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ABSTRACT

Neural Collapse (NC) describes the global optimum of supervised learning, yet
standard cross-entropy (CE) training rarely attains its geometry in practice. This
is due to unconstrained radial degrees of freedom: cross-entropy is invariant to
joint rescaling of features and weights, leaving radial directions underconstrained
thus preventing convergence to a unique geometry. We show that constraining op-
timization to the unit hypersphere removes this degeneracy and reveals a unifying
view of normalized softmax classifier learning (CL) and supervised contrastive
learning (SCL) as the same prototype-contrast principle: both optimize angular
similarity to class prototypes, using explicit learned weights for normalized soft-
max and implicit class means for SCL. Despite this shared foundation, existing
objectives suffer from small effective negative sets and interference between posi-
tive and negative terms, which slows convergence to NC. We address these issues
with two objectives: NTCE, which contrasts class prototypes against all batch in-
stances to expand the negative set from K classes to M samples; and NONL, which
normalizes only over negatives to decouple intra-class alignment from inter-class
repulsion. Theoretically, we prove that SCL already learns an optimal prototype
classifier under NC, eliminating the need for post-hoc typically hours-scale linear
probing. Empirically, across four benchmarks including ImageNet-1K, our meth-
ods surpass CE accuracy, reach ≥95% on NC metrics, and match NC structure
with substantially fewer iterations. Moreover, SCL with class-mean prototypes
matches linear-probing accuracy while requiring no training. These results re-
frame supervised learning as prototype-based classification on the hypersphere,
closing the theory–practice gap while simplifying training and accelerating con-
vergence.

1 INTRODUCTION

Despite theoretical proofs that Neural Collapse (NC) is the global optimum of supervised learn-
ing objectives (Lu & Steinerberger, 2022; Zhou et al., 2022a; Graf et al., 2021), standard training
with cross-entropy rarely achieves this configuration in practice. This failure is particularly striking
because NC delivers precisely the properties we seek: when neural networks do approach this geo-
metric configuration, where within-class representations collapse to their means, class means form
an equiangular tight frame (ETF), and classifier weights align with these prototypes, they demon-
strate improved generalization (Papyan et al., 2020; Bartlett et al., 2017; Neyshabur et al., 2018),
adversarial robustness (Fawzi et al., 2016; Ding et al., 2020), enhanced transfer learning (Kornblith
et al., 2019; Khosla et al., 2020), and converge toward max-margin classifiers (Soudry et al., 2018)
with stronger robustness guarantees (Hein & Andriushchenko, 2017). If NC is provably optimal and
empirically beneficial, why does standard training consistently fail to achieve it?

We identify the core issue as unconstrained radial degrees of freedom. Cross-entropy optimization
allows features and weights to be jointly rescaled without changing predictions (Soudry et al., 2018).
This leaves radial directions underconstrained, preventing convergence to a unique geometry. While
explicit regularization of features, weights, and biases may theoretically resolve this (Zhu et al.,
2021), it introduces multiple hyperparameters that complicate practical implementation. A more
principled solution is to eliminate radial freedom entirely by constraining optimization to the unit
hypersphere, where NC becomes the unique global optimum (Yaras et al., 2022).
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This geometric perspective reveals a surprising unity between two learning paradigms traditionally
viewed as fundamentally different. Classifier learning (CL) with normalized softmax (Wang et al.,
2017) has been understood as directly learning decision boundaries through weight vectors, while
supervised contrastive learning (SCL) (Khosla et al., 2020) has been viewed as learning represen-
tations through instance-to-instance comparisons followed by a separate classifier training phase.
We show both are actually prototype-contrast methods on the hypersphere: normalized softmax
optimizes angular similarity between normalized features and explicit class weight vectors serving
as prototypes, while SCL optimizes angular similarity among normalized instances using implicit
class-mean embeddings as prototypes.

Despite this shared geometric foundation, these methods inherit computational limitations that pre-
vent efficient NC convergence. CL suffers from a small effective negative set (denominator contrasts
against only K class weights) (He et al., 2020), while both paradigms couple positive and negative
similarity terms through shared normalization (Yeh et al., 2022), creating interference that slows
convergence to optimal geometry. These limitations suggest that achieving NC requires not just
hyperspherical constraints but also algorithmic innovations in how prototypes are contrasted.

Building on the insight that both paradigms are prototype-based but computationally limited, we
make four key contributions:

1. We unify normalized softmax and SCL under a single geometric framework, revealing
both as prototype-contrast methods on the unit hypersphere that differ only in whether
prototypes are explicit (learned weights) or implicit (class means). This framework explains
why both can achieve NC while standard cross-entropy cannot.

2. We propose two supervised objectives that overcome existing computational limitations.
NTCE (Normalized Temperature-scaled Cross Entropy) increases the effective number of
negatives from K classes to M batch samples by contrasting the class prototype against
all instances in the batch, strengthening inter-class separation. NONL (Negatives-Only
Normalization Loss) eliminates interference between intra-class alignment and inter-class
repulsion by normalizing only over negatives, accelerating NC convergence.

3. We prove that SCL already learns an optimal classifier during pretraining, eliminating
the need for linear probing. The class-mean embeddings learned by SCL form an
ETF-aligned prototype classifier under NC, implementing the self-duality condition by
construction and yielding equivalent accuracy without incurring the computational cost of
post-training probing.

4. We validate our approach across four benchmarks including ImageNet-1K. NTCE and
NONL achieve ≥ 95% on NC metrics while surpassing standard cross-entropy accuracy,
and match cross-entropy’s NC metrics with substantially fewer training iterations. Our
prototype classifier maintains SCL’s accuracy while eliminating hours of linear probing
computation, a significant practical saving for large-scale deployments.

These results suggest a fundamental shift in how supervised learning should be understood: not
as unconstrained optimization in Euclidean space, but as prototype-based classification on the hy-
persphere. By making this geometry explicit, we close the theory–practice gap, simplify training,
accelerate convergence, and yield interpretable models that provably realize their optimal NC struc-
ture. The practical impact is substantial: faster training, elimination of extra compute phases, and
models that reach the theoretical optimum. The theoretical insight provides a principled foundation
for future advances in supervised learning.

