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ABSTRACT

In this study, we present Talk2Biomodels (T2B) and Talk2KnowledgeGraphs
(T2KG) as open-source1, user-friendly, large language model-based agentic AI
platforms designed to democratize access to computational models of disease pro-
cesses using natural language. T2B and T2KG eschew the traditional graphical
user interface (GUI) and minimally adaptable workflow in favour of a modern
agentic framework to provide a dynamic and immersive experience to explore
the biology of disease in silico and how different treatment options can be effi-
cacious in different virtual patient populations. T2B supports models encoded in
the open-source community format Systems Biology Markup Language (SBML)
for quantitative prediction of patient biomarkers and integrates with biomedical
knowledge graphs to provide qualitative insights not captured in the computational
model. A use case in precision medicine is presented to demonstrate how experts
and non-experts in computational biology and data science can benefit from T2B
and T2KG.

1 INTRODUCTION

Recent developments in generative artificial intelligence (AI), particularly in large language models
(LLMs), have demonstrated substantial progress. Noteworthy advances in both algorithmic inno-
vation and data-driven biomedical discovery are showcased by the advent of foundational learning
models for protein structure, single cell omics and genomic data across species, such as, AlphaFold,
scGPT, and Evo 2, to name a few (Brixi et al., 2025; Cui et al., 2024; Jumper et al., 2021). While
LLMs’ role is currently confined to narrow, task-specific applications, efforts are underway to en-
able open-source LLM-driven agentic workflows in biomedical discovery (Lobentanzer et al., 2025).
Collaborative AI agents, with their task orchestration, reflective learning and sophisticated reason-
ing capabilities, have the potential to revolutionize biomedical research and patient treatment (Gao
et al., 2024; Zou & Topol, 2025).

∗These authors contributed equally to this work.
†Corresponding author.
1Source code available at: https://github.com/VirtualPatientEngine/AIAgents4Pharma
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Computational models and biomedical knowledge graphs have become an essential component
in enhancing our understanding of complex disease processes. The most common computational
modeling frameworks in systems biology modeling include kinetic, constraint-based, logic, and
agent-based modeling. The present study specifically focuses on ordinary differential equations
(ODE) models, a subset of kinetic models, due to their widespread application and significance in
the field. ODE models represent the most popular modeling approach, with approximately 1,662
models2 currently deposited in the BioModels database (Malik-Sheriff et al., 2019) and a multi-
tude of models not systematically stored in the scientific literature. These models cover a wide
range of domains, as demonstrated by their use in precision medicine (e.g., inflammatory bowel
disease treatment) (Dwivedi et al., 2014), COVID-19 pandemic studies (Tang et al., 2020), and
theoretical analysis of dynamic systems (Markevich et al., 2004). Furthermore, ODEs are a stan-
dard tool in pharmaceutical research, particularly in the development of physiologically based phar-
macokinetic/pharmacodynamic (PBPK/PD) and quantitative systems pharmacology and toxicology
(QSP/QST) models (Chan et al., 2024; Kuepfer et al., 2016). In addition, the regulatory authorities,
such as the U.S. Food and Drug Administration (FDA), recognize these computational models as
a well-established and increasingly significant body of evidence in drug approval decision-making
processes (Morrison et al., 2018). While computational models provide quantitative predictions
within a limited biological scope, biomedical knowledge graphs offer qualitative reasoning across a
broader biological spectrum. Biomedical knowledge graphs also play a critical role in pharmaceuti-
cal research (Bonner et al., 2022) where they are used to identify new drug targets (Middleton et al.,
2024), repurpose existing drugs (Huang et al., 2024), explore the effects of drug-drug interactions
(Zitnik et al., 2018), and refine patient endotypes that would most benefit from an existing or new
therapy (Geleta et al., 2021).

To interact with mathematical models of biological systems, several popular graphical user interface
(GUI)-based ODE modelling frameworks exist for biological and translational applications. These
include proprietary options such as the MATLAB toolbox SimBiology (The MathWorks Inc, 2024)
and Berkley Madonna (Marcoline et al., 2022), as well as open-source alternatives like COPASI
(Hoops et al., 2006) and the Open Systems Pharmacology Suite (Kuepfer et al., 2016). However,
both proprietary and open-source solutions typically require software installation, specialized train-
ing, and domain knowledge for effective simulation and analysis of models.

