 2[d(bt, s
it
t ) + ct(s

it
t )] + [d(bt, s

it
t )].

Between time steps τ and t, A′ has to traverse from bt = siττ to s
it−1

t−1 as well as sitt and pay ct(s
it
t ). Therefore, each bracket

in the equation above is bounded by
∑t

t′=τ+1 C
′
t′ .

Proof of Lemma 3.1. By Proposition A.1, the cost of Algorithm 2 is at most

T∑
t=1

Ct ≤
T∑

t=1

C ′
t +O(1)

T∑
t=1

t∑
τt+1

C ′
t =

T∑
t=1

C ′
t +O(1)

T∑
t=1

(at − t)C ′
t,

where τt := max{t′ | t ≤ t and st′ = s
it′
t′ } and at := min{t′ | t ≥ t and st′ = s

it′
t′ }. Therefore, it is enough to show that

E

[
T∑

t=1

(at − t)C ′
t

]
≤ O(ϵm2)E

[
T∑

t=1

C ′
t

]
.

If at > t, then st ̸= sitt and there must be an exploration step within m time steps before or after t. Therefore, we have

E [(at − t)C ′
t] ≤

t+m∑
t′=t−m

E [C ′
tEt′(at − t)]

≤
t+m∑

t′=t−m

E [C ′
tE [Et′(at − t) | Ft]] .
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Here, we used that it and therefore C ′
t is determined only by random choices up to time t. Now, for each t′ = t−m, . . . , t+m,

we have

E[Et′(at − t) | Ft] = E[βt′−mXt′−m(at − t) | Ft] ≤ βt′−m(1 +

T∑
i=1

mi(2mϵ)i) ≤ mβt′−mO(1),

because in order to have at − t = mi, we need to have βt′′ = 1 in at least once in every block of 2m time steps between t to
t+mi and ϵ < 1/2. Therefore, we have

E

[
T∑

t=1

(at − t)C ′
t

]
≤ O(ϵm2)E

[
T∑

t=1

C ′
t

]

which concludes the proof.

A.2. Proofs of Technical Lemmas

Proof of Lemma 3.5. By Observation 3.4, we have

E[gTt x∗] = E
[
E
[
gTt x

∗ | Ft−1

]]
= E

[
Et

2Dℓ
fT
t x∗

]
=

E[βt−m]

2Dℓ
E[Xt−mfT

t x∗] ≤ ϵ

2Dℓ
fT
t x∗

for each t = 1, . . . , T . Summing over t, we get

E

[
T∑

t=1

gTt x
∗

]
≤ ϵ

2Dℓ

T∑
t=1

fT
t x∗ =

ϵ

2Dℓ
OPT≤0 .

Proof of Lemma 3.6. For t = m+ 1, . . . , T , we have

E[gTt xt] = E
[
E
[
gTt | Ft−1

]
xt

]
= E

[
Et

2Dℓ
fT
t xt

]
=

E[βt−m]

2Dℓ
E[fT

t xtXt−m],

where the second equality follows from Observation 3.4. To finish the proof, it is enough to note that E[βt−m] = ϵ and
xtXt−m = xt−iXt−m for any i = 0, . . . ,m.

Proof of Lemma 3.7. We use the Cauchy-Schwarz inequality and Property 2.3:

E[fT
t xtEt−i] = E[(fT

t (xt − xt−i) + fT
t xt−i)Et−i]

≤ E[(∥ft∥∞∥xt − xt−i∥1 + fT
t xt−i)Et−i]

≤ η

ℓ
E[fT

t−ixt−iEt−i] + E[fT
t xt−iEt−i].

The last inequality follows from ∥ft∥∞ ≤ 2D and the following computation. Here, we use xt−i+1 = xt whenever
Et−i = 1, Property 2.3, xt−i and Et−i depending only on time steps up to t− i− 1, and Observation 3.4:

E[∥xt − xt−i∥1 · Et−i] = E[∥xt−i+1 − xt−i∥1 · Et−i]

≤ E[ηgTt−ixt−iEt−i]

= E
[
E
[
ηgTt−i | Ft−i−1

]
xt−iEt−i

]
=

η

2Dℓ
E[fT

t−ixt−iEt−i].
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B. Omitted proofs from Section 4
Proof of Lemma 4.4. Consider a block such that the algorithm A moves to another part of M in the second step. The cost
functions in the first two steps are deterministic, so we can simulate what part the algorithm would go to in the second step
and move there already in the first step for the same cost.

