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ABSTRACT

Research in offline reinforcement learning (RL) marks a paradigm shift in RL.
However, a critical yet under-investigated aspect of offline RL is determining the
subset of the offline dataset, which is used to improve algorithm performance while
accelerating algorithm training. Moreover, the size of reduced datasets can uncover
the requisite offline data volume essential for addressing analogous challenges.
Based on the above considerations, we propose identifying Reduced Datasets for
Offline RL (REDOR) by formulating it as a gradient approximation optimization
problem. We prove that the common actor-critic framework in reinforcement
learning can be transformed into a submodular objective. This insight enables us to
construct a subset by adopting the orthogonal matching pursuit (OMP). Specifically,
we have made several critical modifications to OMP to enable successful adaptation
with Offline RL algorithms. The experimental results indicate that the data subsets
constructed by the ReDOR can significantly improve algorithm performance with
low computational complexity.

1 INTRODUCTION

Offline reinforcement learning (RL) (Levine et al., 2020) has marked a paradigm shift in artificial
intelligence. Unlike traditional RL (Sutton & Barto, 2018) that relies on real-time interaction with
the environment, offline RL utilizes pre-collected datasets to learn decision-making policies (Yang
et al., 2021; Janner et al., 2021). This approach is increasingly favored for its practicality in scenarios
where real-time data acquisition is impractical or could damage physical assets. Moreover, offline
learning can avoid the significant time and complexity involved in online sampling and environment
construction. This streamlines the learning process and expands the potential for deploying RL across
a more comprehensive array of applications (Yuan et al., 2022; Zhou et al., 2023; Nambiar et al.,
2023).

However, offline reinforcement learning relies on large pre-collected datasets, which can result in
substantial computational costs during policy learning (Lu et al., 2022), especially when the algorithm
model requires extensive parameter tuning (Sharir et al., 2020). Moreover, additional data may
not always improve performance, as suboptimal data can exacerbate the distribution shift problem,
potentially degrading the policy (Hu et al., 2022). In this work, we attempt to explore effective offline
reinforcement learning methods through a data subset selection mechanism and address the following
question:

How do we determine the subset of the offline dataset to improve algorithm performance and
accelerate algorithm training?

In this paper, we formulate the dataset selection challenge as a gradient approximation optimization
problem. The underlying rationale is that if the weighted gradients of the TD loss on the reduced
dataset can closely approximate those on the original dataset, the dataset reduction process should not
lead to significant performance degradation. However, directly solving this data selection problem
is NP-Hard (Killamsetty et al., 2021b;c). To this end, we first prove that the common actor-critic
framework can be transformed into a submodular optimization problem (Mirzasoleiman et al., 2020).
Based on this insight, we adopt the Orthogonal Matching Pursuit (OMP) (Elenberg et al., 2018) to
solve the data selection problem. On the other hand, different from supervised learning, target values
in offline RL evolve with policy updates, resulting in unstable gradients that affect the quality of the
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selected data subset. To solve this issue, we stabilize the learning process by making several essential
modifications to the OMP.

Theoretically, we provide a comprehensive analysis of the convergence properties of our algorithm
and establish an approximation bound for its solutions. We then prove the objective function can be
upper-bounded if the selected data is sufficiently diverse. Empirically, we evaluate REDOR on the
D4RL benchmark (Fu et al., 2020). Comparison against various baselines and ablations shows that
the data subsets constructed by the REDOR can significantly improve algorithm performance with
low computationally expensive. To the best of our knowledge, our work is the first study analyzing
the reduced dataset in offline reinforcement learning.

2 RELATED WORKS

Offline Reinforcement Learning. Current offline RL methods attempted to constrain the learned
policy and behavior policy by limiting the action difference (Fujimoto et al., 2019), adding KL-
divergence (Nair et al., 2020; Peng et al., 2019; Wu et al., 2019; Yang et al., 2021), regularization (Ku-
mar et al., 2019), conservative estimates (Kumar et al., 2020; Ma et al., 2021) or penalizing uncertain
actions (Janner et al., 2019; Yu et al., 2021; Kidambi et al., 2020). These studies provide a solid
foundation for implementing and transferring reinforcement learning to real-world tasks.

Offline Dataset. Some works attempted to explore which dataset characteristics dominate in offline
RL algorithms (Schweighofer et al., 2021; Swazinna et al., 2021) or investigate the data genera-
tion (Yarats et al., 2022). Recently, some researchers attempted to solve the sub-optimal trajectories
issue by constraining policy to good data rather than all actions in the dataset (Hong et al., 2023b) or
re-weighting policy (Hong et al., 2023a). However, limited research has addressed considerations
related to the reduced dataset in offline RL.

Data Subset Selection. The research on identifying crucial samples within datasets is concentrated
on supervised learning. Some prior works use uncertainty of samples (Coleman et al., 2019; Paul
et al., 2021) or the frequency of being forgotten (Toneva et al., 2018) as the proxy function to prune
the dataset. Another research line focuses on constructing weighted data subsets to approximate
the full dataset (Feldman, 2020), which often transforms the subset selecting to the submodular set
cover problem (Wei et al., 2015; Kaushal et al., 2019). These studies establish the importance of
selecting critical samples from datasets for practical training. However, unlike supervised learning,
target values in offline RL evolve as policies update, leading to unstable gradients that significantly
complicate the learning process.

