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Figure 1: (a) Performance of PredRNN, SimVP, and PredFormer; (b) Model efficiency comparison.
The more inside model indicates better accuracy and efficiency.

ABSTRACT

Spatiotemporal predictive learning methods generally fall into two categories:
recurrent-based approaches, which face challenges in parallelization and perfor-
mance, and recurrent-free methods, which employ convolutional neural networks
(CNNs) as encoder-decoder architectures. These methods benefit from strong in-
ductive biases but often at the expense of scalability and generalization. This
paper proposes PredFormer, a pure transformer-based framework for spatiotem-
poral predictive learning. Motivated by the Vision Transformers (ViT) design,
PredFormer leverages carefully designed Gated Transformer blocks, following a
comprehensive analysis of 3D attention mechanisms, including full-, factorized-,
and interleaved- spatial-temporal attention. With its recurrent-free, transformer-
based design, PredFormer is both simple and efficient, significantly outperform-
ing previous methods by large margins. Extensive experiments on synthetic and
real-world datasets demonstrate that PredFormer achieves state-of-the-art perfor-
mance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE
relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts
FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1%
while enhancing FPS from 196 to 404. These performance gains in both accu-
racy and efficiency demonstrate PredFormer’s potential for real-world applica-
tions. The source code and trained models will be made available to the public.

1 INTRODUCTION

Spatio-temporal predictive learning involves learning spatial and temporal patterns by predicting
future frames based on past observations. This capability is essential for various applications, in-
cluding weather forecasting (Rasp et al., 2020; Pathak et al., 2022; Bi et al., 2023), traffic flow
prediction (Fang et al., 2019; Wang et al., 2019), precipitation nowcasting (Shi et al., 2015; Gao
et al., 2022b) and human motion forecasting (Zhang et al., 2017b; Wang et al., 2018a).

Despite the success of various spatial-temporal prediction learning methods, they often struggle to
balance computation cost and performance. On the one hand, high-powered recurrent-based meth-
ods (Shi et al., 2015; Wang et al., 2017; 2019; Chang et al., 2021; Yu et al., 2019; Tang et al., 2023;
2024) rely heavily on autoregressive RNN frameworks, which face significant limitations in paral-
lelization and computational efficiency. On the other hand, efficient recurrent-free methods (Gao
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et al., 2022a; Tan et al., 2023a), such as those based on the SimVP framework, employ CNNs within
an encoder-decoder architecture but are constrained by the local receptive field, limiting their scal-
ability and generalization. This raises a more fundamental question: Can we develop a framework
that autonomously learns spatiotemporal dependencies without relying on inductive bias?

Recurrent-based

(a) Stacked RNN

RNN

RNN

RNN

RNN

RNN

RNN

CNN-based

 Recurrent-free

(b) CNN-CNN-CNN

CNN Decoder

CNN Encoder

CNN/ 
MetaFormer 

ViT-based

(c) Stacked Transformer

Patch Embed  

Transformer 

Patch Recover 

Figure 2: Main categories of spatiotemporal
predictive learning framework. (a) Recurrent-
based Framework (b) CNN Encoder-Decoder-
based Recurrent-free Framework. (c) Pure
transformer-based Recurrent-free Framework.

An intuitive solution directly adopts a pure
transformer (Vaswani et al., 2017) structure,
as it is an efficient alternative to RNNs and
has better scalability than CNNs. Transform-
ers have demonstrated remarkable success in
visual tasks (Dosovitskiy et al., 2020; Liu et al.,
2021; Bertasius et al., 2021; Arnab et al.,
2021; Tarasiou et al., 2023). Previous meth-
ods try to combine Swin Transformer (Liu
et al., 2021) in recurrent-based frameworks
such as SwinLSTM (Tang et al., 2023) and in-
tegrate MetaFormer (Yu et al., 2022) as a tem-
poral translator in recurrent-free CNN-based
encoder-decoder frameworks such as Open-
STL (Tan et al., 2023b). Despite these ad-
vances, pure transformer-based architecture re-
mains underexplored mainly due to the challenges of capturing spatial and temporal relationships
within a unified framework. While merging spatial and temporal dimensions and applying full at-
tention is conceptually straightforward, it is computationally expensive due to the quadratic scaling
of attention with sequence length. Several recent methods (Bertasius et al., 2021; Arnab et al., 2021;
Tarasiou et al., 2023) decouple full attention and show that spatial and temporal relations can either
be treated separately in a factorized or interleaved manner to reduce complexity.

In this work, we propose PredFormer, a pure transformer-based architecture for spatiotemporal pre-
dictive learning. PredFormer dives into the decomposition of spatial and temporal transformers,
integrating self-attention with gated linear units (Dauphin et al., 2017) to more effectively capture
complex spatiotemporal dynamics. In addition to retaining spatial-temporal full attention encoder
and factorized encoder strategies for both spatial-first and temporal-first configurations, we introduce
six novel interleaved spatiotemporal transformer architectures, resulting in nine configurations. This
exploration is motivated by the varying spatial and temporal resolutions and dependencies across dif-
ferent tasks and datasets. This comprehensive investigation pushes the boundaries of current models
and sets valuable benchmarks for spatial-temporal modeling.

Notably, PredFormer achieves state-of-the-art performance across three benchmark datasets, includ-
ing synthetic moving object prediction, traffic flow prediction, and weather forecasting, outperform-
ing previous methods by a substantial margin without relying on complex model architectures or
specialized loss functions. Moreover, our optimal model excels in performance and is efficient,
offering fewer parameters, lower FLOPs, and faster inference speeds than previous models. This
highlights its strong potential for real-world applications.

The main contributions can be summarized as follows:

• We propose PredFormer, a pure gated transformer-based model for spatiotemporal predic-
tive learning. By eliminating the inductive biases inherent in CNNs, PredFormer harnesses
transformers’ scalability and generalization capabilities, positioning it as a highly adaptable
model with significantly enhanced potential and performance ceilings.