2 RELATED WORK

Neural Collapse. Neural Collapse (NC) describes a limiting geometry in which within-class fea-
tures collapse to their means (NC1), class means form a centered simplex ETF (NC2), classifier
weights align with the means (NC3), and biases collapse (NC4) (Papyan et al., 2020). Variants of
this structure characterize global minimizers for several objectives and modeling assumptions, in-
cluding MSE (Han et al., 2022; Zhou et al., 2022a), cross-entropy (CE) (Lu & Steinerberger, 2022),
supervised contrastive learning (SCL) (Graf et al., 2021), and CE variants such as label smoothing
and focal loss (Zhou et al., 2022b). In finite training, however, standard CE with weight decay often
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fails to realize the optimal geometry: the loss is scale-noncoercive and can be driven toward zero by
inflating logit magnitudes without improving angular structure (Albert & Anderson, 1984; Soudry
et al., 2018). Class imbalance further distorts the ETF and slows convergence (Thrampoulidis et al.,
2022; Hong & Ling, 2024); free bias terms obstruct NC4 and can exacerbate miscalibration unless
controlled (e.g., logit adjustment) (Menon et al., 2021). While simultaneously penalizing features,
weights, and biases can restore coercivity and yield NC in principle (Zhu et al., 2021; Zhou et al.,
2022a), tuning multiple regularizers is brittle. We show that contrasting instances against class
prototypes on the hypersphere operationalizes NC in practice.

Learning on the hypersphere. Constraining radial freedom is a principled route to NC. When
both features and classifier lie on the unit hypersphere, CE over the product of spheres exhibits a
benign strict-saddle landscape whose minima realize perfect NC (Yaras et al., 2022). Related evi-
dence appears in contrastive objectives: SCL yields within-class collapse and simplex class means
(Graf et al., 2021), while in self-supervised contrastive learning batch-level optima form a simplex
ETF (Koromilas et al., 2024). A long line of face-recognition work, including SphereFace, CosFace,
ArcFace, and NormFace (Liu et al., 2017; Wang et al., 2018; Deng et al., 2019; Wang et al., 2017),
operationalizes direction-only discrimination by using angular/cosine margins. We unify these ap-
praches by showing that both normalized softmax and SCL perform prototype contrast on the hy-
persphere. Building on this bridge, we extend normalized softmax with NTCE/NONL to import
desirable properties.

Prototype-based classification and ETF classifiers. Prototype methods classify via distances to
learned representatives (Snell et al., 2017). Motivated by NC, prior work fixes the classifier to a
simplex ETF and learns only the encoder (Yang et al., 2022), enforces (non-negative) orthogonality
(Kim & Kim, 2024), or guides the classifier toward the nearest ETF via a Riemannian inner opti-
mization (Markou et al., 2024). Our perspective is that CL and SCL already operate with prototypes:
we modify the objectives to realize NC in practice, and we show that SCL’s class-mean prototypes
form an effective classifier, making linear probing unnecessary.

3 PRELIMINARIES

Notation. Scalars are denoted by lowercase letters u, vectors by lowercase bold letters u, and matri-
ces by uppercase bold letters U . Sets are represented by uppercase caligraphic letters U . Individual
elements are accessed using subscript notation: ui for the i-th element of vector u and Ui,j for the
element at row i and column j of matrix U . To denote vertical (row-wise) concatenation of matrices
X and Y, we use [X;Y]. We denote normalized vectors with ûj = uj/∥uj∥.

3.1 LEARNING PARADIGMS

Classifier Learning with Cross-Entropy. The cross-entropy loss is the standard Classifier Learning
(CL) objective, optimizing representations and classifier weights simultaneously. An encoder fθ :
X → Z , parameterized by θ ∈ Θ, maps an input x ∈ X to its representation z = fθ(x) ∈ Z . For a
K-class task, yi denotes the class assignment of sample xi. A linear classifier is placed on top of the
encoder, with weight matrix W ∈ RK×h and bias b ∈ RK , where h is the embedding dimension.
For a mini-batch of M samples with {zi}Mi=1, the cross-entropy loss is defined as

LCE(Z,W) =
1

M

M∑
i=1

− log

(
ez

⊤
i wyi

+byi∑K
j=1 e

z⊤
i wj+bj

)
, (1)

where wj denotes the j-th row of W and bj the j-th component of b.

Supervised Contrastive Learning. Supervised Contrastive Learning (SCL) takes a seemingly dif-
ferent direction: it learns representations by exploiting similarities between instances to learn class-
invariant representations. Building on our notation, the contrastive framework augments the encoder
fθ : X → Z with a projection head gϕ : Z → U , parameterized by ϕ ∈ Φ, which maps represen-
tations onto the unit hypersphere, U = Sd−1 = {u ∈ Rd | ∥u∥ = 1}. We denote the projected
representations as u,v ∈ U , where ui comes from instance xi and vi from its alternative view
produced via augmentation, a typical process in contrastive learning.
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For SCL the objective is to pull together positive pairs while pushing apart negative pairs in the
projection space. Typically alternative views of the same data point that originate from augmentation
are considered as new data points, i.e. A = [U ;V ], and the supervised contrastive loss becomes:

LSCL(A) =
1

2M

2M∑
i=1

− 1

|C(i)|
∑

l∈C(i)

log

 ea
⊤
i al/τ∑2M

j=1
j ̸=i

ea
⊤
i aj/τ

 , (2)

where C(i) denotes the set of indices corresponding to positive examples sharing the same class as
xi and τ > 0 is a temperature parameter that controls the concentration of the distribution.

A crucial distinction emerges post-training: while learning with cross-entropy directly produces a
classifier, contrastive learning requires an additional step. After optimizing Equation (2), the projec-
tion head is discarded and a linear classifier W , b is trained on the frozen encoder representations z
using Equation (1), a process known as linear probing.

3.2 NEURAL COLLAPSE (NC).

Neural Collapse Papyan et al. (2020)is the late-training regime (on balanced data) where last-layer
features and the linear classifier converge to a highly structured limit. Let zi = f(xi) ∈ Rh, class
means µc =

1
nc

∑
i:yi=c zi, weights wc, and bias b. NC holds when, up to common scalings:

(NC1) Within-class collapse: zi = µyi for all i.

