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Abstract

Going beyond mere fine-tuning of vision-language models (VLMs), learnable prompt tuning
has emerged as a promising, resource-efficient alternative. Despite their potential, effectively
learning prompts faces the following challenges: (i) training in a low-shot scenario results
in overfitting, limiting adaptability, and yielding weaker performance on newer classes or
datasets; (ii) prompt-tuning’s efficacy heavily relies on the label space, with decreased per-
formance in large class spaces, signaling potential gaps in bridging image and class concepts.
In this work, we investigate whether better text semantics can help address these concerns.
In particular, we introduce a prompt-tuning method that leverages class descriptions ob-
tained from Large Language Models (LLMs). These class descriptions are used to bridge
image and text modalities. Our approach constructs part-level description-guided image
and text features, which are subsequently aligned to learn more generalizable prompts. Our
comprehensive experiments conducted across 11 benchmark datasets show that our method
outperforms established methods, demonstrating substantial improvements.

1 Introduction

Foundational Vision-Language Models (VLMs) like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021)
have displayed remarkable zero-shot and open-vocabulary capabilities in recent years. This has led to VLMs
being employed in various vision-only downstream tasks such as open-vocabulary image classification (Liang
et al., 2022), object detection (Feng et al., 2022), and image segmentation (Lüddecke & Ecker, 2022). Trained
on extensive web data, these models often use a contrastive loss to align image-text pairs in a shared
embedding space, allowing them to represent diverse concepts.

Recently, learnable prompt-tuning (Zhou et al., 2021; Khattak et al., 2023; Fahes et al., 2023) has emerged
as a promising parameter-efficient alternative for fine-tuning foundation models. Prompt-tuning methods
introduce additional learnable parameters called prompt vectors, which are tuned on task-specific data. This
approach adapts VLMs for a specific downstream task without affecting the pre-trained parameters of the
VLM. While prompt-tuning methods have shown great promise, efficiently learning prompt vectors faces the
following challenges: (i) training prompts in a low-shot setting leads to overfitting, hindering their general-
izability, and exhibiting sub-optimal performance when applied to newer classes or datasets (Shi & Yang,
2023; Khattak et al., 2023; 2022), (ii) the performance of prompt-tuning methods can be highly dependent on
the label space used for classification. During inference, if the label space is large, the performance tends to
decrease due to bias towards the seen classes the model was fine-tuned on (see empirical evidence in Tab. 2
of § 5). These issues indicate that there is a lack of understanding of images and classes based on their
detailed semantic components. For example, an image of a cat should be understood through its specific
features like ‘whiskers’ and ‘tail’, not just the class name ‘cat.’ To address this, we propose SAP (Semantic
Alignment for Prompt-tuning), which uses class descriptions to learn generalizable prompts. Our semantic
alignment module brings together class descriptions for class names with the text modality and the image
modality using a cross-attention mechanism and a learnable bias. This alignment helps the model grasp the
relationship between different parts of an image and their textual descriptions, leading to a more detailed
and accurate representation.
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Figure 1: Top: Comparison of GradCAM (Selvaraju et al., 2017) visualizations for our proposed method SAP
against other baselines, on classes “Applying Lipstick” and “Clean and Jerk” from an Action Recognition
dataset (Soomro et al., 2012). The saliency maps indicate image regions that are most relevant to the
descriptions “A photo of applying lipstick has a person applying lipstick to lips” and “A photo of clean
and jerk which has a person lifting a barbell” respectively. SAP effectively localizes the text semantics in
images compared to baselines. Bottom: SAP surpasses other baselines on Generalized Zero-Shot (GZS)
and Base-to-Novel (B2N) benchmarks, showing improvements of +1.6% and +1.2 on Novel Accuracy and
Harmonic Mean (HM) for GZS, and +1.4% and +0.9 for B2N compared to best performing baselines.

Our method uses class descriptions to guide the creation of such image and text features that correspond to
specific parts or aspects of a class. However, we observe that merely using class descriptions alone does not
address the challenges presented above, as shown in Tab. 7 of § 5.2. We demonstrate that careful semantic
alignment between image and text features is crucial for effectively leveraging class descriptions. Given a
set of class descriptions, we show how to construct description-guided image and text features. For instance,
for an image of a cat, and a class description ‘has a large tail’, the corresponding description-guided image
feature encodes the part-level visual semantic information related to the description, using a cross-attention
mechanism and a learnable bias. The description-guided text features constitute the class name along with
the semantics of each class (obtained from the descriptions), resulting in information-rich and robust text
features. We then compute semantic alignment as the average cosine similarity between description-guided
image and text features, for relevant descriptions. Note that our approach includes the alignment between
both improved text and improved image features, making our approach multimodal. We use pre-trained
Large Language Models (LLMs) to generate class descriptions in an inexpensive manner. A recent set of
works (Menon & Vondrick, 2023; Yang et al., 2022) has shown that class descriptions obtained from LLMs
can be naively used to classify images on a given dataset with fixed categories. We go beyond and leverage
these class descriptions to perform low-resource prompt-tuning, and show that such adapted VLMs show
better generalization to unseen, novel classes. Fig. 1 illustrates the effectiveness of SAP over other baselines
on two benchmarks, Generalized Zero-Shot Classification (GZS) and Base-to-Novel Classification (B2N),
defined in § 5. As our semantic alignment is part-level too, SAP also showcases superior localization of
visual concepts relevant to a class description, as seen through class activation maps, when compared to
other baselines.

