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Abstract

Prompting is one of the main ways to adapt a pretrained model to target tasks.
Besides manually constructing prompts, many prompt optimization methods have
been proposed in the literature. Method development is mainly empirically driven,
with less emphasis on a conceptual understanding of prompting. In this paper we
discuss how optimal prompting can be understood through a Bayesian view, which
also implies some fundamental limitations of prompting that can only be overcome
by tuning weights. The paper explains in detail how meta-trained neural networks
behave as Bayesian predictors over the pretraining distribution, whose hallmark
feature is rapid in-context adaptation. Optimal prompting can be studied formally
as conditioning these Bayesian predictors, yielding criteria for target tasks where
optimal prompting is and is not possible. We support the theory with educational
experiments on LSTMs and Transformers, where we compare different versions
of prefix-tuning and different weight-tuning methods. We also confirm that soft
prefixes, which are sequences of real-valued vectors outside the token alphabet,
can lead to very effective prompts for trained and even untrained networks by
manipulating activations in ways that are not achievable by hard tokens. This adds
an important mechanistic aspect beyond the conceptual Bayesian theory.

1 Introduction

Perhaps the most impressive feature of today’s frontier models is their ability to swiftly adapt their
behavior to a wide range of contexts. Given relatively few tokens—whether from a user input, a
system prompt, or a number of in-context examples—models often rapidly infer the task at hand
and produce good continuations without any weight adaptation (in-context learning, Lampinen et al.
[2024]). From a meta-learning perspective, rapid in-context adaptation is expected to arise: log loss
minimization with a parametric sequential predictor (like a neural network) over a distribution of
stochastic data generators leads to a Bayesian predictor for the pretraining distribution [Ortega et al.,
2019]. The hallmark feature of such a predictor (Bayes-optimality) is most rapid in-context adaptation
and least (cumulative) prediction error on average. Accordingly, prompting, that is conditioning
of the Bayesian predictor, can be used to data-efficiently adapt the pretrained model to a target
task. An important question is: under which conditions is it possible to find a prompt such that the
prompted pretrained predictor becomes (near-) Bayes-optimal on a target task? We refer to this as
optimal prompting, which is possible in theory if the target task is one of the tasks covered by the
meta-distribution. If this is not the case, then optimal prompting may not be possible for an ideal
predictor, and weight adaptation may be necessary.
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Top: Performance of different tuning meth-
ods on Transformers, measured as excess
log loss, i.e., regret (Eq. (10), lower is
better). See bar plots for color legend.
Top-right: Detailed Transformer results
for last step within the tuning sequence
length Ntune and the last evaluation step
Neval. Right: Like above but for LSTM.
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Figure 1: Pretraining on sequences from coins with uniform random bias (length Ntrain = 100), then
fine-tuning to the target task of a single coin with bias 0.2 (tuning sequence length Ntune = 50). Plots
show prediction performance on the target task for different prefix- and weight-tuning methods. For
both Transformers and LSTMs Soft Prompting (‘SoftPT’) leads to optimal performance, showing
that networks can be successfully prompted to behave Bayes-optimally on the target distribution
(‘TargetBayes’). This holds up to the tuning sequence length (50), with only minor degradations up to
200 steps. The corresponding soft prefixes of length= 6 outperform even the best hard token prefixes
of the same length (‘HardPF’). Most weight-tuning methods also perform very well. See Section 4 for
method details. Thick lines and bars show the median over 10 tuning repetitions, thin lines individual
repetitions, and shaded areas/bars show 25%, 75% quantiles. See Fig. 2 for a visualization of models’
internal dynamics. Regret curves for the LSTM, similar to top-left panel, are shown in Fig. A5.

The goal of prompt tuning for a target task is to produce prompts that, when consumed by the model,
inject maximal information (up to statistical sufficiency) about the target task into the predictor’s
internal state. In practice, prompt optimization is often done by tuning soft prefixes, which are
sequences of real-valued input vectors instead of hard tokens. As we show, the corresponding off-
distribution inputs can exploit neural circuitry to inject substantially more information compared to
even the best hard token sequence of the same length, without breaking subsequent internal dynamics.

In this paper, we investigate prefix-tuning, where a short prompt prefix is tuned to maximize subse-
quent prediction accuracy. We consider prefix search over hard tokens, and three soft prefix-tuning
methods, including ‘Soft Prompting’, [Lester et al., 2021]. The code to reproduce all our experiments
is available at: https://github.com/google-deepmind/thunnini. Our main contributions are:

• We discuss how prompting can be understood as steering a Bayesian sequential predictor via
its pretrained in-context adaptation mechanism that arises from meta-training, see Section 2.

• We analyze theoretical conditions for the relationship between pretraining distribution and
target task under which optimal prompting is and is not possible, see Section 3.

• We confirm these theoretical conditions empirically via a series of educational experiments,
and show that in the negative case weight-based fine-tuning can succeed. See Section 4.2.

• We investigate mechanistic aspects of prompting LSTMs and Transformers, with experi-
ments on both pretrained and untrained networks. In all cases, soft prefixes can be much
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more effective than any hard token sequence of equal length, particularly for Transform-
ers, where soft prefixes can even cause untrained networks to behave as well-performing
sequential predictors. See Section 4.2.

Limitations and Scope. As with any conceptual principle, the Bayesian view cannot exhaustively
describe all in-context learning phenomena at (frontier model) scale: limited data and model expres-
sivity, suboptimal optimization, out-of-distribution generalization, and other mechanistic aspects
will have additional impact. Having said that, there are a number of recent investigations at LLM
scale supporting the plausibility of the Bayesian view, such as Chan et al. [2022a] who argue that
distributional properties of natural language can easily give rise to a meta-learning setting. This paper
discusses fundamental properties of prefix tuning, which we illustrate with educational experiments
where the focus is on clarity and being able to compare quantitatively against a known and tractable
Bayesian predictor. Accordingly, our datasets do not capture the full complexities of, e.g, large-scale
language, vision, or robotics tasks. Similarly, our neural networks are small by modern standards,
which means that our findings must be very cautiously extrapolated towards modern frontier model
scale. Further rigorous and well-designed scientific studies are necessary to bridge the gap between
our current work and modern large-scale ML practice, and we are optimistic that our fundamental
results will inspire the design of such studies. The simplicity of our experimental setup allows
to carefully control the data statistics, and compare neural predictors against exact Bayes-optimal
predictors—both of which is not true for LLM-scale experiments. Additionally, it allows us to focus
on fundamental aspects of prompting that arise even in idealized settings, and thus hold at any scale.
We believe that this lays important fundamental groundwork, which will help future research to
isolate and more effectively investigate additional, non-idealized, aspects of in-context learning and
prompt tuning at frontier scale. We do not propose improved prompt tuning methods in this work
since our aim is to study and understand existing ones.

2 Background: Memory-Based Meta-Learning

In this section we review how memory-based meta learning leads to Bayesian sequential predictors,
whose hallmark feature is (most) rapid in-context adaptation. Under this view, the role of prompt
tuning is to facilitate the inference process of the target task. While LLMs and frontier models are
not explicitly meta-trained, their training process can be viewed as implicit meta-training, in which
case the Bayesian view constitutes an important conceptual principle for understanding pretrained
models and their in-context learning abilities.

Tasks. Let an alphabet A be a finite set of tokens (with one-hot encoding) and x1:N ∈ AN be a
sequence of such tokens of length N , and x0 = ϵ be the empty sequence. A task is a distribution over
finite-length sequences:

P (x1:N |τ) : RM → ∆AN

where τ ∈ RM is the M -dimensional parameter vector of the task, over which a distribution p(τ)
can be placed (the task- or meta-distribution). For notational simplicity we assume all sequences
have the same length N . Simple examples of sets of tasks would be the family of Bernoulli
distributions parameterized by the bias τ ∈ [0, 1], or the family of Markov processes over sequences
in AN parameterized by the transition kernel and initial state distribution. The set of tasks and the
distribution over tasks define the marginal distribution over sequences:

ξ(x1:N ) =

∫
P (x1:N |τ)P (τ)dτ =

∫
P (xN |x<N , τ)P (τ |x<N )P (x<N )dτ (1)

∀n ∈ N+ : ξ(xn|x<n) =

∫
P (xn|x<n, τ)P (τ |x<n)dτ (2)

which we have rewritten in the second line in its “next-token predictor” form (conditional distribution
over next token, given full history).

