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Abstract
The skew-geometric Jensen-Shannon divergence(
JSGα

)
allows for an intuitive interpolation be-

tween forward and reverse Kullback-Leibler (KL)
divergence based on the skew parameter α. While
the benefits of the skew in JSGα are clear—
balancing forward/reverse KL in a comprehensi-
ble manner—the choice of optimal skew remains
opaque and requires an expensive grid search.
In this paper we introduce α-VAEs, which ex-
tend the JSGα variational autoencoder by allow-
ing for learnable, and therefore data-dependent,
skew. We motivate the use of a parameterised
skew in the dual divergence by analysing trends
dependent on data complexity in synthetic exam-
ples. We also prove and discuss the dependency
of the divergence minimum on the input data and
encoder parameters, before empirically demon-
strating that this dependency does not reduce to
either direction of KL divergence for benchmark
datasets. Finally, we demonstrate that optimised
skew values consistently converge across a range
of initial values and provide improved denoising
and reconstruction properties. These render α-
VAEs an efficient and practical modelling choice
across a range of tasks, datasets, and domains.

1. Introduction
As variational inference (VI) progresses, state of the art
Variational AutoEncoders (VAEs) increase in complexity
(Vahdat & Kautz, 2020; Child, 2020) while continuing
to maximise the Evidence Lower BOund (ELBO) (Blei
et al., 2017). Compared to generative adversarial networks
(GANs) (Goodfellow et al., 2014), VAEs necessitate less
stringent and problem-dependent training regimes, and com-
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pared to autoregressive models (Larochelle & Murray, 2011;
Germain et al., 2015) (that can be interpreted as instances
of very deep VAEs (Child, 2020)) are less computation-
ally expensive and more efficient to sample. VAE learning
requires optimisation of an objective which balances the
quality of decoded reconstructions from encoded representa-
tions, with a regularising divergence term penalising latent
space deviations from a prior distribution.

To couple VAEs’ learning with an appropriate regularisa-
tion, it is necessary to consider their underlying assump-
tions. VAEs often assume latent variables to be parame-
terised by a multivariate Gaussian, pθ(z) = N(µ, σ2) with
z, µ, σ ∈ Rn, approximated by qφ(z|x) with x ∈ Rm
and n ≤ m. For instance, in the original VAE (Kingma
& Welling, 2014), KL divergence (Kullback & Leibler,
1951) naturally constrained the variational distribution to
an isotropic Gaussian unit ball KL (qφ(z|x) ‖ N (0, I)), de-
spite unfavourable properties (Bishop, 2006), such as un-
boundedness and asymmetry. Moreover, KL does not cap-
italise on the full flexibility of the wider family of expo-
nential distributions, a recent direction which has tightened
the ELBO (Brekelmans et al., 2020; Masrani et al., 2019)
and rendered VAE divergence regularisation more inter-
pretable in distribution space via skew-geometric Jensen-
Shannon

(
JSGα

)
divergence (Nielsen, 2019; Deasy et al.,

2020). We henceforth refer to VAEs with skewed geometric
divergences as α-VAEs, subsuming β-VAEs.

Divergence skew in VAEs balances the contrasting
properties of forward and reverse KL (such as zero-
avoidance/forcing) and circumvents opaque divergence
terms by interpolating between them (see Chapter 10 in
(Bishop, 2006)). However, an expensive grid search over
skew values fixed through training is necessary to optimise
for tasks such as image reconstruction. This is particularly
problematic as the link between optimal skew and dataset
properties is not clear and is not easily resolved. Moreover,
when skew is treated as static, the divergence constraint does
not change during training and therefore does not reflect
improvements in the encoder and its embeddings. Instead,
an improved optimisation would update the divergence skew
relative to these factors without using prior knowledge or
compromising performance.
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(a) α-VAEs on the MNIST dataset.
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(b) Breakdown of α-VAE divergences.

Figure 1. The influence of divergence skew, α, on test set image reconstruction (measured in mean squared error). Deasy et al. (2020)
used an expensive grid search to fix divergence skew through training. Our separate optimisation of α in JSGα (prefix t-), as a competing
objective to reconstruction loss, leads to strong performance and substantially improves over reverse KL from any initial skew. We plot
optimal α, denoted by a star, for 5 training seeds which (visually) converge to the same point.