Consider a block such that the algorithm moves to another part of M in the third step, i.e., moves from s ∈ {ai, bi} to
s′ ∈ {aj , bj}. This costs 3 in the third step and the subsequent move to rj in the beginning of the next block will cost 1.
Instead, staying in Mi costs at most 2 in the third step and moving to rj in the beginning of the next block will cost 2.

Therefore, we can make sure that the algorithm moves between different parts of M only in the first step of each block.

Consider the step 2 of block t where A queries the state sit of Hi. If A moves to s ∈ {aj , bj}, where j ̸= i, its expected cost
will be at least 1, since σj

t is chosen from {aj , bj} uniformly at random.

If A moves to s ∈ {ai, bi} \ {sit}, Then the expected cost of A in step 3 will be(
1− ℓt(i)

2

)
2 = 2− ℓt(i) ≥ 1 ≥ ℓt(i) = 2

ℓt(i)

2
,

where the right-hand side corresponds to the cost of algorithm Ā which moves to sit instead.

B.1. Optimality of the Dependence on D and k

We elaborate on the asymptotic dependence on k and D for the lower bound with 2-delayed exploration starting from the
construction in Section 4.

The optimality of the dependence on D can be seen from scaling. If we scale the input instance in Theorem 4.6 by a factor
D, i.e. we multiply all distances in the metric space and all cost vectors by D, the cost of any algorithm including OPT≤0

will be scaled by D. Therefore, the lower bound in Therorem 4.6 becomes

D · E[ALG] ≤ DOPT≤0 +DΩ̃(ℓ1/3 OPT
2/3
≤0 ) = OPT′

≤0 +D1/3Ω̃(ℓ1/3(OPT′
≤0)

2/3),

where OPT′
≤0 = OPT≤0 is the new value after the scaling.

Now, we show tightness of k in Theorem 1.2.

Theorem B.1. There exists a stochastic instance I of MTS of length 3T with heuristics H1, . . . ,Hℓ such that any determin-
istic algorithm with bandit access to H1, . . . ,Hℓ suffers expected regret at least Ω̃((kℓ)1/3T 2/3).

Proof. Let ALG be any deterministic algorithm for MTS with bandit access to H1, . . . ,Hℓ. We assume without loss of
generality that there exists τ ∈ N multiple of 3 such that 3 · T = k · τ . We split the time horizon into k segments of size τ .
By Theorem 4.6, for each j ∈ [k] we have

E

 τj∑
t=τ(j−1)+1

(
fT
t xt + d(xt, xt−1)

) ≥ c(H∗
j ) + Ω((ℓ)1/3τ2/3),

where c(H∗
j ) represents the cost of the best heuristic in the segment j. It follows that

E[ALG] ≥
k∑

j=1

c(H∗
j ) + Ω(kℓ1/3τ2/3)

≥ OPT≤k +Ω((kℓ)1/3T 2/3).

C. Upper Bound for m-Delayed Bandit Access to Heuristics against OPT≤k

In what follows, we prove an upper bound for Algorithm 1 using SHARE as Ā against OPT≤k.

Firstly, SHARE satisfies the following performance bound found in (Cesa-Bianchi & Lugosi, 2006).
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Proposition C.1. Consider x1, . . . , xT ∈ [0, 1]ℓ the solution produced by SHARE with learning rate η, sharing parameter
α, and denote γ := 1− exp(−η). For any solution i1, . . . , iT such that the number of time steps where it−1 ̸= it is at most
k, we have

T∑
t=1

gTt xt ≤
ln 1

1−γ

γ(1− α)

T∑
t=1

gt(it) + k
ln (ℓ/α)

γ(1− α)
.

The following is a generalization of Lemma 3.5 that holds for k ≥ 0.

Lemma C.2. Consider k ≥ 0. Let i1, . . . , iT ∈ [ℓ] be a solution minimizing
∑T

t=1

(
ct(s

it
t ) + d(s

it−1

t−1 , s
it
t )
)

such that
it−1 ̸= it holds in at most k time steps t. For each t, we define xt ∈ [0, 1]ℓ such that xt(it) = 1 and xt(i) = 0 for each
i ̸= it. We have

E

[
T∑

t=1

gTt xt

]
≤ ϵk

2ℓ
+

ϵ

2Dℓ
OPT≤k.