3 BACKGROUND

Reinforcement Learning (RL) deals with Markov Decision Processes (MDPs). A MDP can be mod-
eled by a tuple (S,A, r, p, γ), with the state space S, the action space A, the reward function r(s, a),
the transition function p(s′|s, a), and the discount factor γ. We follow the common assumption that
the reward function is positive and bounded: ∀s ∈ S, a ∈ A, 0 ≤ r(s, a) ≤ Rmax, where Rmax is
the maximum possible reward. RL aims to find a policy π(a | s) that maximizes the cumulative
discounted return:

π∗ = argmax
π

J(π) = argmax
π

Eπ[

H∑
t=0

γtr(st, at)]. (1)

For any policy π, the action value function is Qπ(s, a) = Eπ[
∑H−t

k=0 γkr(st+k, at+k)|st=s, at=a].
The state value function is V π(s) = Eπ[

∑H−t
k=0 γkr(st+k, at+k)|st=s]. It follows from the Bellman

equation that V π(s) =
∑

a∈A π(a|s)Qπ(s, a).

Offline RL learns a policy π without interacting with an environment. Rather, the learning is based
on a dataset D generated by a behavior policy πβ . One of the major challenges in offline RL is the
issue of distributional shift (Fujimoto et al., 2019), where the learned policy is different from the
behavioral policy. Existing offline RL methods apply various forms of regularization to limit the
deviation of the current learned policy:

π∗ = argmax
π

[JD(π)− αD(π, πβ)] , (2)
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where JD(π) is the cumulative discounted return of policy π on the empirical MDP induced by the
dataset D, and D(π, πβ) is a divergence measure between π and πβ . In this paper, we base our study
on TD3+BC (Fujimoto & Gu, 2021), which follows this regularized learning scheme.

We introduce the concept of offline data subset selection. Specifically, let D = {(si, ai, ri, s′i)}Mi=1
denote the complete offline dataset, and let S ⊆ D, indexed by j, represent the reduced dataset. We
formulate the subset selection as:

S∗ = argmin
S⊆D

|S|, s.t. J(πS) ≥ J(πD) + c, (3)

where πD and πS are the policy trained using Eq. 2 with dataset D and S, respectively. c ≥ 0 is the
policy performance gain.

Compact Subset Selection for offline reinforcement learning remains largely under-explored in
existing literature. However, research efforts have been directed toward reducing the size of training
samples in other deep learning fields like supervised learning (Killamsetty et al., 2021a;b; Mirza-
soleiman et al., 2020).

Specifically, there are some research explorations on transforming the subset selection problem into
the submodular set cover problem (Mirzasoleiman et al., 2020). The submodular set cover problem is
defined as finding the smallest set S that achieves utility ρ:

S∗ = argmin
S⊆D

|S|, s.t. F (S) ≥ ρ, (4)

where we slightly abuse the notation and use D to denote the complete supervised learning dataset.
We require F to be a submodular function like set cover and concave cover modular (Iyer et al., 2021).
A function F is submodular if it satisfies the diminishing returns property: for subsets S ⊆ T ⊆ D
and j ∈ D\T , F (j | S) ≜ F (S ∪ j)−F (S) ≥ F (j | T ) and the monotone property: F (j | S) ≥ 0
for any j ∈ D \ S and S ⊆ D.

4 METHOD

For the data subset selection problem, RL and supervised learning are significantly different in two
aspects: (1) In supervised learning, the loss value is the primary criterion for selecting data. However,
the loss value in RL is unrelated to the policy performance. Therefore, we need to consider new
criteria for selecting data in RL. (2) Compared with the fixed learning objective in supervised learning,
the learning objective in offline RL evolves as policies update, significantly complicating the data
selection process. To solve these issues, we first formulate the data selection problem in offline RL
as the constrained optimization problem in Sec. 4.1. Then, we present how to effectively solve the
optimization problem in Sec. 4.2. Finally, we balance the data quantity with performance in Sec. 4.3.
The algorithm framework is shown in Algorithm 1.

4.1 GRADIENT APPROXIMATION OPTIMIZATION

We first approximate the optimization problem 3, using the Q-function Qπ(s, a) as the performance
measure J(π) = Qπ(s0, a0) and requiring that QπD and QπS to be approximately equal for any
action-state pair (s, a):

S∗ = argmin
S⊆D

|S|, s.t. ∥QπD (s, a)−QπS (s, a)∥∞ ≤ δ. (5)

We use gradient approximation optimization to deal with the constraint in the optimization problem 5.
Suppose that Q-functions are represented by networks with learnable parameters θ and updated by
gradients of loss function L(θ), e.g., the TD loss (Mnih et al., 2015). If we can identify a reduced
training set S such that the weighted sum of the gradients of its elements closely approximates the
full gradient over the complete dataset D, then we can train on S and converge to a Q-function that is
nearly identical to the one trained on D.

Formally,

L(θ) =
∑
i∈D
Li(θ) =

∑
i∈D
LTD(si, ai, ri, s′i, θ) (6)

3
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is the standard Q-learning TD loss, and

Lrdc(w, θ) =
∑

i∈S
wiLi(θ) (7)

is the loss on the reduced subset S ⊆ D. In order to better approximate the gradient for the full
dataset, we use the weighted data subset. Specifically, wi is the per-element weight in coreset S.
During the learning process, we approximate the entire dataset’s gradient by multiplying the samples’
gradient in coreset by their weights. We define the following error term:

Err (w,S,L, θ) = ∥
∑
i∈S

wi∇θLi (θ)−∇θL (θ) ∥2. (8)

Minimizing Eq. 8 ensures the dataset selection procedure can maintain or even improve the policy
performance. Similarly, define the regularized version of Err (w,S,L, θ) as

Errλ (w,S,L, θ) = Err (w,S,L, θ) + λ∥w∥22. (9)

Then, the optimization problem 3 is transformed into:

w,S = argmin
w,S

Errλ (w,S,L, θ) . (10)

4.2 ORTHOGONAL MATCHING PURSUIT FOR OFFLINE RL

Directly solving problem 10 is NP-hard (Killamsetty et al., 2021b;c) and computationally intractable.
To solve the issue, we consider using the iterative approach, which selects data one by one to reduce
Errλ (w,S,L, θ). To ensure newly selected data are informative, we prove the optimized problem 10
can be transformed into the submodular function.