Contributions. To overcome these issues, we extend the
work of Deasy et al. (2020) and introduce α-VAEs, by al-
lowing for data- and encoder-dependent skew. Our findings
indicate trends in final skew values which are dependent
on proxies for data complexity in synthetic examples. We
demonstrate that optimal divergence skew tends toward a
balance of forward and reverse KL as dimensionality in-
creases and, for increasing distribution modes, training skew
marginally favours forward KL. In the higher dimensional
setting of standard image benchmark datasets, we then es-
tablish that final skew values converge across seeds and
are consistent for a range of initial values. We further ex-
hibit that learning skew in α-VAEs has a positive impact
on test set reconstruction loss (summarised in Figure 1),
reconstructing denoised images from noisy images, and ex-
plain both advantages from the rate-distortion perspective
(Alemi et al., 2018). Overall, we show that α-VAEs with
learnable α consistently outperform forward and reverse
KL independent of dataset, encoder parameters, and initial
skew 1.

2. The JSGα divergence family
For distributions P and Q of a continuous random variable
Z = [Z1, . . . , Zn]

T, the forward KL divergence (Kullback
& Leibler, 1951) is defined as

KL(P ‖ Q) =

∫
Z

p(z) log

[
p(z)

q(z)

]
dz, (1)

where p and q are the probability densities of P and Q
respectively, z ∈ Rn, and reverse KL divergence refers to
KL(Q ‖ P ).

Reverse KL from a standard normal distributionN2(0, I) to

1Code is available at:
https://github.com/jacobdeasy/geometric-js

a diagonal multivariate normal distribution N1(µ,Σ), µ ∈
Rn and Σ ∈ Rn×n, is used throughout variational models
(Higgins et al., 2017; Kingma & Welling, 2014; Neal, 2012)
and is known to enforce zero-avoiding hyperparameters on
N1 when minimised (Bishop, 2006; Murphy, 2012). On the
other hand, the forward KL divergence is known for its zero-
forcing property (Bishop, 2006; Murphy, 2012). However,
there exist well-known drawbacks of the KL divergence,
such as no upper bound leading to unstable optimisation
and poor approximation (Hensman et al., 2014), as well as
its asymmetric property KL(P ‖ Q) 6= KL(Q ‖ P ). Under-
dispersed approximations relative to the exact posterior also
produce difficulties with light-tailed posteriors when the
variational distribution has heavier tails (Dieng et al., 2017).

One attempt at remedying these issues is the well-known
symmetrisation, the Jensen-Shannon (JS) divergence (Lin,
1991)

JS(p(z) ‖ q(z)) =
1

2
KL
(
p

∥∥∥∥ p+ q

2

)
+

1

2
KL
(
q

∥∥∥∥ p+ q

2

)
.

(2)

Although the JS divergence is bounded and offers some intu-
ition through symmetry, it includes the problematic mixture

distribution
p+ q

2
. This term means that no closed-form

expression exists for the JS divergence between two multi-
variate normal distributions using Equation (2).

Recently, (Nielsen, 2019) and (Nishiyama, 2018) have pro-
posed a further generalisation of the JS divergence using
abstract means (quasi-arithmetic means (Niculescu & Pers-
son, 2006), also known as Kolmogorov-Nagumo means). By
choosing the weighted geometric mean Gα(x, y) = xαy1−α

for α ∈ [0, 1], and using the property that the weighted prod-
uct of exponential family distributions (which includes the
multivariate normal) stays in the exponential family (Nielsen

https://github.com/jacobdeasy/geometric-js
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& Garcia, 2009), we have the divergence

JSGα(p(z) ‖ q(z)) = (1− α)KL (p ‖ Gα(p, q)) (3)
+ αKL (q ‖ Gα(p, q)) . (4)

JSGα , the skew-geometric Jensen-Shannon divergence,
between two multivariate Gaussians N1(µ1,Σ1) and
N2(µ2,Σ2) then admits a closed form

JSGα (N1 ‖ N2) = (1− α)KL (N1 ‖ Nα) (5)
+ αKL (N2 ‖ Nα) (6)

with the equivalent dual divergence being

JSGα
∗ (N1 ‖ N2) = (1− α)KL (Nα ‖ N1) (7)

+ αKL (Nα ‖ N2) (8)

where Nα has parameters

Σα =
(
(1− α)Σ−11 + αΣ−12

)−1
(9)

µα = Σα
(
(1− α)Σ−11 µ1 + αΣ−12 µ2

)
. (10)

In simple terms, these divergences measure a weighted arith-
metic mean of divergences from/to the prior/variational dis-
tribution to/from a weighted geometric mean of distributions.
We proceed by examining why this skew parameter α should
be learnt (replacing ψ in Equation (14)), what this means in
divergence space, and where the optimal α lie.