• We perform an in-depth analysis of spatial-temporal transformer factorization, exploring
full attention encoders and factorized encoders along with interleaved spatiotemporal trans-
former architectures, resulting in nine PredFormer variants. These variants address the dif-
fering spatial and temporal resolutions across tasks and datasets for optimal performance.

• We conduct a comprehensive study on training ViT from scratch on small datasets, explor-
ing regularization and position encoding techniques.

• Extensive experiments demonstrate PredFormer’s outstanding performance. Compared to
SimVP, on Moving MNIST it reduces MSE by 51.3%, on TaxiBJ by 33.1% while increas-
ing FPS from 533 to 2364, and on WeatherBench by 11.1% with FPS rising from 196 to
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404. These results highlight PredFormer’s superior accuracy and efficiency and emphasize
its potential for real-world applications. We will release our code and trained models.

2 RELATED WORK

Recurrent-based spatial-temporal predictive learning. Recent advancements in recurrent-based
spatiotemporal predictive models have integrated CNNs, ViTs, and Vision Mamba (Liu et al., 2024)
into RNNs, employing various strategies to capture spatiotemporal relationships. ConvLSTM (Shi
et al., 2015), evolving from FC-LSTM (Srivastava et al., 2015), innovatively integrates convolutional
operations into the LSTM framework. PredNet (Lotter et al., 2017) leverages deep recurrent convo-
lutional neural networks with bottom-up and top-down connections to predict future video frames.
PredRNN (Wang et al., 2017) introduces the Spatiotemporal LSTM (ST-LSTM) unit, which effec-
tively captures and memorizes spatial and temporal representations by propagating hidden states
horizontally and vertically. PredRNN++ (Wang et al., 2018b) incorporates a gradient highway unit
and Causal LSTM to address the vanishing gradient problem and adaptively capture temporal de-
pendencies. E3D-LSTM (Wang et al., 2018c) extends the memory capabilities of ST-LSTM by
integrating 3D convolutions. The MIM model (Wang et al., 2019) further refines the ST-LSTM
by reimagining the forget gate with dual recurrent units and utilizing differential information be-
tween hidden states. CrevNet (Yu et al., 2019) employs a CNN-based reversible architecture to
decode complex spatiotemporal patterns efficiently. PredRNNv2 (Wang et al., 2022) enhances Pre-
dRNN by introducing a memory decoupling loss and a curriculum learning strategy. MAU (Chang
et al., 2021) adds a motion-aware unit specifically designed to capture dynamic motion information.
SwinLSTM (Tang et al., 2023) advances spatiotemporal modeling by integrating the Swin Trans-
former (Liu et al., 2021) module into the LSTM architecture, while VMRNN (Tang et al., 2024)
extend this by incorporating the Vision Mamba module. Unlike these approaches, PredFormer is a
recurrent-free method offering superior efficiency.

Recurrent-free spatial-temporal predictive learning. Recent recurrent-free models, e.g.,
SimVP (Gao et al., 2022a), are developed based on a CNN-based encoder-decoder with a tem-
poral translator. TAU (Tan et al., 2023a) builds upon this by separating temporal attention into
static intra-frame and dynamic inter-frame components, introducing a differential divergence loss
to supervise inter-frame variations. OpenSTL (Tan et al., 2023b) integrates a MetaFormer model
as the temporal translator. Additionally, PhyDNet (Guen & Thome, 2020) incorporates physical
principles into CNN architectures, while DMVFN (Hu et al., 2023) introduces a dynamic multi-
scale voxel flow network to enhance video prediction performance. EarthFormer (Gao et al., 2022b)
presents a 2D CNN encoder-decoder architecture with cuboid attention. WAST (Nie et al., 2024)
proposes a wavelet-based method, coupled with a wavelet-domain High-Frequency Focal Loss. In
contrast to prior methods, PredFormer advances spatiotemporal learning with its recurrent-free, pure
transformer-based architecture, leveraging a global receptive field to achieve superior performance,
outperforming prior models without relying on complex architecture designs or specialized loss.

Vision Transformer (ViT). ViT (Dosovitskiy et al., 2020) has demonstrated exceptional perfor-
mance across various vision tasks. In the field of video processing, TimeSformer (Bertasius et al.,
2021) investigates the factorization of spatial and temporal self-attention and proposes that di-
vided attention where temporal and spatial attention are applied separately yields the best accuracy.
ViViT (Arnab et al., 2021) explores factorized encoders, self-attention, and dot-product mechanisms,
concluding that a factorized encoder with spatial attention applied first performs better. On the other
hand, TSViT (Tarasiou et al., 2023) finds that a factorized encoder prioritizing temporal attention
achieves superior results. Latte (Ma et al., 2024) investigates factorized encoders and factorized self-
attention mechanisms, incorporating both spatial-first and spatial-temporal parallel designs, within
the context of latent diffusion transformers for video generation. Despite these advancements, most
existing models primarily focus on video classification, with limited research on applying ViTs to
spatiotemporal predictive learning. Moving beyond earlier methods that focus on factorizing self-
attention, PredFormer explores the decomposition of spatial and temporal transformers at a deeper
level by integrating self-attention with gated linear units and introducing innovative interleaved de-
signs, allowing for a more robust capture of complex spatiotemporal dynamics.
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Figure 3: (a) Overview of the PredFormer model framework. (b) Sequence factorization from spatial
view and temporal view. (c) Gated Transformer Block. (d) Gated Linear Unit.

3 METHOD

To systematically analyze the transformer structure of the network model in spatial-temporal pre-
dictive learning, we propose the PredFormer as a general model design, as shown in Fig 3(a).

In the following sections, we first introduce the pure transformer-based architecture in Sec 3.1. Next,
we describe the Gated Transformer Block (GTB) in Sec 3.2. Finally, we present how to use GTB to
build a PredFormer layer and architecture variants in Sec 3.3.

