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Abstract: Different models can provide differing levels of fidelity when a robot
is planning. Analytical models are often fast to evaluate but only work in limited
ranges of conditions. Meanwhile, physics simulators are effective at modeling
complex interactions between objects but are typically more computationally ex-
pensive. Learning when to switch between the various models can greatly improve
the speed of planning and task success reliability. In this work, we learn model
deviation estimators (MDEs) to predict the error between real-world states and
the states outputted by transition models. MDEs can be used to define a model
precondition that describes which transitions are accurately modeled. We then
propose a planner that uses the learned model preconditions to switch between
various models in order to use models in conditions where they are accurate, pri-
oritizing faster models when possible. We evaluate our method on two real-world
tasks: placing a rod into a box and placing a rod into a closed drawer.

Keywords: planning, manipulation

1 Introduction
Predictive models that are helpful for intelligent behaviors can take a variety of different forms,
e.g. analytical models [1, 2], physics simulations [3, 4], and learned models [5, 6, 7], and the best
choice of model is context-dependent. For example, a high fidelity simulator can model complex
interactions between a large number of objects when dumping a pile of non-convex objects on a
table [8]. However, for a simple tabletop pick and place task, a simulator model is often unnecessary
when a simple kinematic model is available.
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Figure 1: Each colored region on the left represents a model precondition, which we learn in this work for
analytical and simulator models for manipulation skills. In this example, a kinematic model is faster than a
low-fidelity simulator, and a low-fidelity simulator is faster than a high-fidelity simulator. On the right we show
for each step which state-action pair (st, ai

t) was in the precondition for each model, and the best model to
use to evaluate that edge. The states and actions on the path chosen for the plan have a bold border. States
not expanded because of high model cost have a dashed border. Multiple actions at a state st are denoted by
superscripts: For example, two different actions from s0 would be [a0

0, a
1
0].
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A planner may need to make many predictions to find a plan, so it is important to only use com-
putationally expensive models when they are most needed. We define model preconditions, shown
abstractly in Figure 1, that demarcate regions of states and actions where the model accurately rep-
resents real-world dynamics. We use those model preconditions during planning to leverage the
complementary advantages and disadvantages of different models.

To capture the model preconditions, the robot learns to predict the total state deviation as a con-
tinuous value for each model. These deviation predictions are used to inform the planner to avoid
transitions that are inaccurately modeled. The amount of acceptable model error is task-dependent,
but by predicting state deviation as a continuous value rather than a binary one, the thresholds can
be set based on the task accuracy requirements.

This work’s contributions include a method for defining model preconditions using a learned scalar
model deviation term and then using those preconditions for planning with multiple models to min-
imize model error at execution time. We first show how to fit Model Deviation Estimators (MDEs)
from planning-relevant data to predict the error between a transition model and real-world dynam-
ics. We then use MDEs to define the model preconditions for multiple skills for specific tasks. We
evaluate our method for learning and planning with MDEs on two real-world tasks: placing a rod
that can rotate in-hand into a box and placing a rod into a closed drawer. The robot has access to
incomplete analytical models and a simulator model for each action class. Like in many real-world
planning applications, none of the models match the real-world dynamics for all possible interac-
tions. We compare two planning approaches with MDEs against other model selection baselines.

2 Related work
We review related work relevant to our two main contributions: predicting model error from data
and planning using multiple imperfect models by reasoning about planning speed and reliability
tradeoffs.

Improving planning reliability with past experience: Learning model preconditions for planning
draws from the high-level idea of identifying similarities to states encountered in previous plans to
apply behaviors that previously led to successful plans, which can significantly improve planning
speed [9, 10]. Plan reliability can also be improved by learning skill preconditions, which describe
the states from which skills achieve desired effects with high probability [11, 12, 13]. Instead of
using skill preconditions, we use transition model preconditions.

Avoiding regions with model error: For predicting where the model is accurate using data, Chou
et al. [14] and Knuth et al. [15] use hyperspheres to represent proximity to training data for a learned
model as a proxy for the model precondition. CMAX and CMAX++ also use hyperspheres, but use
points where the action effects differed significantly from those predicted by the internal model [16,
17]. However, proximity to training data and predicted collisions do not always capture model
accuracy when executed on a real robot. Our work proposes a method to fit an estimator from
plan execution data to predict whether model error will occur. Other works bias search away from
states where the simple planning model is known to be inaccurate, but also do not use other models
to compensate for transitions the simple model cannot model accurately, while our planner uses a
slower model where appropriate [15, 14, 16, 18]. This distinction of not using alternative models
when model error is predicted is especially significant when no one model can be used to compute
a plan accurately, such as when each model only reasons about a subset of interactions necessary to
achieve a task.