3. α-VAE optimisation
3.1. Learning divergence parameterisations is not

constrained optimisation

In order to flexibly interchange divergence terms regularis-
ing the latent space of VAEs, it is common to formulate VAE
training as a constrained optimisation problem (Rezende &
Viola, 2018; Higgins et al., 2017). A suitable objective to
maximise is the marginal (log-)likelihood of the observed
data x ∈ Rm as an expectation over the distribution of latent
factors z ∈ Rn

max
θ

[
Epθ(z) [pθ(x|z)]

]
. (11)

The latent representation can be controlled by imposing
an isotropic unit Gaussian constraint on the prior p(z) =
N (0, I), arriving at the constrained optimisation problem

max
φ,θ

EpD(x)

[
logEqφ(z|x) [pθ(x|z)]

]
subject to D(qφ(z|x) ‖ p(z)) < ε, (12)

where ε dictates the strength of the constraint and D is a
divergence. Equation (12) is then rewritten as a Lagrangian

under the KKT conditions (Karush, 1939; Kuhn & Tucker,
2014), obtaining

F(θ, φ, λ;x, z) = Eqφ(z|x) [log pθ(x|z)]
− λ (D(qφ(z|x) ‖ p(z))− ε) . (13)

However, here we are interested in learning properties of the
divergence itself, rendering Equation (12) and (13) invalid.
In this setting, the constrained optimisation problem is no
longer well-posed, as the constraint becomes part of the
optimisation. Instead, we choose to relax these optimisation
assumptions while maintaining competing objectives, the
log-likelihood and the parameterised divergence

L(θ, φ, λ;x, z) = Eqφ(z|x) [log pθ(x|z)]
− λDψ(x,z)(qφ(z|x) ‖ p(z), (14)

where ψ(x, z) parameterises D.

Such a formulation only relates back to Equation (13) in a
valid manner when changes in ψ map to a family of diver-
gences and redundant cases are avoided. For instance, it
would be particularly useful if, for a given ψ during optimi-
sation, training could still be understood as a reconstruction
loss term and a closed-form divergence regularisation term.
It is, therefore, of import to consider: which divergences
allow for such a parameterisation, whether they will have
non-trivial minima, and whether the subsequent properties
of this optimisation generalise or are useful. To this end,
we consider learning α, the skew, in the JSGα family of
divergences (Appendix 2) and proceed by highlighting the
connection to forward and reverse KL.

3.2. Skew optimisation

From an information geometric viewpoint, the skew param-
eter’s influence on the intermediate distribution can be seen
as the weighting of two distributions along a path in the
statistical manifold. In (Masrani et al., 2019), the authors
consider the geometric path between the variational dis-
tribution qφ(z|x) and the model distribution p(x, z). The
expensive grid search therein required integration along this
path and was later avoided in (Brekelmans et al., 2020) by
using a moment-matching approach to learn the optimal
point on the path. In contrast to these works, here we con-
sider skew between qφ(z|x) and the prior p(z) as a form of
regularisation.

Additionally, the property that JSGα interpolates between
forward and reverse KL (Deasy et al., 2020) offers a clear
mechanism for trading off forward and reverse KL prop-
erties. In VAE optimisation, as we have generalised the
overall objective by extending the constrained optimisation
problem to competing objectives, it is possible to consider
direct parameterisation of ψ from Equation (14). As long as
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ψ maps to [0, 1], the output is a valid divergence (a member
of the JSGα family) with extremes at forward and reverse
KL, so we can consider optimising ψ via gradient descent.

