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Abstract

Language models have recently been shown capable of performing regression wherein nu-
meric predictions are represented as decoded strings. In this work, we provide theoretical
grounds for this capability and furthermore investigate the utility of causal sequence de-
coding models as numeric regression heads given any feature representation. We find that,
despite being trained in the usual way - for next-token prediction via cross-entropy loss -
decoder-based heads are as performant as standard pointwise heads when benchmarked over
standard regression tasks, while being flexible enough to capture smooth numeric distribu-
tions, such as in the task of density estimation.

1 Introduction

Decoder

111110010011

Regression Problem

Figure 1: Given any feature representation ϕ(x), we
attach a decoding-based head to output predictive dis-
tribution pθ(y|x).

Despite being originally developed for the purpose
of text generation and chat applications, large lan-
guage models (LLMs) have recently been applied
for new applications, particularly one of which is
regression, and more broadly the prediction of nu-
meric outcomes. Vacareanu et al. (2024) have shown
service-based LLMs such as ChatGPT and Gem-
ini capable of regression with performance com-
parable to that of traditional regression methods
such as random forests, while Song et al. (2024)
have shown smaller custom language models can be
trained specifically on multiple regression tasks for
transfer learning.

For an input-output pair (x, y), where x is a fea-
ture vector and y is a real number, a regression
model’s performance is determined by two factors:
how it processes x and how its output “head” rep-
resents p(y|x). While the mentioned works (Vacare-
anu et al., 2024; Song et al., 2024) can be seen as
text-to-text regression where both x and y are repre-
sented as tokens, this combination is not necessarily required. Tang et al. (2024) investigate the isolated case
where LLM embeddings of x are attached to deterministic feed-forward regression heads, while Nguyen et al.
(2024) investigate the case when these embeddings are eventually attached to Gaussian distribution heads.
Both can be seen as particular instances when x is represented as text, while common regression heads are
still used. However, there has not been work investigating the inverse situation, i.e. y is represented as text
or structured tokens. One could do so by using decoding-based regression heads, where for example, tokens
<1><.><2><3> can be decoded to represent 1.23, a technique used in several works training language models
for specific numeric tasks, such as arithmetic (Nogueira et al., 2021), linear algebra (Charton, 2022), and
symbolic regression (d’Ascoli et al., 2022).

In contrast to traditional feed-forward or parametric distribution (e.g. Gaussian) heads, decoding-based
heads may be much more flexible, as they can represent any numeric distribution approximately over R
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without the need for explicit normalization. However, due to their initial lack of inductive bias over nu-
meric distances, numeric token representations and sequential dependencies may need to be learned using
additional training data, and thus it is worth empirically investigating these trade-offs in isolated, controlled
experiments. Our research provides valuable insights on using numbers as an output modality of token-based
autoregressive decoders. Our specific contributions and findings are thus as follows:

• We formalize decoding-based regression, i.e. explicitly define tokenization schemes for numbers, es-
tablish training and inference procedures, discuss methods for pointwise estimation, and theoretically
provide risk guarantees for density estimation under common assumptions.

• In experimental benchmarks, we find that properly tuned decoding-based regression heads are data-
efficient and competitive with regular pointwise heads on tabular regression, yet are also expressive
enough to perform against Gaussian mixture heads for density estimation.

2 Related Work and Motivation

The idea of text-to-text regression is especially relevant as LLMs are currently being fine-tuned as “Generative
Reward Models” (Mahan et al., 2024; Zhang et al., 2024), i.e. end-to-end scoring methods for reinforcement
learning feedback (Ziegler et al., 2019; Bai et al., 2022) or LLM-as-a-Judge (Zheng et al., 2023). Such reward
modeling methods can be simpler than other forms such as Bradley-Terry (Bradley & Terry, 1952) which
requires appending additional prediction heads and custom losses. However, little analysis has been done in
isolation on the theoretical and modeling capabilities of using text, or more generally tokens, to represent
floating point numbers. Understandably, one could argue that regular supervised fine-tuning over numbers
represented as strings is unprincipled, considering that there is no notion of numeric distance when using
cross-entropy loss.

However, we argue that token-based numeric modeling is actually natural, given observed phenomena and
techniques proposed in recent works. Given a post-processed representation ϕ(x) ∈ Rd after x is sent through
a task-specific encoder (MLP, CNN, etc.), we provide an overview of common regression heads pθ(y|x) with
trainable parameters θ, which can be applied on top of ϕ(x) to return numeric outputs (additional techniques
in Appendix C).