Tab. 1 delineates the key differentiators of our approach compared to other baselines. Most existing prompt-
tuning methods do not use additional text semantics; even among the recent few that use such information,
our method utilizes class descriptions at part-level for both image and text. This strategy leads to non-
trivial performance enhancements across benchmark datasets and improved localizations in novel classes or
datasets. Additionally, we highlight a gap in the evaluation scheme used in existing prompt-tuning efforts,
which demonstrate the performance of learned prompts primarily on the tasks of Base-to-Novel classification
and cross-dataset evaluation. Inspired by the traditional Generalized Zero-Shot Learning (G-ZSL) (Xian
et al., 2017; Liu et al., 2023) paradigm, we posit that generalization in the zero-shot setting is more realistic
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Text Image Use of External Part-level Evaluation # of Additonal
Method Prompts Prompts Knowledge img-text Benchmarks Trainable

alignment Parameters

CoOp [IJCV ’22], CoCoOp [CVPR ’22], KgCoOp [CVPR ’23] ✓ ✗ ✗ ✗ B2N, XDataset, DG 2k - 36k
ProGrad [ICCV ’23], ProDA [CVPR ’22]

MaPLe [CVPR ’23], PSRC [ICCV ’23], LoGoPrompt [ICCV ’23] ✓ ✓ ✗ ✗ B2N, XDataset, DG 36k - 3.55M

KAPT [ICCV ’23], CoPrompt [ICLR ’24], CLIP-VDT [ICCVW ’23] ✓ ✓ ✓ ✗ B2N, XDataset, DG 1.3M - 4.74M

SAP (Ours) ✓ ✓ ✓ ✓ GZS, B2N, XDataset, DG, 36K
Classification without Class-names

Table 1: Comparison of the proposed method, SAP, with other related work on various key aspects involving
fine-tuning VLMs for better generalization. B2N: Base-to-Novel, XDataset: Cross Dataset, DG: Domain
Generalization, GZS: Generalized Zero-Shot.

when considering both base and novel classes at inference. We call this protocol GZS evaluation – the first
such effort among prompt-tuning methods. We also propose another benchmark – Classification without
Class-names – where the method is exclusively evaluated using class descriptions to classify images when its
label lies outside CLIP’s vocabulary. Our contributions are:

• We propose a prompt-tuning method to fine-tune VLMs that can leverage class descriptions obtained from
an LLM. Our semantic alignment module allows for integration of class descriptions obtained from class
names with both text modality and image modalities using a cross-attention mechanism and a learnable
bias, thus bridging the two modalities. This improved alignment allows us to learn prompts that can
generalize well to unseen classes and datasets.

• We carry out a comprehensive suite of experiments with comparisons against state-of-the-art and very re-
cent methods on eleven standard benchmark datasets. We outperform existing baselines with a significant
margin on all evaluation protocols.

• We propose two new evaluation protocols: GZS evaluation and Classification without Class-names to bet-
ter study the generalizability of prompt-tuning methods for VLMs. Our method consistently outperforms
earlier baselines on these protocols, too.

2 Related Work

Vision-Language Models. Vision-language models (VLM) exhibit significant promise in acquiring generic
visual representations. VLMs aim to harness natural language guidance for image representation learning
and concurrently align both the text and image features within a shared embedding space. We consider
encoder-only VLMs which comprise of three components: a text encoder, an image encoder, and a learning
methodology that effectively utilizes information from both text and image modalities. Recent research on
learning transferable visual representations delves into establishing semantic connections between text and
visual elements, capitalizing on a vast reservoir of internet-based image-text pairs. For instance, CLIP (Rad-
ford et al., 2021) is the product of contrastive learning from 400 million image-text pairs, while ALIGN (Jia
et al., 2021) utilizes 1.8 billion noisy image-text pairs extracted from raw alt-text data. Nonetheless, a sub-
stantial challenge persists in transferring these foundational models to downstream tasks while preserving
their initial generalization capabilities. To address this, we use auxiliary information in the form of class
descriptions to better align image and text features, enhancing the model’s performance and generalizability.

Prompt-Tuning. Prompt-tuning introduces task-specific text tokens designed to be learnable to customize
the pre-trained VLM for downstream tasks. Context Optimization (CoOp) (Zhou et al., 2021) marks the
pioneering effort in replacing manually crafted prompts with adaptable soft prompts, fine-tuned on labeled
few-shot samples. Conditional Context Optimization (CoCoOp) (Zhou et al., 2022) builds upon this by
generating image-specific contexts for each image and merging them with text-specific contexts for prompt-
tuning. In contrast, Visual Prompt Tuning (Jia et al., 2022) introduces learnable prompts exclusively at
the vision branch, resulting in sub-optimal performance for transferable downstream tasks. ProDA (Lu
et al., 2022) focuses on learning the distribution of diverse prompts. KgCoOp (Yao et al., 2023) introduces
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regularization to reduce the discrepancy between learnable and handcrafted prompts, enhancing the gen-
eralizability of learned prompts to unseen classes. PSRC (Khattak et al., 2023) shares a similar concept
with KgCoOp (Yao et al., 2023) but introduces Gaussian prompt aggregation. ProGrad (Zhu et al., 2023)
selectively modifies prompts based on gradient alignment with a hard-coded prompt. MaPLe (Khattak et al.,
2022) introduces prompts at text and image encoder branches and link them with a coupling function. In a
different approach, LoGoPrompt (Shi & Yang, 2023) capitalizes on synthetic text images as effective visual
prompts, reformulating the classification problem into a min-max formulation. Although these methods
have shown promising results, they suffer from overfitting to the training classes when trained in a low-shot
manner. This overfitting limits their generalizability and results in sub-optimal performance on newer classes
or datasets. We address this issue by leveraging external information in the form of class descriptions to
semantically align image and text features, helping us learn generalizable prompts.