3.1 PURE TRANSFORMER BASED ARCHITECTURE

Patch Embedding. Follow the ViT design, PredFormer splits a sequence of frames X into a se-
quence of N =

⌊
H
p

⌋ ⌊
W
p

⌋
equally sized, non-overlapping patches of size p, each of which is

flattened into a 1D tokens. These tokens are then linearly projected into hidden dimensions D and
processed by a layer normalization (LN) layer, resulting in a tensor X ′ ∈ RB×T×N×D.

Position Encoding. Unlike the typical ViT approach, which employs learnable position embed-
dings, we incorporate a 2D spatiotemporal position encoding (PE) generated by sinusoidal functions
with absolute coordinates for each patch.

PredFormer Encoder. The 1D tokens are then processed by a PredFormer Encoder for feature
extraction. PredFormer Encoder is stacked by Gated Transformer Blocks in various manners.

Patch Recovery. Since our encoder is based on a pure gated transformer, without convolution or
resolution reduction, global context is modeled at every layer. This allows it to be paired with a
simple decoder, forming a powerful prediction model. After the encoder, a linear layer serves as the
decoder, projecting the hidden dimensions back to recover the 1D tokens to 2D patches.

3.2 GATED TRANSFORMER BLOCK

The Standard Transformer model (Vaswani et al., 2017) alternates between Multi-Head Attention
(MSA) and Feed-Forward Networks (FFN). The attention mechanism for each head is defined as:

Attention(Q,K,V) = Softmax
(
QK⊤
√
dk

)
V, (1)
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Figure 4: (a) Data transform of Full Attention layer and Binary-TS layer (b) Full Attention Encoder
and Factorized Encoders (c) Interleaved Encoders with Binary, Triplet, and Quadrupled design

where in self-attention, the queries Q, keys K, and values V are linear projections of the input X,
represented as Q = XWq , K = XWk, and V = XWv , with X,Q,K,V ∈ RN×d. The FFN
then processes each position in the sequence by applying two linear transformations.

Gated Linear Units (GLUs) (Dauphin et al., 2017), often used in place of simple linear transfor-
mations, involve the element-wise product of two linear projections, with one projection passing
through a sigmoid function. Various GLU variants control the flow of information by substituting
the sigmoid with other non-linear functions. For instance, SwiGLU (Shazeer, 2020) replaces the
sigmoid with the Swish activation function (SiLU) (Hendrycks & Gimpel, 2016), as shown in Eq 2.

Swishβ(x) = xσ(βx)

SwiGLU(x,W, V, b, c, β) = Swishβ(xW + b)⊗ (xV + c) (2)

SwiGLU has been demonstrated to outperform Multi-layer Perceptrons (MLPs) in various natural
language processing tasks(Shazeer, 2020). Inspired by the SwiGLU’s success in these tasks, our
Gated Transformer Block (GTB), shown in Fig 3(c), incorporates MSA followed by a SwiGLU-
based FFN, as illustrated in Fig 3(d). GTB is defined as:

Yl = MSA(LN(Zl)) + Zl

Zl+1 = SwiGLU(LN(Yl)) +Yl (3)

3.3 VARIANTS OF PREDFORMER

Modeling spatiotemporal dependencies in predictive learning is challenging, as the balance between
spatial and temporal information differs across tasks and datasets. This requires flexible, adaptive
models that can accommodate varying dependencies and scales. To address these, we explore both
full-attention encoders and factorized encoders with spatial-first (Fac-S-T) and temporal-first (Fac-
T-S) configurations, as shown in Fig 4(b). In addition, we introduce six interleaved models based on
PredFormer layer, enabling dynamic interaction across multiple scales.

A PredFormer layer is a module capable of simultaneously processing spatial and temporal infor-
mation. Building on this design principle, we propose three interleaved spatiotemporal paradigms,
Binary, Triplet, and Quadrupled, which sequentially model the relation from spatial view and tem-
poral view as depicted in Fig 3(c). Ultimately, they yield six distinct architectural configurations. A
detailed illustration of these nine variants is provided in Fig 4.
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Table 1: Benchmark datasets for PredFormer.

Dataset Training size Testing size Channel Height Width T T ′ Interval

Moving MNIST 10,000 10,000 1 64 64 10 10 -
WeatherBench-S 52559 17495 1 32 64 12 12 30 min

TaxiBJ 20,461 500 2 32 32 4 4 1 hour

For full attention layers, given input X ∈ RB×T×N×D, attention is computed over the sequence of
length T ×N . As illustrated in Fig 4 (a.1) and (b.1), we merge and flatten the spatial and temporal
tokens to compute attention through several stacked GTBst.

For Binary layers, each GTB block processes temporal or spatial sequence independently, where
we denote Binary-TS or Binary-ST layer, as illustrated in Fig 4 (a.2) and (c.2). The input is first
reshaped, and processed through GTB1

t , where attention is applied over the temporal sequence. The
tensor is then reshaped back to restore the temporal order. Subsequently, spatial attention is applied
using another GTB2

s, where the tensor is flattened along the temporal dimension and processed.

For Triplet and Quadruplet layers, additional blocks are stacked on top of the Binary structure.
Triplet-TST captures more temporal dependencies, while Triplet-STS focuses more on spatial de-
pendencies, both using the same number of parameters. The Quadruplet layer combines two Binary
layers in different orders. We omit further detailed explanations.

4 EXPERIMENTS

We present extensive evaluations of PredFormer and state-of-the-art models. We conduct experi-
ments across synthetic and real-world scenarios, including long-term prediction(moving object tra-
jectory prediction and weather forecasting), and short-term prediction(traffic flow prediction). The
dataset statistics are presented in Tab 1. These datasets have different spatial resolutions, temporal
frames, and intervals, which determine their different spatiotemporal dependencies.