Tensor-based Heads: By far, the most commonly used regression head is a learnable deterministic pro-
jection (e.g. linear mappings with weights θ) of ϕ(x) to a scalar, with optional transformations that may be
performed afterwards; e.g. Bradley & Terry (1952) can be seen as appending an additional sigmoid head to
enforce the raw outputs to be within [0, 1]. All such cases require y-values to be in a normalized space, to
allow stability during training. We term these types as pointwise heads.

In the case of probabilistic outputs, one may apply parametric distribution heads such as Gaussians, e.g.
pθ(y|x) = N (µ, σ2) where µ, σ are learned projections over ϕ(x). However, these apply heavy assumptions
on the underlying output distribution, which may not hold true in real world cases. One can extend the
head to be a finite (Bishop, 1994) or even infinite (Rasmussen, 1999) mixture of Gaussians to increase
flexibility. Such mixture techniques can be more broadly seen within the realm of density estimation (Parzen,
1962; Rosenblatt, 1956) in which a complex distribution may be estimated using multiple simpler basis
distributions.

Histogram (Riemann) Distribution Heads: One such basis common in deep learning applications is
the piece-wise constant basis, for learning histograms over a finite support set {y1, . . . , yn} ⊂ R via softmax
parametrization, i.e. pθ(yi|x) = Softmax(i)(ϕ(x)T · θ) where θ ∈ Rn, which has led to strong results in value-
based reinforcement learning (Imani & White, 2018; Bellemare et al., 2017) and tabular data (Hollmann
et al., 2025; Chen et al., 2022). However, a drawback is that learning numeric distances between all of the
bins requires more data as the size of the vocabulary increases. We term these as Riemann heads, following
(Hollmann et al., 2025).

While there have been works on ordinal regression to learn rankings among these bins, such as using rank-
consistency (Cao et al., 2020) and soft labels / metric-awareness (Diaz & Marathe, 2019), we propose a much
simpler way, by simply considering the histogram distribution as a special case of decoding a sequence of
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length 1. By extending the sequence length instead, there can be an exponential reduction in bin count –
e.g. 1000 (=103) bins can be expressed instead using 10 bins and 3 decoding steps. While this intuitive
idea has been studied in extreme classification problems (Wydmuch et al., 2018), it has not been thoroughly
examined for numeric regression, which is the focus of our work.

3 Decoding-Based Regression

3.1 Preliminaries

In a standard regression problem (generalized for probabilistic outputs), we assume there exists some un-
derlying conditional distribution p(y|x) and with y ∈ R, and we additionally assume there already exists an
encoding ϕ(x) specific to the task for learning features, and our focus is to understand the effects of modeling
the output y using a trainable head pθ(y|x), after utilizing training data {(Xi, Yi)}N

i=1.

3.2 Token-Based Representation

We now formalize the representation of floating point numbers as a sequence of tokens. Given a vocabulary
of all possible tokens V, we define a token representation as a mapping from y ∈ R to fixed-length sequence
of tokens (t1, . . . , tK) ∈ VK . Since the token space is finite while R is uncountable, this mapping is lossy (i.e.
not invertible) and introduces a notion of rounding error. We can apply a decoding-based regression head,
represented as auto-regressive prediction model pθ(tk | ϕ(x), t1, . . . , tk−1) from which we may thus obtain an
end-to-end model pθ(y|x) = pθ(t1, . . . , tK | ϕ(x)) =

∏K
k=1 pθ(tk | ϕ(x), t1 . . . tk−1).

Normalized Tokenization: If y is restricted to [0, 1] (via scale normalization for example), then in Section
3.4 we show any smooth density p(y|x) can be approximated with an increasing level of granularity as more
tokens are used in the numeric representation, under some “universality” assumptions on pθ. This can be
seen intuitively with a tree-based construction, i.e. for a base B, the vocabulary contains <0>, <1>, . . . ,
<B − 1>, and y is simply represented by its base-B expansion up to a length K. This setting aligns with
standard data-science practices of also normalizing y-values according to training data or known bounds.

Unnormalized Tokenization: However, there are cases in which we would like to use an unnormalized
tokenization scheme. Such cases include multi-task regression (Song et al., 2024), in which different tasks
may have varying y-scales, or express very wide y-ranges for which appropriately normalizing y-values for
the correct balance between numeric stability and expressiveness would be very tedious.