Specifically, we introduce a constant Lmax and define Fλ(S) = Lmax − minw Errλ (w,S,L, θ).
Then, we consider the common actor-critic framework in data subset selection, which has an actor-
network πϕ(s) and a critic network Qθ(s, a) that influence the TD loss and thus the function Fλ(S).
Therefore, the submodularity analysis of Fλ(S) involves two components: FQ

λ (S) that depends on
the critic loss LQ(θ), and Fπ

λ (S) that depends on the actor loss Lπ(ϕ). The following theorem shows
that both FQ

λ (S) and Fπ
λ (S) are weakly submodular.

Theorem 4.1 (Submodular Objective). For |S| ≤ N and sample (si, ai, ri, s
′
i) ∈ D, sup-

pose that the TD loss and gradients are bounded: |Li(θ)| ≤ UTD, ∥∇θQθ(si, ai)∥2 ≤ U∇Q,
∥∇πϕ(si)Qθ(si, πϕ(si))∥2 ≤ U∇a, ∥πϕ(si) − ai∥2 ≤ Ua, ∥πϕ(si)∥2 ≤ Uπ, and ∥∇ϕπϕ(si)∥2 ≤
U∇π , then FQ

λ (S) is δ-weakly submodular, with

δ ≥ λ

λ+ 4N(UTDU∇Q)2
, (11)

and Fπ
λ (S) is δ-weakly submodular, with

δ ≥ λ

λ+N(U∇a/α+ 2UaUπ)2U2
∇π

. (12)

Please refer to Appendix A.1 for detailed proof.

Based on the above theoretical analysis, let Errλ (w,Sj−1,L, θ) represent the residual error at
iteration j. Then, we adopt the Orthogonal Matching Pursuit (OMP) algorithm (Elenberg et al., 2018),
which selects a new data sample i and takes its gradient∇θLi (θ) as the new basis vector to minimize
this residual error. In this way, we update the residual to Errλ (w,Sj ,L, θ), where Sj = Sj−1 ∪ {i}.
However, the dynamic nature of offline RL poses a challenge when using OMP, leading to unstable
learning. To address the unique challenges of offline RL, we propose the following novel techniques
to enhance gradient matching:

(I) Stabilizing Learning with Changing Targets. In supervised learning, the stability of training
targets leads to stable gradients. However, in offline RL, target values evolve with policy updates,
resulting in unstable gradients in Eq. 8 that affect the quality of the selected data subset. To address

4
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Algorithm 1 Reduce Dataset for Offline RL (REDOR)
1: Require: Complete offline dataset D
2: Initialize parameters of the offline agent for data selection Qθ, πϕ

3: for t = 1, · · · , T do
4: Load parameter θt for Qθt
5: Calculate∇θtL(θt),∇θtLTraj(θt) based on Equation 14
6: St,wt = OMP(∇θtL(θt),∇θtLTraj(θt), θt)
7: end for
8: Reduced offline dataset S ← ∪t∈[T ]St
9: Initialize parameters of the offline agent for training on the reduced offline dataset Qϑ, πφ

10: Train Qϑ, πφ based on S and w

this issue, we will stabilize the learning process by using empirical returns from trajectories to
smooth the gradient updates. This provides a more consistent learning signal and mitigates instability
caused by changing target values. Specifically, rather than adopt the gradient of the TD loss, we
calculate gradient∇θL (θ) from the following equation

∇θL (θ) = ∇θED[(y −Qθ(st, at))
2], y =

H−t∑
k=0

γkr(st+k, at+k). (13)

Furthermore, we will adopt a multi-round selection strategy where data selection occurs over
multiple rounds T . In each round, a portion of the data is selected based on the updated Q-values,
reducing variance and ensuring that the subset captures the most critical information. This multi-round
approach allows for dynamic adjustment of the selected subset as learning progresses, improving
stability and reducing the risk of overfitting to specific trajectories. Specifically, we calculate
∇θtL (θt) at each round based on Eq. 13, where θt is the parameter updated in the t-round. In
practice, we pre-store parameters θt with various rounds t and load them during training.

(II) Trajectory-based Selection. In offline RL, collected data is often stored in trajectories, which
are coherent and more valuable than individual data points. For this reason, we modify OMP to the
trajectory-based gradient matching. Specifically, we select a new trajectory i of length K and take
the mean of gradients∇θtLi

Traj (θt) =
∑K

k=1∇θtLk (θt) /K as the new basis vector to minimize the
residual error. Then, we update the residual to Errλ (w,Sj ,L, θ), where Sj = Sj−1 ∪ {Trajectoryi}.

4.3 BALANCING DATA QUANTITY WITH PERFORMANCE

In offline RL, while additional data can help generalization, suboptimal data may lead to significant
performance degradation due to distribution shifts. To address this, we will introduce a constraint
term that biases the TD-gradient matching method toward selecting data with higher return estimates.
Then, based on the design in the Sec. 4.2 (I), the Equation 13 is transformed into

∇θL (θ) = ∇θED[(y −Qθ(st, at))
2], y =

H−t∑
k=0

γkr(st+k, at+k),

s.t. y > Top m%({Return(Trajectoryj)}
|D|
j=1).

(14)

This regularized constraint selection approach ensures that the selected subset not only reduces
computational costs but also focuses on data points that are aligned with the learned policy, avoiding
performance degradation caused by suboptimal trajectories.

5 THEORETICAL ANALYSIS

In this section, we study the convergence property of our method and the error bounds of the solutions
it finds. We work with mild assumptions that the gradient of the TD loss is Lipschitz smooth with
constant L: ∥∇L(θ′)−∇L(θ)∥ ≤ L∥θ′ − θ∥, and that the gradient is bounded by σ: ∥∇L(θ)∥ ≤ σ.