Sequential predictor. Let πθ be a parametric sequential predictor, such as a neural network,
which is a function with parameters θ that takes in an arbitrary-length sequence of D-dimensional
float vectors and outputs a discrete distribution over the next (one-hot) token: πθ : {RD}∗ → ∆A
Typically, D = |A|, meaning that one-hot tokens can be fed directly into the predictor. The predictor’s
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conditional distribution over the next token given a context x<n is given by evaluating the predictor
with the given context (i.e., performing a forward pass): Pθ(xn|x<n) = πθ(x<n). Keep in mind that
a neural net accepts not only hard tokens as inputs, but sequences of arbitrary vectors in RD (‘soft
tokens’), and will produce a distribution over the next hard token in either case.

Meta-Learning. In memory-based meta learning, θ is adjusted by repeating the following steps:

1. Reset memory: set predictor’s internal state or context to a fixed initial value.

2. Sample task: τ ∼ P (τ).

3. Generate data: sample one or more sequences from the task: x1:N ∼ P (x1:N |τ).

4. Update parameters: perform a gradient step towards minimizing prediction error (log loss)
on the sampled sequences.

Log loss is the cumulative prediction error. For a single sequence it is:

Lθ(x1:N ) := − log πθ(x1:N ) = −
N∑

n=1

log πθ(xn|x<n) (3)

The expected excess log loss measures how much worse πθ performs w.r.t. expected cumulative
prediction error compared to the best possible predictor that does not know τ :

Eξ [− log πθ(x1:N )]− Eξ [− log ξ(x1:N )] = DKL(ξ||πθ) ≥ 0 (4)

which is zero iff πθ = ξ. Any predictor that fulfills this is Bayes-optimal for ξ, and Eq. (1) and
Eq. (2) provide a recipe for constructing an explicit Bayesian predictor, which is a mixture over
one predictor per task, weighted by the posterior probability over the task given the context so far:
P (τ |x<n) ∝ P (x<n|τ)P (τ). In many cases this recipe is analytically or computationally intractable.
Memory-based meta-learning provides an alternative for obtaining an approximate Bayesian predictor
simply through log loss minimization in a meta-learning loop:

argmin
θ

DKL(ξ||πθ) = argmin
θ

Eξ

[
log

ξ(x1:N )

πθ(x1:N )

]
= argmin

θ
Eξ[Lθ(x1:N )] (5)

If π is expressive enough (realizability) and the meta-learning process fully converges, then, denoting
θ̂ as the converged parameters:

∀n ∈ N+ : πθ̂(xn|x<n) ≈ ξ(xn|x<n) (6)

meaning the network’s prediction over the next token, given context x<n, is (nearly) indistinguishable
from an explicit Bayesian predictor. The meta-trained neural network thus implements a Bayes-
optimal adaptive prediction algorithm via its activations only—without weight updates (in-context
learning). Previous works have empirically verified that meta-trained LSTMs and Transformers
can indeed reach Bayes-optimality through meta-training, e.g., Mikulik et al. [2020] for sequential
prediction and decision-making (not covered in this paper, but the theory extends straightforwardly to
loss functions other than log loss), Genewein et al. [2023] for piecewise stationary data sources (where
models additionally have to infer task boundaries), and Grau-Moya et al. [2024] for variable-order
Markov processes.

Remark. Frontier models are implicitly meta-trained on samples from an unknown, rich and com-
plex distribution of data generators [Chan et al., 2022a]. The main concerns w.r.t. the applicability of
the Bayesian viewpoint is that due to limited expressivity, limited data, suboptimal optimization, and
off-distribution inputs, models may not converge to or operate in the Bayesian regime. Additionally,
models may often operate in the generalization regime, while the theoretical guarantees only hold
strictly under data drawn from the training meta-distribution. While we strongly recommend carefully
investigating these issues, the theory tells us that as models get better and better, they will get closer
and closer to the Bayesian ideal, making it an important fundamental computational mechanism to
understand.
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3 Prompt Optimization: prefix-tuning

We are given a neural sequential predictor πθ, that was pretrained2 via meta training over
ξPre(x1:N ) =

∫
P (x1:N |τ)P Pre(τ)dτ . The goal is to adapt this predictor to a target distribution

ξTarget(x1:N ) =
∫
P (x1:N |τ)P Target(τ)dτ . In prefix-tuning, the adaptation is performed by finding a

(typically short) prefix sequence sequence s1:L ∈ SL of length L that is prepended to the observations
fed to the model. The “alphabet” S depends on the prefix-tuning method. In this paper we use:

• Hard token search (HardPT): S = A.
• Simplex prefix (SimplexPT): S = ∆A ⊂ R|A|.

• Real prefix (RealPT): S = R|A|.
• Soft Prompting (SoftPT): S = REmbedding-dimensionality, i.e., Lester et al. [2021].

Prefixing a sequence x<n with s1:L and passing it through the neural sequential predictor corresponds
to conditioning with additional initial information: πθ(xn|s1:Lx<n) = Pθ(xn|s1:L, x<n). The prefix
is optimized by minimizing the empirical log loss over K samples of sequences from the target
distribution given the prefix:

min
s1:L∈SL

EξTarget [Lθ(x1:N |s1:L)] ≈ min
s1:L∈SL

1

K

K∑
k=1

[
N∑

n=1

− logPθ(x
k
n|xk

<n, s1:L)

]
(7)

with xk
1:N ∼ ξTarget. For hard token search, we perform exhaustive search over all token sequences of

length L. For all three soft token methods, we use mini-batch based stochastic gradient descent.

When can prefix-tuning work? We consider the case where the prefixed model behaves (near)
Bayes-optimally on the target task distribution. We first consider the idealized Bayesian predictor for
which the prefix is always a hard token sequence. A theoretical positive statement is possible if:

P Target(τ) = δ(τ = τTarget) and P Pre(τTarget) > 0 (8)

that is, we are optimizing for a single target task that had support under the pretraining distribution.
In this case, there always exists a sequence of hard tokens that causes the Bayesian posterior to
concentrate sufficiently (in the limit a delta, see Appendix E ) for optimal prediction after the prefix.
For sufficiently large L,

∃s1:L ∈ AL : EP (x1:N |τTarget)

[
− logP (x1:N |τTarget)

]
≈ EP (x1:N |τTarget)[− log ξPre(x1:N |s1:L)︸ ︷︷ ︸

≈πθ̂(x1:N |s1:L)

] (9)

The prefix can be found by performing the minimization in Eq. (7). Proof sketch: If the target
distribution is a delta over one of the pretraining tasks (condition in Eq. (8)), then the argument that is
being minimized in Eq. (7) is the r.h.s. of Eq. (9). The minimum is obtained when Eq. (9) becomes
an equality, which the case when the Bayesian (posterior) mixture ξPre(·|s1:L) collapses to a single
mixture component corresponding to τTarget. This also implies DKL(ξ

Target||ξPre(·|s1:L)) ≈ 0 which
is only possible iff ξTarget ≈ ξPre(·|s1:L).
If the condition in Eq. (8) does not hold, optimal prompting may still be possible, but this strongly
depends on the relationship between pretraining and target distribution and the model class. See
Appendix E for an analysis of the Beta-Bernoulli case and beyond, including limits of prompting
universal predictors. It is also possible to formulate two general theoretical negative cases:

Prefix-tuning limitation I (multimodal target distributions). In the limit posteriors can often
not remain (or become) multimodal. If the target distribution is multimodal, such as a finite target
mixture over tasks, optimal prefix-tuning may not be possible, even if all mixture components have
support under the pretraining distribution. For instance, if the prior P Pre(τ) is log-concave and the
likelihood function is log-concave, then the posterior is also log-concave, and thus unimodal. See
Section 4.2 for an empirical demonstration. More generally, if the posterior collapses to a Dirac delta
in the limit (as it does for a Beta-Bernoulli model, and is very likely to do in general if prompts are
typical sequences—see Appendix E), the only target task distributions that are optimally promptable
are deltas over a single pretraining task.