Use of External Knowledge. A set of recent works (Menon & Vondrick, 2023; Yang et al., 2022; Pratt
et al., 2022) provide evidence that visual recognition can be improved using concepts, and not just class
names. However, (Menon & Vondrick, 2023; Pratt et al., 2022) does not facilitate a way to perform fine-
tuning on a downstream dataset. In contrast, (Yang et al., 2022) is a concept bottleneck model with a fixed
label space and thus cannot be used for zero-shot classification. In fine-tuning methods incorporating external
knowledge, KAPT (Kan et al., 2023) introduces complementary prompts to simultaneously capture category
and context but lacks semantic alignment of each class description at the part-level of both image and text.
On the other hand, CLIP-VDT (Maniparambil et al., 2023) utilizes semantic-rich class descriptions only
in the text modality, without semantic alignment with images. In CoPrompt(Roy & Etemad, 2024), class
descriptions are utilized via a regularizer acting as a consistency constraint to train the text prompts. There
is no consideration of explicit semantic alignment with the image modality. In contrast, our approach utilizes
class descriptions to semantically construct both text and image features, enhancing part-level alignment
between the two modalities. This improved alignment helps us learn prompts that can generalize well to
unseen classes and datasets. A comparison of our method with existing works is shown in Tab. 1.

3 Preliminaries and Background

VLMs perform image classification on a downstream dataset by comparing an image representation with
text representations of the class names in the dataset’s label space. When a small amount of labeled data
is available, it has been shown that fine-tuning VLMs substantially boosts downstream performance (Zhou
et al., 2021; 2022). However, the fine-tuned model does not generalize to novel classes that were absent
during fine-tuning (Zhou et al., 2022). In this work, we propose Semantic Alignment for Prompt Learning
(SAP), that leverages class descriptions to fine-tune VLMs for better generalization to novel classes. Before
we describe our methodology, we briefly discuss the required preliminaries, beginning with CLIP (Radford
et al., 2021), the VLM chosen as our backbone following earlier work (Zhou et al., 2021; 2022; Khattak et al.,
2022; Lu et al., 2022; Yao et al., 2023; Khattak et al., 2023; Zhu et al., 2023). A summary of notations and
terminology is presented in Appendix § A.

CLIP Preliminaries. CLIP consists of an image encoder θ and a text encoder ϕ, which are trained
contrastively on paired image-text data to learn a common multi-modal representation space. θ takes an
image x as input and returns the image feature θ(x) ∈ Rd. ϕ processes a text string S into a d-dimensional
feature vector ϕ(S) ∈ Rd. CLIP is trained with InfoNCE loss (van den Oord et al., 2018) to enhance cosine
similarity for matching image-text pairs and to reduce it for non-matching pairs.

CLIP performs zero-shot recognition of an image x by choosing the most similar class name from a set of
candidate class names Y, i.e., predicted class ŷ = arg maxy∈Y sim(θ(x), ϕ(y)), where the similarity sim is
cosine-similarity. In practice, for a class name y, ϕ(y) is the text representation of a manually crafted prompt
encapsulating y such as ‘a photo of a [y]’. Zero-shot classification performance significantly depends on
the label set Y considered, and varies with the template of the text prompt (Radford et al., 2021).

Fine-Tuning CLIP with Learnable Prompts. To perform efficient adaptation under limited supervision,
prompt-tuning methods add a small number of learnable tokens to the input token sequence of either modality
which are fine-tuned to generate task-specific representations. For instance, CoOp (Zhou et al., 2021) adds
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Figure 2: Our proposed workflow, SAP, performs part-based semantic alignment between image and text
features. SAP integrates class descriptions into the text template which are passed through the text encoder
to construct description-guided text features. Global and local image features are obtained from the im-
age encoder. Description-guided image features are obtained by performing parameter free cross-attention
between class descriptions and local features. These image features are pooled into a mean description-
guided image feature, which is then fused with the global image feature to obtain the fused image feature.
Description-guided text features and the fused image feature contain part-level semantic information, and
are semantically aligned. We optimize a cross-entropy loss Lce, and two steering losses Lv

steer, and Lt
steer.

n learnable text-prompts ρt = {pt
1, . . . , pt

n} to the token embeddings {wS
1 , . . . , wS

q } of some text S. The
final sequence {pt

1, .., pt
n, wS

1 , .., wS
q } is passed through ϕ to obtain the prompted text feature ϕp(S)1. We

follow IVLP (Rasheed et al., 2022), which adds learnable prompt tokens at transformer layers of both
image and text encoders. That is, along with text prompts, IVLP appends learnable visual prompts ρv

to patch tokens of image x, which are passed through θ to yield the prompted visual feature θp(x). Let
ρ = {ρt, ρv} denote the set of all trainable text and visual prompts. These prompts are trained to maximize
the similarity between a prompted image feature and the corresponding prompted text feature of its class
label. Given B image-text pairs {(xi, yi)}B

i=1, where yi ∈ Y, the likelihood of xi predicting class yi is given

by Pρ(yi | xi) = exp(sim(θp(xi), ϕp(yi))/τ)∑
y∈Y

exp(sim(θp(xi), ϕp(y))/τ) , where τ is the temperature and sim is cosine similarity.

The negative log-likelihood loss to be optimized is L(ρ) = −1
B

∑
i∈[B]

log(Pρ(yi | xi)).

With the above background, we now present our methodology to use class descriptions to learn prompts
that helps VLMs generalize better to unseen, novel classes.