Before attempting the optimisation, we can derive useful
properties of JSGα(P ‖ Q) which clarify how the optimisa-
tion should be carried out. In particular, it is important to
understand the behaviour of JSGα with respect to α, as this
will dictate whether convergence is possible.

Proposition 1. For Gaussian distributions P and Q with
probability density functions p(z) and qφ(z|x) respectively,
the derivative of JSGα(P ‖ Q) with respect to α is

dJSGα

dα
= 2(α− 1)KL(p(z) ‖ qφ(z|x))

+ 2αKL(qφ(z|x) ‖ p(z)), (15)

with a stationary point at

α∗ =
KL(p(z) ‖ qφ(z|x))

KL(p(z) ‖ qφ(z|x)) + KL(qφ(z|x) ‖ p)
, (16)

which is a global minimum in the α dimension of the opti-
misation. Proof in Appendix B.1.

A useful sanity check from Equation (16), is that α∗ is
clearly bounded between 0 and 1 due to the non-negativity
of KL divergence. Secondly, as Equation (16) relies on pa-
rameters φ, this expression is clearly data dependent, mean-
ing optimal skew shifts during training and should not be
fixed as in (Deasy et al., 2020). Finally, considered as a stan-
dalone 1D optimisation of α, the global minimum means
that training divergence skew is convex and should be simple
to minimise in practice, with closed-form convergence.

Proposition 2. The upper bound on the convergence rate
of gradient descent to α∗ in (16) is

2 (KL(p(z) ‖ qφ(z|x)) + KL(qφ(z|x) ‖ p(z)))D2
1e
−4T ,

(17)

whereD1 = ||α1−α∗||2
2
, α1 is the initial skew value, and T

is the number of optimisation steps. Proof in Appendix B.2.

In the next section, we find practical optimisation of skew in
JSGα
∗ to be well behaved, suggesting that training skew in the

dual divergence is also well-posed and does not reduce to an
invalid divergence or one of the KL directions—despite an
equivalent proof of convexity via differentiation not being
obvious, due to a mixture term being outside of the log.

4. Experiments
As the convexity shown in Section 3.2 suggests simple op-
timisation of α, we directly train α as another parameter
of the model, but use a separate optimiser to the model
parameters so that our 1D analysis holds.

4.1. Characterising skew optimisation for JSGα
∗

To better understand how dual α-VAEs, α∗-VAEs, will be-
have in the more complex setting of modern variational
inference benchmarks, we first highlight their properties on
synthetic examples. In Figure 2, we depict different optimal
skew values for a fit of a multivariate Gaussian to an underly-
ing additive mixture of multivariate Gaussians with trained
JSGα
∗ skew. As the divergence integrals are not tractable, we

directly optimise the multivariate Gaussian parameters via
samples from the data for all divergences.

In both plots of Figure 2, we depict the emergent low-
dimensional trends in optimised skew. For Figure 2a, we
fit a 2D Gaussian ball to a 2D additive mixture of Gaussian
balls, with an increasing number of components in the mix-
ture. Whereas, in Figure 2b, we increase the dimension of
the fit and keep the ratio of mixtures to dimensions fixed
at 5. As the number of mixture components increases in
Figure 2a, optimal skew for JSGα

∗ decreases, favouring re-
verse KL as mass becomes more concentrated. Similarly, in
Figure 2b, the optimal skew for JSGα

∗ also decreases, under-
lining the need for data-dependent skewed divergences and
suggesting learnt skew in dual α∗-VAEs will be consistent
and avoid trivial cases for more complex data.

10 20 30 40 50 60 70 80 90
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(a) Learnt α vs. mixture
components.
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(b) Learnt α vs. mixture
dimension.

Figure 2. Emergent trends in optimised skew when fitting a Gaus-
sian ball to an additive mixture of Gaussians in ND for increasing
data complexity.

4.2. Benchmark image dataset performance

Divergence skew convergence. As the expression for the
minimum in Equation (16) is encoder dependent, we begin
our benchmark dataset assessment by depicting the alpha
landscape. In Figure 3, we see that optimal α decreases
during training, before stabilising in the final epochs. This
supports the argument that naively fixing skew is not opti-
mal, leads to inferior solutions, and even a hyperparameter
search for fixed skew followed by training is not sufficient.