Implementation Details Our method is implemented in PyTorch, with experiments conducted on
24GB NVIDIA RTX 3090 and 24GB A5000 GPUs, unless otherwise specified. All experiments are
run with a single GPU. PredFormer is optimized using the AdamW (Loshchilov & Hutter, 2019)
optimizer with an L2 loss, a weight decay of 1e-2, and a learning rate selected from {5e-4, 1e-3} for
best performance. OneCycle scheduler is used for Moving MNIST and TaxiBJ, while the Cosine
scheduler is applied for WeatherBench. Dropout (Hinton, 2012) and stochastic depth (Huang et al.,
2016) regularization prevent overfitting for TaxiBJ and WeatherBench. Further hyperparameters
details are provided in Appendix Sec A.2. For different PredFormer variants, we maintain a constant
number of GTB blocks to ensure comparable parameters. In cases where the Triplet model cannot
be evenly divided, we use the number of GTB blocks closest to the others.

Evaluation Metrics We assess model performance using a suite of metrics across three dimensions.
(1) Pixel-wise error is measured using Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE). (2) Predicted frame quality is evaluated through similar-
ity metrics Structural Similarity Index Measure (SSIM) (Wang et al., 2004). Lower values of MSE,
MAE, and RMSE, combined with higher SSIM, signify better predictions. (3) Computational ef-
ficiency is assessed by the number of parameters, floating-point operations (FLOPs), and inference
speed in frames per second (FPS) on an NVIDIA A5000 GPU. This multi-faceted evaluation frame-
work comprehensively evaluates the model’s accuracy, efficiency, and scalability.

4.1 LONG-TERM PREDICTION: MOVING MNIST

Moving MNIST. The moving MNIST dataset (Srivastava et al., 2015) serves as a benchmark syn-
thetic dataset for evaluating sequence prediction models. We follow (Srivastava et al., 2015) to
generate Moving MNIST sequences with 20 frames, using the initial 10 frames for input and the
subsequent 10 frames as the prediction target. We adopt 10000 sequences for training and for fair
comparisons, we use the pre-generated 10000 sequences (Gao et al., 2022a) for validation.
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Table 2: Quantitative comparison on Moving
MNIST. Each model observes 10 frames and
predicts the subsequent 10 frames. We train our
models for 200 epochs and cite other results of
the original paper.

Method Paras(M) Flops(G) FPS MSE ↓ MAE ↓ SSIM ↑

Recurrent-free
SimVP 58.0 19.4 209 32.2 89.1 0.927
TAU 44.7 16.0 283 24.6 71.9 0.945

PredFormer-ps4
Full Attention 25.3 145.0 13 26.4 76.7 0.941
Fac-S-T 25.3 68.9 52 35.8 95.3 0.920
Fac-T-S 25.3 68.8 53 24.3 70.6 0.946
Binary-TS 25.3 68.9 63 20.7 63.7 0.955
Binary-ST 25.3 68.9 65 20.6 63.2 0.955
Triplet-TST 25.3 67.6 69 20.5 63.1 0.955
Triplet-STS 25.3 70.2 65 20.7 63.8 0.953
Quadruplet-TSST 25.3 68.9 52 20.7 63.6 0.955
Quadruplet-STTS 25.3 68.9 50 20.9 64.4 0.954

PredFormer-ps8
Full Attention 25.3 21.2 120 30.2 86.3 0.932
Fac-S-T 25.3 16.5 161 43.5 113.5 0.899
Fac-T-S 25.3 16.5 163 31.2 88.3 0.929
Binary-TS 25.3 16.5 119 27.3 80.6 0.938
Binary-ST 25.3 16.5 148 27.8 80.5 0.937
Triplet-TST 25.3 16.4 148 26.9 78.8 0.939
Triplet-STS 25.3 16.5 159 29.1 84.5 0.933
Quadruplet-TSST 25.3 16.5 148 26.0 77.2 0.941
Quadruplet-STTS 25.3 16.5 154 29.0 84.5 0.933

Table 3: Quantitative comparison on Moving
MNIST. Each model observes 10 frames and
predicts the subsequent ten frames. We train our
models for 2000 epochs and cite other results of
the original paper.

Method Paras(M) Flops(G) FPS MSE ↓ MAE ↓ SSIM ↑

Recurrent-based
ConvLSTM 15.0 56.8 113 103.3 182.9 0.707
PredRNN 23.8 116.0 54 56.8 126.1 0.867
PredRNN++ 38.6 171.7 38 46.5 106.8 0.898
MIM 38.0 179.2 37 44.2 101.1 0.910
E3D-LSTM 51.0 298.9 18 41.3 86.4 0.910
PhyDNet 3.1 15.3 182 24.4 70.3 0.947
MAU 4.5 17.8 201 27.6 86.5 0.937
PredRNNv2 24.6 708.0 24 48.4 129.8 0.891

Recurrent-free
SimVP 58.0 19.4 209 23.8 68.9 0.948
TAU 44.7 16.0 283 19.8 60.3 0.957

PredFormer-ps4
Triplet-TST 25.3 67.6 110 11.9 42.0 0.974
Triplet-STS 25.3 70.2 93 11.6 41.4 0.975

PredFormer-ps8
Fac-T-S 25.3 16.5 170 16.9 55.8 0.963
Binary-TS 25.3 16.5 147 12.8 46.1 0.972
Triplet-TST 25.3 16.4 165 13.4 47.2 0.971
Quadruplet-TSST 25.3 16.5 152 12.5 44.6 0.973

On the Moving MNIST dataset, the most commonly used benchmark dataset, we employ two train-
ing settings to explore the performance, convergence, efficiency, and variants of our PredFormer
framework. In the first setting, we train 200 epochs to compare the performance of our nine pro-
posed models with SimVP and TAU, we present our quantitative results in Tab 2. In the second
setting, following previous work (Gao et al., 2022a; Tan et al., 2023a), we train our best-performing
models from the 200-epoch runs for 2000 epochs, reporting the final results in Tab 3. We cite the
results of all other methods from each original paper for a fair comparison.

Can PredFormer Converge Faster than SimVP? When using a patch size of 4, our six inter-
leaved models trained for only 200 epochs surpass the 2000-epoch performance of SimVP (MSE
23.8). This demonstrates that PredFormer achieves faster convergence compared to SimVP. The
model’s ability to converge in limited epochs while maintaining superior performance highlights the
efficiency and robustness of the pure ViT framework over CNN-based approaches.