2Except for our experiments with untrained networks, where the parameters are at random initialization.
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Prefix-tuning limitation II (novel atomic target tasks). The second negative case is when the
target distribution contains one or more novel atomic tasks, i.e., P Pre(τTarget) = 0, that are “sub-
stantially” novel in the sense that they require behavior different from any of the predictors in the
pretraining mixture ξPre. E.g., a particular coin bias that was never observed during pretraining
under a uniform bias over coins would not fall under this case. Note that it may be hard to say what
counts as substantially novel at frontier model scale, where the pretraining distribution is only known
implicitly, and pretrained models are capable of sophisticated algorithmic prediction. See Petrov et al.
[2024] who, in line with our reasoning, find empirically that prefix-tuning methods can “elicit skills
present in the pretrained model”, but cannot be used to learn novel skills.

Soft prefix-tuning. In general, for a prefix prompt to be optimal, the model’s internal state after
consuming the prefix needs to be a sufficient statistic for the target distribution, without causing
subsequent internal dynamics to diverge. Pretraining determines a model’s state-update function, and
thus imposes strong constraints w.r.t. possible manipulations via hard token inputs. These constraints
can be partly overcome by using soft prefixes instead of hard tokens. As our results show, these
carefully tuned off-distribution inputs that lead to off-distribution internal states, can be used to very
effectively steer pretrained, and even untrained neural predictors. The limits of this mechanistic
aspect, outside the conceptual Bayesian theory, are currently unclear—it could be that soft prefixes
can very flexibly “reprogram” a pretrained model to arbitrary target distributions. Empirically, we
find this not to be the case: while Soft Prompting does consistently improve prediction performance
on the target task, it is still bound by the theoretical limitations pointed out above and in detail in
Appendix E: optimally adapting a predictor pretrained over uniform random coins to a mixture of two
coins is not possible. How large the potential gains from Soft Prompting or other soft prefix-tuning
methods can be is an empirical question. Finally, note that weight-based fine-tuning methods are able
to modify the pretrained state-update and -readout mechanisms, which allows for more flexibility
w.r.t. adapting a network to target distributions (see Section 4.2 for empirical demonstrations).

4 Experiments on Coin-Flip Sequences

We conduct a series of experiments where a neural network is first meta-trained over a pretraining
distribution (Section 2) of coin flip sequences of length Npre = 100, and then prompt-tuned (Eq. (7)) or
weight-tuned (mini-batch based log-loss minimization) to a target distribution of coin flip sequences of
length Ntune = 50. After tuning, we evaluate tuned models on 2048 sequences of length NEval = 200
from the target distribution. Choosing NEval > Ntune also allows to study how the solutions of different
tuning methods generalize beyond the tuning length. Across experiments we use three different data
distributions, two neural architectures, and nine tuning methods, which we now describe.

4.1 Experimental setup

Data generators. We use coin-flip sequences P (x1:N |τ) = Bernoulli(τ) with three different
distributions P (τ) throughout our experiments. Random coins: P (τ) = Beta(1, 1), leading to a
uniform distribution over coin biases. This is our pretraining distribution. The exact Bayesian
predictor in this case is the Laplace predictor. Single coin: A single coin with bias 0.2. This target
distribution fulfills the condition that makes optimal prompting possible in Eq. (8). Two-coin mixture:
A mixture of two coins, one with bias 0.2 and one with bias 0.8, with equal mixing weights of 1/2
each. This target distribution violates the condition that theoretically allows for optimal prompting in
Eq. (8). All tasks have binary outcomes which leads to a 2-dimensional one-hot token alphabet A
with two different symbols. The Bayes predictors for all three tasks are analytically tractable and
textbook examples (for the ‘Single coin’, the “Bayes” predictor is simply a constant probability).

Neural sequential predictors. We evaluate both LSTMs and Decoder-only Transformers. To
support all fine-tuning methods we always use an initial embedding, and a final unembedding layer.
The embedding is a trainable linear projection from the 2D token space into a 128-dimensional “em-
bedding” space (results for 4-dimensional embeddings are shown in Appendix I). The unembedding
is a trainable linear projection from the outputs of the final network layer down to the 2D logits.
Implementation Details. The LSTM has a single hidden layer of width 128; the Transformer has a
single multi-head attention layer with output dimensionality of 128, 4 attention heads, causal masking,
SinCos positional encoding, a widening factor of 4 for the MLP block, and layer normalization after
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query and key dense layers. Results for larger networks are shown in Appendix J. LoRA fine-tuning
[Lester et al., 2021] is only supported for the Transformer, where we apply LoRA to all dense matrices
of the attention block (query, key, value, and final attention weights). To produce a prediction given
the empty context, we pass an initial zero vector Pθ(x1|ϵ) = πθ(x1|0). This zero vector 0 is also
prepended before any tunable prefix. When reporting the internal state of the LSTM, we use the cell
state (hidden state gives qualitatively similar results), and for the Transformer we use the causally
masked output of the attention block.

Performance Measure. Our main performance measure is the expected cumulative regret, which is
the excess log loss compared to the ground-truth data generating probability. In Eq. (4) we defined the
expected excess log loss relative to the best predictor that does not know τ , a.k.a., the Bayesian regret.
Similarly, we now define the excess log loss w.r.t. the data generator, that is, an oracle predictor that
knows τ = τ∗:

RP Target

θ̃
(N) := Eτ∗∼P Target(τ)EP (x1:N |τ∗)

[
− log πθ̃(x1:N |s1:L) + logP (x1:N |τ∗)

]
≥ 0 (10)

We show regret curves from N = 0 up to N = Neval − 1 = 199 steps3. For prefix-tuning methods
θ̃ refers to the pretrained weights (or randomly initialized weights in our experiments on untrained
networks) and s1:L is the tuned prefix. For weight-tuning methods θ̃ refers to the tuned weights and
the prefix is empty (L = 0). We (Monte-Carlo) estimate the regret with 2048 sequences sampled
from the target data generator (from which we also get the ground-truth generating probabilities).

Training and tuning details. We pretrain for 1000 gradient steps (batch size 256, sequence length
Npre = 100, learning rate 0.001, and gradient clipping if the norm is ≥ 1). For tuning we use 1000
steps (batch size of 256, thus K = 256, 000, sequence length Ntune = 50, learning rate of 5e−3,
and gradient clipping if the norm is ≥ 1). We show tuning loss curves (and their convergence) in
the extended results in the appendix. We repeat tuning runs 10 times per method with a different
random seed (for sampling from the target distribution, and a different prefix initialization). Across
repetitions and tuning methods, we always evaluate on the same set of 2048 evaluation sequences.
Results are reported as the median over repetitions with 25%, 75% quantiles as “error bars”.

Fine-tuning methods. We compare four different prefix-tuning methods and five different weight-
tuning methods against a number of baselines:

• HardPT, SimplexPT, RealPT, SoftPT: prefix-tuning methods (see Section 3). To implement
S = ∆A for SimplexPF, we pass the tunable prefix through a softmax. The prefix length
L = 6 in all main experiments, and we show L = 25 in Appendix H.

• EmbedWT, UnembedWT, Un+EmbedWT: Only parameters of the linear embedding, or
unembedding, or both, are tuned.

• FullWT: All weights, including embedding and unembedding, are tuned.
• LoRAWT: Low-Rank Adaptation [Hu et al., 2021], where an additive tunable low rank

matrix (rank=4 in our experiments) is added to all dense matrices of the attention block. All
other weights remain frozen.