The divergences converge to a consistent minimum. This
confirms that our 1D assessment of convexity and separate
optimisation of α successfully leads to stable skew values
(see Figure 4 in the Appendix). In addition, we exemplify
how skew evolves across 5 different training seeds. These
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VAE MNIST Fashion-MNIST dSprites Chairs CelebA

β-VAE (KL(q ‖ p), β = 4, (Deasy et al., 2020)) 11.75 13.32 10.51 20.79 269.52
InfoVAE (MMD, λ = 500, (Deasy et al., 2020)) 13.19 11.10 11.87 18.85 271.71
Vanilla VAE (KL(q ‖ p)) 10.67± 0.27 12.36± 0.22 7.78± 0.24 20.33± 0.34 262.53± 2.07

α-VAE (fixed α = 0.5) 11.24± 0.05 11.07± 0.67 12.07± 0.06 19.11± 0.14 270.33± 0.78

α∗-VAE (fixed α∗ = 0.5) 8.82± 0.04 9.80± 0.06 5.72± 0.07 16.40± 0.15 264.27± 0.45

α-VAE 8.89± 0.07 9.90± 0.05 5.03± 0.31 16.48± 0.08 259.50± 0.32

α∗-VAE 8.52± 0.07 9.59± 0.03 3.88± 0.27 15.98± 0.17 259.52± 0.36

Table 1. Final model reconstruction error across regularisation divergences and datasets. For trainable skew α-VAEs (bottom two rows),
final α values are given in Table 3. α∗ indicates dual α-VAEs.

plots delineate data and encoder dependency, with consis-
tency across seeds which initialise model parameters and
training procedures (e.g. dropout and batching), suggesting
learnt skew predominantly derives from, and varies between,
datasets (see Table 3).

Robustness to noise. As learning skew allows for problem-
dependent measurement of the distance to the prior, which
better accommodates more dispersed encoded distributions,
we tested how learning skew regularises VAEs in various
noise settings. In Figure 5, we present denoising experi-
ments where we add Gaussian noise, N (0, σ2), to the nor-
malised input images and clip to [0, 1]. Despite degraded
intuition surrounding where the skew balance should lie
in the noisy setting, Figure 5 clearly demonstrates that our
trainable skew in JSGα , and its dual form, consistently pro-
vides lower test set reconstruction loss across noise levels.
As a sanity check, we can also verify expected trends in the
other divergences, with the less dispersion-friendly reverse
KL performing poorly at higher noise levels as forward KL
becomes more appropriate, as well as the expected robust
behaviour of MMD at high noise levels (Zhao et al., 2019).

Improved reconstruction as a rate-distortion trade-off.
We test our model’s reconstruction-loss performance in the
standard clean-image setting. Table 1 demonstrates superior
reconstruction loss across multiple datasets, outperforming
both the naive choice of fixed α = 0.5 and KL divergence—
the latter by a substantial margin. We further detail the
relationship with fixed α in Figure 1a, Figure 6, the sup-
plementary figures in Appendix D, observing low recon-
struction loss from an arbitrary starting skew. To explain
this performance gain, we plot distortion (MSE) against rate
(Figure 7 in Appendix D), measured using the reverse KL
divergence for all divergences. The shift down and to the
right for α-VAEs mean that they trade off rate for distortion,
even more so when skew is learnt, giving higher quality im-
age reconstruction when starting with unknown divergence
scaling λ.

5. Conclusion
We recast VAE optimisation as a multi-objective task with
competing reconstruction and divergence regularisation
terms. This allowed us to use gradient descent to directly
learn the divergence skew used to control the variational dis-
tribution qφ(z|x) relative to the prior distribution p(z). The
resulting method, α-VAE, was shown to be well-posed as a
1D optimisation with a dependency on both the encoder and
the data, has improved reconstruction and denoising prop-
erties over standard regularisation techniques, and avoids
an expensive grid search over skew values. Moreover, as
α-VAEs also generalise over the β-VAE family, they are a
practical, efficient, and unbiased choice of VAE across a
range of tasks and domains.
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A. Related work
Since its introduction (Nielsen, 2021), JSGα (with α = 0.5)
has been used to decompose and estimate multi-modal
ELBO loss as regularisation in multi-modal VAEs. (Deasy
et al., 2020) further investigated the potential of JSGα at dif-
ferent skew values, in turn, demonstrating improved recon-
struction performance of VAEs. In contrast, in this paper we
propose data-dependent learnable skew, which retains the
benefits of using an optimal skew but avoids an expensive
grid-search. This provides both efficient and practical way
of training VAEs, leading to improved denoising and recon-
struction performance as well as better lossy-compression
rates focussed on in (Huang et al., 2020). In a similar con-
text, our work is related to (Brekelmans et al., 2020), that
introduces an optimal integration schedule via dynamic pa-
rameter selection when approximating the Thermodynamic
Variational Objective (Masrani et al., 2019).