Proof. By Observation 3.4, we have

E[gTt xt] = E
[
E
[
gTt xt | Ft−1

]]
= E

[
Et

2Dℓ
fT
t xt

]
=

ϵ

2Dℓ
E[Xt−mfT

t xt] ≤
ϵ

2Dℓ
fT
t xt

for each t = 1, . . . , T . Let δt := d(sitt−1, s
it
t )− d(s

it−1

t−1 , s
it
t ) ≤ D. Summing over t, we get

E

[
T∑

t=1

gTt xt

]
≤ ϵ

2Dℓ

T∑
t=1

fT
t xt

=
ϵ

2Dℓ

T∑
t=1

(
ct(s

it
t ) + d(s

it−1

t−1 , s
it
t ) + δt

)
≤ ϵ

2Dℓ
(OPT≤k +kD) ,

since δt > 0 for at most k time steps.

We are now ready to prove the following upper bound.
Theorem C.3. Algorithm 2 with SHARE as Ā and m-delayed bandit access to ℓ heuristics on any MTS instance with
diameter D with offline optimum cost at least 2k such that Dℓm ≤ o(OPT

1/3
≤k ) achieves Regk(ALG) at most

O

(
(Dℓk)1/3m2/3 OPT

2/3
≤k ln

ℓ1/3(OPT≤k)
2/3

(Dk)2/3m4/3

)
.

Proof. Let Hi∗1
, . . . ,Hi∗T

be the sequence of optimal heuristics such that i∗t ̸= i∗t+1 for at most k indices t ∈ [T − 1]. Then
we define x∗

t ∈ [0, 1]ℓ such that x∗
t (i

∗
t ) = 1 and x∗

t (i) = 0 for i ̸= i∗t .

Proceeding analogously to the proof of Theorem 3.9 we have

E[ALG] ≤
(
1+O(m2ϵ)

)(
2m+

(
1+O(mϵ)(1+η)

)2Dℓ

ϵ

T∑
t=1

E[gTt xt]

)
.

Using the regret bound of Ā (Proposition C.1) followed by Lemma C.2 we have

2Dℓ

ϵ

T∑
t=1

E[gTt xt] ≤
ln 1

1−γ

γ(1− α)
· 2Dℓ

ϵ
E

[
T∑

t=1

gTt x
∗
t

]
+ 2Dℓk

ln (ℓ/α)

ϵγ(1− α)

≤
ln 1

1−γ

γ(1− α)
OPT≤k +(1 + 2ℓ)Dk

ln (ℓ/α)

ϵγ(1− α)
.

16



Learning-Augmented Algorithms for MTS with Bandit Access to Multiple Predictors

By setting α := (Dℓk)/(ϵOPT≤k) and γ :=
√
Dℓk/(ϵOPT≤k) and considering that k ≤ OPT≤k /2, we obtain

(1 + η)
2Dℓ

ϵ

T∑
t=1

E[gTt xt] ≤ OPT≤k +O

(√
DℓkOPT≤k

ϵ
ln

ϵOPT≤k

Dk

)
+O

(
Dℓk ln

ϵOPT≤k

Dk

)
.

where η = ln 1/(1− γ) is the learning rate. It follows that the total expected cost is at most

E[ALG] ≤ OPT≤k +O(m2ϵOPT≤k) +O

(√
DℓkOPT≤k

ϵ
ln

ϵOPT≤k

Dk

)
+O

(
mϵDℓk ln

ϵOPT≤k

Dk

)
.

Finally, by setting ϵ := (OPT≤k)
−1/3(Dℓk)1/3m−4/3 we obtain the desired bound.

Corollary C.4. Algorithm 2 is (1 + ϵ)-competitive against OPT≤k for k as large as

Ω

(
ϵ3 OPT≤k

Dℓm2(lnZ)3

)
where Z = ℓ1/3(OPT≤k)

2/3/(D2/3m4/3).