• TargetBayes, PreBayes, PreBayesPT: exact Bayes predictors for the target distribution
ξTarget, the pretraining distribution ξPre, and ξPre(·|sTarget

1:L ), i.e., ‘PreBayes’ prefix-tuned to the
target distribution via exhaustive hard token search, L = 6.

• NoTuning: the network with no fine-tuning. Either pretrained or at random initialization on
our experiments with untrained networks.

• RandomPF: Same as ‘NoTuning’ but with random (one-hot) prefixes.

4.2 Results

Tuning to a single task. Fig. 1 shows that both, a Transformer and an LSTM, pretrained on
Random Coins, can be Soft Prompted to be Bayes-optimal on a Single Coin (with bias 0.2). Other

3The offset of 1 is because passing x1:n−1 through the network produces a prediction xn for which we need
ground-truth data at step n to compute the regret or log loss (or gradients).
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NoTuning SimplexPT RealPT SoftPT HardPT RandomPF

Transformer: Random Coins  Single Coin
State (attention_out) on 20 Single Coin sequences (length: 50)

Random Coins (no prefix) Single Coin n = Lprefix = 6

NoTuning SimplexPT RealPT SoftPT HardPT RandomPF

LSTM: Random Coins  Single Coin
State (cell) on 20 Single Coin sequences (length: 50)

Random Coins (no prefix) Single Coin n = Lprefix = 6

Figure 2: 2D PCA projection of Transformer’s (top) and LSTM’s (bottom) internal state (= activa-
tions), illustrating how differently tuned prefixes affect state and subsequent dynamics. Fig. A7 shows
that the vertical principal component corresponds to the step n, and the horizontal to the heads-to-tails
ratio. Colored lines are sequences from the target distribution (single coin with bias 0.2), gray lines
are from the pretraining distribution (uniform random). The off-distribution nature of soft prefixes is
particularly visible for the Real- and Soft-prefix for the Transformer. See Fig. 1 for regret curves.

prefix-tuning methods, including exhaustive search over all hard token sequences of length 6 fail
to reach Bayes-optimality. Despite all soft prefixes being off-distribution inputs, internal dynamics
remain stable (see Fig. 2), and prediction generalize well for ‘SoftPF’ and most of the weight-tuning
methods far beyond the tuning sequence length Ntune = 50 (see Fig. 1). The results illustrate how
prefixes can be used to steer a (meta-learned) Bayesian predictor via manipulating its internal state.
Further, they also show that off-distribution inputs can be particularly effective; more effective than
even the best possible hard token sequence of the same length.

Note that for all prefix-tuning methods the dimensionality of S is the same as the one-hot token
alphabet (i.e., 2-dimensional for coin-flip tasks), except for ‘SoftPT’ where the prefix embeddings of
dimensionality 128 are tuned. These additional degrees of freedom are the main source of superior
performance in our experiments, and we demonstrate that the advantage largely disappears when
reducing the embedding dimensionality to 4 in Appendix I. Since LLMs typically have a larger input-
than embedding dimensionality, tuning inputs (‘RealPT’) may be as efficient, or even more efficient,
compared to tuning embeddings (‘SoftPT’) for LLMs.

Limitation: prompting to task mixtures. Fig. 3 empirically demonstrates the theoretical shortcom-
ing of prefix-tuning discussed in Section 3: prompt tuning to a mixture of two coins is not possible
if the pretraining distribution is uniform random coins. While Soft Prompting, being the strongest
prefix-tuning method, leads to performance gains compared to the untuned pretrained predictor, it
is not enough to reach ‘TargetBayes’ on the Two-Coin Mixture. As expected, some weight-tuning
methods can lead to that level of performance, at the cost of permanently altering the pretrained
predictor. While soft prefixes are strictly speaking not covered by the Bayesian theory (because they
are off-distribution inputs exploiting the circuitry of the particular pretrained network), these results
highlight the importance of the Bayesian view in practice: in the absence of theoretical understanding
it might have been quite puzzling why one can optimally prefix prompt for a single coin but not a
mixture of two coins. We confirm that the result is not an artifact of limited soft prefix length—see
Fig. A10 for a control experiment with L = 25, and Fig. A12 for results with larger networks.

Comparing prefix- and weight-tuning for untrained networks. Fig. 4 shows that it is possible
to Soft Prompt an untrained Transformer quite well to the Two-Coin Mixture and Random Coins
as target tasks, meaning that relatively complex in-context algorithms are easily available in the
untrained net. There is still a gap to ‘TargetBayes’ performance though. Results in the Appendix
(Figs. A8 and A9) show that Soft Prompting the untrained LSTM has very little effect, indicating
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Figure 3: Models pretrained on sequences from coins with uniform random bias (length Ntrain = 100)
are fine-tuned to the target task of a mixture of two coins (tuning sequence length Ntune = 50). No
prefix-tuning method (with prefixes of length 6) can achieve optimal performance on the target task
(‘TargetBayes’ is optimal). Full weight-tuning, LoRA (on the Transformer) and two of the embedding
tuning variants on the LSTM do reach optimality (even beyond the tuning length of 50 steps). See
Fig. A7 for a visualization of how different prefixes affect models’ internal dynamics. Regret curves
for the LSTM, similar to Top left panel, are shown in Fig. A6.

a fundamental difference between the Transformer and the LSTM in this regard (which behave
very similarly on our experiments when pretrained). See also Zhong and Andreas [2024], who tune
untrained Transformers to algorithmic tasks via embedding- or unembedding-tuning, or both. They
find that, tuning both the embedding and unembedding is important on their tasks. If our results
qualitatively hold at their tasks, then Soft Prompting of untrained networks should be only slightly
worse, and LoRA should perform even better than Un+Embedding tuning. As previously, note that
the superiority of ‘SoftPT’ in our setting is largely explained by having a much higher embedding
dimensionality compared to the input dimensionality (which is typically reverse at LLM scale).
Increasing the soft prefix length to L = 25 does not significantly improve performance, see Fig. A10.

5 Discussion

While we have laid important fundamental groundwork in our current study, extrapolating our
findings to modern frontier model (and data) scale is not straightforward. The theoretical findings we
presented, including the limitations of prefix tuning, hold at any scale, but it is likely that additional
practical issues arise at large scale that are not captured by our current experiments. It is thus hard
to predict the relevance and impact of our fundamental results on today’s frontier-model practice.
For instance, one of our main results is that optimal prompting to a single target task is possible,
whereas it is not for a mixture of tasks. We are confident that this holds even at frontier model scale
(based on the theory), but it is unclear and highly non-trivial what constitutes a task for a LLM,
and accordingly, whether this is a severe limitation or not. In our experiments, a task is simply an
unobserved variable in a two-level hierarchical statistical model. At LLM scale, the structure is vastly
more complex, with many more hierarchical levels, and potentially other statistical structures at play.
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(a) Untrained Transformer tuned to Two-Coin Mixture.
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Figure 4: Untrained Transformer tuned to the Two-Coin mixture (left) and to Random Coins (right);
tuning sequence length Ntune = 50. In both cases, Soft Prompting is the only effective prefix-tuning
method. It nearly reaches Bayes-optimality (‘TargetBayes’, which is a Laplace predictor on Random
Coins). Performance degrades rapidly after the tuning sequence length. Full regret curves (and LSTM
results) in Fig. A8 and Fig. A9. Among the weight-tuning methods, LoRA is very effective.

The next step would be to carefully design data generators that are closer to natural language data,
but still fully understood and well controllable, akin to the data generators used in [Allen-Zhu, 2024],
and run our experiments of tuning to single tasks vs. tuning to mixtures of tasks at scale. With these
caveats in mind, cautiously extrapolating our findings to frontier model scale, raises some questions
for investigation, which we now discuss.