To overcome the limitations of existing modelling frameworks, and to expand the biological scope
of computational models, we propose Talk2BioModels (T2B) and Talk2KnowledgeGraphs (T2KG)
as easily accessible agentic AI applications. T2B and T2KG users do not need to possess expert
knowledge in programming nor systems biology to simulate and perform basic analyses of ODE
models, and qualitatively reason over and contextualize the results in the broader understanding of
biology and disease captured in biomedical knowledge graphs. The platform supports the import and
export of open and closed-source models encoded in SBML (Keating et al., 2020), and connectors
to open and closed-source biomedical knowledge graphs such as the publicly available PrimeKG
dataset (Chandak et al., 2023).

By using an agentic AI framework, T2B and T2KG democratize access to expert knowledge cap-
tured in computational models of disease and biomedical knowledge graphs. T2B and T2KG pro-
mote accurate and explainable science by grounding LLM responses in computational modeling
simulation results or in extracted biomedical knowledge graph subsets. Graph Retrieval-Augmented
Generation (GraphRAG) (Lewis et al., 2020; He et al., 2024; Edge et al., 2025) provides the neces-
sary explainability for deployment in regulated industries, including healthcare and pharmaceutical
industries.

2 METHODS

We developed a multi-agent hierarchical system using the LangGraph library (v0.3.2)3, which pro-
vides a framework for constructing stateful computational graphs. In this architecture, each node
represents a discrete computational step, while the edges define the relationships between these
steps. Each agent within the system maintains a state, a snapshot of its application, which is propa-
gated and updated throughout the execution process (Fig. 1).

2Viewed on 24.02.2025
3https://github.com/langchain-ai/langgraph
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Figure 1: Architecture diagram of Talk2Biomodels and Talk2KnowledgeGraphs orchestrated by the
main agent. Users can interact with T2B and T2KG agents via the main agent. The main agent acts
as a supervisor agent and determines which agent (and its respective tools) to invoke based on the
user input. The T2B agent specializes in quantitative analysis, including model search, simulation,
plotting, parameter scanning, steady-state stability analysis, annotation extraction, and RAG for
uploaded scientific articles. Meanwhile, the T2KG agent focuses on providing quantitative insights,
such as subgraph extraction, summarization, and GraphRAG reasoning on the knowledge graph.
These agentic AI tools interactively engage with resources, including BioModels, OLS, and UniProt
databases as external databases and PrimeKG as a knowledge graph resource. Each agent maintains
its state independently throughout the chat history.

For both T2B and T2KG agents, the computational nodes consist of a prebuilt reasoning and action
(ReAct)-based agent, implemented following the ReAct paradigm (Yao et al., 2023), and a suite of
tools available (Fig. 1). A central main agent developed using the LangGraph-Supervisor library
(v0.0.4)4, manages task delegation and communication, dynamically invoking T2B and/or T2KG
based on task context. Directed edges within the graph facilitate structured interactions between
agents and their tools. Agents autonomously select and execute tool invocations in response to user
input, updating their internal state accordingly. The system tracks key-value pairs storing messages,
analysis outputs, and intermediate results, ensuring consistency across computational steps. Upon
completion, the final state is parsed to extract relevant outputs for rendering.

T2B executes operations on models using the BASICO library (v0.78)(Bergmann, 2023). T2KG
extracts subgraphs from an initial biomedical knowledge graph based on user queries, employing
the Prize Collecting Steiner Tree (PCST) algorithm (Hegde et al., 2015) to guarantee a connected
subgraph. The retrieved subgraph in the form of a textualized subgraph (i.e., textual information of
the selected nodes and triples) is further incorporated for RAG (He et al., 2024) to enhance response
quality. We used PrimeKG (Chandak et al., 2023) as the knowledge graph dataset, enriching its
nodes and edges with a set of textual information from Stark (Wu et al., 2024). Textual embeddings
were generated using the nomic-embed-text model (Nussbaum et al., 2025) retrieved from Ollama5.
The processed graph was stored using NetworkX6 (Hagberg et al., 2008) and efficiently manipulated
with the PyTorch Geometric7 library (Fey & Lenssen, 2019).