Predicting model error: The works most similar to ours use visual similarity to model the un-
certainty of their simple model in Power and Berenson [19] and learning a classifier in the work
of Mitrano et al. [20] and McConachie et al. [18]. The primary difference is that they do not use
their model error estimates as criteria for switching models, whereas we use the planning data to
learn model error estimates to decide between multiple models. McConachie and Berenson [21]
does use multiple models, but uses task progress rather than error as selection criteria and does not
do multi-step planning. Additionally, these works assume access to a simulator accurate enough
to compute the ground-truth labels for accurate model predictions. We relax that assumption by
treating the simulator as an additional model, which can also exhibit model error. Our labels then
come from the real world. The methods above are also focused on a rope manipulation domain,
where errors can usually be corrected with a recovery policy, as shown in [20]. Many actions in the
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manipulation domain in which we evaluate our model error prediction lead to unrecoverable states,
such as an object lying in an un-graspable pose in a constrained space.

Planning with multiple models: The work of Saleem and Likhachev [22] uses a rule where a
simulator is only used when collision is detected using an internal model to speed up planning.
However, there are many situations where there are transitions in which objects are in contact but an
analytical model can still be used. Our planning algorithm is based on Multi-Graph Multi-Heuristic
A* [23], which presents an algorithm that selects between models which operate on different parts
of the state. The models we consider in this work operate on the same objects in the state, which
makes choosing a model not straightforward. Furthermore, for the models we use, the best model to
use depends on both the state and action rather than just state.

3 Problem Formulation
The overall problem is to first learn the MDEs to predict the total model deviation given a state, ac-
tion, and transition model, then use MDEs for planning using multiple models, prioritizing planning
using the faster models where possible while still minimizing cost.

The state space is denoted by S and is assumed to be fully observable at the end of an action. The ac-
tion space A is a set of closed-loop skills a ∈ A, parameterized by θ which are available to the robot.
A user-defined skill-specific parameter generation function generates potentially useful parameters
given a state. Skills follow the options formulation [24]. Skills are executed using a low-level con-
troller until a termination condition is reached. The actions are intended to be run for a significant
period of time such that feedback control at a lower level of abstraction can correct for low-level
errors, leaving the MDEs to capture model error that is harder to correct. Skills have an associated
precondition set, pre(a) ⊆ S describing the set of states where the skill can be executed. The skill
preconditions narrow the space where the skill has defined behavior, but do not comprehensively
describe the set of states where the dynamics models are accurate. The skill precondition simply re-
lates to the skill’s applicability and are separate from MDEs and models of the skills’ effects, which
we describe next.

The robot is given an ordered list of models [M0,M1, . . . ,MK ], used to compute the forward dy-
namics: ŝ� ← Mi(s, a). The models are ordered by increasing computation speed, where Mi is
slower to evaluate than Mj if i < j. For example, M0 may be a high-fidelity simulator that is slow
but very accurate, M1 a simulator with a coarse timestep discretization, M2 an analytical model
requiring more computation, and M3 a simple linear model. It is preferable to use the model with
the highest i, corresponding to the fastest model, that is accurate for that (s, a). To measure model
accuracy, the robot is given a distance function between states d(si, sj), such as Euclidean distance.
The MDE predicts d̂ from φ(s) and a, where φ(s) is a function that extracts relevant features such
as object poses or distances between objects.

Lastly, the robot is given a task that includes a goal set, a cost function, and optionally additional
task-specific action parameter generators. The state satisfies the goal if it is in the goal set Sg . The
cost function describes the cost of high-level state transitions and is denoted by c(s, a, s�).

To train the MDEs, the robot needs to first collect an offline dataset D of real-world transitions
(s, a, s�). We assume the robot knows the initial state distribution but not all states visited during
planning. Initial states are sampled from the initial state distribution, but the rest of the states are
determined from planning. Then the robot trains the MDE d̂(s, a) which estimates d(s�, ŝ�) using
D. The eventual goal is for the robot to search for a high-level plan of actions [a0, a1, . . . , aT−1] to
create a sequence of states [s0, s1, . . . , sT ] such that the final state is a goal state: sT ∈ Sg .

4 Approach
First we explain how to define and learn model preconditions using MDEs. We then show how
MDEs can be used in planning to use multiple models while prioritizing states that can be reliably
evaluated using simpler models.