4 Semantic Alignment for Prompt-tuning: Methodology

Given labeled data, most existing methods learn prompts that largely limit themselves to incorporating
text information in the form of class labels only. We propose SAP, Semantic Alignment for Prompt-
tuning, which utilizes auxiliary information in the form of class descriptions obtained from LLMs to learn
more generalizable prompts. Our method constructs description-guided image and text features that are
semantically aligned with each other. Specifically, a class description provides a semantic context, and
the corresponding description-guided image or text feature encodes part-level information related to this
description. Our semantic alignment module allows for integration of class descriptions obtained from class
names with both text modality and image modalities using a cross-attention mechanism and a learnable
bias. This external semantic knowledge, derived from class descriptions, transfers to novel classes because
the semantics represent common concepts shared across multiple classes, such as ‘large tail’ or ‘whiskers’.
An overview of our methodology is shown in Figure 2. We begin by describing how class descriptions are
generated using LLMs.

1We add a subscript p to indicate prompted features for images and text
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4.1 Generating Class Descriptions
Large language models (LLMs) act as vast knowledge corpora that can be queried for the semantics of real-
world objects. We use the popular LLM GPT-3.5 (Hagendorff et al., 2022) to obtain text descriptions for
each class in a given dataset. Class descriptions commonly contain visual cues such as shape, texture, and
color, as well as narratives of objects commonly correlated with the class. To keep our method cost-efficient,
we use descriptions that are class-specific but not image-specific, thus making them reusable for a set of
image samples (note that this is done only once per class label). We use the responses from the LLM as
they are, and do not manually curate or filter them any further. This keeps our approach low-cost while
integrating finer semantic details into fine-tuning of VLMs. Some examples of our class descriptions are
provided in Appendix § E.

Class Description Features. For each class y ∈ Y, where Y is the label space under consideration, we
denote by Ay the set of generated class descriptions. Let A =

⋃
y∈Y

Ay, N = |A| denote the set of descriptions

of all classes and the size of the set, respectively. Class description features ϕ(A) ∈ RN×d are obtained
by passing the class descriptions through text-encoder ϕ. In the following sections, we describe how SAP
leverages class descriptions to construct description-guided image and text features, enabling us to learn
prompts that generalize well.

4.2 Leveraging Class Descriptions for Text Features
The text feature ϕ(y) for a class y ∈ Y is generally obtained by encapsulating the class name in a text
template, for eg. ‘a photo of a [y]’, and passing it through ϕ. When class descriptions Ay are given, we
append them to the text template to generate |Ay| distinct templates. For example for class y = cat and
Ay = {‘has whiskers’, ‘has a large tail’}, we generate 2 description-guided templates ‘a photo of a cat
which has whiskers’ and ‘a photo of a cat which has a large tail’.

The description-guided templates are passed through text-encoder ϕ to generate description-guided text
features ϕ(y; Ay) ∈ R|Ay|×d for class y. For an image x, the semantic alignment ξ between the image feature
θ(x) and description-guided text features for class y is given by:

ξ(θ(x), ϕ(y; Ay)) = 1
|Ay|

∑
a∈Ay

sim(θ(x), ϕ(y; a)) (1)

This simple way of incorporating class descriptions into the text modality works well in practice. We validate
our design choices in Tab. 7 by comparing against alternative ways to incorporate class descriptions.

4.3 Leveraging Class Descriptions for Image Features
As shown in the fusion module of Fig. 2, we also leverage the class descriptions in the visual modality by
first generating description-guided image features, and then fusing them with the global image feature. We
describe this process below.

Figure 3: Addition of a bias vector to the
last transformer block in θ

Constructing Description-Guided Image Features.

An image x is passed through the image encoder θ (which is a
vision transformer in this section) and the output of the final
transformer block of shape (1 + 196 + n) × d′ is collected. Here,
1 corresponds to the clsI token, n is the number of learnable
prompt tokens, and d′ is the dimension of the transformer layer.
In all earlier works, including CLIP, the clsI output token is
passed through the final projection layer proj ∈ Rd′×d of θ to
obtain the global image feature θ(x) ∈ Rd. These features capture
the global context of the image but may not capture local object-
level semantics (Rao et al., 2021). We aim to utilize the rich part-level local information hidden in the
196 patch tokens and establish their association with class descriptions. To obtain the local image features
θl(x) ∈ R196×d, we pass the patch tokens through proj and add a learnable d-dimensional bias offset as
shown in Fig. 3. This bias is added to fine-tune proj with local information, which otherwise is used only to

6



Under review as submission to TMLR

obtain global image features from the last transformer block. The added learnable parameter, though small,
effectively fine-tunes local features based on the descriptions, enhancing the quality of local image features.

We obtain description-guided image features by performing a parameter free cross-attention with class de-
scription features as queries, and local image features as both keys and values.

θdesc(x) = CrossAttention(Q = ϕ(A), K = θl(x), V = θl(x)) (2)

Here, ϕ(A) ∈ RN×d are the class description features for all class descriptions A, θl(x) ∈ R196×d are the
local features of an image. The description-guided image features θdesc(x) ∈ RN×d encode part-level local
information relevant to the N descriptions. For any description, the cross-attention module computes a
weighted combination of the 196 local features, where the weights are determined by the similarity between
the image patch and the description. Note that we obtain N description features, one per description,
for a single image. Since descriptions are common across classes and even datasets, these features contain
information that can transfer to novel classes. Note that, similar to other works (Khattak et al., 2023; 2022),
we only require a single forward pass to compute θ and θdesc. Usually, only the cls token is used for image
features. We leverage the remaining tokens (instead of discarding them) to compute local image features θl,
and consequently θdesc.