Upper Bound Comparison between ViT and CNN framework. Extending the training of our
best-performing 200-epoch model with patch size 4, Triplet-STS (MSE 20.7), to 2000 epochs re-
sulted in a dramatic reduction in MSE to 11.6. This marks a 51.3% improvement over SimVP and
a 41.4% improvement over TAU. These results confirm that our pure transformer-based model out-
performs all previous methods by a large margin. While CNNs are constrained by inductive bias,
they struggle to match the global receptive field advantages of pure transformer architectures, further
emphasizing the superior upper bound of PredFormer in spatiotemporal modeling.

Accuracy and Efficiency Trade-off. With a patch size of 4, despite having fewer parameters than
SimVP, PredFormer has higher FLOPs and lower FPS. We increase the patch size to 8 to balance
performance and efficiency, reducing computation to a quarter of the original. In this configuration,
FLOPs drop to 16.4G, lower than SimVP’s 19.4G and comparable to TAU’s 16.0G, with FPS slightly
lower than SimVP. When training for 200 epochs, the MSE of PredFormer is higher than SimVP
but lower than TAU’s 200-epoch results. After extending the training to 2000 epochs, SimVP’s
MSE improves from 32.2 to 23.8, TAU improves from 24.6 to 19.8, while our PredFormer shows
a greater improvement from 26.0 to 12.5. This again demonstrates the higher upper bound of the
pure transformer model compared to CNN even with a larger patch size. Specifically, PredFormer
achieved a 47.5% improvement over SimVP and a 36.9% improvement over TAU, realizing an
impressive accuracy-efficiency trade-off with significant performance gains.
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Table 4: Quantitative comparison on Weather-
Bench(T2m). Each model observes 12 frames
and predicts the subsequent 12 frames. We cite
other results from (Tan et al., 2023b).

Method Paras(M) Flops(G) FPS MSE ↓ MAE ↓ RMSE ↓

Recurrent-based
ConvLSTM 14.9 136.0 46 1.521 0.7949 1.233
PredRNN 23.6 278.0 22 1.331 0.7246 1.154
PredRNN++ 38.3 413 15 1.634 0.7883 1.278
MIM 37.8 109.0 126 1.784 0.8716 1.336
PhyDNet 3.1 36.8 177 285.9 8.7370 16.91
MAU 5.5 39.6 237 1.251 0.7036 1.119
PredRNNv2 23.6 279.0 22 1.545 0.7986 1.243

Recurrent-free
SimVP 14.8 8.0 196 1.238 0.7037 1.113
TAU 12.2 6.7 229 1.162 0.6707 1.078

PredFormer
Full Attention 5.3 17.8 101 1.126 0.6540 1.061
Fac-S-T 5.3 8.5 431 1.783 0.8688 1.335
Fac-T-S 5.3 8.5 404 1.100 0.6469 1.049
Binary-TS 5.3 8.6 376 1.115 0.6508 1.056
Binary-ST 5.3 8.6 397 1.140 0.6571 1.068
Triplet-TST 4.0 6.3 521 1.108 0.6492 1.053
Triplet-STS 4.0 6.5 530 1.149 0.6658 1.072
Quadruplet-TSST 5.3 8.6 356 1.116 0.6510 1.057
Quadruplet-STTS 5.3 8.6 356 1.118 0.6507 1.057

Table 5: Quantitative comparison on TaxiBJ.
Each model observes 4 frames and predicts the
subsequent 4 frames. We cite other results of
the original paper.

Method Paras(M) Flops(G) FPS MSE ↓ MAE ↓ SSIM ↑

Recurrent-based
ConvLSTM 15.0 20.7 815 0.485 17.7 0.978
PredRNN 23.7 42.4 416 0.464 16.9 0.977
PredRNN++ 38.4 63.0 301 0.448 16.9 0.971
MIM 37.9 64.1 275 0.429 16.6 0.971
E3D-LSTM 51.0 98.2 60 0.432 16.9 0.979
PhyDNet 3.1 5.6 982 0.362 15.53 0.983
PredRNNv2 23.7 42.6 378 0.383 15.55 0.983

Recurrent-free
SimVP 13.8 3.6 533 0.414 16.2 0.982
TAU 9.6 2.5 1268 0.344 15.6 0.983

PredFormer
Full Attention 8.4 2.4 1455 0.316 14.6 0.985
Fac-S-T 8.4 2.2 1859 0.320 15.2 0.984
Fac-T-S 8.4 2.2 1839 0.283 14.4 0.985
Binary-TS 8.4 2.2 1773 0.286 14.6 0.985
Binary-ST 8.4 2.2 1813 0.277 14.3 0.986
Triplet-TST 6.3 1.6 2392 0.293 14.7 0.985
Triplet-STS 6.3 1.6 2364 0.277 14.3 0.986
Quadruplet-TSST 8.4 2.2 1804 0.284 14.4 0.986
Quadruplet-STTS 8.4 2.2 1795 0.293 14.6 0.985

Variants of PredFormer. In our proposed variants, several trends emerged: (1) 200-epoch exper-
iments with patch size 4: The Fac-T-S model outperforms the full-attention model, surpassing the
Fac-S-T model. The interleaved models perform significantly better than both factorized and full-
attention models, with MSE values ranging from 20 to 21. Among these, the Triplet-TST model
achieved the best results. (2) 200-epoch experiments with patch size 8: The interleaved models
consistently outperformed both full-attention and factorized models, with a clear pattern emerg-
ing: temporal-first models performed better than spatial-first models. Notably, Quaddroplet-TSST
outperformed Quaddroplet-STTS, Triplet-STS outperformed Triplet-TST, and Binary-TS slightly
outperformed Binary-ST. This suggests that for the long-term 10→10 prediction task with patch
size 8, temporal dependencies play a more critical role. (3) 2000-epoch experiments with patch
size 4: Triplet-STS slightly outperforms Triplet-TST, achieving an MSE of 11.6. This difference
may be attributed to the longer spatial sequence with a smaller patch size, where spatial dependen-
cies become more important. (3) 2000-epoch experiments with patch size 8: Quaddroplet-TSST
outperforms Triplet-TST and Binary-TS and achieves an MSE of 12.5.