In this case, we may simply view normalized tokenizations as “mantissas” and then left-append sign and ex-
ponent tokens to form a base-B generalization of the common IEEE-754 floating point representation (IEEE,
2019). Given length parameters E and M , our tokenization is therefore <s><se><e1>. . . <eE><m1>. . . <mM >
where se, e1, e2, . . . , eE are the sign and base-B representation of the exponent and m1, m2, . . . , mM are the
most significant base-B digits of the mantissa. E.g. if (B=10, E=3, M=4), then 10−222 × 1.23456789 will
be represented as <+><-><2><2><2><1><2><3><4>. Signs <s>, <se> can have their own dedicated <->, <+>
tokens or optionally reuse the <0>,<1> tokens from V; this made little difference in results.

Note that the vocabulary can additionally contain “special” tokens for representing outputs not within a
supported numeric range. For example, one can use a token <NaN> to represent non-numbers, commonly
used in cases where x may be an invalid input. We mention such cases for useful downstream applications,
although the scope of this paper assumes y is always within R.

Architecture: Any autoregressive model can be used, so long as it supports constrained token decoding to
enforce proper sequences which represent a valid number. By default, we use a small Transformer (Vaswani
et al., 2017) due to its strong autoregression capabilities, with the initial token embedding as ϕ(x). As we
show in our experiment section, this Transformer size can be made minimal, with negligible contribution to
parameter count in comparison to the encoder.

For large enough base B and sequence lengths (both normalized and unnormalized), practically any y-
value will be within the expressible range and rounding errors will be minimal. However, the trade-off
is that the vocabulary size and sequential dependencies between tokens will also increase, and learning
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better numeric representations may thus require more training data. While it’s possible to first pretrain
these numeric representations as in Hollmann et al. (2025) for the histogram distribution, we show that with
proper hyperparameter tuning, the Transformer decoder can be used out-of-the-box as a randomly initialized
regression head.

3.3 Pointwise Estimation

In many cases, one may only be interested in a scalar quantity of interest M(pθ) of the model’s distribution
(e.g. its mean). If pθ matches the true distribution p perfectly, then for a given pointwise loss ℓ : R2 → R
the goal is then to select M(p) which minimizes Ey∼p(·|x) [ℓ(M(p), y)]. For common error functions such as
L2, L1, L0, it is well known that the optimal values are the mean, median, and mode of p(·|x) respectively,
an observation which Lukasik et al. (2024) also use to improve LLM decoding.

To estimate these M(p), the mode can be approximated using e.g. beam search (Graves, 2012), but efficiently
estimating other common general pointwise representatives M(p) from pure temperature samples is a broad
topic - for example, one can efficiently approximate the true median from the Harrell-Davis estimator (Harrell
& Davis, 1982), and more generally we refer the reader to Lehmann (1983) on statistical point estimators.

Especially for unnormalized tokenization, additional care needs to be taken, since in practice, the model can
have a miniscule but non-zero probability of decoding an arbitrarily large outlier, even if the underlying true
distribution is bounded. Such outliers can easily sway non-robust estimators such as the sample mean, as
observed in Song et al. (2024). This issue fundamentally comes from the fact that some tokens are more
significant than others, prompting the use of alternative tokenizations based on coding theory which are
robust to corruptions, which we show can be effective in our experiment section.

Alternatively, decoding techniques from the LLM literature can also be used, e.g. top-k (Fan et al., 2018)
or top-p (Holtzman et al., 2020), or even simply decreasing the temperature to increase model confidence
and thereby filter out possible outliers. One can also avoid decoding altogether and use recently proposed
RAFT (Lukasik et al., 2025; Chiang et al., 2025) which estimates M(p) using a query-based approach using
a finite fixed evaluation set Y, e.g. for mean, Ey∼pθ

[y] ≈ 1
N

∑
y′∈Y pθ(y′) · y′, although the choice of Y may

be non-trivial to obtain an unbiased estimate, especially over unnormalized tokenizations. This may also
defeat the purpose of using a decoding head, which offers several density estimation benefits, as we discuss
below. Overall, the choice of method for computing pointwise representations we leave as a hyperparameter
to be tuned depending on the application.

3.4 Density Estimation and Theory

During training, to allow the full probabilistic modeling benefits of using a decoding head, we apply the
standard cross-entropy loss over all sequence tokens. For a model pθ and target y = (t1, . . . , tK), the cross-
entropy loss (omitting x to simplify notation) will be:

H(y, pθ) =
K∑

k=1

∑
t̂k∈V

−1(t̂k = tk) log pθ(t̂k|t1, . . . , tk−1)

The expected loss over all y sampled from the true distribution is then Ey∼p [H(y, pθ)].