Fusing Description-Guided Features with Global Image Feature. The description-guided image
features described above use class descriptions from all classes, and not just the ground-truth class of the
image. Since the class descriptions generated by LLMs may be noisy, not all descriptions are relevant to a
specific image. To address this, we introduce a relevance score r ∈ [0, 1]N , which quantifies each description’s
similarity to the image. This is computed as:

r = softmax(ϕ(A) · θ(x)) (3)

We perform a weighted average of θdesc(x) with r, and obtain the mean description-guided feature θ̄desc(x) ∈
Rd, which captures finer contexts in an image and is computed as:

θ̄desc(x) = θdesc(x)⊺ · r (4)

For an image, the global image feature θ(x) ∈ Rd encodes class information pertaining to the image and
the mean description-guided feature θ̄desc(x) ∈ Rd encodes part-level visual context. We perform a fusion of
both these features to yield the final fused image feature θ̂(x).

θ̂(x) = (1 − α) · θ(x) + α · θ̄desc(x) (5)

We give a higher weight α ∈ [0, 1] to the part-level features θ̄desc(x) of an image if the descriptions attend
strongly to specific patches of the image. For each description, we consider the maximum attention weight
over image patches as the specificity of the description. We then define α as the average specificity for all
descriptions. We note that α is not a hyperparameter. This indicates the specificity of certain descriptions
to some parts of the image. To see this, consider the case of a background image. Clearly such an image is
uninformative w.r.t any class description, and its part-level features can be discounted. For each description,
the maximum attention weight over image patches is a proxy for the specificity of the description. We then
define α as the average specificity for all descriptions. The fused image feature θ̂(x) ∈ Rd contains global
visual semantics as well as part-level semantics.

4.4 Description-Guided Semantic Alignment

Given an image x, we obtain the fused image feature θ̂(x) as described in § 4.3. For every class y ∈ Y, we
obtain the description-guided text features ϕ(y; Ay) as described in § 4.2. We denote the learnable prompt
vectors by ρ, and we represent prompted features with subscript p. For instance, the prompted fused image
feature is θ̂p(x), and so on. Prompts are trained by minimizing the negative log-likelihood of the training
data {(xi, yi)}B

i=1:

Lce(ρ) = − 1
B

B∑
i=1

log exp(ξ(θ̂p(xi), ϕp(yi; Ayi))/τ)∑
y∈Y

exp(ξ(θ̂p(xi), ϕp(y; Ay))/τ)
where ξ(θ̂p(x), ϕp(y; Ay)) = 1

|Ay|
∑

a∈Ay

sim(θ̂p(x), ϕp(y; a))

(6)
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where τ is the temperature parameter, and sim is cosine similarity. To compute semantic alignment ξ,
we aggregate similarity between the fused image feature and the description-guided text feature over all
pertinent class descriptions and normalize by their count. A relevant description in the image enhances its
similarity to the class; however, the absence of a description in the image does not penalize its similarity to
the class. Following (Yao et al., 2023; Khattak et al., 2023), we add regularization terms designed to penalize
prompted features that deviate significantly from their unprompted counterparts. We use the L1 penalty to
regularize global image features and description guided text features.

Lv
steer(ρ) = 1

B

B∑
i=1

∥θp(xi) − θ(xi)∥1 Lt
steer(ρ) = 1

|Y|
∑
y∈Y

∥ϕp(y; Ay) − ϕ(y; Ay)∥1 (7)

The final objective is L(ρ) = Lce(ρ) + λ1Lv
steer(ρ) + λ2Lt

steer(ρ), where λ1 & λ2 are hyperparameters.

Inference: Let Y ′ be the inference time label space, and Az be the class descriptions of class z ∈ Y ′. Using
the learned prompt p, we compute the prompted fused image feature and the description-guided text features
for all classes in Y ′. The class with the highest semantic alignment ξ(θ̂p(x′), ϕp(z; Az)) is then predicted as
the final label. The overall algorithm of SAP is presented in Appendix § B .

5 Experiments and Results

We comprehensively evaluate the generalization performance of SAP on two newly proposed benchmarks
– (i) Generalized Zero-Shot Classification (GZS) and (ii) Classification without Class-names (CwC) and
existing benchmarks (iii) Base-to-Novel Generalization (B2N) and (iv) Cross-Dataset Generalization.

Proposed Evaluation Benchmarks:

(i) Generalized Zero-Shot Classification (GZS). In GZS, the label space of a dataset is equally split
into disjoint base and novel classes. Only a small number (e.g., 16-shot) of labeled samples from the base
classes are available as training data. However, during evaluation, the classification label space is the union
of base and novel classes. As explained in § 3, zero-shot classification performance depends on the label
space considered, and introducing the union of base and novel classes into the label space tests the bias of
the fine-tuned model towards base classes. Hence, we believe this benchmark is a more realistic measure of
the generalization performance of VLM fine-tuning methods. Though this setting has existed in traditional
zero-shot learning (Xian et al., 2017), we introduce it back into the realm of VLM evaluation.

(ii) Classification without Class-names (CwC). VLMs require explicit class names to perform classifi-
cation (Radford et al., 2021). This is a limitation for images whose label lies outside the VLM’s vocabulary.
CwC tests the ability of a VLM to classify truly novel images without explicitly using class names. During
inference, all class names are replaced with the word ‘object’, and the model is tested on it’s ability to classify
an image based on descriptions alone. For example, to classify a ‘Pikachu’ image, we just use the descrip-
tions {‘has a yellow body’, ..., ‘has round red cheeks’} and not the class name ‘Pikachu’, hence the text
template looks like ‘a photo of an object, which has a yellow body’ etc. The model is fine-tuned on
base classes, and evaluated on base and novel classes separately by removing all class names.