Firstly, we show that the TD loss of the offline Q function QπS trained on the reduced dataset S can
converge.

5
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Algorithm 2 OMP algorithm
1: Require: ∇θtL(θt),∇θtLTraj(θt), θt, regularization coefficient λ
2: r ← Errλ (wt,St,L, θt)
3: while r ≤ ϵ do
4: e = argmaxi/∈St

|⟨∇θtLi
Traj(θt), r⟩|

5: St ← St ∪ {Trajectorye}
6: wt ← argminwt

Errλ (wt,St,L, θt)
7: r ← Errλ (wt,St,L, θt)
8: end while
9: Return St and wt

Theorem 5.1. Let θ∗ denote the optimal QπS parameters, θt the parameters after t training steps.
We have

min
t=1:G

L(θt) ≤ L(θ∗) +
Dσ√
G

+
D

G

G−1∑
t=1

ε. (15)

Here L(θ) =
∑

i∈D LTD(si, ai, ri, s′i, θ) is the TD loss, G is the number of total training steps,
D = ∥θ∗ − θt∥, and ε = Err (w,S,L, θt) is the gradient approximation errors.

Proof. Please refer to Appendix A.3 for detailed proof.

We assume the gradients of selected data are diverse and they can be divided into K clusters
{C1, · · · , CK} with the cluster centers set C = {c1, · · · , cK}. Then, we prove the residual error
Err (w,S,L, θ) can be upper bounded:

Theorem 5.2. The residual error Err (w,S,L, θ) is upper bounded according to the sample’s
gradient of TD loss:

min
C

∑
i∈D

min
c∈C
∥∇θLi (θ)−∇θLc (θ) ∥2. (16)

Proof. Please refer to Appendix A.2 for detailed proof.

We then prove that the reduced dataset selected by our method can achieve a good approximation
for the gradient calculated on the complete dataset, which also means ε = Err (w,S,L, θt) in
Theorem 5.1 is bounded.

Corollary 5.3 (Approximation Error Bound of the Reduced Dataset). The expected gradient approxi-
mation error achieved by our method is at most 5(lnK + 2) times the error of the optimal solution
S∗:

Err (w,S,L, θ) ≤ 5(lnK + 2)Err (w,S∗,L, θ) . (17)

Proof. The proof is derived by applying Theorem 5.2 along with Theorem 4.3 from (Makarychev
et al., 2020), by observing that cluster centers are included in the reduced dataset.

6 EXPERIMENT

In this section, we assess the efficacy of our algorithm by addressing the following key questions. (1)
Can offline RL algorithms achieve stronger performance on the reduced datasets selected by REDOR?
(2) How does REDOR perform compare to other offline data selection methods? (3) What are the
factors that contribute to REDOR’s effectiveness?

6
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Figure 1: Experimental results on the D4RL (Hard) offline datasets. All experiment results were
averaged over five random seeds. Our method achieves better or comparable results than the baselines
with lower computational complexity.

6.1 SETUP

We evaluate algorithms on the offline RL benchmark D4RL (Fu et al., 2020) to answer the afore-
mentioned questions. In addition, we consider a more challenging scenario where we add additional
low-quality data to the dataset to simulate noise in real-world tasks, named D4RL (hard). The
evaluation process commences with the selection of offline data, followed by the training of a widely
recognized offline RL algorithm, TD3+BC (Fujimoto & Gu, 2021), on this reduced dataset for 1
million time steps. To ensure a fair comparison, we apply the same offline RL algorithm to data
subsets obtained by different algorithms. Evaluation points are set at every 5,000 training time steps
and involve calculating the return of 10 episodes per point. The results, comprising averages and
standard deviations, are computed with five independent random seeds.

Baselines. We compare REDOR with data selection methods in RL. Specifically, previous work on
prioritized experience replay for online RL (Schaul et al., 2015) aligns closely with our objective.
We make this a baseline Prioritized where samples with the highest TD losses form the reduced
dataset. Baseline Complete Dataset presents the performance by training TD3+BC with the
original, complete dataset. Baseline Random randomly selects subsets from the D4RL dataset that are
of the same size as REDOR. We also compare our method with general dataset reduction techniques
from supervised learning. Specifically, we adopt the coherence criterion from Kernel recursive least
squares (KRLS) (Engel et al., 2004), the log det criterion by forward selection in informative vector
machines (LogDet) (Seeger, 2004) and the adapting kernel representation (BlockGreedy) (Schlegel
et al., 2017) as our baselines.

6.2 EXPERIMENTAL RESULTS

Answer of Question 1: To show that REDOR can improve offline RL algorithms, we compare
REDOR with Complete Dataset, Prioritized, and Random in the Mujoco domain. The experimental
results in Figure 1 show that our method achieves superior performance than baselines. By leveraging
the reduced dataset generated from REDOR, the agent can learn much faster than learning from the

7
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KRLS Log-Det BlockGreedy REDOR

Hopper-medium-v0 69.4±2.5 58.4±3.6 83.7±2.2 94.3±4.6
Hopper-expert-v0 91.0±1.1 90.7±1.3 98.7±0.5 110.0±3.5

Hopper-medium-replay-v0 28.5±3.2 29.4±1.2 30.5±2.4 35.3±3.2
Walker2d-medium-v0 49.1±2.8 47.5±3.4 53.3±3.6 80.5±2.9
Walker2d-expert-v0 68.4±3.2 67.5±5.6 74.8±3.4 104.6±2.5