(NC2) Simplex ETF of class means: the centered means µ̃c = µc − 1
K

∑K
k=1 µk have equal

norms and equal pairwise angles so the means span a centered (K−1)-simplex ETF.
(NC3) Alignment of Class Representation and Classifier: classifier columns align with the class

means, wc ∥ µc (there exists γ > 0 with wc = γ µc).
(NC4) Bias collapse: b = β 1 for some scalar β.

Under NC, the decision rule reduces to nearest-class-mean classification. We assume balanced
classes and h ≥ K − 1 so a centered simplex ETF is feasible (Lu & Steinerberger, 2022).

Practical Challenges in reaching Neural Collapse Neural Collapse (NC) is now well documented
in deep nets (Papyan et al., 2020) and characterizes global minima of balanced cross-entropy (Lu
& Steinerberger, 2022). However standard pipelines does not enforce it in practice. For the typical
paradigm of cross-entropy and classifier weight decay, the objective admits an unbounded rescal-
ing direction: shrinking the classifier while amplifying features leaves logits unchanged, reduces
the penalty, and drives the loss toward zero without achieving NC (Soudry et al., 2018; Albert &
Anderson, 1984). It is shown by Zhu et al. (2021) that a well-posed objective arises when all radial
degrees of freedom are constrained by penalizing weights, features, and biases simultaneously (Zhu
et al., 2021). However this is practically brittle due to multiple regularizers to tune.

Supervised contrastive training on the other hand can drive representations toward NC geometry
(Graf et al., 2021). However, the subsequent linear probing step typically fits a softmax classifier
with cross-entropy on frozen features, allowing free weight magnitudes and biases. This reintroduces
the same scale and bias pathologies as cross-entropy even when training has already reached an NC.

4 SUPERVISED LEARNING ON THE HYPERSPHERE

In this section we present a common view-point bridging classifier learning and contrastive learning
to accelerate neural collapse. Our approach leverages similarity-based optimization while elimi-
nating radial degrees of freedom by constraining both feature and classifier norms to the hyper-
sphere. This constraint transforms the optimization landscape into a benign geometry where all
critical points become global optima (Yaras et al., 2022), enabling direct convergence to NC.

4.1 REVISITING CROSS ENTROPY: CONTRASTING CLASS PROTOTYPES TO INSTANCES

The weight matrix of the final linear classifier in CL methods can be expressed as W =
[w1;w2; . . . ;wK ] ∈ RK×h, where each wc represents a learnable class prototype. This formu-
lation reveals an important insight: we can treat the classifier weights as learnable prototypes that
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evolve through gradient descent to capture class-specific geometric structures. Building on this we
design objectives that leverage such prototypes to help arrive at the optimal NC geometry.

Normalized Softmax Losses. Standard cross-entropy and contrastive learning represent two seem-
ingly distinct paradigms: the former discriminates through learned magnitudes and biases in un-
constrained space, while the latter operates purely on angular similarities on the hypersphere. This
fundamental difference leads to a critical inefficiency: while both methods theoretically converge to
neural collapse configurations, cross-entropy introduces unnecessary radial degrees of freedom that
slow convergence to this optimal geometry (Yaras et al., 2022; Zhu et al., 2021).

Normalized softmax losses resolve this inefficiency by reformulating cross-entropy as a pure ge-
ometric objective. NormFace (Wang et al., 2017), a prominent example, achieves this through
three coordinated modifications: (i) eliminating biases that merely translate decision boundaries
without encoding semantic structure, (ii) projecting representations onto the hypersphere to focus
exclusively on angular geometry, and (iii) introducing temperature scaling to control concentration
of the softmax distribution. Formally, with ui = zi/∥zi∥2 as the normalized representation and
ŵj = wj/∥wj∥2 as the normalized classifier weight for class j, NormFace minimizes:

LNormFace(U ,W ) = − 1

M

M∑
i=1

log

(
eu

⊤
i ŵyi

/τ∑K
j=1 e

u⊤
i ŵj/τ

)
. (3)

This reformulation transforms classification into contrastive learning between data instances and
learnable class prototypes while maintaining cross-entropy’s computational efficiency.

Normalized Temperature-scaled Cross Entropy (NTCE)

When utilizing NormFace to view CL from a contrastive learning perspective we end up with an
inherent limitation of cross entropy: the number of negatives in the objective is limited to K, the
number of class prototypes. It is very well investigated that contrastive objectives need very large
numbers of negatives in order to converge (He et al., 2020). This is mostly due to the fact that fewer
negatives provide a worse estimate to the expectation of the actual contrastive objective (Koromilas
et al., 2024).

By inverting the contrastive direction from instance-to-class to class-to-instance discrimination we
address this limitation through the Normalized Temperature-scaled Cross Entropy (NTCE). This
modification fundamentally alters the learning dynamics: rather than each instance contrasting
against K class prototypes, each class prototype now contrasts against M batch representations.

The key insight underlying NTCE is that class prototypes themselves can serve as anchors in the
contrastive formulation. By anchoring on the class weight vector corresponding to each instance’s
ground-truth label and contrasting it against all batch representations, we dramatically expand the
negative sampling space. Formally, NTCE takes the form:

LNTCE(U ,W ) =
1

M

M∑
i=1

− log

(
eŵ

⊤
yi

ui/τ∑M
j=1 e

ŵ⊤
yi

uj/τ

)
, (4)

where ŵyi
serves as the anchor for instance i, and critically, the denominator sums over all M

instances in the batch rather than over K classes.

Negatives Only Normalization Loss. NTCE adds enhanced negative sampling on top of NormFace
to directly transfer the principles of contrastive learning to cross entropy training. However, it also
brings a fundamental drawback of popular contrastive objectives that compromises its optimization
dynamics. The denominator in Equation (4) indiscriminately aggregates all instances sharing the
same class anchor. That is the denominator, also known as the uniformity term, is optimized when
instances of the same class have maximum distance (Wang & Isola, 2020), which contradicts the
optimality of the numerator (alignment terms). More specifically, positive pairs explicitly appear as
negative samples in the normalization term, generating gradients that actively repel instances from
their own class prototype. When instance i and instance j share class yi = yj , the term eŵ

⊤
yi

uj/τ in
the denominator produces gradients that decrease ŵ⊤

yi
uj , directly opposing the alignment objective.