Existing Evaluation Benchmarks:

(iii) Base-to-Novel Generalization (B2N). In this setting, following prior work (Zhou et al., 2021; 2022;
Khattak et al., 2022; Yao et al., 2023; Khattak et al., 2023; Shi & Yang, 2023), the dataset is split into equal
disjoint base and novel classes, and the model is fine-tuned on few-shot (16-shot) training split of the base
classes. During evaluation, unlike GZS, the label space is constrained to either just the base classes or just
the novel classes. The testing phase for B2N is thus separate for base and novel classes, whereas the GZS
benchmark has a unified testing phase.

(iv) Cross-Dataset Generalization. In this setting, the model is fine-tuned on ImageNet (Deng et al.,
2009) and tested on the remaining datasets. This measures the ability of a VLM fine-tuning method to
generalize to novel datasets.
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Dataset CLIP CoOp VPT CoCoOp MaPLe KgCoOp ProGrad PSRC CLIP-VDT SAP
(ICML ’21) (IJCV ’22) (ECCV ’22) (CVPR ’22) (CVPR ’23) (CVPR ’23) (ICCV ’23) (ICCV ’23) (ICCVW ’23) (Ours)

Average gBase 60.81 75.19 73.48 73.13 75.47 76.86 70.15 78.81 63.75 79.47 (+0.66)
on 11 gNovel 63.21 60.39 66.62 65.23 67.09 62.12 55.07 68.13 63.89 69.75 (+1.62)

datasets gHM 61.99 66.99 69.89 68.96 71.04 68.71 61.70 73.08 63.82 74.29 (+1.21)

Table 2: Results on the GZS benchmark. gNovel & gBase indicate the accuracy of the novel classes and
base classes respectively under the joint classification label space. gHM is the harmonic mean of gBase and
gNovel. The best numbers are in bold, and the second best are underlined. SAP outperforms the best
performing baseline on average gBase (by +0.66%), gNovel (by +1.62%), and gHM (by +1.21) computed
across all datasets. Detailed dataset-wise results are presented in Appendix § D.

Baselines. We compare SAP, against state-of-the-art baselines, including very recent prompt-tuning meth-
ods (summarized in Tab. 1), such as CLIP (Radford et al., 2021), CoOp (Zhou et al., 2021), VPT (Jia et al.,
2022), CoCoOp (Zhou et al., 2022), ProDA (Lu et al., 2022), MaPLe (Khattak et al., 2022), KgCoOp (Yao
et al., 2023), ProGrad (Zhu et al., 2023), PSRC (Khattak et al., 2023) and LoGoPrompt (Shi & Yang, 2023).
We also compare against contemporary works that use external knowledge, such as KAPT (Kan et al., 2023),
CLIP-VDT (Maniparambil et al., 2023) and CoPrompt (Roy & Etemad, 2024).

Datasets. We follow (Zhou et al., 2021; 2022; Khattak et al., 2022; 2023) to evaluate our method on 11
image classification datasets of varying complexity. These datasets encompass diverse domains, including
generic object datasets like ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004); fine-grained
datasets like Stanford Cars (Krause et al., 2013), OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback
& Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013); scene recognition
dataset SUN397 (Xiao et al., 2010); action recognition dataset UCF101 (Soomro et al., 2012); texture dataset
DTD (Cimpoi et al., 2013), and satellite image dataset EuroSAT (Helber et al., 2017).

Overview of Results. We present average base class accuracy, novel class accuracy, and their harmonic
mean across 11 datasets for the GZS, CwC, B2N, and Cross-Dataset benchmarks in § 5.1 – Tab. 2, Fig. 4,
Tab. 3, and Tab. 4 respectively. Dataset-wise expanded tables for all benchmarks, along with Domain Gen-
eralization and ResNet-50 backbone results are present in Appendix § D. In § 5.2, we show class activation
maps to visualize image regions most relevant to a class description, where SAP demonstrates better local-
ization capabilities. We study the goodness of our design choices in § 5.3 and show that part-level semantic
alignment between image and text features helps learning better prompts.

5.1 Main Results

(i) Generalized Zero-Shot Classification. This newly proposed benchmark tests the ability of a method
towards it bias to base classes and also it’s generalization to novel classes within a dataset. We compare
SAP against baselines and report the results in Tab. 2. The metric gBase is the average accuracy of test
images belonging to base classes when the label space is the set of all classes (union of base and novel
classes). The metric gNovel is the average accuracy of test images belonging to novel classes when the
label space is the set of all classes. gHM is the harmonic mean of the gBase and gNovel. SAP’s ability to
leverage descriptions helps in mitigating the bias towards base classes, resulting in good generalized novel
class accuracy. We outperform a recent state-of-the-art method PSRC, achieving better results in 8 out of
11 datasets (see Appendix § D), with a +1.21% margin in gHM averaged over all 11 datasets. Compared
to the second-best method MaPLe, we have a significant margin of +3.25% in average gHM, outperforming
it on all 11 datasets. We don’t report the results of ProDA, LoGoPrompt, and KAPT in this setting due to
code unavailability.