Walker2d-medium-replay-v0 14.3±1.2 15.2±2.2 16.7±1.3 21.1±1.8
Halfcheetah-medium-v0 23.4±0.5 21.9±0.9 27.5±0.7 41.0±0.2
Halfcheetah-expert-v0 73.9±1.4 72.1±2.2 79.2±1.8 88.5±8.5

Halfcheetah-medium-replay-v0 39.5±0.3 39.9±0.5 40.5±1.0 41.1±1.4

Table 1: Experimental results on the D4RL (Hard) offline datasets. All experiment results were
averaged over five random seeds. Our method performs better than the dataset reduction baselines.
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Figure 2: Experimental results on the D4RL offline datasets. All experiment results were averaged
over five random seeds. Our method achieves better or comparable results than the baselines
consistently.

complete dataset. Further, the results in Figure 2 show that REDOR also performs better than the
complete dataset and data selection RL baselines in the standard D4RL datasets. This is because prior
methods select data in a random or loss-priority manner, which lacks guidance for subset selection
and leads to degraded performance for downstream tasks.

In addition, to test REDOR’s generality across various offline RL algorithms on various domains, we
also conduct experiments on Antmaze tasks. We use IQL (Kostrikov et al., 2021) as the backbone of
offline RL algorithms. The experimental results in Table 6.2 show that our method achieves stronger
performance than baselines. In the antmaze tasks, the agent is required to stitch together various
trajectories to reach the target location. In this scenario, randomly removing data could result in the
loss of critical data, thereby preventing complete the task. Differently, REDOR extracts valuable
subset by balancing data quantity with performance, achieving a stronger performance than the
complete dataset.

Answer of Question 2: To test whether REDOR can select more valuable data than the data
selection algorithms in supervised learning, we compare our method with KRLS (Engel et al., 2004),
Log-Det (Seeger, 2004) and BlockGreedy (Schlegel et al., 2017) in the D4RL (Hard) datasets.
The experimental results in Table 6.2 show that our method generally outperforms baselines. We
hypothesize that supervised learning is static with fixed learning objectives, while offline RL’s
dynamic nature makes the target values evolve with policy updates, complicating the data selection
process. Therefore, the data selection methods in supervised learning cannot be directly applied to
offline RL scenarios.

Answer of Question 3: To study the contribution of each component in our learning framework,
we conduct the following ablation study. Q Target: We replace the empirical returns used to update
Q functions with the standard target Q function in the TD loss function. Single Round: We set
the number of data selection rounds to 1 and study the function of multi-round data selection. The
experimental results in Figure 4 in Appendix B show that removing any of these two modules will
worsen the performance of REDOR. In case like walker2d-medium, ablation Single Round even
decrease the performance by over 80%, and ablation Q Target results in a 95% performance drop in
walker2d-expert. Furthermore, we also find that in the halfcheetah tasks, the impact of

8
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Figure 3: Visualization of the complete dataset and the reduced dataset in halfcheetah task.
The higher opacity of a point represents a large time step towards the end of an episode. The
dataset embedding is characterized by its division into different components. Samples selected by
REDOR connect different components by focusing on the data related to the task.

Env Random Prioritized Complete Dataset REDOR

Antmaze-umaze-v0 75.1±2.5 70.2±3.6 87.5±1.3 90.7±3.3
Antmaze-umaze-diverse-v0 46.3±1.9 44.7±2.7 62.2±2.0 76.7±2.2
Antmaze-medium-play-v0 59.3±1.6 60.3±2.9 71.2±2.2 80.3±2.9

Antmaze-medium-diverse-v0 43.6±2.7 46.9±3.8 70.0±1.6 84.9±3.8
Antmaze-large-play-v0 3.7±0.7 15.0±3.5 39.6±3.6 46.0±3.5

Antmaze-large-diverse-v0 16.0±3.6 20.5±3.7 47.5±1.1 52.0±3.7

Table 2: Experimental results on the Antmaze offline datasets. All experiment results were averaged
over five random seeds. Our method performs better than baselines.

removing the two modules is relatively small. This result can be attributable to the fact that this task
has a limited state space, and we can directly apply OMP to the entire dataset and identify important
and diverse data.

We visualize the selected data by REDOR to better understand how it works. Figure 3 displays the
t-SNE low-dimensional embeddings, with the complete dataset in blue and the selected data in orange.
The higher opacity of a point indicates a larger time step. The dataset’s structure is revealed by its
segmentation into diverse components: In halfcheetah, each component reflects a distinct skill of
the agent. For example, from 1 to 7, they represent falling, leg lifting, jumping, landing, leg swapping,
stepping, and starting, respectively. We can observe that the selected samples by REDOR not only
cover each component of the dataset but also effectively bridge the gaps between them, enhancing the
dataset’s versatility and coherence. Moreover, we find that REDOR is less concerned with the falling
data and instead focuses on the data related to the task. This observation can explain the improved
performance of REDOR. For additional visualizations, please refer to Appendix C.1.

6.3 COMPUTATIONAL COMPLEXITY

We report the computational overhead of REDOR on various datasets. All experiments are conducted
on the same computational device (GeForce RTX 3090 GPU). The results in Appendix C indicate
that even on datasets containing millions of data points, the computational overhead of our method
remains low (e.g., several minutes). This low computational complexity can be attributed to the
trajectory-based selection technique in Sec. 4.2 (II) and the regularized constraint technique in
Sec. 4.3, making our method easily scalable to large-scale datasets.