This is a known behavior that is called alignment-uniformity coupling (Yeh et al., 2022).
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In order to resolve this conflict we introduce the Negatives-Only Normalization Loss (NONL),
which explicitly excludes same-class instances from the denominator:

LNONL(U ,W ) =
1

M

M∑
i=1

− log

 eŵ
⊤
yi

ui/τ∑M
j=1

j ̸∈C(i)
eŵ

⊤
yi

uj/τ

 . (5)

4.2 REVISITING SUPERVISED CONTRASTIVE LEARNING: CONTRASTING MEAN-CLASS
PROTOTYPES TO INSTANCES

SCL implicitly learns prototype classifiers. We follow Equation (2) to treat alternative views
produced by data augmentation as distinct samples, i.e., A = [U ;V ]. Let Bc = {j ∈ [2M ] :
yj = c} denote the within-batch index set for class c, nc = |Bc|, and µ̂c = 1

nc

∑
j∈Bc

aj the
corresponding batch prototype (class mean). We define the prototype loss:

Lproto(A) = − 1

2M

2M∑
i=1

log

(
ea

⊤
i µ̂yi

/τ

−ea
⊤
i µ̂yi

/τ +
∑K

c=1 nc · ea
⊤
i µ̂c/τ

)
, (6)

where the numerator encourages alignment with the correct class prototype, while the denominator
includes both positive and negative prototypes weighted by their batch frequencies nc. Theorem 4.1
connects the optima of this loss to the ones of SCL. The proof can be found in Appendix A.1.
Theorem 4.1 (Equivalence of SCL and prototype–softmax minimizers). For unit-norm represen-
tations and balanced labels the supervised contrastive loss LSCL and the prototype loss Lproto in
Equation (6) share the same set of global minimizers (up to rotation and label permutation). In par-
ticular, at every global minimizer the representations exhibit in-class collapse and the class means
form a centered simplex ETF.

This result clarifies our understanding of SCL: rather than merely learning good representations for
classification, SCL directly optimizes for classifier-feature alignment through its contrastive objec-
tive. The learned prototypes are not just byproducts but the optimal classifiers themselves.

Connection to Classifier Learning. The nc weighting in the denominator of Equation (6) captures
the effect of utilizing multiple negative instances, matching the structure of Equation (4). When
discarding the nc weights, this loss reduces to Equation (3), establishing a direct correspondence
between the prototype weights and class means. Adding that the optimal solution of Equation (3)
holds when wc = µ̂c (Yaras et al., 2022) the connection becomes even more prevalent.

In other words, despite SCL converging to collapsed class representations forming an ETF, its optima
can also be attained by contrasting instances to class-mean prototypes. This connects CL techniques
to SCL, where the learnable classifier weights in the former are free parameters while in the latter
they emerge implicitly from the learned representations.

Why linear probing fails for SCL features. In practice linear probing is used to train a classifier for
the learned SCL representations. This approach introduces unnecessary degrees of freedom that
disrupt the geometric optimality achieved by SCL. Specifically this process introduces: (i) geomet-
ric mismatch: SCL features live on the hypersphere with collapsed, ETF-structured class means.
Linear probing operates in unconstrained Euclidean space, allowing weight rescaling and bias shifts
that break classifier-feature alignment (Soudry et al., 2018). (ii) Redundancy: Our theorem shows
SCL has already learned optimal classifier weights, i.e. the class prototypes themselves.

Class-mean Prototypes inplace of Linear Probing. We observe that class prototypes µ̂c serve as
natural classifier weights that satisfy NC3 (classifier-feature alignment) by construction. Rather than
retrofitting a linear head to pre-collapsed features, we directly impose the NC-optimal classifier from
the learned geometry. We discard linear probing entirely and set the classifier weights to the learned
prototypes: wc = µ̂c. Doing so, we alleviate the need for an extra training phase, and we show
empirically (Section 5) that this prototype-based classification matches linear probing performance.

5 EXPERIMENTS

In this section we empirically validate our methods against cross-entropy (CE) and NormFace(Wang
et al., 2017) for Classifier Learning paradigms and supervised contrastive learning (SCL), evaluat-
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Table 1: Performance comparison of learning paradigms and objectives across datasets. Bold: best
within method family; green: overall best per dataset.

(I) Classifier Learning Methods

Loss CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

CE 94.6 72.1 84.4 75.4
NORMFACE 94.8 72.4 84.4 75.6
NTCE (ours) 94.7 72.9 84.7 76.0
NONL (ours) 94.9 73.6 84.9 75.0

(II) Supervised Contrastive Learning Methods

Classifier Learning Loss Forward Passes CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

LINEAR PROBING
SCL T ×N 95.0 73.9 84.8 75.1

NORMALIZED LINEAR
PROBING

SCL T ×N 94.9 73.6 84.8 75.1

FIXED PROTOTYPES
SCL N 95.0 73.9 86.8 75.1

ing: (i) classification accuracy, (ii) proximity to neural collapse geometry, and (iii) NC convergence
speed. Experiments are conducted on four standard datasets: CIFAR10, CIFAR100, ImageNet-100,
and ImageNet1K, following common representation learning benchmarking practices (Khosla et al.,
2020; Markou et al., 2024; Wang et al., 2021; Yeh et al., 2022). We use ResNet50 for ImageNet
datasets and ResNet18 for CIFAR. Implementation details are provided in Appendix A.2.