4.2 LONG-TERM PREDICTION: WEATHERBENCH

WeatherBench. Climate prediction is a critical challenge in spatiotemporal predictive learning.
The WeatherBench (Rasp et al., 2020) dataset provides a comprehensive global weather forecast-
ing resource, covering various climatic factors. In our experiments, we utilize WeatherBench-S, a
single-variable setup where each climatic factor is trained independently. We focus on temperature
prediction at a 5.625◦ resolution (32× 64 grid points). The model is trained on data spanning 2010-
2015, validated on data from 2016, and tested on data from 2017-2018, all with a one-hour temporal
interval. We input the first 12 frames and predict the subsequent 12 frames in this setting.

Quantitative Evaluaition. Our quantitative on WeatherBench are shown in Tab 4. We have the
following findings: (1) The first conclusion aligns with Moving MNIST, the Fac-T-S model outper-
forms the full attention model, which in turn outperforms the Fac-S-T model. The Fac-T-S model
achieves the best overall performance with an MSE of 1.100. (2) Besides, the six interleaved mod-
els significantly outperform all other baselines by a notable margin, with MSE values ranging from
1.108 to 1.149. Notably, the Triplet-TST model achieves the second-best result 1.108. (3) The
Fac-T-S model shows an 11.1% improvement over SimVP and a 5.9% improvement over TAU in
terms of MSE. (4) Interestingly, the best Fac-T-S model and second-best Triplet-TST model both
start with temporal blocks. Triplet-TST, which emphasizes temporal dependencies more than spatial
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Table 6: Ablation study on Gate Linear Unit and
Position Encoding.

Moving MNIST WeatherBench (T2m) TaxiBJ
Model MSE ↓ MAE ↓ MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓

PredFormer 20.5 63.1 1.100 0.6489 1.049 0.277 14.3

SwiGLU → MLP 22.6 67.9 1.171 0.6707 1.082 0.306 15.1
PE: Abs → Learnable 22.2 66.7 1.164 0.6771 1.079 0.288 14.6

Table 7: Ablation study on Dropout and
Stochastic Depth.

WeatherBench (T2m) TaxiBJ
Model MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓

Wo Reg 1.244 0.7057 1.115 0.319 15.1
+ DP 1.210 0.6887 1.100 0.283 14.5
+ Uni SD 1.156 0.6573 1.075 0.288 14.6
+ DP + Linear SD 1.138 0.6533 1.067 0.299 14.8

+ DP + Uni SD 1.100 0.6489 1.049 0.277 14.3

ones, achieves comparable results with fewer parameters than Fac-T-S. This suggests that temporal
dependencies are more critical for this 12→12 long-term prediction task.

Efficiency. Our Fac-T-S model model delivers strong performance and requires fewer parame-
ters (reduced from 14.8M to 5.3M). Although the Fac-T-S model has comparable FLOPs (8.5G) to
SimVP (8.6G), it increases the FPS from 196 to 404. Additionally, the second-best Binary-TST
model excels in both efficiency and performance. These findings indicate that our model holds
substantial promise for real-world weather forecasting applications.

4.3 SHORT-TERM PREDICTION: TAXIBJ

TaxiBJ. TaxiBJ (Zhang et al., 2017a) includes GPS data from taxis and meteorological data in Bei-
jing. Each data frame is visualized as a 32×32×2 heatmap, where the third dimension encapsulates
the inflow and outflow of traffic within a designated area. Following previous work (Zhang et al.,
2017a), we allocate the final four weeks’ data for testing, utilizing the preceding data for training.
Our prediction model uses four sequential observations to forecast the subsequent four frames.

Quantitative Evaluation. In Tab 5, we present the quantitative results on TaxiBJ. We have the fol-
lowing findings: (1) Among the full attention and factorized encoder models, the Fac-T-S model out-
performs the full attention model, which in turn outperforms the Fac-S-T model. (2) The interleaved
models outperform the full attention, Fac-S-T models, and all other baseline methods by a significant
margin, with MSE values ranging from 0.277 to 0.293. Notably, Binary-ST and Triplet-STS deliver
the best performance. (3) The Triplet-STS model demonstrates a 33.1% improvement over SimVP
and a 19.5% improvement over TAU in terms of MSE. (4) Interestingly, both top-performing models
start with spatial blocks, and Triplet-STS, which emphasizes spatial dependencies more than tem-
poral ones, achieves comparable results with fewer parameters than Binary-ST. This suggests that
spatial dependencies are more critical for this 4→4 short-term prediction task.

Efficiency. Our Triplet-STS model achieves superior predictive performance with fewer parame-
ters, lower FLOPs, and higher FPS than all baselines. PredFormer reduces SimVP’s parameters
from 13.8M to 6.3M, FLOPs from 3.6G to 1.6G, and boosts FPS from 533 to 2364. These results
underscore the model’s substantial potential for real-world traffic flow prediction.

4.4 ABLATION STUDY AND DISCUSSION

We conduct ablation studies on our PredFormer model design and summarize the results in Tab 6.
We choose the best Triplet-TST-ps4 200-epoch model on Moving MNIST, the best Triplet-STS
model on TaxiBJ, and the best Fac-T-S model on WeatherBench as baselines.

Gate Linear Unit. Replacing SwiGLU with a standard MLP results in a notable performance
degradation. On Moving MNIST, the MSE rises from 20.5 to 22.6, on TaxiBJ from 0.277 to 0.306,
and on WeatherBench from 1.100 to 1.171. This consistent performance degradation highlights the
critical role of the gating mechanism in modeling complex spatiotemporal dynamics.