7 CONCLUSION

In this work, we demonstrate a critical problem in offline RL – identifying the reduced dataset to
improve offline algorithm performance with low computational complexity. We cast the issue as
the gradient approximation problem. By transforming the common actor-critic framework into the
submodular objective, we apply the orthogonal matching pursuit method to construct the reduced

9
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dataset. Further, we propose multiple key modifications to stabilize the learning process. We validate
the effectiveness of our proposed data selection method through theoretical analysis and extensive
experiments. For future work, we attempt to apply our method to robot tasks in the real world.
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A PROOFS OF THEORETICAL ANALYSIS

A.1 SUBMODULAR

Theorem 4.1 (Submodular Objective). For |S| ≤ N and sample (si, ai, ri, s
′
i) ∈ D, sup-

pose that the TD loss and gradients are bounded: |Li(θ)| ≤ UTD, ∥∇θQθ(si, ai)∥2 ≤ U∇Q,
∥∇πϕ(si)Qθ(si, πϕ(si))∥2 ≤ U∇a, ∥πϕ(si) − ai∥2 ≤ Ua, ∥πϕ(si)∥2 ≤ Uπ, and ∥∇ϕπϕ(si)∥2 ≤
U∇π , then FQ

λ (S) is δ-weakly submodular, with

δ ≥ λ

λ+ 4N(UTDU∇Q)2
, (11)

and Fπ
λ (S) is δ-weakly submodular, with

δ ≥ λ

λ+N(U∇a/α+ 2UaUπ)2U2
∇π

. (12)

Proof. As mentioned in Section 3, we use the TD3+BC algorithm as the basic offline RL algorithm.
TD3+BC follows the actor-critic framework, which trains policy and value networks separately. For a
single sample (si, ai, ri, s′i), the loss of the value network is also named as TD error, which is defined
by:

Li
Q(θ) = (yi −Qθ(si, ai))

2 (18)

where yi = ri + γQθ′(s′i, πϕ′(s′i) + ϵ) (19)
(20)

The gradient is:

−1

2
∇θLi

Q(θ) = (yi −Qθ(si, ai))∇θQθ(si, ai) (21)

Offline RL algorithms attempt to minimize the TD error and compute the Q-value through a neural
network. Therefore, we assume the upper bound of the TD error is maxi ∥yi −Qθ(si, ai)∥2 ≤ UTD.
The upper bound of the gradient of the value network is maxi ∥∇θQθ(si, ai)∥2 ≤ U∇Q. Then,
Equation 21 can be transformed into:

∥∇θLi
Q(θ)∥2 ≤ 2UTDU∇Q (22)

Similarly, for a single sample(si, ai, ri, s′i), the loss of the policy network is

Li
π(ϕ) = −

1

α
Qθ(si, πϕ(si)) + ∥πϕ(si)− ai∥22 (23)

(24)

The gradient is:

∇ϕLi
π(ϕ) =

∂Li
π(ϕ)

∂πϕ(si)
× ∂πϕ(si)

∂ϕ
(25)

= [− 1

α
∇πϕ(si)Qθ(si, πϕ(si)) + 2(πϕ(si)− ai)

⊤πϕ(si)]×∇ϕπϕ(si) (26)

Here α is used to balance the conservatism and generalization in Offline RL, which is defined by:

α =
E(si,ai)[|Q(si, ai)|]

κ
(27)

13
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where κ is a hyper-parameter in TD3+BC. Note that although α includes Q, it is not differentiated
over.

Offline RL algorithms attempt to limit the deviation of the current learned policy from the behavior
policy while maximizing the Q-value of the optimized policy. Therefore, we assume the upper
bound of the gradient of the value network is maxi ∥∇πϕ(si)Qθ(si, πϕ(si))∥2 ≤ U∇a. The up-
per bound of the action error is maxi ∥πϕ(si) − ai∥2 ≤ Ua. The upper bound of the output of
the policy is maxi ∥πϕ(si)∥2 ≤ Uπ. The upper bound of the gradient of the policy network is
maxi ∥∇ϕπϕ(si)∥2 ≤ U∇π .

Then, Equation 26 can be bound:

∥∇ϕLi
π(ϕ)∥2 ≤ (U∇a/α+ 2UaUπ)U∇π (28)

We can define two functions lQ(β), lπ(β) : R|D| → R

lQ(β) = −∥
|D|∑
i=1

βi∇θLi
Q(θ)−∇θL(θ)∥2 − λ∥β∥22

lπ(β) = −∥
|D|∑
i=1

βi∇ϕLi
π(ϕ)−∇ϕL(ϕ)∥2 − λ∥β∥22

(29)

We assume β is a N -sparse vector that is 0 on all but N indices. Then we can transform maximizing
FQ
λ (S), Fπ

λ (S) into maximizing l(β)− l(0):

max
S:|S|≤N

FQ
λ (S)←→ max

β:βSc=0

|S|≤N

lQ(β)− lQ(0)

max
S:|S|≤N

Fπ
λ (S)←→ max

β:βSc=0

|S|≤N

lπ(β)− lπ(0)
(30)

where Sc means the complementary set of S, and βSc = 0 means β is 0 on all but indices i that
i ∈ S. l(0) means the value of l(·) when input is zero vector 0, it serves as a basic value. Since
lQ(β) ≤ 0, lπ(β) ≤ 0, we can easily find that the minimum eigenvalues of −lQ(β) and −lπ(β) are
both at least λ.

Next, the maximum eigenvalues of −lQ(β) and −lπ(β) are

Λmax(−lQ(β)) = λ+Trace




β1∇θL1⊤
Q (θ)

β2∇θL2⊤
Q (θ)

. . .

β|D|∇θL|D|⊤
Q (θt)




β1∇θL1⊤
Q (θ)

β2∇θL2⊤
Q (θ)

. . .

β|D|∇θL|D|⊤
Q (θ)


⊤

= λ+

|D|∑
i=1

β2
i ∥∇θLi

Q(θ)∥2

≤ λ+ 4N(UTDU∇Q)
2

Λmax(−lπ(β)) ≤ λ+N(U∇a/α+ 2UaUπ)
2U2

∇π

(31)

Following the Theorem 1 in Elenberg et al. (2018), we can derive that FQ
λ (S) is δ-weakly submodular

with δ ≥ λ
λ+4N(UTDU∇Q)2 . And Fπ

λ (S) is δ-weakly submodular with δ ≥ λ
λ+N(U∇a/α+2UaUπ)2U2

∇π
.