Given our results, soft prefix tuning should be superior to tuning sequences of hard tokens—if a
sufficiently large fine-tuning set is available, soft prompt tuning should beat prompt engineering, and
other methods of hard token optimization such as PromptBreeder [Fernando et al., 2023]4. Similarly,
instead of conditioning on a large set of in-context examples for imitation learning (e.g., Ruoss et al.
[2025], Paglieri et al. [2025]), it may be beneficial to distill these examples into a more effective tuned
soft prefix. The superiority of Soft Prompting over other soft prefix-tuning methods is largely due to
the much higher dimensionality of “embeddings” compared to the input space in our experiments
(see control experiments with embedding dimensionality 4 in Appendix I). This is typically reversed
in frontier models, which could mean that soft input tuning is more effective than embedding tuning.

Finally, our experiments raise the question: why prompt (-tune) at all, when weight-based methods,
such as LoRA, are equally or more effective and do not suffer from the theoretical limitations pointed
out? First, weight-tuning permanently alters a network and would lead to performance decreases
on the pretraining distribution (which can be overcome by storing the set of original weights).
Additionally, comparisons between in-context and in-weight learning at LLM scale find that in-weight
learning can sometimes be very limited and generalize poorly [Lampinen et al., 2025, Chan et al.,
2022b]. Since prompting fundamentally builds on a network’s in-context adaptation mechanisms,
it may be the case that prompt-tuning works better than weight-tuning in cases where in-context
learning generalizes better than in-weight learning. An interesting future research question is whether
tuned (soft) prefixes transfer between different models (perhaps with additional regularization)—if
true, the prefix-tuning cost would only have to be spent once, compared to weight-tuning methods
that need to be run for every network to fine-tune. Please see our discussion of additional related work
in Appendix D, where we discuss a number of previous works that investigate in-context learning
under a Bayesian and/or meta-learning lens, such as Xie et al. [2021], Kirsch et al. [2022], Lampinen
et al. [2024], and Elmoznino et al. [2024].

To conclude, the Bayesian view on prompt tuning, which arises from analyzing memory-based meta-
learning, provides a conceptual understanding that leads to a formal characterization of prompting
and some of its fundamental limitations. We have shown that these limitations hold in practice, for
both hard token prefix-tuning, but also when optimizing soft prefixes—a setting not fully covered by
the theory (which does not consider non-token inputs). The code to reproduce all our experiments
and figures is available at: https://github.com/google-deepmind/thunnini.

4Though some hard-token tuning methods may have the advantage of resulting in more interpretable prompts.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We list our main claims and contributions at the end of the introduction. Each
claim is supported by a later theoretical section or empirical result(s) in the Results section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Minor limitations and issues are discussed throughout, and we have included
an explicit section (titled ‘Limitations and Scope’ at the end of the introduction) to discuss
limitations.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs are either provided in the main text or appendix, and for many of our
theoretical statements they are textbook material or can be found in previous publications.
The main theoretical contributions are to situate these known results in the context of prompt
tuning, and make them more widely accessible in the context of frontier model training and
tuning.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full experimental details in the main paper and appendix. In
addition we release the full source code to reproduce all experiments, analysis, and plots, as
an open-source repository.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code to fully reproduce all experiments, analysis, and plots, is released
open source. To protect anonymity we do not link to the open-source repository in the
submitted version.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The method section and appendix specify necessary details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments use 10 repetitions with different random seed, and we
report median results and 25%, 75% quantiles as “error bars”, along with full results per
repetition, for all our experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The appendix provides this information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is fully compliant with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in a separate section at the beginning of the
appendix.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such data aor models are released as part of this publication.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use third party assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code in an open-source repository that includes all necessary
documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No such experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human studies in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM usage is explicitly stated in a separate section of the appendix. No LLM
was used in authoring or editing this paper and the accompanying codebase.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Societal impact

While LLMs and frontier models have broad and significant societal impacts today, and increasingly
so in the future, our work aims at understanding one of the fundamental conceptual mechanisms w.r.t.
how rapid in-context learners can be steered via prompt optimization. Our analysis is theoretical, our
experiments are educational, and we do not propose novel, more powerful methods. This fundamental
understanding may enable the development of better methods to steer frontier models more precisely
and more data efficiently, which could further boost societal impacts (both positive and negative) and
facilitate abusing or attacking models via prompts as well as defending and hardening against such
attacks with better system prompts. Weighing up these (hypothetical) factors, we firmly believe that
better understanding generally leads to more robust and safe technology.

B LLM usage

There was no LLM use involved in authoring this paper and its experiments. No part of this paper
and the accompanying code was authored or modified by, or inspired through conversations with an
LLM. Smart auto-complete was used when writing code, which is partly powered by a coding model,
but no LLM or coding model was explicitly prompted to (co-)author or edit parts of the codebase.

C Compute usage

The educational experiments presented in the paper were run on a single V100 GPU in under 6 hours.

D Additional Related Work

In-context learning has been studied extensively in the recent literature. In many cases, it specifically
refers to a particular type of supervised few-shot learning. In contrast, Lampinen et al. [2024] (among
others) argue that a whole number of LLM in-context abilities can be unified as in-context learning
in a wider sense: “[...] we suggest that any distribution of sequences in which context non-trivially
decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning.
We suggest that this perspective helps to unify the broad set of in-context abilities that language
models exhibit.”. This is in line with our view on in-context learning, and we argue that the Bayesian
perspective that arises from analyzing memory-based meta-learning provides the unifying theoretical
framework. Lampinen et al. [2024] also discuss memory-based meta-learning as the underlying factor.
We present this connection in more formal detail (see Section 2), and use it to drive the design of our
experiments. Bayesian inference has also been put forward as an explanation for the mechanism that
drives in-context learning in Xie et al. [2021], Müller et al. [2022], Genewein et al. [2023], Binz et al.
[2024], Wang et al. [2023], Panwar et al. [2024].

The theoretical aspect that ties together meta-learning, Bayesian inference, and optimal prompting is
minimization of prediction error (log loss). A dual, and fully equivalent view is maximizing a (lossless)
compression objective. Deletang et al. [2024] discuss this well-known duality [MacKay, 2003] in the
context of language modeling and show that pretrained LLMs are surprisingly good compressors for
image and audio data. This is further expanded by Heurtel-Depeiges et al. [2024], who show that
(medium-sized) pretrained transformers’ in-context learning abilities can lead to lossless compression
on par with general-purpose compression algorithms, such as gZip, across different modalities. For
a great recent theoretical discussion on in-context learning and how it arises from meta-training
and relates to algorithmic compression, see Elmoznino et al. [2024]. Their theoretical discussion is
complementary to ours: shifting to an algorithmic statistical view [Li et al., 2008, Hutter et al., 2024],
as they do, allows to more easily make statements about generalization—in contrast, the classical
statistical view requires distributions, which makes it harder to formally characterize off-distribution
generalization. We have focused on the latter for simplicity and conciseness, but note that Bayesian
inference and in-context learning carry over into algorithmic statistics by considering distributions
over programs [Rathmanner and Hutter, 2011, Hutter et al., 2024]. The algorithmic, and classical
Bayesian view are thus largely equivalent, and a simplicity prior similar to what is discussed in
Elmoznino et al. [2024] also appears as an “automatic” Bayesian Occam’s Razor [MacKay, 2003]
in classical Bayesian inference and non-algorithmic minimum description-length (MDL)—though
in the classical case the simplicity prior is not Kolmogorov complexity. The main point is that a
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Bayesian mixture predictor over a large class of programs is not at odds with our investigation in
this paper. For frontier model scale, such an intuition may be more appropriate, as it would imply
that very complex algorithms can be executed in-context, including sophisticated learning algorithms
(see also Schuurmans [2023], Schuurmans et al. [2024] for a discussion of how LLMs are universal
in principle). This also means that more specific in-context learning algorithms can be identified in
particular settings, without violating the Bayesian view—e.g., explanations of in-context learning
as gradient descent [Von Oswald et al., 2023, Mahankali et al., 2024], linear and ridge-regression
[Akyürek et al., 2023], and learning linear functions [Garg et al., 2022].