D. Upper Bound in the Setting of Arora et al. (2012)
We demonstrate how to use the solutions x1, . . . , xT produced by Algorithm 1 in order obtain solutions in the setting of
MAB against m-memory bounded adversaries introduced by Arora et al. (2012). To achieve this, we propose Algorithm 3
and analyze its performance. Note that Algorithm 1 does not require any look-ahead, so it can be used directly in the setting
of Arora et al. (2012).

Algorithm 3: Producing solutions for MAB against m-memory bounded adversaries

1 Input: x1, . . . , xT resulting from Algorithm 1
2 for t = 1, . . . , T do
3 if xt ̸= xt−1 then it ∼ Round(it−1, xt−1, xt)
4 else it := it−1

5 play it

To obtain a regret bound in this setting, we must relate the total cost incurred by Algorithm 3 to E[
∑T

t=1 f
T
t xt] which we

can upper bound using Lemma 3.8.

Lemma D.1. Given x1, . . . , xT ∈ [0, 1]ℓ produced by Algorithm 1, the expected cost of Algorithm 3 is at most

O(mϵT ) + E

[
T∑

t=1

fT
t xt

]

Proof. We begin the proof by observing that E[lt(it) ·Xt] ≤ E[fT
t xt], since the algorithm plays it sampled from xt during

exploitation rounds. For the time steps leading up to an exploration round and the exploration step itself we can only say
that the cost per round incurred is at most 1. We thus have

E[ALG] = E

[
T∑

t=1

ℓt(it)

]

≤ E

[
T∑

t=1

(1 · (1−Xt) + ℓt(it) ·Xt)

]

≤ E

[
T∑

t=1

(1−Xt)

]
+ E

[
T∑

t=1

fT
t xt

]
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It remains to estimate the first term. By definition of Xt, Et, βt and Observation 3.2 we have:

E

[
T∑

t=1

(1−Xt)

]
≤ 2m+

m−1∑
i=0

E

[
T∑

t=2m+1

Et−i

]

= 2m+

m−1∑
i=0

T∑
t=2m+1

E[βt−i−m] · E[Xt−i−m]

≤ 2m+

m−1∑
i=0

T∑
t=2m+1

E[βt−i−m]

≤ O(mϵT ).

We also need to link the real and perceived costs resulting from following an optimal policy.

Lemma D.2. Let x∗ ∈ ∆ℓ be a solution minimizing
∑T

t=1 ℓ
T
t x

∗. We have

E

[
T∑

t=1

gTt x
∗

]
≤ ϵ

2Dℓ

T∑
t=1

ℓTt x
∗

Proof. By Observation 3.4, we have

E[gTt x∗] = E
[
E
[
gTt x

∗ | Ft−1

]]
= E

[
Et

2Dℓ
fT
t x∗

]
=

ϵ

2Dℓ
E[Xt−mfT

t x∗] ≤ ϵ

2Dℓ
fT
t x∗

for each t = 1, . . . , T . The second equality holds because Et = 1 only if the same action was taken for the last m steps.
Summing over t, we get

E

[
T∑

t=1

gTt x
∗

]
≤ ϵ

2Dℓ

T∑
t=1

fT
t x∗ =

ϵ

2Dℓ

T∑
t=1

ℓTt x
∗.

Putting everything together, we may now prove the following theorem.

Theorem D.3. Consider ℓ available arms and let m ≥ 1 be the memory bound of the adaptive adversary in the setting of
Arora et al. (2012). Then Algorithm 3 achieves the following policy regret bound

O
(
(mℓ ln ℓ)1/3T 2/3

)
Proof. We begin the proof by observing that Lemma 3.8 still holds in the setting of Arora et al. (2012) as it is based solely
on the dynamics of Algorithm 1 and the stability assumption on Ā. Using Lemma D.1 followed by Lemma 3.8 we have

E[ALG] ≤ O(mϵT ) + E

[
T∑

t=1

fT
t xt

]

≤ O(mϵT ) + 2m+

(
1 +

mϵ

(1− ϵ)m
+

mηϵ

ℓ

)
· 2Dℓ

ϵ
E

[
T∑

t=1

gTt xt

]

Arguing as in the proof of Theorem 3.9, we can use Proposition 2.4 and Lemma D.2 to obtain

2Dℓ

ϵ
E

[
T∑

t=1

gTt xt

]
≤ (1 + γ)

T∑
t=1

ℓTt x
∗ +

2Dℓ ln ℓ

ϵγ
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Since
∑T

t=1 ℓ
T
t x

∗ ≤ T , it follows that

E[ALG]−
T∑

t=1

ℓTt x
∗ ≤ O ((mϵ+ γ)T ) +O

(
Dℓ ln ℓ

ϵγ

)
.