A.2 UPPER BOUND OF RESIDUAL ERROR

Theorem 5.2. The residual error Err (w,S,L, θ) is upper bounded according to the sample’s
gradient of TD loss:

min
C

∑
i∈D

min
c∈C
∥∇θLi (θ)−∇θLc (θ) ∥2. (16)
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Proof. The residual error is no larger than the special case where all wi are |D|/|S|:

Err (w,S,L, θ) ≤ ∥|D|
|S|

∑
i∈S
∇θLi (θ)−

∑
i∈D
∇θLi (θ) ∥2.

Using Jensen’s inequality, we have

Err (w,S,L, θ) ≤
∑
i∈D
∥∇θLi (θ)− 1

|S|
∑
s∈S
∇θLs (θ) ∥2.

According to the monotone property of submodular functions, adding more samples to Sk reduces
the residual error. We assume Sk starts with the cluster center {ck}, it follows that

Err (w,S,L, θ) ≤
∑
i∈D
∥∇θLi (θ)−∇θLck (θ) ∥2

=
∑
i∈D

min
c∈C
∥∇θLi (θ)−∇θLc (θ) ∥2. (32)

Eq. 32 is exactly the optimization objective typical of the clustering problem.

A.3 CONVERGENCE ANALYSIS

Theorem 5.1. Let θ∗ denote the optimal QπS parameters, θt the parameters after t training steps.
We have

min
t=1:G

L(θt) ≤ L(θ∗) +
Dσ√
G

+
D

G

G−1∑
t=1

ε. (15)

Here L(θ) =
∑

i∈D LTD(si, ai, ri, s′i, θ) is the TD loss, G is the number of total training steps,
D = ∥θ∗ − θt∥, and ε = Err (w,S,L, θt) is the gradient approximation errors.

Proof. From the definition of Gradient Descent, we have:

∇θLrdc(θt)T (θt − θ∗) =
1

αt
(θt − θt+1)

T (θt − θ∗) (33)

∇θLrdc(θt)T (θt − θ∗) =
1

2αt

(
∥θt − θt+1∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
(34)

∇θLrdc(θt)T (θt − θ∗) =
1

2αt

(
∥αt∇θLrdc(θt)∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
(35)

Then, we rewrite the function∇θLrdc(θt)T (θt − θ∗) as follows:

∇θLrdc(θt)T (θt − θ∗) = ∇θLrdc(θt)T (θt − θ∗)−∇θL(θt)T (θt − θ∗) +∇θL(θt)T (θt − θ∗)
(36)

Combining the above equations we have:

∇θLrdc(θt)T (θt − θ∗)−∇θL(θt)T (θt − θ∗) +∇θL(θt)T (θt − θ∗) = (37)
1

2αt

(
∥αt∇θLrdc(θt)∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
(38)

∇θL(θt)T (θt − θ∗) =
1

2αt

(
∥αt∇θLrdc(θt)∥2 + ∥θt − θ∗∥2 − ∥θt+1 − θ∗∥2

)
− (39)

(∇θLrdc(θt)−∇θL(θt))T (θt − θ∗) (40)
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Summing up the above equation for different value of t ∈ [0, G − 1] and the learning rate αt is a
constant α, then we have:

G−1∑
t=0

∇θL(θt)T (θt − θ∗) =
1

2α
∥θ0 − θ∗∥2 − ∥θG − θ∗∥2 +

G−1∑
t=0

(
1

2α
∥α∇θLrdc(θt)∥2

)
(41)

+

G−1∑
t=0

(
(∇θLrdc(θt)−∇θL(θt))T (θt − θ∗)

)
(42)

Since ∥θG − θ∗∥2 ≥ 0, we have:

G−1∑
t=0

∇θL(θt)T (θt − θ∗) ≤ 1

2α
∥θ0 − θ∗∥2 +

G−1∑
t=0

(
1

2α
∥α∇θLrdc(θt)∥2

)
(43)

+

G−1∑
t=0

(
(∇θLrdc(θt)−∇θL(θt))T (θt − θ∗)

)
(44)

From the convexity of function L(θ), we have:

L(θt)− L(θ∗) ≤ ∇θL(θt)T (θt − θ∗) (45)

Combining the Equation 44 and Equation 45, we have:

G−1∑
t=0

L(θt)− L(θ∗) ≤
1

2α
∥θ0 − θ∗∥2 +

G−1∑
t=0

(
1

2α
∥α∇θLrdc(θt)∥2

)
(46)

+

G−1∑
t=0

(
(∇θLrdc(θt)−∇θL(θt))T (θt − θ∗)

)
(47)

We assume that ∥θ − θ∗∥ ≤ D. Since ∥∇L(θ)∥ ≤ σ, we have:

G−1∑
t=0

L(θt)− L(θ∗) ≤
D2

2α
+

Gασ2

2
+

G−1∑
t=0

D(∥∇θLrdc(θt)−∇θL(θt)∥) (48)

Then:

∑G−1
t=0 L(θt)− L(θ∗)

G
≤ D2

2αG
+

ασ2

2
+

G−1∑
t=0

D

G
(∥∇θLrdc(θt)−∇θL(θt)∥) (49)

Since min(L(θt)− L(θ∗)) ≤
∑G−1

t=0 L(θt)−L(θ∗)
G , we have:

min(L(θt)− L(θ∗)) ≤
D2

2αG
+

ασ2

2
+

G−1∑
t=0

D

G
(∥∇θLrdc(θt)−∇θL(θt)∥) (50)

We adopt ε to denote ∥∇θLrdc(θt)−∇θL(θt)∥, then we have:
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min(L(θt)− L(θ∗)) ≤
D2

2αG
+

ασ2

2
+

G−1∑
t=0

D

G
ε (51)

Theorem A.1. The training loss on original dataset always monotonically decreases with every
training epoch t, L(θt+1) ≤ L(θt) if it satisfies the condition that ∇θL(θt)T∇θLrdc(θt) ≥ 0 for
0 ≤ t ≤ G and the learning rate α ≤ mint

2
L

∇θL(θt)
T∇θLrdc(θt)

∇θLrdc(θt)T∇θLrdc(θt)
.