For configuring agent-based text generation tasks, users can select between two LLMs: OpenAI’s
GPT-4o-mini (OpenAI et al., 2024) and NVIDIA NIM-optimized Meta/Llama-3.3-70B-Instruct
8. For text-to-embedding transformations, the application supports two embedding models: Ope-
nAI’s text-embedding-ada-002 and NVIDIA NIM-optimized Llama-3.2-NV-EmbedQA-1B-V29.
The backend of the system is implemented in Python 3.12, while the front end was developed using

4https://github.com/langchain-ai/langgraph-supervisor-py
5https://ollama.com/
6https://networkx.org/
7https://pytorch-geometric.readthedocs.io/
8https://build.nvidia.com/meta/llama-3 3-70b-instruct/modelcard
9https://build.nvidia.com/nvidia/llama-3 2-nv-embedqa-1b-v2
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Figure 2: An example of the search models tool in the Talk2BioModels GUI. This GUI supports both
open and closed-source LLMs, enabling users to upload SBML-format mathematical models and
PDF-format scientific articles (a). T2B allows natural language prompts via the chat box interface
(b). The GUI features a chat history window (c) displaying question-and-answer conversations (d,
e). Additionally, T2B’s GUI allows dynamic user feedback through upvote and downvote buttons.
(f). We exemplify search models tool for keyword-based searches in the BioModels database (e).

Streamlit (v1.39.0)10, Plotly (v5.24.1)11, and Gravis (v0.1.0)12 for an interactive and user-friendly
interface.

The T2B, T2KG, and their unified version (Talk2AIAgents4Pharma) applications are open-source
and available on GitHub13, supporting community contributions and discussions.

3 RESULTS AND DISCUSSION

T2B offers a comprehensive suite of functions for biological and translational ODE models. Users
can upload ODE models in SBML format or retrieve curated models from the BioModels database
using the search models tool (Fig. 2). The get model information tool extracts model details, includ-
ing species, parameters, and model abstract. Concurrently, the get annotations tool retrieves and
displays model species’ identifiers by dynamically accessing Ontology Lookup Service (OLS) and
UniProt data bases (Jupp et al., 2015; The UniProt Consortium, 2024) over APIs. This capability
enables researchers to thoroughly explore and interpret the specific nomenclature of the model.

In T2B, SBML models can be directly accessed, simulated, and analyzed. The platform supports
time-course simulations with adjustable time steps, initial concentrations and durations (simulate
model tool), presenting results in dynamic tables and graphs that can be interactively modified to
suit the users’ needs (custom plotter tool). Additionally, users can interrogate model description and
simulation results (ask questions tool) and alter model parameters using natural language.

Moreover, T2B offers several tools for model analysis: the steady-state tool determines whether a
model reaches equilibrium, while the parameter scan tool performs multiple simulations by sys-
tematically varying model initial conditions or parameter values within user-specified range and
intervals (Fig. A1). Finally, the query article tool leverages the RAG framework (Lewis et al.,
2020) to extract supplementary information from user-uploaded research articles, enhancing model
understanding.

10https://streamlit.io/
11https://plotly.com/
12https://robert-haas.github.io/gravis-docs/
13https://github.com/VirtualPatientEngine/AIAgents4Pharma
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To promote greater explainability and contextualization of quantitative computational biology sim-
ulation predictions, users can invoke the T2KG to qualitatively reason over T2B results using a
broader scope of disease biology captured in biomedical knowledge graphs. Specifically, users can
extract out one or more subgraphs using the subgraph extraction tool based on the textual embedding
similarity between the user’s query and the embedded textual features of the biomedical knowledge
graph. The textualized and summarized subgraph is then used for RAG in conjunction with previous
computational biology model simulation results using the graph RAG reasoning tool. The results
are presented to the user in natural language with citations to the entities and relations in the biomed-
ical knowledge graph along with a dynamic widget of the extracted subgraph for interactive visual
inspection.