Since the losses in the setting of Arora et al. (2012) are contained in [0, 1]ℓ, we may drop the dependence on D. By choosing
ϵ := (ℓ ln ℓ)1/3m−2/3T−1/3 and γ := (mℓ ln ℓ)1/3T−1/3 we get the desired bound.

E. Rounding Algorithm for MTS
We describe a procedure for rounding the solutions produced by fractional algorithms inspired by Blum & Burch (2000) and
use it to prove Proposition 2.1 and Proposition 2.2.

For two distributions p, p′ ∈ ∆N , EMD(p, p′) =
∑N

i=1 max(0, p(i)− p′(i)). For every i, j ∈ [N ], let τi,j ≥ 0 represent
the mass transferred from p(i) to p′(j) such that p(i) =

∑N
j=1 τi,j and EMD(p, p′) =

∑
i̸=j τi,j . Suppose a fractional

algorithm chose i ∈ [N ] at the previous time step with the associated distribution p. At the next time step (with a new
associated distribution p′), the algorithm moves to i′ ∈ [N ] with probability τi,i′/p(i). This procedure is summarized in
Algorithm 4 which we also refer to as Round. Note that Algorithm 4 can be applied to distributions over the states of a
metric space (i.e., N = M ) as well as distributions over heuristics/arms (i.e., N = ℓ). We will not mention N explicitly
when calling the procedure as a sub-routine for conciseness.

Algorithm 4: Round

1 Input: i, p, p′, N
2

3 for j = 1, . . . , N do
4 τi,j := mass transferred from p(i) to p′(j)
5 set q(j) := τi,j

p(i)

6 sample i′ ∼ q

Proof of Property 2.1. Given p1, . . . , pT ∈ ∆M , let s1, . . . , sT be the solutions produced after iteratively calling Algorithm
4, i.e. st := Round(st−1, pt1 , pt) for every t ∈ [T ]. Then for every t ∈ [T ] we have

E[ct(st) + d(st, st−1)] =

|M |∑
i=1

ct(i)pt(i) +

|M |∑
j=1,j ̸=i

τi,j

 = cTt pt + EMD(pt−1, pt),

from which we obtain the desired conclusion by summing over t = 1, . . . T .

Proof of Property 2.2. Given x1, . . . , xT ∈ ∆ℓ, let i1, . . . , iT be the solutions produced after iteratively calling Algorithm
4, i.e. it := Round(it−1, xt1 , xt) for every t ∈ [T ] and i0 is selected uniformly at random. We subsequently define sitt as
the state predicted by heuristic Hit at time t. It follows that for every t ∈ [T ] we have

E[ct(sitt ) + d(sitt , s
it−1

t−1 )] ≤ fT
t xt +D · EMD(xt, xt−1) = fT

t xt +
D

2
∥xt−1 − xt∥1,

where we argued as in the proof of Property 2.1 and used the fact that the distance between any two states is bounded by the
diameter D. By summing over t = 1, . . . T we obtain the desired conclusion.

F. Online Learning from Expert Advice
F.1. Classical Algorithms

In this setting, a learner plays an iterative game against an oblivious adversary for T rounds. At each round t, the algorithm
chooses among ℓ experts, incurs the cost associated to its choice, and then observes the losses of all the experts at time t. In
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this full-feedback model, several successful algorithms have been proposed and demonstrated to achieve strong performance
guarantees. For an in-depth analysis of these classical algorithms, we invite the reader to see (Cesa-Bianchi & Lugosi, 2006;
Blum & Burch, 2000).

HEDGE. The idea behind this algorithm is simple: associate to each expert a weight and then use an exponential update
rule for the weights after observing a new loss function. The weights are normalized to produce a probability distribution
over the expert set, from which the subsequent action is sampled. The learning dynamics are summarized in Algorithm 5.