We explicitly meta-train on simple tasks for our experiments, which allow for the comparison against
a known tractable Bayesian predictor, similar to Mikulik et al. [2020], Genewein et al. [2023],
Wenliang et al. [2025]. Other works have also used simple synthetic examples to study in-context
learning and develop algorithmic understanding [Akyürek et al., 2023, Garg et al., 2022, Mahankali
et al., 2024, Elmoznino et al., 2024]. Beyond simple examples, explicit meta learning at scale can
give rise to complex adaptive in-context algorithms. For instance, Bauer et al. [2023] meta-train an
agent that adapts in-context at human timescales, in terms of number of interaction episodes, to a vast
number of tasks in a simulated 3D environment. Another notable example is Laskin et al. [2023],
who meta-train an in-context reinforcement learning algorithm (see also Wang et al. [2016]). While
LLMs are not explicitly meta-trained, Chan et al. [2022a] argue that naturalistic data like language
has many of the properties of meta-learning datasets and show that these properties drive in-context
learning.

To adapt (large) pretrained models, many fine-tuning methods, with a number of variations each,
have been proposed in the recent literature. See Han et al. [2024] for a review of parameter-efficient
fine-tuning methods, such as, soft prompting [Lester et al., 2021], prefix prompting [Li and Liang,
2021], or LoRA, Hu et al. [2021]. Whether a method falls under prefix-tuning or weight-tuning may
not always be immediately obvious, since tunable inputs also appear as indirectly tunable parameters
in query and key matrices of transformers. Careful analysis reveals though, that tunable parameters
resulting from prefix-tuning methods are more constrained compared to weight based tuning. Petrov
et al. [2024] perform such an analysis and find: “[...] while techniques like prompting, in-context
learning, soft prompting, and prefix-tuning can effectively elicit skills present in the pretrained model,
they may not be able to learn novel tasks that require new attention patterns.”. This empirical finding
is in line with one of the theoretical negative results for prompting that we point out in Section 3.
The difference between in-context learning (which is the mechanism that prompt tuning exploits)
and in-weight learning has been studied in a series of works [Lampinen et al., 2025, Agarwal et al.,
2024, Chan et al., 2022b] that find that in-context learning can typically generalize more flexibly
than weight-tuning, and that the underlying mechanisms are quite different (e.g., rule-based vs.
exemplar-based generalization), and may result from different neural circuits that compete during
training [Singh et al., 2023, 2025], as well as different underlying properties of the data distribution
[Chan et al., 2025]. Kirsch et al. [2022] study general-purpose in-context learning via meta-learning
and investigate the factors that lead models to generalize (via meta-learned in-context algorithms)
as opposed to memorization. An interesting approach presented in Bornschein et al. [2023] is to
switch from in-context to in-weight learning as soon as the available examples allow it (in terms of
number of samples and statistical properties w.r.t. the pretrained predictor), which is determined via
prequential evaluation.

One large downside of soft prompts may be that hard token sequences are potentially more inter-
pretable. The literature on interpretability and understanding of prompts and prompting techniques
is growing rapidly and surfaces complex problems Patel et al. [2025], Bailey et al. [2023], Petrov
et al. [2024].Particularly Bailey et al. [2023] find that soft prompts are generally hard to intrepret,
also when trying to map them to hard token sequences. Su et al. [2022], Qin et al. [2021], Zheng et al.
[2024] focus on understanding prompts through task sub-spaces and how they enable transfer between
tasks. At least some of the issues may not be specific to soft prompts, as analyzed by Wenliang et al.
[2025], which discusses a number of theoretical and fundamental practical issues with identifying
and interpreting optimal hard-token prefixes, such as a high sensitivity of optimized prompts on the
pretraining and target distribution (including aspects like sequence length and fine-tune set size). They
also find some indication that LSTMs can have more easily interpretable hard prompts compared to
Transformers.
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E Theoretical limits of prompting Bayesian predictors

Even for idealized Bayesian predictors, and hard prefix prompting (i.e., no inputs outside the token
alphabet), the theoretical limits of what can be achieved via prefix prompting are non-trivial. We first
discuss the Bernoulli case, as it is most relevant to our experiments. We then extend the model class
to show two constructions for which optimal prompting is possible—arguably the constructions are
somewhat artificial, and do not relate to current paradigms of pretraining frontier models. We then
ask whether optimal prompting to arbitrary target distributions is possible for a universal Bayesian
predictor, i.e., the Solomonoff mixture [Rathmanner and Hutter, 2011, Grau-Moya et al., 2024]. The
answer is yes, but optimal prompts may need to be very long (and grow in length with increasing
approximation quality). Whether the Solomonoff mixture can be ‘efficiently’ prompted remains an
open problem. Finally we show that on average prompting narrows the task distribution, but atypical
prompts can widen it.

Bernoulli mixtures. Let µθ(x1:n) := θk(1−θ)n−k with kn := x1+ ...+xn and xt ∈ B := {0, 1}
be a Bernoulli(θ) process with prior (density) w(θ) for θ ∈ [0; 1]. Then the posterior is w(θ|x1:n) =

µθ(x1:n)w(θ)/ζw(x1:n), where normalizer = mixture = evidence ζw(x1:n) :=
∫ 1

0
µθ(x1:n)w(θ)dθ.

If w(θ) is a Beta prior (e.g. uniform), then the posterior is also Beta-distributed with variance
Var[w(·|x1:n)] ≤ k(n− k)/n3 ≤ 1/4n → 0 for n → ∞. Hence the posterior of w “converges” to a
δ-peak whatever x1:∞.

More generally, for any prior such that w and sequence x1:∞ for which all limit points of θ̂n := kn/n
are in the support of w, we have Var[w(·|x1:n)] → 0. Note this holds even if kn/n itself does not
converge.

Also, if the prior w(θ) is log-concave (e.g. uniform), the posterior w(θ|x) is also log-concave, and
hence unimodal. In particular, in these cases there is no prefix y such that the predictive distribution
ζw(·|y) is a mixture of two (or more) Bernoullis.

Situations for which the posterior does not collapse are rare and somewhat artificial: for instance if
the prior w(θ) = 1

2δ(θ −
1
3 ) +

1
2δ(θ −

2
3 ), i.e. ζ is a mixture of just two Bernoullis, and k = n/2,

then the posterior is also a mixture over two Bernouellis w(θ|x1:n) = w(θ). Or if the prior has a gap:
w(θ) = 3

2 [[θ ≤ 1
3 ∨ θ ≥ 2

3 ]] and k = n/2, then the posterior will retain the gap and remain bimodal.

In summary: under many priors, including Beta priors, the posterior collapses to a delta (zero
variance) under increasing observations. No prefix can thus lead to a posterior over a mixture of, say,
two coins with different bias. Even if the posterior has not fully collapsed, starting with a log-concave
prior can only lead to a unimodal posterior. Exceptions are technically possible, e.g., when the prior
is already a mixture over two components or has a gap.

Countable mixtures. One can ask whether a larger (countable) class of distributions M = {ν}
always allows for optimal prefix-tuning: Let the mixture ξ(x) :=

∑
ν∈M ν(x)w̃(ν) with some prior

w̃(ν) > 0. Indeed, for suitable M it holds that: for every computable (Bernoulli) prior w there exists
some y ∈ B∗ such that ξ(x|y) = ζw(x) for all x ∈ B∗. That is, one can prompt ξ such that its
predictive distribution becomes any desired Bernoulli mixture. The construction is quite artificial
though: we require that the model class is such that the prefix is interpreted as a program that explicitly
computes the desired target prior. Formally, let νp(x1:n) := [[x<ℓ = p]]ζw(xℓ:n), where p ∈ B∗ is a
prefix program computing prior w() and ℓ− 1 =length(p) (i.e. P := {p : p computes some w} is a
prefix-free set). Let M = {νp : p ∈ P}. Then it is easy to see that ξ(xℓ:n|x<ℓ) = ζw(xℓ:n), where
x<ℓ ∈ P computes prior w.