4.1 Learning Model Preconditions Using Model Deviation Estimators
If a transition is in a model’s precondition, then that model can be used to accurately model that
transition. A model precondition is defined using MDEs as:

pre(Mi) = {(s, a) | d̂(Mi(s, a), s
�) < dmax} (1)
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Training data for MDEs is collected by computing and executing plans using all models. If a path
to the goal is found, it is executed. Each transition is saved as (s, a, s�) tuples for every transition
observed in the path. The list of transitions is expensive to collect as it requires real-world data, but
several datasets for MDEs can be derived from it.

To train the MDE for a particular model Mi, ŝ� is computed using Mi for each (s, a) in D. The
labels are d(s�, ŝ�). Training data for transitions is used across all models even though that transition
was computed using just one model during planning.

The inputs are state features, φ(s) concatenated with θ. φ(s) can be the identity function, but local
features such as the distances between objects can enable easier generalization.

We train an MDE for every combination of skill and model, though MDEs can be shared if skill
parameters have similar meaning. The reason why MDEs are regression models instead of classifi-
cation models is to enable sharing of MDEs across tasks with different accuracy requirements. To
model the MDEs we use a 3-layer MLP with 32 hidden units in each layer.

Next we describe the loss function for MDEs. An underestimated predicted deviation is worse
for plan reliability than an overestimated predicted deviation. Overestimates cause the planner to
be overly conservative, but an underestimate can cause plans to be executed unreliably on the real
robot. As a result, we propose a loss function that penalizes underestimates more than overestimates:
Lg(d, d̂) = c1max(0, d− d̂)2 + c2max(0, d̂− d)2. To get the desired behavior, we set c1 > c2.

4.2 Planning With Multiple Models Using MDEs

Model preconditions can be used in the same manner as skill preconditions by using the model
preconditions as a constraint during planning, such as by using Equation 1 as an inequality constraint
during optimization, where the M used at each t are additional variables. Model preconditions as
predicate constraints can be applied to STRIPS-style planners using actions with a particular M
to compute skill effects by including (s, a) ∈ pre(M) to the existing action preconditions as an
additional predicate.

Although MDEs can be used to select between models in a more general setting, we propose a
planner that can more effectively use MDEs by using a user-defined model priority weighting to
prioritize expanding subgraphs that are less expensive to evaluate. Our planner prioritizes simpler
models by using a weighting factor inspired by the one used in Multi-Heuristic A*(MHA*) [25].
Because our planner uses successors from different models, we also build on Multi-Heuristic Multi-
Representation A* [23].

Our proposed planning algorithm uses up to K models for each skill. Models can be shared across
skills. The planner expands K implicit bidirectional graphs, which maintain their own open queues
for nodes to expand and closed sets for nodes that have already been expanded, but all graphs share
successors. All open queues are initialized with the start state and all closed sets are initialized to ∅.

An anchor search expands its graph by selecting between all models, and the K − 1 additional
graphs expand using the K − 1 faster models. Priorities between models are adjustable using a list
of model preference weights, w = [w0, w1, . . . , wK−1] decreasing in value representing how much
to penalize slower models. We now describe how the separate queues and graphs are used to switch
between models.

Similar to standard Weighted A* (WA*), each planning node has a cost g, heuristic value h, and
priority f = g + �h. The function MINKEY() returns the node in a queue with the lowest f value.
To handle partial expansions, a node can optionally have a set of un-evaluated actions associated
with it, Ainc(s). The anchor search uses open queue OPEN0 and closed set CLOSED0. It uses a
full expansion, which computes the successor with the fastest model that satisfies the precondition
for a particular state and action. If no model satisfies the precondition, there is no successor for
that transition. Nodes that are fully expanded in the anchor search are added to all closed sets.
Each additional search maintains its own open queue OPENi and closed set CLOSEDi. It computes
successors using a partial expansion only using Mi as long as (s, a) ∈ pre(Mi), saving other actions
for expansion by other graphs.

Graph and node selection: We expand from queue i using a rule inspired from MHA*:
i = argmin

i<K
wi OPENi.MINKEY() (2)
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Figure 2: Graphical representation of the two types of expansions using model preconditions. Green ovals are
data and yellow rectangles represent operations on data. The left side shows how actions are selected for both
expansion types. The right side shows full expansion (top) and partial expansion (bottom).

If i = 0, then a node is expanded in the anchor search using the full expansion. If i > 0 then the node
is expanded using a partial expansion for graph i. The node to be expanded is OPENi.MINKEY(),
as with standard WA* search.