Position Encoding. Additionally, the performance deteriorates when we replace the absolute posi-
tional encoding in our model with the learnable spatiotemporal encoding commonly used in ViT. On
Moving MNIST, the MSE rises from 20.5 to 22.2, on TaxiBJ from 0.277 to 0.288, and on Weather-
Bench from 1.100 to 1.164. These ablation experiments consistently reveal similar trends across all
three datasets, emphasizing the robustness of our Position Encoding designs.
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Figure 5: Visualizations on (a) Moving MNIST and (b) TaxiBJ. Error = |Prediction − Target|. We
amplify the error for better comparison.

Model Regularization. Pure transformer architectures like ViT generally require large datasets
for effective training, and overfitting can become challenging when applied to smaller datasets.
In our experiments, overfitting is noticeable on WeatherBench and TaxiBJ. We experiment with
different regularization techniques in Tab 7 and find that both dropout(DP) and stochastic depth
(SD) individually improve performance compared to no regularization. However, the combination
of the two provides the best results. Unlike conventional ViT practices, which use a linearly scaled
drop path rate across different depths, a uniform drop path rate performs significantly better for our
tasks. We adopt the exact regularization setting for all nine variants.

Visualization. Fig 5 and Appendix Fig 6 provide a visual comparison of our PredFormer model’s
prediction results and the associated prediction errors on three benchmark datasets. The visualiza-
tions demonstrate that our PredFormer model markedly reduces prediction errors compared to those
from TAU and has more accurate predictions. We present an additional case in the Appendix Fig 7
to further demonstrate PredFormer’s superior generalization ability compared to TAU.

Discussion for PredFormer Recipe. Despite our in-depth analysis of the spatiotemporal decompo-
sition, the optimal model is not definite due to the different spatiotemporal dependent properties of
the datasets. Within this research, long-term prediction typically emphasizes temporal dependencies,
whereas short-term prediction relies more on spatial dependencies. We recommend starting with the
Quadruplet-TSST model for diverse spatiotemporal prediction tasks, which consistently performs
well across datasets and configurations. Use M Quadruplet-TSST layers and experiment with mod-
els having a total of 4M GTBs to identify the optimal configuration. Then, explore Triplet-TST and
Triplet-TST with M layers to find spatial and temporal dependencies. Unlike SimVP framework,
which adjusts hidden dimensions and block numbers separately for spatial encoder-decoder and
temporal translator, PredFormer uses fixed hyperparameters for spatial and temporal GTBs, lever-
aging the scalability of the Transformer architecture. By simply adjusting the number of PredFormer
layers, optimal results can be achieved with minimal tuning.

5 CONCLUSION

In this paper, we introduce PredFormer, a recurrent-free and convolution-free model designed for
spatiotemporal predictive learning. Our in-depth analysis extends the understanding of spatial-
temporal transformer factorization, moving beyond existing video ViT frameworks. Through rigor-
ous experiments, PredFormer shows unparalleled performance and efficiency, surpassing previous
models by a large margin. Our results elucidate several critical insights: (1) Interleaved spatiotem-
poral transformer architectures establish new benchmarks, excelling across multiple datasets. (2)
Factorized temporal-first encoders significantly outperform both full spatial-temporal attention en-
coders and Factorized spatial-first configurations. (3) Implementing dropout and uniform stochastic
depth concurrently leads to superior performance enhancements on overfitting datasets. (4) Abso-
lute position encoding consistently outperforms learnable alternatives across all benchmarks. We
believe PredFormer will not only establish a robust baseline for real-world applications but also
pave the way for future innovations in pure transformer-based spatiotemporal predictive models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement We provide detailed instructions for implementing our method and
reproducing the experiments in Sec 4 and Appendix Sec A.2. Our experiments use open-source
datasets, and we will release the code and trained models to the public upon acceptance.
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A APPENDIX

A.1 PROBLEM DEFINITION

Spatiotemporal predictive learning is to learn spatial and temporal patterns by predicting future
frames based on past observations. Given a sequence of frames X t:T = {xi}tt−T+1, which en-
capsulates the last T frames leading up to time t, the goal is to forecast the following T ′ frames
Yt+1:T ′

= {xi}t+1+T ′

t+1 starting from time t+ 1. The input and the output sequence are represented
as tensors X t:T ∈ RT×C×H×W and Yt+1:T ′ ∈ RT ′×C×H×W , where C, H , and W denote channel,
height, and width of frames, respectively. The T and T ′ are the input and output frame numbers.
For brevity, we use X and Y to denote X t:T and Yt+1:T ′

in the following sections.

Generally, we adopt a deep model equipped with learnable parameters FΘ for future frame predic-
tion. The optimal set of parameters Θ∗ is obtained by solving the optimization problem:

Θ∗ = argmin
Θ

L(FΘ(X ),Y) (4)

where L is the loss function measuring the difference between the prediction and the ground truth.

A.2 EXPERIMENT SETTING

For the 200-epoch Moving MNIST experiment with a patch size of 4, we use a batch size of 2 for
the full attention model and a batch size of 8 for other variants due to memory constraints. For the
2000-epoch experiment with the same patch size, we increase the batch size to 16, utilizing a single
48GB A6000 GPU. In experiments with a patch size of 8, we maintain a batch size of 16 on a 24GB
GPU across all runs. For Moving MNIST, we use 24 GTB blocks for all PredFormer variants, which
means 6 Quadruplet-TSST layers, 8 Triplet-TST layers, and 12 Binary-TS layers, respectively.

For the TaxiBJ and WeatherBench datasets, we use 6 GTB blocks for the Triplet variants and 8 GTB
blocks for the other variants.

Table 8: Hyperparameter Setting.