This class is very artificial, but it shows that prefix-tuning for general Bernoulli mixtures is possible
in principle. No special property of ζw was used, so the above tuning construction works for arbitrary
countable base class B = {ζi}.

Product mixtures. To overcome the need that the prefix is a program that computes the prior,
another construction is possible, where the prompt is a number of increasingly longer sequences
of samples from the target distribution. Let B = {ζ} be a countable class of target distributions
(e.g. Bernoulli mixtures). Let 1 = i0 < i1 < i2 < ... be a sequence of temporal boundaries with
increasing segment lengths δκ := iκ − iκ−1 → ∞ for κ → ∞, e.g. δκ = κ or δκ = 2κ. De-
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fine the product distribution as νζ(x1:n) :=
∏m

κ=1 ζ(xiκ−1:iκ−1) for n = im − 1, and for other n
by marginalization. Let ξ(x) :=

∑
ζ∈B νζ(x)w̃(ζ) be a Bayes mixture with some prior w̃ > 0.

Then by [Hutter, 2005, Sec.3.7.1] or Blackwell and Dubins [1962] for any h < ∞ we have
ξ(xℓ:ℓ+h−1|x<ℓ) → νζ(xℓ:ℓ+h−1|x<ℓ) a.s. if x1:∞ ∼ νζ . If im − h ≥ ℓ = im−1 for some m, then
νζ(xℓ:ℓ+h−1|x<ℓ) = ζ(xℓ:ℓ+h−1). The condition is satisfied for infinitely many ℓ. Hence for any
ζ ∈ B and any h ∈ N there exists a prompt x<ℓ such that ξ(xℓ:ℓ+h−1|x<ℓ) ≈ ζ(xℓ:ℓ+h−1) for all
xℓ:ℓ+h−1 ∈ Bh, and the approximation error can be made arbitrarily small by suitably large ℓ.

Compared to the countable mixture construction from before the constructed class and prompt sam-
pled from a product of the target distribution ζ are more natural. As we will see below, Solomonoff’s
M can also be prompted in this way. The downsides of this construction are that the approximation
ξ(x|y) ≈ ζ(x) is non-uniform in the length of x and longer x require longer prompts y. Additionally,
the required prompt y is typically much larger than program prompt p in the countable mixture
construction above.

Solomonoff mixture. Finally, we ask whether optimal prompting to any target distribution is
always possible for a universal predictor. Let M be Solomonoff’s a priori distribution, and ζ be
some computable distribution, and ik be a computable index sequence. Then νζ is also computable,
hence included in the mixture M (M(·) ≥ c · νζ(·) for some constant c > 0). The same argument
as before implies that M(x|y) ≈ ζ(x) for suitable y. That is, Solomonoff’s M can be prompted
to approximate any other computable distribution. However, this argument suffers from the same
downsides regarding the length of the required prompt.

It is an open problem whether M can be efficiently prompted similarly to the ‘countable mixture’
case with a short prompt p and approximation accuracy uniform in the length of x.

Entropic analysis. In expectation, extra information decreases entropy (H(X|Y ) ≤ H(X)), but
specific information can increase or decrease entropy (H(X|Y = y) ≷ H(X)). In our sequential
context this means that H(·|X<ℓ) ≤ H(·), where · can be Xℓ:∞ or Xℓ:ℓ+h−1 or θ. This means under
some ergodicity assumptions for large ℓ, if x<ℓ ∼ P = ξ, then likely H(·|x<ℓ) ≲ H(·), i.e. typical
prompts narrow the task distribution. In the Beta-Bernoulli case we even have H(θ|x<ℓ) → −∞ if
x1:∞ ∼ ξ whatever the prior w(θ), and the posterior converges to a δ-peak. Conversely if we want
the posterior w(θ|x<ℓ) to be broader (have higher entropy) than the prior w(θ), we need an atypical
prompt x<ℓ. For instance, for a Beta-Bernoulli with prior w(θ) = εδ(θ)+ (1− ε)δ(θ− 1

2 ) and small
ε, the entropy H(θ|x<ℓ) increases with ℓ for small ℓ for the atypical prompt x<ℓ = 0ℓ−1.
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F List of Notation

Symbol Explanation
A Token alphabet (in our case binary one-hot tokens, i.e., |A| = 2)
∆A Probability vector over a token from the alphabet.
x1:N ∈ AN Sequence of tokens from alphabet A of length N .
Ntrain Pretraining sequence length = 100.
Ntune Tuning sequence length = 50.
Neval Evaluation sequence length = 200.
ϵ The empty sequence.
s1:L ∈ SL Prefix of length L.
L Prefix length = 6 (or 25 for control experiments).
S “Alphabet” for prefix. Depends on tuning method.
τ ∈ RM M -dimensional parameter vector of a task.
P (τ) Task distribution.
P Pre(τ) Pretraining task distribution.
P Target(τ) Pretraining task distribution.
P (x1:N |τ) Distribution over sequences induced by task. Function from RM → ∆AN .
ξ(x1:N ) Marginal distribution over sequences =

∫
P (x1:N |τ)P (τ)dτ ,

also: Bayes mixture with prior P (τ),
also: Bayes predictor for task distribution.

ξPre Pretraining sequence distribution / Bayes predictor.
ξTarget Target sequence distribution / Bayes predictor.
πθ (Neural) parametric sequential predictor. Function from : {RD}∗ → ∆A.
Pθ Distribution over tokens induced by (forward passes through) πθ.
D Dimensionality of inputs for neural net. D = |A| = 2 in our case.
θ Parameters of neural sequential predictor.

θ̂ Parameters converged to optimum after pretraining.
θ̃ Parameters after prefix- or weight-tuning to compute regret

= θ̂ if prefix-tuning and net is pretrained optimally,
= at random initialization if prefix-tuning and net is untrained,
= tuned weights if weight-tuning.

ξPre(·|sTarget
1:L ) Bayes predictor for ξPre, prefix tuned to Target distribution.

Lθ(x1:N ) Log-loss for single sequence.
Lθ(x1:N |s1:L) Log-loss for single sequence prefixed by s1:L (loss only over x1:N ).

R
P Target(τ)

θ̃
Cumulative regret of net with parameters θ̃ on target distribution.

K Number of sampled sequences for log loss minimization during tuning.

G Full results

Some of the following results are included in the main paper, for completeness we now show all
results per experiment and network architecture. For all regret curves and bars, thick lines or bars
show the median over 10 fine-tuning repetitions, thin lines show individual repetitions, and shaded
areas or bars show 25%, 75% quantiles as confidence intervals.
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G.1 Petraining on Random Coins, fine-tune to Single Coin

Full details on the regret curves and tuning loss curves are given in Fig. A5, and the impact of tuned
prefixes on the networks’ internal dynamics is shown in Fig. 2. To interpret the latter, see Fig. A7,
which shows that the internal state of models pretrained on Random Coins is highly structured, with
one of the two principal components corresponding to the step n and the other to the heads-to-tails
ratio.
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(a) Regret curves Transformer.
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(b) Regret curves LSTM.
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(c) Cumulative regret details for Transformer.
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(d) Cumulative regret details for LSTM.
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Figure A5: Models pretrained on Random Coins are tuned to a Single Coin. Transformer shown in
the left column, LSTM shown in the right column. Of the prefix-tuning methods, only Soft Prompting
(‘SoftPT’) allows optimal target task performance. Several of the weight-tuning methods succeed.
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G.2 Pretraining on Random Coins, fine-tune to Two-Coin Mixture

Full details on the regret curves and tuning loss curves are given in Fig. A6, and the impact of tuned
prefixes on the networks’ internal dynamics is shown in Fig. A7.
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(a) Regret curves Transformer.
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(b) Regret curves LSTM.
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(c) Cumulative regret details for Transformer.
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(d) Cumulative regret details for LSTM.
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(e) Tuning loss curves for Transformer.
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Figure A6: Models pretrained on Random Coins are tuned to a Two-Coin Mixture. Transformer
shown in the left column, LSTM shown in the right column. No prefix-tuning method allows optimal
target task performance (shown as ‘TargetBayes’). Some of the weight-tuning methods succeed.
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(d) Pretrained LSTM, prefix tuned (center 4 panels) to and evaluated on sequences from target distr.