We begin by describing steps used for both types of expansions, and then describe what is different.
All expansions begin by first checking the goal condition. As shown in Figure 2, the search is
terminated when a goal state is expanded. Otherwise, expansion begins by selecting the set of
actions to evaluate, A. A is Ainc if Ainc is non-empty. If not, a parameter generation function
generates a candidate list of possible parameterized actions. The graph to expand is chosen using
the rule in Equation 2. For each successor s�, if the path found to s� is lower cost than any current
path found to s� in any graph, the path is updated using s�. Then s� is added to to all OPENi if it is
not in CLOSEDi.

Full expansion: Full expansion is used as a fallback when the other searches with faster models run
out of nodes or only contain highly suboptimal nodes. As shown in the top right box in Figure 2,
full expansion evaluates all successors using Mi(s, a) for the highest value of i that satisfies (s, a) ∈
pre(Mi). Then, s is added to all closed sets.

Partial expansion: The intuition behind using partial expansion is to evaluate nodes using faster
models sooner while delaying slower evaluations. For all (s, a) ∈ pre(Mi), the successors s� are
computed using Mi, and they are added to all open queues. For all states and actions not in the
precondition, the successors are not evaluated. Instead, those actions are added to Ainc(s) for later
evaluation in other graphs, then the node is added to CLOSEDi. This step helps bias the search to
nodes that are cheap to evaluate, while still allowing the planner to reason about when to use more
expensive models for completeness or optimality.

5 Experiments
First, we describe the metrics we use to evaluate our method, then describe the experimental setup
we use for two real-world task domains shown in Figure 3: placing one of two steel rods in a box
(RodInBox), and in a drawer (RodInDrawer). Then, we show the accuracy of MDEs for each skill.
Finally, we evaluate two planners that use MDEs on two real-world tasks against baselines: one
using a single queue with model preconditions as constraints and another using our multiple-queue
planner described in Section 4.2.

We compare timing metrics, demonstrate the model selection for each skill in the RodInDrawer
task, and discuss how the model selection distribution in each algorithm impacts plan time and
reliability. For plan performance, we test: 1) the time to compute a plan (seconds), 2) the model
evaluation rate (model evaluations per second) to measure the planner’s ability to explore efficiently,
3) the success rate in computing a plan, and 4) the success rate achieving the goal in the real-world
tasks if a plan was found (to measure reliability).

Tasks: For both RodInBox and RodInDrawer tasks, a Franka Emika Panda manipulates one of two
steel rods into a desired container. The rod to place in the container is chosen randomly. Due to
its weight, the rod can drop or rotate in the gripper (Figure 6). Both rods are placed in arbitrary
reachable poses not occluded by other objects on the table.

The first task is RodInBox. A state is in Sg if the target rod is in the green box shown in Figure 3.
The purpose of this task is to evaluate what happens when our method is applied on a task where
high precision is not necessary for task completion, but the effects of some actions are easier to
model than others. The second task we evaluate on is RodInDrawer, shown in Figure 3 where the

5



(a) RodInBox (Sim) (b) RodInBox (Real) (c) RodInDrawer (Sim) (d) RodInDrawer (Real)

Figure 3: Robot setup for test tasks in simulation and on the real robot.

goal is to place a rod in the partially closed drawer. Goal states are those where the rod is within the
bounds of the drawer. Heuristics for both tasks are in Appendix 1.

Actions are movements in Cartesian end-effector space, implemented in the real world using the
library from Zhang et al. [26] and with end-effector attractors in simulation. In simulation, the
world is fully observable. In the real world, the rod poses are estimated using an the overhead
camera. When a grasped object is occluded by the robot, an in-hand camera is used to confirm that
the object is in the gripper, and the previously recorded pose is used. This perception is sufficient
for our use case because the skills with the most variability do not end with an object in the gripper.

Skills: The skills the robot uses are Pick, LiftAndDrop, and OpenDrawer. Because the effect
models used are high-level and the end-effector moves horizontally at a height above all obstacles,
collisions are only checked at the beginning and end of each motion. The state includes the pose of
all objects in the scene, including the robot end-effector pose. Pick is parameterized with the goal
pose, which is sampled around the target rod. LiftAndDrop brings the end-effector and rod to a target
location, then opens the grippers. The precondition of LiftAndDrop is that an object is between the
grippers and that the goal pose will not cause collisions. OpenDrawer moves the gripper to a fixed
location relative to the front of the drawer, then opens the drawer moving to a final pose. Detailed
descriptions of all the skills, including hyperparameters, are in Appendix 7.1.