5.1 CLASSIFICATION PERFORMANCE

Classifier Learning Methods. As can be inferred from Table 1(I), normalized losses outperform
cross-entropy (CE) in 11 out of 12 cases, while our losses outperform NormFace in 7/8 cases. NONL
achieves the strongest gains on datasets with few (10) to medium (100) number of classes but un-
derperforms on ImageNet-1K. We hypothesize this degradation stems from a fundamental gradient
imbalance under uniform bacth sampling: with batch size 2048 and K=1000 classes, a large number
of classes are absent per batch in expectation. For these missing classes, NONL produces exclusively
negative gradients, which means their weights wj appear in all other samples’ normalization terms
but receive no positive signal from their own instances. In such cases our NTCE circumvents this
limitation through normalizing over the batch, achieving the best ImageNet-1K accuracy (76.0%).

Supervised Contrastive Learning Methods. The accuracy from three classifier learning strategies
on SCL representations is presented in Table 1(II): (i) standard linear probing with learnable weights
and bias, (ii) normalized linear probing using NormFace loss, and (iii) fixed prototypes computed
as class-mean embeddings. Fixed prototypes match linear probing performance on 3 of 4 datasets,
and mark a considerable +2.0% improvement on ImageNet-100 requiring only N forward passes
versus T × N for training-based methods, where T is the number of epochs. Normalized linear
probing achieves comparable accuracy to standard linear probing, validating that the discriminative
information in SCL features resides primarily in their angular structure rather than magnitude or
biases. These findings validate that angular structure alone suffices for discrimination in well-trained
representations, enabling training-free classification in SCL via fixed prototypes that eliminate huge
computational costs by discrarding a, typically hours long, training phase.

5.2 QUANTIFYING NEURAL COLLAPSE

We quantify NC1–NC3 with complementary, condition-specific metrics; we omit NC4 (bias col-
lapse) as our models enforce zero bias by design.

Effective Rank (NC1, NC2). For matrix A with singular values {σi} the effective rank (Roy &
Vetterli, 2007) is defined as erank(A) = exp{−

∑
i pi log pi} where pi = σi/

∑
j σj . We compute

the intra and inter class effective ranks (Zhang et al., 2024) as: erankintra =
1
K

∑K
c=1 erank(Cov[zi−

µc | yi = c]) and erankinter = erank(Cov[µc − µG]), where Cov is the covariance matrix. These
metrics quantify NC1 (within-class variability collapse): erankintra → 0 indicates zi → µyi , and
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Table 2: NC metrics on CIFAR-10/100 (training). Bold marks the best within each learning family;
green marks the overall best per dataset. Theoretical optima: Intra ER 0/0, Inter ER 9/99, Weights
ER 9/99, Weight Align 0/0, Instance Align 0/0, MIR 1/1, HDR 0/0.

Learning Family Method Effective Rank Alignment Information Theory Metrics

Intra ↓ Inter ↑ Weights ↑ Weight ↓ Instance ↓ MIR ↑ HDR ↓

CE 22.5 / 96.4 8.6 / 57.1 8.9 / 89.7 0.59 / 0.83 0.69 / 1.05 0.98 / 0.97 0.03 / 0.13
CLASSIFIER NormFace 10.5 / 13.6 9.0 / 96.2 9.0 / 96.1 0.12 / 0.01 0.14 / 0.06 0.95 / 1.00 0.04 / 0.30
LEARNING NTCE 9.0 / 12.6 9.0 / 99.0 8.9 / 98.9 0.08 / 0.01 0.10 / 0.05 0.96 / 1.00 0.05 / 0.30

NONL 4.0 / 11.4 9.0 / 99.0 9.0 / 99.0 0.11 / 0.01 0.16 / 0.06 0.95 / 1.00 0.05 / 0.30

CONTRASTIVE SCL (w probing) 4.5 / 7.5 9.0 / 66.7 8.3 / 77.8 0.99 / 1.03 0.10 / 0.34 0.99 / 0.95 0.07 / 0.11
LEARNING SCL (w/o probing) 4.5 / 7.5 9.0 / 66.7 9.0 / 66.5 0.00 / 0.00 0.10 / 0.34 1.00 / 0.87 0.09 / 0.14

Table 3: Convergence speed (% of training iters): (I) time to reach the 95% NC threshold; (II) time
to match CE’s final value; “0%” indicates the target is met at the first logged eval.

Method Instance alignment Weight alignment Weights erank Intra erank Inter erank

(I) NC convergence to 95% threshold (ratio to max iterations)
NormFace 79.4% 8.2% 52.6% 45.4% 56.2%
NTCE 79.4% 6.8% 56.4% 36.6% 52.4%
NONL 79.4% 7.4% 34.6% 14.6% 47.2%

(II) CE convergence to converged value (ratio to CE converged iteration)
NormFace 2.2% 2.0% 66.3% 0% 7.4%
NTCE 2.2% 1.8% 73.9% 0% 7.4%
NONL 2.2% 1.8% 35.4% 0% 6.0%

NC2 (ETF structure): Zhang et al. (2024) proved that when erankinter = K−1 the class means form
a simplex with equal pairwise angles. We also report erank(W) to assess whether classifier weights
approximate an equiangular tight frame (ETF).

Alignment (NC3). We quantify feature–classifier alignment by 1
N

∑N
i=1 ∥zi−wyi

∥22 and also report
instance-to-instance alignment to probe per-class collapse.

Information Metrics (NC2, NC3). For normalized Gram matrices GW (weights), GM (class
means) and H being the matrix entropy, Song et al. (2024) connects Neural Collapse to the metrics:

MIR =
H(GW ) + H(GM )− H(GW ⊙GM )

min{H(GW ),H(GM )}
, HDR =

|H(GW )− H(GM )|
max{H(GW ),H(GM )}

(7)

These capture the information-theoretic signatures of NC2 and NC3 where under full collapse
MIR → 1 and HDR → 0, reflecting perfect structural alignment.

In Table 2 four key findings are revealed: (i) CE fails to achieve NC: high intra-class variance (er-
ank 22.5/96.4), suboptimal inter-class separation (erank 8.6/57.1 vs. theoretical K-1=9/99), and
poor weight-feature alignment (w-inst 0.59/0.83, inst-inst 0.69/1.05). (ii) Normalized softmax
losses satisfy NC2-NC3 since they achieve perfect inter-class separation (erank 9.0/99.0), near-zero
alignment errors (NTCE: w-inst 0.08/0.01, inst-inst 0.10/0.05), and optimal weight dimensional-
ity matching the simplex ETF, with NONL being the overall best mostly due to its better intra
class structure. (iii) SCL with linear probing violates NC3: despite superior within-class collapse
(erank 4.5/7.5), inter-class structure degrades (erank 9.0/66.7) and classifier-feature alignment fails
(w-inst 0.99/1.03). (iv) Fixed prototypes restore NC3 in SCL: removing the trainable classifier
enforces perfect alignment by construction, though inter-class separation remains suboptimal.