Given our tree-based tokenization and training loss, we provide formal guarantees for estimating one-
dimensional densities on [0, 1]. Note that densities with finite support can be shifted and rescaled to
have support in [0, 1]. Define λk : [0, 1) → {0, 1}k be the operation that returns the first k bits after
the radix point in the (possibly infinite) binary representation of y. Concretely, if y = 0.b1b2b3b4... then
λk(y) = (b1, . . . , bk). We abuse notation and interpret λk’s output either as a sequence or as the real number
it represents (

∑k
i=1 bi2−i) depending on the context. The analysis is presented using binary (base-2) repre-

sentations (e.g. V = {0, 1}) for simplicity, but it holds for arbitrary bases. First, we provide an assumption
on the learnability of our model and additional definitions:
Definition 1 (K-bit universality). Let H(p, q) = Ey∼p − log q(y) denote the cross-entropy between discrete
distributions p and q. Note that H(p, p) is just the Shannon entropy of p. Call parametric model pθ K-bit
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universal if for all discrete distributions p on K-bit strings (equivalently, 2K categories),

min
θ

H(p, pθ) = H(p, p).

In other words, pθ is K-bit universal if it is flexible enough to fit any discrete distribution on 2K categories.
Definition 2. Define pk

θ as probability of the first k bits under pθ, marginalizing out the remaining bits.
Concretely,

pk
θ((b1, . . . , bk)) =

∑
{bk+1,...,bK}

pθ((b1, . . . , bK)).

Seen another way, pk
θ is the distribution over k-bit strings that results from auto-regressive decoding pθ for

exactly k steps.
Definition 3. Let f : [0, 1]→ R be a density function. With {Y1, . . . , YN} as i.i.d. draws from f , define θ∗

as the maximum likelihood estimator on the truncated sequence of K bits. Concretely,

θ∗(Y1, . . . , YN ) = argmin
θ

1
N

N∑
n=1
− log pθ(λK(Yn)).

Define risk:

R(f, f̂N ) = E
Y1,...,YN ∼f

∫ 1

0

(
f(y)− f̂N (y)

)2
dy.

as the mean integrated squared error between true density f and an estimator f̂N (Y1, . . . , YN ).

We now give our main result below, expressing the distributional fit in terms of bias and variance. The proof
is deferred to Appendix B.
Theorem 1. Assume our decoding-based regression model pθ : {0, 1}K → ∆2K is K-bit universal, and
f be any twice continuously differentiable density function. If the maximum likelihood estimator at k is
fk∗

N (y) = 2kpk
θ∗(Y1,...,YN )(λk(y)) for y ∈ [0, 1], then the risk can be exactly computed:

R
(
f, fk∗

N (y)
)

= 2−2k

12

∫ 1

0
f ′(y)2dy︸ ︷︷ ︸

Bias

+ 2k

N︸︷︷︸
V ariance

+ O(2−4k + 1/N)︸ ︷︷ ︸
Negligible

, ∀k ≤ K.

Note that this theorem is broad, applicable to both Riemann and decoding heads even if they perform
inference at a lower token length k than the maximum length K used during training. For simplicity, let
us assume that the maximal length is always used (i.e. k = K). Intuitively, this implies that one needs a
higher resolution K to capture the curvature of f , but as the number of bins increases, more data points N
are required to learn to separate these 2K bins. In Figure 2, for large N=16384, we show this trend holds
empirically where there is an optimal K≈5 which minimizes the error.

When N is quite small (e.g. 1024) we see that the decoding head significantly deviates from the theoretical
risk (for the better) when the number of bits is large (>9), while the Riemann head still fits it tightly. Recall
that we required a “universality” assumption, which says that our model can learn any discrete distribution
over K-bit strings perfectly. We can decompose this assumption further into two pieces: 1) that there exists
θ∗ in our model class that achieves the minimum cross-entropy (i.e. pθ∗ = p in Definition 1), and 2) that
our SGD-based training procedure is able to find it. An explanation for this phenomenon is that in this
regime (low sample size and large number of bits, or equivalently, a large number of bins), the risk profile of
the classical Riemann estimator is dominated by the variance term. Few samples land in each bin and as a
result the histogram-based density estimate for the bins is noisy.