Models: The robot has access to a simulator and two analytical models. One analytical model,
Analytical (Pick & Place) , only computes the transition model for pick and place actions, assuming
a rod close to the gripper is rigidly attached. When the rod is placed, it falls to a height determined
by the object (if any) directly below it. Another model, Analytical (Drawer) , only reasons about
a simplified articulation mechanism of the drawer, assuming the drawer edge is rigidly attached to
the gripper if both surfaces are close, but does not model interactions between the rods and drawer.
Details about each analytical model are in Appendix 7.2.2

The simulator we use for both tasks is IsaacGym [3]. For RodInBox, we use a setup with a box
shown in Figure 3(a). The simulation parameters used for both experiments are shown in Appendix
7.2.1. For RodInDrawer, the drawer is modeled as a single drawer chest using cuboids, as shown in
Figure 3(c). To evaluate the result of a skill from a state s, the simulator sets the state of the world
to s, executes skill a and returns the resulting state as ŝ�

5.1 MDE Accuracy
Skill Model MAE d
Pick Analytical (Pick & Place) 0.2 0.4 (0.4)
Pick Analytical (Drawer) 0.2 0.4 (0.4)
Pick Simulator 0.7 4.7 (9.5)

LiftAndDrop Analytical (Pick & Place) 1.9 8.3 (7.41)
LiftAndDrop Analytical (Drawer) 7.6 11.6 (8.0)
LiftAndDrop Simulator 2.5 11.0 (10.7)
OpenDrawer Analytical (Pick & Place) 0.4 16.0 (0.4)
OpenDrawer Analytical (Drawer) 0.6 2.1 (0.3)
OpenDrawer Simulator 1.2 7.0 (0.5)

Table 1: Mean absolute error (MAE) and d (mean and standard
deviation) in centimeters for each model/skill combination.

In this section, we evaluate MDE ac-
curacy on each skill used, which cor-
relates with the variance of d. As
shown in Table 1, deviation predic-
tion error is highest for LiftAndDrop
because there is a wider range of pos-
sible outcomes. The predicted devi-
ation error for the simulator model
is low but not zero because predict-
ing the precise deviation requires an
accurate real-world dynamics model.
For example, a poorly-grasped rod
may drop in simulation earlier than it would on the real-robot system by dragging on the ground
differently. Since Analytical (Drawer) does not model movement of the rods, the exact deviation de-
pends on the state and parameters, but the error is always predicted to be high for LiftAndDrop, which
is sufficient information to guide planning. The deviation for Pick using Analytical (Drawer) is low
because modeling Pick does not require any physical interactions between robots and rods, and the
robot is not in contact with the drawer. Simulator deviation prediction error for Pick is high be-
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Method Plan
time

Model eval.
per second

Ours - multiple queues 0.40 25.2
Ours - one queue 8.98 1.13
Random 40.00 0.25
Analytical (Pick & Place) only 0.19 113.58
Simulator only 31.23 0.5

(a) RodInBox

Method Plan
time

Model eval.
per second

Ours - multiple queues 3.69 19.0
Ours - one queue 5.27 6.0
Random 44.36 0.6
Simulator only 103.34 0.5

(b) RodInDrawer

Table 2: Planning times for methods that can find plans. We show the average time to compute a plan (not
including timeouts).

cause when a drawer is in the environment, the joints sometimes interact with the drawer, causing
interactions that do not occur in the real world.

5.2 Planning Speed
For planning, we evaluate the performance from ten different initial start states per task. RodInBox
uses Pick and LiftAndDrop, sampling five parameter vectors per skill. RodInDrawer uses Pick,
LiftAndDrop, and OpenDrawer, with three parameters generated per skill. � = 5 for RodInBox and
� = 10 for RodInDrawer. The model preference weights are [10,1] corresponding to [Simulator,
Analytical (Pick & Place) ] for RodInDrawer and [10,1.1,1] corresponding to [Simulator, Analytical
(Drawer) , Analytical (Pick & Place) ] for RodInBox. The cost function is given by the total end
effector distance covered in the trajectory. For timing experiments shown in Table 2a, we allow the
planner to run for at most 300 seconds (5 minutes).

Baselines: We compare planning using MDEs to planning with each individual model, and ran-
domly selecting which model to use when computing each successor. Additionally, we perform
an ablation test by removing the additional queues and only performing full expansions using the
anchor search, though still evaluating the fastest model that satisfies the preconditions.