Moving MNIST TaxiBJ WeatherBench

Training Hyperparameter
Batch Size {8,16} 16 16

Learning Rate 1e-3 1e-3 5e-4
Learning Scheduler Onecycle Onecycle Cosine

Optimizer Adamw Adamw Adamw
Weight Decay 1e-2 1e-2 1e-2

Training Epochs {200,2000} 200 50

Model Hyperparameter
Patch Size {4,8} 4 4

GTB Blocks 24 {6,8} {6,8}
GTB Dim 256 256 256

GTB Heads 8 8 8
SwiGLU Hidden Dim 1024 1024 512

Attention Dropout 0.0 0.1 0.1
SwiGLU Dropout 0.0 0.1 0.1

Drop Path Rate 0.0 0.1 0.25

A.3 MORE VISUALIZATIONS

Figures 6 shows the visualization on WeatherBench. As the number of frames increases, TAU’s error
increases more significantly compared to ours. This demonstrates the strength of our PredFormer
model for long-term forecasting

Figures 7(a) and (b) depict the inflow and outflow at the same time step. In this case, the fourth
frame shows significantly less traffic flow than the previous frames. Constrained by the inductive
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Figure 6: Visualizations on WeatherBench for global temperature forecasting.

(a) TaxiBJ InFlow

t = 1 t = 2 t = 3 t = 4

t = 5 t = 6 t = 7 t = 8

Input

Target

PredFormer
Prediction

TAU
Error

PredFormer
Error

TAU
Prediction

(b) TaxiBJ OutFlow
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Figure 7: Visualizations on TaxiBJ Inflow and OutFlow. We amplify the error for better comparison.

bias of CNNs, TAU continues to predict high traffic levels. In contrast, our PredFormer demon-
strates superior generalization by accurately capturing this abrupt change. This capability highlights
PredFormer’s potential to handle extreme cases, which could be particularly valuable in applications
like traffic flow prediction and weather forecasting.

A.4 MORE EXPERIMENTS

We provide additional experimental results to further validate the effectiveness and efficiency of
PredFormer compared to existing methods. Tab 9 showcases the performance of PredFormer against
transformer-based spatiotemporal prediction models, including SwinLSTM and OpenSTL, on the
Moving MNIST dataset, demonstrating its faster training time and superior accuracy. Tab 11 high-
lights the comparison of PredFormer with SwinLSTM and OpenSTL on the TaxiBJ dataset, illus-
trating PredFormer’s significantly higher FPS and lower MSE. Tab 12 compares PredFormer with
various existing methods on the Human3.6M dataset, showcasing its competitive accuracy with
superior efficiency in terms of FLOPs and FPS. Tab 13 illustrates the comparison between Pred-
Former and EarthFormer on the Moving MNIST dataset, highlighting PredFormer’s efficiency with
lower FLOPs and better performance. Tab 14 presents an ablation study of PredFormer by varying
the number of TSST layers, showing that even with fewer layers, PredFormer achieves better re-
sults compared to competing methods like SimVP and TAU. Finally, Tab 15 and Tab 16 compare
PredFormer with SwinLSTM and VMRNN on Moving MNIST and TaxiBJ datasets, respectively,
emphasizing its faster training and inference speeds, as well as its ability to deliver lower MSE and
higher SSIM with comparable or fewer parameters and FLOPs.
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Table 9: Comparisons of PredFormer and SwinLSTM on the Moving MNIST dataset with 2000
training epochs.

Method Paras (M) Flops (G) Training Epoch Time MSE SSIM
SwinLSTM – – 9min 17.7 0.962
PredFormer 25.3 16.5 3.5min 12.5 0.973

Table 10: Comparisons of PredFormer and OpenSTL on the Moving MNIST dataset with 200 train-
ing epochs.

Method Paras (M) Flops (G) MSE MAE SSIM
OpenSTL+ViT 46.1 16.9 35.2 95.9 0.914
OpenSTL+Swin Transformer 46.1 16.4 29.7 84.1 0.933
PredFormer 25.3 16.5 26.0 77.2 0.941

Table 11: Comparisons of PredFormer, SwinLSTM, and OpenSTL on the TaxiBJ dataset.

Method Paras (M) Flops (G) FPS MSE SSIM
SwinLSTM 2.9 1.3 1425 0.303 0.984
OpenSTL+ViT 9.7 2.8 1301 0.317 0.984
OpenSTL+Swin Transformer 9.7 2.6 1506 0.313 0.984
PredFormer 6.3 1.6 2364 0.277 0.986

Table 12: Comparisons of PredFormer and OpenSTL on the Human3.6M dataset.

Method Paras (M) Flops (G) FPS MSE MAE
OpenSTL+ViT 28.3 239.0 17 136.3 1603.5
OpenSTL+Swin Transformer 38.8 188.0 28 133.2 1509.7
PredFormer 12.7 65.2 78 114.7 1403.6

Table 13: Comparison of PredFormer and EarthFormer on the Moving MNIST dataset.

Method Paras (M) Flops (G) MSE MAE SSIM
EarthFormer 6.6 33.7 46.9 101.5 0.883
PredFormer 2TSST Layer 8.5 5.5 20.1 65.3 0.955
PredFormer 6TSST Layer 25.3 16.5 12.5 44.6 0.973

Table 14: Ablation study of PredFormer layer number on the Moving MNIST dataset.

Method Paras (M) Flops (G) FPS MSE MAE SSIM
SimVP 58.0 19.4 209 23.8 68.9 0.948
TAU 44.7 16.0 283 19.8 60.3 0.957
PredFormer 3TSST Layer 12.7 8.3 291 16.2 55.1 0.965
PredFormer 6TSST Layer 25.3 16.5 152 12.5 44.6 0.973

Table 15: Comparisons of PredFormer, SwinLSTM, and VMRNN on the Moving MNIST dataset.

Method Paras (M) Flops (G) Epoch Time MSE SSIM
SwinLSTM – – 9min 17.7 0.962
VMRNN – – 18min 16.5 0.965
PredFormer 3TSST Layer 12.7 8.3 1.5min 16.2 0.965
PredFormer 6TSST Layer 25.3 16.5 3.5min 12.5 0.973

Table 16: Comparison of PredFormer, SwinLSTM, and VMRNN on the TaxiBJ dataset.

Method Paras (M) Flops (G) Epoch Time FPS MSE MAE SSIM
SwinLSTM 2.9 1.3 – 1425 0.303 15.0 0.9843
VMRNN 2.6 0.9 5min 526 0.289 14.7 0.9858
PredFormer 6.3 1.6 1min 2354 0.277 14.3 0.9864
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