(ii) Classification without Class-names In this newly proposed benchmark, we study the ability of a
pretrained VLM to classify images whose class names lie outside CLIP’s vocabulary. Since the list of datasets
CLIP was trained on is not public knowledge, to empirically evaluate this setting we use the standard 11
datasets itself, but remove access to class-names during evaluation. Similar to the B2N setting, all models
are trained on base-class images. For all baselines (including ours), we find the similarity of an image x
with a class y (not given to the model) as the average similarity between the image and the corresponding
class-descriptions of y, which are known. We report average accuracies on 11 datasets in Fig. 4, where we
outperform MaPLe (Khattak et al., 2022) by +2.04% in HM.
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Figure 4: Comparison in the CwC setting. We show average Base, Novel, and HM accuracies over all
11 datasets. During evaluation, descriptions of each class are provided instead of the class name, and
visual recognition is conducted based on these descriptions. SAP outperforms baselines by average Base
(by +1.75%), Novel (by +1.76%) and HM (by +2.04%) computed over all datasets. Detailed dataset-wise
results are presented in Appendix § D.

Dataset CLIP CoOp VPT CoCoOp ProDA MaPLe KgCoOp ProGrad PSRC L.Prompt CLIP-VDT KAPT SAP (Ours)

Average
on 11
datasets

Base 69.34 82.69 80.81 80.47 81.56 82.28 80.73 82.48 84.26 84.47 82.48 81.10 84.68 (+0.21)
Novel 74.22 63.22 70.36 71.69 72.30 75.14 73.60 70.75 76.10 74.24 74.50 72.24 77.51 (+1.41)
HM 71.70 71.66 70.36 75.83 76.65 78.55 77.00 76.16 79.97 79.03 78.28 76.41 80.94 (+0.97)

Table 3: Comparison on Base-to-Novel Generalization benchmark. The best numbers are in bold, and the
second best are underlined. SAP outperforms the best performing baseline on average Base (by +0.21%),
Novel (by +1.41%) and HM (by +0.97%) computed over all datasets. Expanded tables are in Appendix § D.

(iii) Base-to-Novel Generalization. We compare our method with twelve baselines and report the average
accuracies in Tab. 3, where we outperform all baselines. We report per dataset accuracies in the Appendix
§ D, and show that SAP outperforms the state-of-the-art method PSRC in 7 out of 11 datasets while
retaining performance in the others. We show significant gains in challenging datasets such as EuroSAT and
DTD, where we outperform PSRC by a margin of +5.66% and +2.92% in HM respectively. We also show
improved performance on the UCF-101 dataset, which contains a wide variety of human actions captured in
diverse settings, where we show an improvement of +2.49% in HM over PSRC. These results indicate that
SAP can integrate semantic knowledge provided by class descriptions to learn generalizable prompts.

(iv) Cross-Dataset Generalization. We compare our method with nine baselines and outperform all of
them as shown in Tab. 4. SAP outperforms PSRC (Khattak et al., 2023) by +1% and MaPLe (Khattak
et al., 2022) by +0.5% on average test accuracy over all datasets, which indicates that our method learns
prompts that generalize across datasets.

Dataset CoOp CoCoOp VPT MaPLe KgCoOp ProGrad PSRC CLIP-VDT KAPT SAP (Ours)

Avg. on 10 Datasets 63.88 65.74 63.42 66.30 65.49 57.36 65.81 53.98 61.50 66.85 (+0.55)

Table 4: Cross-Dataset Generalization. Models are trained on Imagenet and tested on the entire label space
of new datasets without fine-tuning. SAP outperforms all baselines on average (see Appendix § D).

CoPrompt CoPrompt* SAP (Ours)
prompts+adapter prompts prompts

Average
on 11
datasets

Base 84.00 83.40 84.68 (+1.28)
Novel 77.23 76.90 77.51 (+0.61)
HM 80.48 80.02 80.94 (+0.92)

Table 5: B2N results comparison against CoPrompt. SAP
outnumbers the prompt-only version by a margin on Base
(by +1.28%), Novel (by +0.61%), and HM (by +0.92%).

Comparison against a recent method
that uses external knowledge. In Tab. 5
we compare SAP against CoPrompt (Roy &
Etemad, 2024) on the B2N benchmark. Co-
Prompt is a recent work that uses class descrip-
tions to tune prompts and adapters, with a to-
tal of 4.74M additional parameters over CLIP.
SAP outperforms CoPrompt by +0.46% av-
erage HM, despite only having 36K additional learnable parameters over CLIP. SAP outperforms a prompt-
only version of CoPrompt, indicated by CoPrompt* in Tab. 5, by +0.92% in average HM.
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Figure 5: Images are highlighted at regions of highest activation relevant to specific text phrases, as identified
by their prompted image and text encoders. Qualitatively, SAP localizes better than existing baselines.

5.2 Qualitative Results

Class Activation Maps. We present Class Activation Maps (CAMs) for the ViT-backbone CLIP image
encoder to show image regions that most correlate to a given text description. We visualize activations of
the pre-final self-attention layer of the transformer that maximize the cosine similarity between an image
and a given text description. We present qualitative results in Fig. 5, where prompts learned by our method
lead to better localizations. We also propose an occlusion metric to measure the localization capabilities of
our learned prompts. Given a description, we mask out parts of the image which are most activated w.r.t.
the description. The occluded image is then classified by the pre-trained CLIP model. A CAM localizes the
description well if occluding image regions with the highest activations leads to a large drop in accuracy.