Figure A7: Top: Internal state (2D PCA projection) of pretrained models is highly structured—one
component tracks the step n and the other component tracks heads-to-tails ratio. Middle and bottom:
Illustration of how different tuned prefixes manipulate the pretrained Transformer’s (middle) and
LSTM’s (bottom) internal state and affect subsequent dynamics. Colored lines are from target
distribution (Two-Coin Mixture), gray lines are from pretraining distribution (uniform random coins),
same setting as in Fig. A6. Red circles mark the end of the prefixes.
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G.3 Untrained network, fine-tuned on Two-Coin Mixture

Full details on the regret curves and tuning loss curves are given in Fig. A8.
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(a) Regret curves Transformer.

0 25 50 75 100 125 150 175 200

0.00
0.05
0.10
0.15
0.20
0.25
0.30

In
st

an
t r

eg
re

t [
na

ts
] Ntune Ntrain Neval

Evaluation on Two-Coin Mixture

0 25 50 75 100 125 150 175 200
Step n

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

re
gr

et
 [n

at
s]

Ntune Ntrain Neval

LSTM_untrained  Two-Coin Mixture

(b) Regret curves LSTM.
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(c) Cumulative regret details for Transformer.
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(d) Cumulative regret details for LSTM.

0 200 400 600 800 1000
Tuning step

26
28
30
32
34
36
38
40

Tu
ni

ng
 lo

ss

Transformer_untrained; untrained  Two-Coin Mixture

Tuning method
SimplexPT
RealPT
SoftPT
LoRAWT
EmbedWT
UnembedWT
Un+EmbedWT

(e) Tuning loss curves for Transformer.
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(f) Tuning loss curves for LSTM.

Figure A8: Untrained models are tuned to a Two-Coin Mixture. Transformer shown in the left
column, LSTM shown in the right column. Soft prompting (‘SoftPT’) a Transformer gets surprisingly
close to optimal performance (shown as ‘TargetBayes’). Though with poor generalization beyond the
tuning sequence length (50 steps). weight-tuning methods perform better, particularly on the LSTM.
Tuning loss curves show that ‘SoftPT’ on the LSTM converges very slowly and may not have fully
converged (though it is unlikely that longer training causes a qualitative difference).
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G.4 Untrained network, fine-tuned on Random Coins

Full details on the regret curves and tuning loss curves are given in Fig. A9.
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(a) Regret curves Transformer.
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(b) Regret curves LSTM.
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(c) Cumulative regret details for Transformer.
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(d) Cumulative regret details for LSTM.
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(e) Tuning loss curves for Transformer.
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(f) Tuning loss curves for LSTM.

Figure A9: Untrained models are tuned to (uniform) Random Coins. Transformer shown in the left
column, LSTM shown in the right column. Soft prompting (‘SoftPT’) a Transformer gets close to
optimal performance (shown as ‘TargetBayes’, which is a Laplace predictor in this case and arguably
a non-trivial predictor). Though with poor generalization beyond the tuning sequence length (50
steps). Weight-tuning methods perform better, particularly on the LSTM.
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H prefix-tuning with prefix length 25

Our main experiments use relatively short prefixes of length L = 6. The main point is to demonstrate
how powerful even very short soft prefixes can be. Additionally, the number of possible hard prefixes
grows exponentially with L, making exhaustive hard token search for long prefixes intractable. To
confirm that our negative result on tuning the pretrained predictor to a Two-Coin Mixture in Fig. 3 is
not an artifact of insufficient prefix length, we repeat the soft prefix-tuning experiments with more
than triple the prefix length of L = 25. Results are shown in Fig. A10. We also show in the same
figure that increasing the soft prefix length for tuning untrained networks has only marginal effect.
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(a) Pretrained Transformer to Two-Coin Mixture.
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(b) Pretrained LSTM to Two-Coin Mixture.
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(c) Untrained Transformer to Two-Coin Mixture.
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(d) Untrained LSTM to Two-Coin Mixture.

Figure A10: prefix-tuning to Two-Coin Mixture with prefix length L = 25 (in contrast to all other
experiments where L = 6). Compare pretrained results with Fig. 3, and untrained results with Fig. 4.
Despite a more than tripling the prefix length, only marginal increases in ‘SoftPF’ performance can
be seen in some cases. It is not enough to reach Byaes-optimality on the target distribution, which
means that our qualitative results hold.
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I Reducing the embedding dimensionality

Results shown in Fig. A11 reveal that the superiority of ‘SoftPT’ over the other soft prefix tuning
methods is largely explained by the much higher dimensionality of the embedding vectors (128-
dimensional in the main experiments; now reduced to 4 dimensions), compared to input vectors
(which are two-dimensional). In frontier models, the input dimensionality is typically higher than the
embedding dimensionality, which could in principle result in soft input prefix tuning methods like
‘RealPT’ outperforming embedding tuning. We leave the question of which prefix tuning method
works best at frontier model scale to the large and active research community. Note that since
the “width” of our Transformers is equal to the embedding dimensionality (except the width of the
MLP layer inside the attention block), the Transformer in our reduced embedding dimensionality
experiments is much smaller compared to the main experiments, whereas the LSTM has the same
size after the embedding layer.
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(a) Pretrained Transformer to Single Coin.
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LSTM: Random Coins  Single Coin
Evaluation on Single Coin

(b) Pretrained LSTM to Single Coin.
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Transformer: Random Coins  Two-Coin Mixture
Evaluation on Two-Coin Mixture

(c) Pretrained Transformer to Two-Coin Mixture.
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(d) Pretrained LSTM to Two-Coin Mixture.

Figure A11: Reducing the embedding dimensionality to 4 (compared to 128 in main experiments)
largely eliminates the superiority of ‘SoftPT’ compared to ‘RealPT’ (and shortens the gap to the other
prefix tuning methods), revealing that the superior performance observed in the main experiments
is largely explained by the many more degrees of freedom when tuning soft embedding prefixes vs.
soft input prefixes. Compare the results shown here (particularly the dark blue ‘SoftPT’ bar) against
Fig. 1 and Fig. 4 in the main paper. Plots show median results over 3 repetitions.
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J Experiments with larger networks

Fig. A12 shows results for increasing the network size. Compared to the main experiments we double
the embedding dimensionality (128 → 256), the width of layers (128 → 256), and the number of
layers (1 → 2). Qualitatively, our main claims hold. Particularly, that prefix tuning can be used to
optimally adapt the pretrained predictor to the Single Coin target distribution, but cannot be used for
perfect adaptation to the Two-Coin Mixture task. Anecdotally, we have observed our main results to
hold robustly, as long as the network size and number of training and tuning steps is large enough.
For too small networks, or networks trained or tuned too little, results become more inconsistent.
From a theoretical perspective, too small networks violate the realizability condition, and networks
with too little training violate the convergence condition.
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(a) Pretrained Transformer to Single Coin.
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(b) Pretrained LSTM to Single Coin.
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(c) Pretrained Transformer to Two-Coin Mixture.
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(d) Pretrained LSTM to Two-Coin Mixture.

Figure A12: Results for larger networks compared to main experiments are qualitatively equivalent,
and show that our main findings are robust against changing model size. Compare the results shown
here (particularly the dark blue ‘SoftPT’ bar) against Fig. 1 and Fig. 4 in the main paper. Plots show
median results over 3 repetitions.
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