Convergence Dynamics. On CIFAR-100, we track NC metrics and define convergence as the
earliest iteration where the exponentially-weighted moving average enters and remains within a
metric-specific tolerance around the 95% NC threshold.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CE NormFace NTCE NONL 95% NC Threshold

0 1k 2k 3k 4k 5k
0

0.2

0.4

0.6

0.8

1.0

(a) Training Accuracy
0 1k 2k 3k 4k 5k

0

0.5

1

1.5

2

(b) Weight–Instance Alignment
0 1k 2k 3k 4k 5k

0

0.5

1

1.5

2

(c) Weight–Class Alignment

0 1k 2k 3k 4k 5k
40

60

80

100

(d) Weight Effective Rank
0 1k 2k 3k 4k 5k

0

25

50

75

100

(e) Intra-Class Effective Rank
0 1k 2k 3k 4k 5k

0

25

50

75

100

(f) Inter-Class Effective Rank

Figure 1: NC convergence on CIFAR-100. Six metrics vs. training iterations; red dashed lines
mark the 95% NC threshold and circles denote each method’s convergence.

In Figure 1 the training dynamics are denomstrated. While cross-entropy (CE) achieves perfect
training accuracy, it fails to reach neural collapse geometry, plateauing at suboptimal metric values.
CE’s accuracy improvements appear to derive solely from magnitude and bias adjustments rather
than geometric reorganization. In contrast, our methods simultaneously optimize all NC metrics
throughout training, converging to proper NC geometry while maintaining optimal accuracy.

In Table 3(I) the convergence speed to 95% of theoretical NC thresholds is quantified. Normal-
ized losses reach these thresholds, typically early in training. NONL converges faster with gains
over NormFace for the rank metrics (1.2-3.1 speedup), benefiting from simplified optimization
without competing terms. Table 3(II) benchmarks against CE’s converged values. The acceleration
is dramatic: normalized losses reach CE-equivalent values in under 7.5% of CE’s required itera-
tions across 4/5 metrics, while NONL converges faster. This demonstrates that normalized losses
fundamentally restructure the optimization landscape, enabling direct paths to neural collapse.

6 CONCLUSION

In this work, we address the mismatch between the theoretical optima of supervised objectives and
their behavior in practice. Constraining learning to the unit hypersphere removes the radial degen-
eracy of cross-entropy and unifies normalized softmax and supervised contrastive learning (SCL) as
a single prototype-contrast paradigm. Building on this view, we propose two objectives (NTCE and
NONL) that accelerate convergence to Neural Collapse. Theoretically, we prove SCL already yields
an optimal prototype classifier during contrastive training, eliminating the typical linear probing
phase. Empirically, across four benchmarks including ImageNet-1K, our methods surpass CE accu-
racy, reach ≥95% on NC metrics, and attain NC geometry in substantially fewer iterations. Overall,
supervised learning is recast as prototype-based classification on the hypersphere, narrowing the
theory–practice gap while simplifying and speeding up training.

REPRODUCIBILITY STATEMENT

Our approach modifies only loss functions within standard pipelines. Results can be replicated
by pluging configutrations from Appendix A.2 into popular codebases (e.g. https://github.
com/HobbitLong/SupContrast) with minimal effort substituting the original loss with ours.
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A APPENDIX

A.1 PROOF

Here we provide the proof of Theorem 4.1.

Proof. Fix i ∈ [2M ] with label yi. Let C(i) = {j ∈ [2M ] : j ̸= i, yj = yi}, Bc = {j ∈ [2M ] :
yj = c}, nc = |Bc|, and µ̂c =

1
nc

∑
j∈Bc

aj .

(A) SCL lower bound. By unfolding the SCL loss defined in Equation (2), the per-example loss
term can be written as

ℓSCL
i = − 1

|C(i)|
∑

l∈C(i)

a⊤
i al

τ
+ log

∑
j∈[2M ]\{i}

exp(a⊤
i aj/τ).

For the first term, using 1
|C(i)|

∑
l∈C(i) al =

nyi
µ̂yi

−ai

nyi
−1 and ∥ai∥ = 1 gives

−a⊤
i

τ

(
1

|C(i)|
∑

l∈C(i) al

)
≥ −a⊤

i µ̂yi

τ .

For the second term, we group by class, subtract the self term and then apply Jensen classwise due
to convexity of the exponential function:∑

j∈[2M ]\{i}

ea
⊤
i aj/τ =

K∑
c=1

∑
l∈Bc

ea
⊤
i al/τ − e1/τ ≥

K∑
c=1

nc e
a⊤

i µ̂c/τ − e1/τ .

Combining,

ℓSCL
i ≥ −a⊤

i µ̂yi

τ
+ log

(
K∑
c=1

nc e
a⊤

i µ̂c/τ − e1/τ

)
=: ℓ⋆i . (8)
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Equality in equation 8 holds iff every class-wise sum is collapsed, i.e., aj = µ̂c for all j ∈ Bc,
because the positive-term bound is tight only when a⊤

i µ̂yi
= 1 (so ai = µ̂yi

) and the classwise
Jensen step is tight only when all within-class logits {a⊤

i al : l ∈ Bc} are equal.

(B) Prototype loss lower bound. Since a⊤
i µ̂yi

≤ 1 for unit vectors, ea
⊤
i µ̂yi

/τ ≤ e1/τ . Therefore
K∑
c=1

nc e
a⊤

i µ̂c/τ − ea
⊤
i µ̂yi

/τ

︸ ︷︷ ︸
=:Dproto

i

≥
K∑
c=1

nc e
a⊤

i µ̂c/τ − e1/τ︸ ︷︷ ︸
=:D⋆

i

,

and thus, with the same numerator ea
⊤
i µ̂yi

/τ ,

ℓproto
i = −a⊤

i µ̂yi

τ
+ logDproto

i ≥ −a⊤
i µ̂yi

τ
+ logD⋆

i = ℓ⋆i .