Method Archery Baby Crawling Band Marching Apply Eye Makeup Apply Lipstick Biking Body Weight Squats
CoOp 57.39 64.42 61.99 75.00 78.66 55.15 53.97
PSRC 47.87 53.69 54.29 50.00 69.33 50.35 50.72
Ours 44.34 49.66 51.58 40.90 62.66 47.96 48.73

707-320 747-200 737-200 727-200 C-130 CRJ-200 Boeing-717
CoOp 15.21 11.82 23.47 6.13 75.81 38.22 20.63
PSRC 6.14 8.84 21.42 3.06 75.86 32.45 23.58
Ours 3.00 5.92 15.30 0.00 60.61 26.58 14.72

Table 6: Occlusion benchmark (lower number is better): Images are masked at regions of highest activation
relevant to a given class description, as identified by prompted image and text encoders, and then evaluated
using the pre-trained CLIP model. The lower the accuracy, the better are the localizations. We show results
for a few specific classes from the UCF101 dataset (top) and FGVC-Aircraft dataset (bottom). For example,
for the class ‘body weight squats’, we use the description ‘person bending knees and hips’.

For instance, for the text phrase ‘a photo of a 737-200, which has two engines on the wings’ we find that
masking out important regions given by our prompted image encoder leads to an accuracy of 15.30%. This
drop is higher than that of PSRC, whose accuracy drops only to 21.42%. This suggests that regions which
are deemed important by SAP are highly correlated to the text phrase. Our parameter-free cross-attention
module helps us learn prompts that focus on part-level image information.

5.3 Ablation Studies

Study on Design Choices. In this section we justify our design choice of computing semantic alignment
as the average similarity between the fused image feature and various description-guided text features. Our
key contribution is not just integrating descriptions into prompt learning for VLMs, but how descriptions
are integrated into both visual and text modalities. We consider three alternative ways to incorporate class
descriptions and show that our methodology leads to the best results. For our first alternative, we show
that taking the unnormalized mean of description-guided text features to compute similarity leads to a
drop in performance (SAP w/ mean text feature in Tab. 7). That is, computing semantic alignment as
ξ(θ̂p(x), ϕp(y; Ay)) = sim(θ̂p(x), 1

|Ay|
∑

a∈Ay

ϕp(y; a)), leads to a drop in performance. This is in contrast to
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our design choice of taking the mean similarity, as shown in Eq. 1. Intuitively, descriptions of a class that
are not well represented in pre-trained CLIP result in description-guided features with a low norm because
CLIP has not encountered such associations during training. Information related to such descriptions is lost
when the description-guided features are simply averaged out, without normalization.

Method Avg HM
SAP 80.94
SAP w/ mean text feature 80.31
SAP w/ agg descriptions 79.17
CLIP-VDT Text + SAP’s Visual 78.63

Table 7: Comparison with alternative design
choices for incorporating class descriptions into
the text modality.

We also observe that simply appending all class descrip-
tions at once to generate a single description-guided text
feature also leads to a drop in performance (SAP w/ agg
descriptions in Tab. 7). Finally we show that replacing
our text modality construction with that used by CLIP-
VDT (CLIP-VDT text + SAP’s Visual in Tab. 7) leads to
a significant drop in average HM. These experiments show
that how we add class descriptions is important, and that
our approach is different from recent approaches that uses
external information. We show average HM results across all 11 datasets of other design choices in Tab. 7.

Effect of Removing Learnable Bias. To study the effect of adding a learnable bias to obtain local
features, we conduct an ablation study. Tab. 8 shows that adding a bias is a parameter-efficient way to learn
good local image features. We further discuss the role of this bias in § D of the Appendix.

Method Avg. Base Avg. Novel Avg. HM
Effect of Removing Learnable Bias

SAP w/o bias 84.55 75.72 79.9
SAP 84.68 77.51 80.94

Effect of Removing Class descriptions from the Text Modality
SAP - TG 84.62 74.79 79.41
SAP 84.68 77.51 80.94
Effect of Removing Class Descriptions from the Image Modality

SAP w/ global 84.56 77.04 80.63
SAP w/ global & local 84.66 76.81 80.55
SAP 84.68 77.51 80.94

Table 8: All results are on the B2N generalization bench-
mark, and are average results over 11 datasets.

Effect of Removing Class Descriptions.
Our method SAP incorporates class descrip-
tions in both image and text modalities, as
described in § 4.2 & § 4.3. Here we study
the effect of removing description guidance
from both modalities. To remove descrip-
tion guidance from text, we just use the de-
fault class name template i.e. ‘a photo of a
[y]’, without using any class description. We
denote this baseline as SAP-TG. The results
shown in Tab. 8 indicate that adding class de-
scriptions to the text modality, as SAP does,
helps a lot. To study the effect of removing
class descriptions from the image modality,
we construct baselines by removing the cross
attention module. We first consider a baseline that uses just the global image feature θ(x) instead of the
fused feature and call this SAP w/ global. Then, we consider a baseline that naively combines global and
local features (without incorporating class descriptions via cross-attention) by averaging them and denote it
by SAP w/ global & local. We first compute the mean of the 196 local features to obtain a single mean local
feature, and then average this mean local feature with the global feature. Note that both baselines construct
description guided text features. The results presented in Tab. 8 justify our design choice of incorporating
class descriptions into the image modality. Furthermore our method to incorporate class descriptions into
images is through a fully non-parametric cross-attention, and adds little computational overhead.

6 Conclusions

Prompt learning has emerged as a valuable technique for fine-tuning VLMs for downstream tasks. However,
existing methods encounter challenges such as overfitting due to limited training data and difficulties handling
larger label spaces during evaluation, resulting in bias towards seen classes. Additionally, these methods
struggle when class labels are not present in the vocabulary. We study if better text semantics can improve
prompt learning, and propose an approach, named SAP, that learns prompts which better generalize to
novel classes. Our proposed approach highlights that careful part-level semantic alignment between image
and text features is crucial to leverage additional semantic information. We showcase the efficacy of our
approach across four benchmarks, demonstrating significant improvements. We hope this work inspires
further exploration into leveraging class descriptions in VLMs.
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