Proof. Since the training loss L(θ) is lipschitz smooth, we have:

L(θt+1) ≤ L(θt) +∇θL(θt)T∆θ +
L

2
∥∆θ∥2, (52)

where ∆θ = θt+1 − θt. (53)

Since, we are using SGD to optimize the reduced subset training loss Lrdc(θt) model parameters.
The update equation is:

θt+1 = θt − α∇θLrdc(θt) (54)

Combining the above two equations, we have:

L(θt+1) ≤ L(θt) +∇θL(θt)T (−α∇θLrdc(θt)) +
L

2
∥ − α∇θLrdc(θt)∥2 (55)

Next, we have:

L(θt+1)− L(θt) ≤ ∇θL(θt)T (−α∇θLrdc(θt)) +
L

2
∥ − α∇θLrdc(θt)∥2 (56)

From the above equation, we have:

L(θt+1) ≤ L(θt), if ∇θL(θt)T∇θLrdc(θt)−
αL

2
∥∇θLrdc(θt)∥2 ≥ 0 (57)

Since ∥∇θLrdc(θt)∥2 ≥ 0, we will have the necessary condition ∇θL(θt)T∇θLrdc(θt) ≥ 0. Next,
we rewrite the above condition as follows:

∇θL(θt)T∇θLrdc(θt) ≥
αL

2
∥∇θLrdc(θt)∥2 (58)

Therefore, the necessary condition for the learning rate α is:

α ≤ 2

L

∇θL(θt)T∇θLrdc(θt)
∇θLrdc(θt)T∇θLrdc(θt)

(59)

Since the above condition needs to be true for all values for t, we have the following conditions for
the learning rate:

α ≤ min
t

2

L

∇θL(θt)T∇θLrdc(θt)
∇θLrdc(θt)T∇θLrdc(θt)

(60)
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B ABLATION STUDY

To study the contribution of each component in our learning framework, we conduct the following
ablation study. Q Target: We replace the empirical returns used to update Q functions with the
standard target Q function in the TD loss function. Single Round: We set the number of data
selection rounds to 1 and study the function of multi-round data selection. The experimental results
in Figure 4show that removing any of these two modules will worsen the performance of REDOR. In
case like walker2d-medium, ablation Single Round even decrease the performance by over 80%,
and ablation Q Target results in a 95% performance drop in walker2d-expert. Furthermore,
we also find that in the halfcheetah tasks, the impact of removing the two modules is relatively
small. This result can be attributable to the fact that this task has a limited state space, and we can
directly apply OMP to the entire dataset and identify important and diverse data.
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Figure 4: Ablation results on D4RL (Hard) tasks with the normalized score metric.

C COMPUTATIONAL COMPLEXITY

We report the computational overhead of REDOR on various datasets. All experiments are conducted
on the same computational device (GeForce RTX 3090 GPU). The results in the following Table
indicate that even on datasets containing millions of data points, the computational overhead remains
low. This low computational complexity can be attributed to the trajectory-based selection technique
in Sec. 4.2 (II) and the regularized constraint technique in Sec. 4.3, making our method easily scalable
to large-scale datasets.

Env Data Number REDOR

Hopper-medium-v0 999981 8m
Walker2d-medium-v0 999874 8m

Halfcheetah-medium-v0 998999 8m
Hopper-expert-v0 999034 8m

Walker2d-expert-v0 999304 8m
Halfcheetah-expert-v0 998999 8m

Hopper-medium-expert-v0 1199953 8m
Walker2d-medium-expert-v0 1999179 13m

Halfcheetah-medium-expert-v0 1997998 14m
Hopper-medium-replay-v0 200918 3m

Walker2d-medium-replay-v0 100929 3m
Halfcheetah-medium-replay-v0 100899 3m

Table 3: The computational complexity associated with REDOR in various datasets. m represents
minutes.
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C.1 VISUALIZATION RESULTS

We visualize the selected data of ReDOR on various tasks based on the same method in Section 6.

Figure 5: Visualization of selected data on hopper-medium-v0.

Figure 6: Visualization of selected data on hopper-medium-expert-v0.

Figure 7: Visualization of selected data on hopper-expert-v0.
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Figure 8: Visualization of selected data on walker2d-medium-expert-v0.

Figure 9: Visualization of selected data on walker2d-expert-v0.

Figure 10: Visualization of selected data on halfcheetah-medium-v0.

Figure 11: Visualization of selected data on halfcheetah-medium-expert-v0.

Figure 12: Visualization of selected data on halfcheetah-expert-v0.
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D EXPERIMENTAL DETAILS

Hyper-parameters. For the Mujoco tasks, we adopt the TD3+BC as the backbone of the offline
algorithms. For the Antmaze tasks, we adopt the IQL as the backbone of the offline algorithms. We
outline the hyper-parameters used by REDOR in Table 4.

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
TD3+BC regularized parameter 2.5

Architecture Value

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

REDOR Parameters Value

Training rounds T 50
m 50
ϵ 0.01

Table 4: Hyper-parameters sheet of REDOR
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