Averaging over i gives the following inequalities for any batch A:

LSCL(A) ≥ L⋆(A)

Lproto(A) ≥ L⋆(A).

(C) Collapse–simplex makes all three equal. By Graf et al. (2021, Theorem 2), any SCL global
minimizer exhibits class-wise collapse, aj = ζyj

, and the directions {ζc} form a centered regular
(K−1)-simplex. Hence µ̂c = ζc and a⊤

i µ̂yi
= 1 for all i, making both inequalities above tight:

LSCL(A
⋆) = L⋆(A

⋆) = Lproto(A
⋆).

Therefore minLSCL = minL⋆ = minLproto, all attained at the collapsed-simplex configurations.

(D) Equality of argmin sets. Let A minimize Lproto. Then Lproto(A) = minLproto = minL⋆,
so L⋆(A) = Lproto(A), which forces ea

⊤
i µ̂yi

/τ = e1/τ for every i, i.e., a⊤
i µ̂yi

= 1 and hence
ai = µ̂yi

(class-wise collapse). Moreover LSCL(A) = L⋆(A) = minLSCL, so A also minimizes
SCL.

Graf’s theorem then implies the class means form a centered simplex ETF. Thus the argmin sets of
LSCL and Lproto coincide (up to rotation and label permutation).

A.2 IMPLEMENTATION DETAILS

Experiments are conducted on four standard image classification datasets: CIFAR10, CIFAR100,
ImageNet-100, and ImageNet1K, following common representation learning benchmarking prac-
tices (Khosla et al., 2020; Markou et al., 2024; Wang et al., 2021; Yeh et al., 2022). We use
ResNet50 for ImageNet-100/ImageNet1K and ResNet18 for CIFAR10/CIFAR100. All models are
trained using SGD optimizer for 500 epochs on ImageNet1K (batch size 2048, temperature 0.1) and
ImageNet-100 (batch size 1024, temperature 0.1) and 1000 epochs on CIFAR10/CIFAR100. For
CIFAR10/100 we set the batch size to 512 and evaluate all 11 temperatures in the set [0.07, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. In Table 1 and Table 2 we report for each method the best
performing temperature. For Supervised Contrastive Learning we perform the linear probing phase
for the typical 90 epochs.

A.2.1 CLASSIFIER LEARNING METHODS (CE, NORMFACE, NTCE, NONL)

For the family of classifier learning methods, we employ the following hyperparameters across
datasets:

CIFAR10/CIFAR100. Models are trained for 1000 epochs with batch size 512. We use SGD
optimizer with momentum 0.9, weight decay 10−4, and initial learning rate 0.2. The learning rate
follows a cosine annealing schedule throughout training, decaying to a minimum value of ηmin =
η0 × 0.13 where η0 is the initial learning rate. Data augmentation consists of RandomResizedCrop
with scale (0.2, 1.0), RandomHorizontalFlip, and standard normalization with dataset-specific mean
and standard deviation values.
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ImageNet-100. ResNet50 models are trained for 500 epochs with batch size 1024 (256 per GPU
with 4 GPUs). We employ SGD optimizer with momentum 0.9, weight decay 10−4, and initial
learning rate 0.1, which is automatically scaled based on the total batch size. We use cosine an-
nealing scheduler with 10 epochs of linear warmup from 0.01 to the target learning rate. After
warmup, the learning rate follows a cosine decay to ηmin = η0 × 0.13. Synchronized BatchNorm is
enabled across GPUs. Data augmentation includes RandomResizedCrop(224) with scale (0.2, 1.0),
RandomHorizontalFlip, and standard ImageNet normalization.

ImageNet1K. ResNet50 models are trained for 500 epochs with batch size 2048 (256 per GPU
with 8 GPUs). Hyperparameters follow the same configuration as ImageNet-100, with SGD opti-
mizer (momentum 0.9, weight decay 10−4), initial learning rate 0.1 with automatic scaling based on
batch size. We apply 10 epochs of linear warmup followed by cosine annealing to ηmin = η0×0.13.
Data augmentation and normalization follow ImageNet-100 settings.

A.2.2 SUPERVISED CONTRASTIVE LEARNING

For supervised contrastive methods, we implement a two-phase training procedure:

Phase 1: Contrastive Training.

CIFAR10/CIFAR100: Models are trained for 1000 epochs with batch size 512. SGD optimizer
is used with momentum 0.9, weight decay 10−4, and initial learning rate 0.05. The learning rate
follows cosine annealing schedule throughout training, decaying to ηmin = η0 × 0.13. We use
extensive data augmentation including RandomResizedCrop with scale (0.2, 1.0), RandomHorizon-
talFlip, ColorJitter(0.4, 0.4, 0.4, 0.1) with probability 0.8, and RandomGrayscale with probability
0.2. Each image generates two augmented views for contrastive learning.

ImageNet-100: ResNet50 encoder with 128-dimensional projection head is trained for 500 epochs
with batch size 1024. We use SGD optimizer with momentum 0.9, weight decay 10−4, and base
learning rate 0.8 (automatically scaled by batch size). Learning rate follows cosine annealing with
10 epochs linear warmup from 0.01, then decays following a cosine schedule to ηmin = η0 × 0.13.
Data augmentation extends CIFAR settings with the addition of Gaussian blur for ImageNet scale
images.

ImageNet1K: Training spans 500 epochs with batch size 2048 using the same optimizer configu-
ration as ImageNet-100. Base learning rate is set to 0.1 with automatic scaling. We employ cosine
annealing with 5 epochs warmup from 0.01, followed by cosine decay to ηmin = η0 × 0.13. The
same augmentation pipeline as ImageNet-100 is used.