α-VAEs extend the standard VAEs (Kingma & Welling,
2014; Rezende et al., 2014) paradigm with regularisation
constraint inspired by recent work on closed-form expres-
sions for statistical divergences (Nielsen, 2019; Nishiyama,
2018). In particular, α-VAEs offer a stable and intuitive reg-
ularisation mechanism. This allows optimal interpolation
between forward and reverse KL divergence, therefore com-
bating the issue of posterior collapse (Lucas et al., 2019). In
this regard, our work is related to approaches that address
this issue through KL annealing during training (Bozkurt
et al., 2021; Huang et al., 2018; Burgess et al., 2018). In
a more general sense, this work is also related to other
approaches that utilise various statistical divergences and
distances for latent space regularisation as an alternative
to the conventional KL divergence (Hensman et al., 2014;
Tolstikhin et al., 2018; Dieng et al., 2017; Zhang et al., 2019;
Zhao et al., 2019; Li & Turner, 2016).

B. Proofs
B.1. Proposition 1.

Proof. First, simplifying the divergence

JSGα = (1− α)KL
(
p ‖ pαq1−α

)
+ αKL

(
q ‖ pαq1−α

)
= (1− α)

∫
x

p log

[
p

pαq1−α

]
dx

+ α

∫
x

q log

[
q

pαq1−α

]
dx

= (1− α)2
∫
x

p log

[
p

q

]
dx+ α2

∫
x

q log

[
q

p

]
dx

= (1− α)2KL(p ‖ q) + α2KL(q ‖ p). (18)

Then, differentiating (18) with respect to α

dJSGα

dα
= 2((α− 1)KL(p ‖ q) + αKL(q ‖ p)) = 0,

(19)

and rearranging gives Equation (16), before differentiating
again

d2JSGα

dα2
= 2(KL(p ‖ q) + KL(q ‖ p)) ≥ 0, (20)

demonstrates the global minimum property as KL diver-
gence is always positive.

B.2. Proposition 2.

Proof. We first define the convexity strength and smooth-
ness of f(α) = JSGα , using its simplified form in Equa-
tion (18).

A function f(α) : Rn 7→ Rn is λ-strongly convex if

∇2f(α) � λI, (21)

where � is a generalised inequality and, in our 1D case, this
expression reduces to the second derivative with respect to
α, giving

λ = 2(KL(p ‖ q) + KL(q ‖ p)). (22)

f(α) is also β-smooth if df
dα is β-Lipschitz

||∇f(x)−∇f(y)|| ≤ β||x− y||, (23)

and, as our f is doubly differentiable, the Mean Value The-
orem (Rudin et al., 1976) with g = df

dα

g(x)− g(y)

x− y
≤ dg(z)

dα
=
d2f(z)

dα2
∀x < z < y, (24)

gives the necessary bound and the same constant

β = 2(KL(p ‖ q) + KL(q ‖ p)). (25)

We can now substitute into the result from convex opti-
misation with gradient descent (Bubeck, 2014) that, for a
λ-strongly convex and β-smooth function, the optimal step
size γ is

γ =
2

λ+ β
(26)

=
1

2(KL(p ‖ q) + KL(q ‖ p))
, (27)

and the upper bound on the convergence rate is

β||α1 − α∗||22e
− 4T

κ , (28)

where κ = β
λ = 1 is the condition number, completing the

proof.
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Dataset Stage Architecture

MNIST Input 28x28x1 zero padded to 32x32x1.
Encoder Repeat Conv 32x4x4 for 3 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 10.
Decoder FC 256, FC 256,

Repeat Deconv 32x4x4 for 3 layers (stride 2, padding 1).
ReLU activation, Sigmoid. MSE.