For RodInBox, (Table 2a) the planning time and model evaluation rate are fastest using only the
analytical model. Random model selection and simulator-only planning are the slowest. Because
our method uses the fastest reliable model wherever possible, and for this task a short plan to the
goal can be computed using only the fastest model, the model evaluation rate for our method is
still high. The one-queue planner that uses MDEs is slower because the model precondition for the
simulator model for LiftAndDrop is usually satisfied, so some actions that are unnecessary to find a
plan are simulated.

The planning speeds for both methods using MDEs in RodInDrawer (Table 2b) are faster than the
simulator-only baseline because it can always use an analytical model for Pick and OpenDrawer,
and sometimes use the analytical model for LiftAndDrop. The improvement of using multiple queues
in this domain is smaller than for RodInBox, which we discuss further in the next paragraph. The
random baseline is the slowest because it uses the largest number of simulator calls.

Both MDEs and the planning method can affect the distribution of models chosen. For example,
Figure 4 (left) shows planning with one queue causes the planner to compute successors using tran-
sitions in the model precondition of more expensive models at the same priority of sets in the faster
models, which causes some actions to be simulated that would not be if they were using our multiple-
queue planner, causing the longer planning times for RodInBox. For RodInDrawer, the one-queue
ablation test selects very similar models to the multiple-queue planner, so using a single queue does
not significantly affect planning speed. The reason is that the simulator model is more inaccurate in
RodInDrawer than in RodInBox. The MDE can detect the task indirectly since the parameter distri-
butions for the two tasks are different. As a result, the one-queue planner rarely uses the simulator,
which can also be seen in Figure 4 (right).

5.3 Reliability of Computed Plans
The experiments shown in Figure 5, evaluate the ability of our method to improve plan reliability
without significantly increasing planning time by balancing model accuracy and computational cost.
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Figure 4: Average number of models evaluation of each type for all three skills for RodInBox (left) and
RodInDrawer(right) across methods
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Figure 5: Success rate in finding plans (left) and if found, executing them until the goal (right)

(a) No pivot (Analytical) (b) Drop during transport (Real) (c) Hitting target container (Real) (d) Unrealistic physics (Sim)

Figure 6: Situations where planning models are inaccurate. (a) Analytical (Pick & Place) assumes rigid attach-
ment, although this (b) causes the rod to either drop during transport or (c) rotate and hit the target container.
(d) The simulator sometimes exhibits unrealistic physics such as the rod sliding over the box walls.

All methods that use a model that reasons about interactions between the rod and robot are able to
compute a plan in the allotted time for RodInBox. In the more challenging RodInDrawer task, the
simulator-only baseline and one-queue version of our method sometimes fail to find a plan within the
time limit. Plan success is highest for both methods using model preconditions and the simulator-
only baseline. MDEs cause the planner to only use transitions where the model is predicted to be
accurate, such as using LiftAndDrop when the rod is grasped in the center. The simulator is more
accurate than the analytical models so plans using it often succeed. In contrast, plans found using
the analytical-model-only and random-model baselines often fail because the lowest cost paths often
include grasping the end of a rod, which is predicted to be rigidly attached by the analytical model
(Figure 6a). In the real world, grasping the end of the rod causes it to pivot, which usually causes the
rod to drop during transport (Figure 6b) or after hitting the target container (Figure 6c). Although
the simulator can model pivoting in the gripper, unrealistic dynamics sometimes occur (Figure 6d).

6 Conclusion
We present a method for defining model preconditions using MDEs that predict model deviation
given a state and a parameterized skill, which can be used to inform tradeoffs between models when
each has complementary advantages and disadvantages in evaluation time and accuracy. Although
MDEs can be used as constraints, we show a planner that uses multiple queues corresponding to
different models that prioritizes planning using the faster models. Experimental evaluations show
a speed up in planning by choosing between multiple models while keeping high plan reliability
during execution. In both evaluation tasks, our results show that a robot can learn and reason about
which transitions need to use more expensive models, which transitions none of the models can eval-
uate accurately, and how to inform planning with that information. For placing a rod in a drawer, we
show that the robot can combine two low-fidelity models intended for representing different interac-
tions, while avoiding using an expensive simulator that models all interactions. For future work, we
will modify our framework to share more data across skills by using a shared action representation,
which will also allow changing a low-level model multiple times during a skill execution. Further-
more, we will evaluate our method on tasks where model selection is more difficult, such as liquid,
paper, and other deformable object manipulation.
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