Phase 2: Linear Evaluation. For all datasets, we freeze the learned encoder and train a linear
classifier on top of the representations:

CIFAR10/CIFAR100: Linear classifier is trained for 100 epochs using SGD with learning rate 5.0,
momentum 0.9, and zero weight decay. Learning rate is decayed by factor 0.2 at epochs 60, 75, 90
using a step scheduler.

ImageNet-100: Linear evaluation runs for 90 epochs with SGD optimizer, learning rate 2.0, mo-
mentum 0.9, and zero weight decay. Learning rate decay by factor 0.2 occurs at epochs 30, 60, 80
using a step scheduler.

ImageNet1K: Linear classifier training spans 90 epochs with SGD, learning rate 0.8, momentum
0.9, and zero weight decay. The same step decay schedule as ImageNet-100 is applied.

A.2.3 ADDITIONAL IMPLEMENTATION DETAILS

For distributed training on ImageNet datasets, we employ DistributedDataParallel with one process
per GPU. Random seed is fixed at 42 for reproducibility. The cosine annealing scheduler is imple-
mented following the standard formulation: ηt = ηmin + 1

2 (η0 − ηmin)(1 + cos(πtT )), where t is
the current epoch and T is the total number of epochs. For experiments with warmup, the warmup
period linearly interpolates from the warmup starting learning rate to the initial learning rate before
transitioning to cosine annealing. Temperature parameter τ is searched over the range [0.07, 0.1,
0.2, ..., 1.0] for CIFAR experiments, while ImageNet experiments use the optimal temperature found
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through preliminary experiments (0.1 for supervised contrastive, 0.2 for classifier learning methods).
All models use standard weight initialization and no additional regularization beyond weight decay.

A.3 EXTRA ABLATION STUDIES

A.3.1 ROLE OF THE PROJECTION HEAD

Table 4: Contrastive Learning Results - Without Projection Head. Performance comparison
across different classifier learning approaches without projection head.

Classifier Learning Loss CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

LINEAR PROBING SCL 95 70.6 84.1 71

NORMALIZED LINEAR PROBING SCL 95 71.4 84.3 72.1

FIXED PROTOTYPES SCL 95 71.4 84.7 70.1

In Table 4 we demonstrate the importance of the projection head in contrastive training. Across three
datasets, except on the relatively simple CIFAR-10 benchmark, removing the head consistently re-
duces accuracy by more than 2 points. At first glance, one might expect the opposite: discarding the
head should let the loss act directly on the final encoder embeddings on the unit hypersphere. We
hypothesize that the projection head helps primarily by imposing a beneficial dimensionality bot-
tleneck. With ResNet-50, the encoder’s representation is 2048-dimensional, whereas the projection
head maps it to 128 dimensions. For a K-class problem (e.g., K = 100), the ideal equiangular tight
frame (ETF) geometry lives in a (K − 1)-dimensional subspace. Encouraging embeddings to adopt
this structure is plausibly easier in a 128-dimensional space than in a 2048-dimensional one, where
the optimizer has many more irrelevant directions to explore.

A.3.2 EFFECTIVE HYPERPARAMETER RANGES

Normalized softmax losses introduce too hyperparameters that originate from contrastive learning (i)
temperature, and (ii) need for larger batch size. Here we test whether and how these haperparameters
affect the downstream performance.

We conduct hyperparameter optimization experiments on CIFAR-10 and CIFAR-100, evaluating all
combinations of 11 temperatures in the range [0.07, 1] and 7 batch sizes in the range [32, 2048].
The results show that different contrastive learning methods exhibit distinct optimal hyperparameter
regions with minimal overlap in their peak performance zones across both datasets.

In Figure 2 we can see that normalized softmax losses exhibit the same behavior in terms of down-
stream performance compared to self-supervised contrastive learning (Chen et al., 2020), which
means that there are trustable goto to setups for instance τ = {0.1, 0.2} for small to medium num-
ber of classes datasets and τ = {0.07, 0.1} for large. For that reason normalized softmax methods
despite introducing extra hyperparameters, this is not a problem in practice

A.3.3 EFFECTIVE HYPERPARAMETER RANGES

Normalized softmax losses introduce two hyperparameters inherited from contrastive learning:
the temperature τ , which controls the sharpness of the similarity distribution, and the need for
larger batch size B, which governs the number of in-batch negatives. We assess their impact by
grid–searching τ ∈ [0.07, 1.0] (11 values) and B ∈ {32, 64, 128, 256, 512, 1024, 2048} on CIFAR-
10 and CIFAR-100 with NormFace, NTCE, and NONL.

Figure 2 shows consistent “sweet spots” across methods: accuracy forms a pronounced band at
moderate temperatures, with performance degrading for overly large τ and, to a lesser extent, for
very small τ . The location of this band shifts toward slightly smaller temperatures as the number of
classes increases (CIFAR-100 vs. CIFAR-10), mirroring observations in self-supervised contrastive
learning (Chen et al., 2020). Within the effective temperature range, performance is comparatively
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(a) CIFAR-10
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(b) CIFAR-100

Figure 2: Validation Accuracy (%) Phase Diagrams. Classification accuracy on validation set.
Higher values indicate better generalization performance. Each subplot shows the performance
landscape across temperature and batch size hyperparameters for different loss functions: Norm-
Face, NTCE, and NONL. Brighter regions indicate superior performance. White contour lines
indicate iso-performance curves for detailed analysis. Red dashed contours highlight optimal pa-
rameter regions (top 10% performance). Scatter points represent individual experimental runs with
performance-based sizing. Each dataset uses its own optimal colorbar range. Results originate from
grid runs across temperature values in [0.07, 1.0] and batch sizes in 32, 64, 128, 256, 512, 1024,
2048.
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insensitive to B, yielding a broad plateau over batch sizes—large batches can help, but are not
strictly required.

In practice, these trends provide the same reliable defaults as in self-supervised contrastive learning
(Chen et al., 2020): τ ∈ {0.1, 0.2} works well for small- to medium-class datasets, while τ ∈
{0.07, 0.1} is preferable for larger-class settings. Thus, although normalized softmax losses expose
additional hyperparameters, their effective ranges are narrow and stable, so a small amount of tuning
(or even these defaults) is typically sufficient to reach near-peak accuracy.
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