Fashion-MNIST Input 28x28x1 zero padded to 32x32x1.
Encoder Repeat Conv 32x4x4 for 3 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 10.
Decoder FC 256, FC 256,

Repeat Deconv 32x4x4 for 3 layers (stride 2, padding 1).
ReLU activation, Sigmoid. Bernoulli.

dSprites Input 64x64x1.
Encoder Repeat Conv 32x4x4 for 4 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 10.
Decoder FC 256, FC 256,

Repeat Deconv 32x4x4 for 4 layers (stride 2, padding 1).
ReLU activation, Sigmoid. Bernoulli.

Chairs Input 64x64x1.
Encoder Repeat Conv 32x4x4 for 4 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 32.
Decoder FC 256, FC 256,

Repeat Deconv 32x4x4 for 4 layers (stride 2, padding 1).
ReLU activation, Sigmoid. Bernoulli.

Table 2. Detail of model architectures.

C. Benchmark datasets for skew exploration
Throughout our experiments we evaluate the reconstruction
loss (mean squared error) on four standard benchmark im-
age datasets : MNIST, 28× 28 black and white images of
handwritten digits (LeCun et al., 2010); Fashion-MNIST,
28 × 28 black and white images of clothing (Xiao et al.,
2017); Chairs, 64 × 64 black and white images of 3D
chairs (Aubry et al., 2014); dSprites 64 × 64 black and
white images of 2D shapes procedurally generated from
6 ground truth independent latent factors (Matthey et al.,
2017); CelebA resampled to 64× 64× 3 colour images of
celebrity faces (Liu et al., 2015). For fair comparison, we
follow Higgins et al. (2017) by selecting a common neural
architecture across experiments. For consistent analysis,
rather than searching within architecture and hyperparam-
eter spaces for the best performing model by some metric,
we standardise comparison and characterise the benefit of
learning divergence skew.

In terms of model details, we use the architectures specified
in Table 2 throughout experiments. We pad 28x28x1 images
to 32x32x1 with zeros as we found resizing images nega-
tively affected performance, and we use nearest neighbour
interpolation to downsample CelebA to be 64x64x3. We
use a learning rate of 1e-4 throughout and use batch size 64
and 256 for the two MNIST variants and the other datasets
respectively. Where not specified (e.g. momentum coeffi-
cients in Adam (Kingma & Ba, 2014)), we use the default
values from PyTorch (Paszke et al., 2019). The only archi-
tectural change we make between datasets is an additional
convolutional (and transpose convolutional) layer for encod-
ing (and decoding) when inputs are 64x64xN instead of
32x32x1. We train dSprites and CelebA for 50 epochs, and
all other datasets for 100 epochs. All models were trained
on one GPU, with type varying between: NVIDIA Titan X,
NVIDIA 2080 Ti, or NVIDIA A100.
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D. Further results
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Figure 3. α landscape at different training epochs in training for
FashionMNIST.
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(a) JSGα , initial α effect.
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(b) JSGα , training seed effect.
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(c) JSGα
∗ , initial α effect.
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(d) JSGα
∗ , training seed effect.

Figure 4. The robust nature of our method’s convergence. α con-
vergence across a range of starting values and seeds using the
MNIST dataset.
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Figure 5. Reconstruction loss for noisy input images across differ-
ent noise levels and regularisation divergences on MNIST.
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Figure 6. α-VAEs on the Fashion-MNIST dataset.
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Divergence MNIST FashionMNIST dSprites Chairs CelebA

t-JSGα 0.118± 0.001 0.165± 0.002 0.06± 0.007 0.121± 0.001 0.0377± 0.000

t-JSGα
∗ 0.360± 0.000 0.377± 0.002 0.39± 0.001 0.365± 0.001 0.310± 0.000

Table 3. Mean learnt α for JSGα and JSGα
∗ with standard deviation across 5 different training seeds.
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Figure 7. Rate distortion curves for KL, JSGα
∗ , and JSGα

∗ with learnt α on MNIST. Dashed or full lines connect values from the training or
test set respectively. λ values vary consistently for each divergence from left to right but are only annotated for KL.