Algorithm 5: HEDGE

1 Input: η, ℓ, T
2 w0(i) := 1 ∀i ∈ [ℓ]
3 for t = 1, . . . , T do
4 Wt =

∑
i∈[ℓ] wt(i)

5 xt(i) = wt(i)/Wt ∀i ∈ [ℓ]
6 Play it ∼ xt

7 Observe gt ∈ [0, 1]ℓ

8 Set wt+1(i) := wt(i) exp(−η · gt−1(i)) ∀i ∈ [ℓ]

SHARE. This algorithm starts from the same exponential update rule as HEDGE, but introduces an additional term. Given
the reduction in the sum of the weights ∆, the SHARE algorithm adds to each weight a fixed fraction α ·∆. The effect of
this change is that information is shared across experts, which makes the algorithm better at tracking the best moving expert.
This allows SHARE to achieve good performance with respect to a benchmark that is a allowed to switch experts a limited
number of time. Algorithm 6 summarizes these dynamics.

Algorithm 6: SHARE

1 Input: η, α, ℓ, T
2 w0(i) := 1 ∀i ∈ [ℓ]
3 for t = 1, . . . , T do
4 Wt =

∑
i∈[ℓ] wt(i)

5 xt(i) = wt(i)/Wt ∀i ∈ [ℓ]
6 Play it ∼ xt

7 Observe gt ∈ [0, 1]ℓ

8 Compute ∆ :=
∑

i∈[ℓ] wt(i)(1− exp(−η · gt(i)))
9 Set wt+1(i) := wt(i) exp(−η · gt−1(i)) + α ·∆ ∀i ∈ [ℓ]

F.2. Proof of Property 2.3

We consider the weight vector wt ∈ [0,∞)ℓ associated to each expert and the loss vector gt−1 ∈ [0, 1]ℓ. The distribution
over the experts xt−1 ∈ [0, 1]ℓ is obtained as xt−1(i) = wt−1(i)/Wt−1, where Wt−1 =

∑ℓ
j=1 wt−1(j).

The HEDGE algorithm with parameter η > 0 uses the following update rule

wt(i) := wt−1(i) · exp (−η · gt−1(i)) ∀i ∈ [ℓ]. (5)

The SHARE algorithm with parameters η > 0 and α ∈ [0, 1/2] uses the following update rule

wt(i) := wt−1(i) · exp (−η · gt−1(i)) + α ·∆/ℓ ∀i ∈ [ℓ] (6)

where ∆ :=
∑l

j=1(wt−1(j)− exp (−η · gt−1(j))wt−1(j)).

The following statement is part of the proof of Theorem 10 in (Blum & Burch, 2000), which we include here for completeness.
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Lemma F.1. The SHARE algorithm satisfies the following∑
i:xt(i)<xt−1(i)

(xt−1(i)− xt(i)) ≤
∑

i:xt(i)<xt−1(i)

xt−1(i)(1− exp (−η · gt−1(i))) (7)

for every t ∈ [T ].

Proof. Using the update rule in (6) we have

∑
i:xt(i)<xt−1(i)

(xt−1(i)− xt(i)) =
∑

i:xt(i)<xt−1(i)

(
wt−1

Wt−1
− wt−1 · exp (−η · gt−1(i)) + α ·∆/ℓ

Wt

)

≤
∑

i:xt(i)<xt−1(i)

(
wt−1

Wt−1
− wt−1 · exp (−η · gt−1(i))

Wt

)

≤
∑

i:xt(i)<xt−1(i)

(
wt−1

Wt−1
− wt−1 · exp (−η · gt−1(i))

Wt−1

)

where the last inequality uses the observation that Wt ≤ Wt−1 for all t ∈ [T ].

Proof of Property 2.3. The proof for HEDGE follows immediately from Theorem 3 in (Blum & Burch, 2000). The result
for SHARE is obtained by applying F.1, followed by the previous argument, since the right-hand side of (7) contains the
update rule in (5). As a consequence, for both HEDGE and SHARE, η (i.e., the learning rate parameter) directly appears in
the expression of Property 2.3.