Overall, this suite of agentic AI-driven tools offers a unique platform for working with biological
models of disease, combining user-friendliness and interactive features.

3.1 USE-CASE IN PRECISION MEDICINE

The use cases in precision medicine14 utilizes a multiscale model of interleukin 6 (IL-6) mediated
immune regulation in Crohn’s disease to examine drug-disease interaction mechanisms and drug
treatment prediction (Dwivedi et al., 2014). The model was validated using clinical trial biomarker
data from patients treated with tocilizumab, an anti IL6 receptor monoclonal antibody drug.

Users can interrogate model annotations, adjust the dosage of a drug, simulate drug administration
at intervals of either 2 or 4 weeks, and view the value of the clinical readout parameter (C-reactive
protein (CRP) in serum) at any given time point. Users can determine the time required for the
depletion of serum anti-IL6Ralpha concentration by replicating the published figure (Dwivedi et al.,
2014). The effect on CRP suppression can also be compared by simulating different antibodies
with varying dissociation affinities, thereby performing in silico tests for potential antibodies. Ad-
ditionally, users can explore alternative drugs that target IL-6 or even alternative targets of Crohn’s
diseases as a basis for follow-up studies. Users can qualitatively reason over the simulated results by
developing a rational grounded in curated biomedical knowledge of genes and pathways associated
with Crohn’s disease for why certain treatments work and others do not. A snapshot of a use case
on extracting subgraph that captures the IL6 node along with its interconnections to other relevant
nodes (e.g., gene/protein, disease, pathway) within subsets of PrimeKG is presented in Fig. A2.

4 CONCLUSIONS

T2B and T2KG are open-source, user-friendly agentic AI platform designed to democratize access
to computational models and biomedical knowledge graphs of disease. By integrating a natural
language interface with agentic AI, these platforms lower the barrier for non-experts to leverage
expert knowledge captured in computational biology models and biomedical knowledge graphs. A
use case in precision medicine was presented to demonstrate the ease which the users can reproduce
and explore questions of clinical translatable of drug assets.

As the user base of these platforms continues to grow and the complexity of agentic tools and
workflows increases, ensuring transparency and validation of results becomes increasingly critical.
Minimizing hallucinations through model simulation-specific tool calling is essential and must be
rigorously tested using comprehensive testing suites. Further, we aim to extend T2KG’s current
functionality to support multi-modal embeddings for small molecules, proteins, and other biological
entities, enhancing its utility in biomedical applications. Additionally, as new LLMs are developed
and incorporated into the framework, it is important to continuously assess and validate their rea-
soning capabilities.

We would greatly appreciate contributions to our open-source project from the community.
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Gómez, Thomas M Hamm, Yuichiro Inagaki, Wolfram Liebermeister, Allyson L Lister, Daniel
Lucio, Eric Mjolsness, Carole J Proctor, Karthik Raman, Nicolas Rodriguez, Clifford A Shaf-
fer, Bruce E Shapiro, Joerg Stelling, Neil Swainston, Naoki Tanimura, John Wagner, Martin
Meier-Schellersheim, Herbert M Sauro, Bernhard Palsson, Hamid Bolouri, Hiroaki Kitano, Akira
Funahashi, Henning Hermjakob, John C Doyle, Michael Hucka, null null, Richard R Adams,
Nicholas A Allen, Bastian R Angermann, Marco Antoniotti, Gary D Bader, Jan Červený, Mélanie
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A APPENDIX

Figure A1: Parameter scan of a precision medicine model (Dwivedi et al., 2014) within the GUI.
A parameter ‘kIL6Unbind’ is varied in steps of 40 units from 2 to 242 to simulate an unbinding
event of an antibody from its target interleukin 6 receptor (IL6R). Each curve represents a separate
simulation of this model.
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Figure A2: Extracted subgraph of IL-6 association with Crohn’s Disease within the GUI. Nodes
represent biological entities such as genes or pathways, and links represent relations between bi-
ological entities such as gene interaction with pathways or disease association with a gene. Note
the disease association between IL-6 and Crohn’s Disease shown on the bottom left and induced
cytokine/chemokine network on the middle and right.
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