G. Estimating the Baseline Online
The bounds obtained in Theorem 3.9 and Theorem 3.10 require tuning parameters based on the values of OPT≤0 and
OPT≤k, respectively. These values are typically unknown a priori and we need to estimate them online. In particular, our
algorithm can observe the MTS input instance and, at each time t, compute the value of the offline optimal solution up to
time t. Let OFF denote the cost of the offline optimal solution to the given input instance. If at least one of the heuristics
H1, . . . ,Hℓ achieves cost at most OFF, then OFF ≤ OPT≤k ≤ ROFF. We use OFF as an estimate of OPT≤k in order
to tune the parameters of our algorithm and achieve regret bound depending on R. Note that we do not need to know R
beforehand and we can ensure that R is bounded by including some classical online algortihm which is competitive in the
worst case among H1, . . . ,Hℓ.

We use the guess and double trick which resembles the classical problem of estimating the time horizon T in a MAB
setting, see (Cesa-Bianchi & Lugosi, 2006; Lattimore & Szepesvari, 2017). Here, one starts with a prior estimate of the
time horizon and an instance of some online algorithm whose parameters are tuned based on this estimate. Whenever the
estimate becomes smaller than the index of the current iteration, the guess is doubled, a new instance of the online algorithm
is created, and its parameters are set according to the new guess. In what follows, we show how to adapt this strategy to our
setting. We focus on OPT≤0, but a similar argument can be made for OPT≤k.

Let ALG(ω) be Algorithm 2 configured with parameters ϵ := (Dℓ ln ℓ)1/3m−4/3ω−1/3 and γ := (Dℓ ln ℓ)1/3m2/3ω−1/3.
Here D, ℓ,m are known and ω is our estimate of the unknown OPT≤0. Our strategy is to instantiate a sequence of
algorithms ALG1,ALG2, . . . ,ALGN such that ALGi = ALG(2iω) runs between rounds ai (included) and bi (excluded).
The optimal heuristic on interval i has cost OPTi ≤ 2iω by construction. Let OFFi be the offline MTS optimal cost
computed on the interval between ai and bi. Note that we can always compute this value at time t after observing the
sequence of local cost functions cai . . . , cbi−1. Suppose one of the heuristics is R-competitive with high probability w.r.t.
the offline MTS optimum. Then it must be that 2iω ≤ ROFFi with high probability. This effectively provides a threshold
for switching to the next instance without knowledge of the true value of OPTi. It remains to show that this procedure,
summarized in Algorithm 7, guarantees a limited overhead w.r.t. to the bound that requires knowledge of OPT≤0.

Proposition G.1. Let D, ℓ,m be fixed and assume there exists H̄ ∈ {H1, . . . ,Hℓ} such that H̄ is R-competitive with high
probability. Then Algorithm 7 achieves regret O(R2/3 OPT

2/3
≤0 ) with respect to OPT≤0.
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Algorithm 7: Doubling algorithm

1 Input: ω
2

3 i = 0
4 t = 1
5 ALG0 := ALG(ω)
6 while t ≤ T do
7 if OFFi > R · 2iω then
8 i++
9 ALGi := ALG(2iω)

10 Choose st according to ALGi

11 t++

Proof. By construction of the sequence of algorithms, we have that 2iω ≤ OPTi and
∑N

i=1 OPTi ≤ OPT≤0. It follows
that

N∑
i=1

2iω = ω(2N − 1) ≤ OPT≤0,

which implies that N ≤ log(OPT≤0). Moreover, we have

Reg = E[ALG]−OPT≤0

=

N∑
i=0

(E[ALGi]−OPTi)

≤
N∑
i=0

O(OPT
2/3
i )

≤ O

(
N∑
i=0

(R · 2i+2ω)2/3

)
≤ O

(
R2/3 OPT

2/3
≤0

)
where the first inequality comes from Theorem 1.1 and the second from the assumption in the hypothesis.

The previous result means that we can guarantee regret which is worse by a factor of R2/3 w.r.t. to the bound which requires
knowledge of OPT≤0. R depends on the MTS variant being solved. For general MTS, we can assume R ≤ 2n − 1 by
including the classical deterministic algorithm by Borodin et al. (1992), or R = O(log2 n) by including the algorithm
by Bubeck et al. (2019). Using the procedure of Komm et al. (2022), any algorithm for MTS which is R-competitive in
expectation can be made (1 + α)R-competitive with high probability for any α > 0.
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