It is conceivable that a combination of the inductive bias of our model class and the implicit bias of our
SGD training procedure makes the decoder less likely to fit noise; a concrete example would be that the
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Figure 2: Lower (↓) is better. Risk (theoretical and empirical) when varying K and N to fit a truncated
N[0,1](0.5, 0.252) distribution using binary tokenization. Results averaged across 10 runs each.

model is biased to learn smooth distributions, and so when asked to fit the highly discontinuous empirical
distribution arising from dropping few samples into a large number of bins, it refuses to, instead opting to
learn a smooth approximation, and thereby driving down the variance term and hence the overall risk. This
suggests the decoder head possesses implicit regularization properties which make it much more efficient
with low training data.

Taking a closer look at the decoding mechanism, a crucial observation is that λk essentially discretizes the
unit interval (and hence f as well) into bins {Bj}2k−1

j=0 , where Bj = [j2−k, (j + 1)2−k) so that P(x ∈ Bj) =∫
Bj

f(y)dy. We can identify k-bit sequence y = 0.b1 . . . bk with the interval [y, y + 2−k]. With a single
bit (K = 1) we learn a histogram estimator on two bins [0, 1/2) and [1/2, 1) representing 0 and 1. With
two bits we refine our prediction using four bins: [0, 1/4), [1/4, 1/2), [1/2, 3/4), and [3/4, 1) representing
(0, 0), (0, 1), (1, 0), (1, 1) respectively (because, for example (0, 1) means 0.012 = 1/4).

...

0 1 0 1

Figure 3: Visualization of fitting a truncated Gaussian distribution. Each level k of the binary tree represents the
empirical fit using k bits, and each bin gets subdivided into two.

We can interpret binary representations in terms of binary trees on 2K leaf nodes where nodes represent
intervals (the root representing [0, 1)) and left and right children represent the left and right halves of
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the node’s interval. Reading off bits tells us how to traverse this tree, where 0 and 1 mean traverse the
left and right subtrees respectively. For example, to arrive at (0, 1, 1) = 0.0112 = 3/8 our traversal is:
[0, 1)→ [0, 1/2)→ [1/4, 1/2)→ [3/8, 1/2).

When trained on K-bit sequences, our decoding head pθ simultaneously learns K histogram estimators for
f ; 2kpk

θ(λk(y)) is the k-th histogram estimator (over 2k bins). In other words, as we decode bits one-by-one
auto-regressively, we are iteratively refining our prediction. Figure 3 shows this mechanism in detail in the
case of fitting a truncated Gaussian distribution.

There are alternatives to binary representations, for example p-adic expansions, or even the Stern–Brocot
tree which uses the mediant to determine the child-parent relationship. An interesting research question
left for future work is whether these more exotic representations of real numbers are better suited for our
sequence-based regression model than the standard representations.

4 Experiments

Our main goals for experiments are to:

• Demonstrate decoder heads can be effective swap-in replacements to common pointwise regression
heads.

• Establish the density estimation capabilities of the decoding-based head over any distribution over
R.

• Ablate the effect of decoding head size and sequence-specific methods such as error correction on
performance.

To maintain fairness, all neural network methods have access to the same encoder ϕ(x), which is a large
multi-layer perceptron (MLP) with ReLU activations, with hyperparameter sweeps over number of layers
(up to 5) and hidden unit sizes (up to 2048). Furthermore, the decoder head uses only 1 layer and 32 units,
making up for less than 10% of the total network parameter count, which minimizes its contribution to
representation learning as a confounding factor.

Furthermore, for distributional baseline heads (e.g. decoder, Riemann), we sweep their specific settings (e.g.
number of bins / tokenization) over reasonable values - additional details are found in Appendix D. For the
vast majority of tabular regression problems, we found that the process of training and tuning only requires
at most 20 minutes on a single Nvidia P100 GPU, making the decoder head relatively cheap to use. For
comparisons, we use relative mean squared error within individual tasks and scale-invariant Kendall-Tau
correlation for aggregate comparisons.

4.1 Curve Fitting

Input Dimension
Regression Head 5 10 15 20

Unnormalized Decoder 89 88 87 86
Normalized Decoder 89 88 86 86

Pointwise 89 88 88 86
Riemann 88 88 87 86

Table 1: Higher (↑) is better. Mean Kendall-Tau corre-
lations over BBOB functions with (≈100K) training data.
Individual function results can be see in Appendix A.2.

We begin by visually demonstrating the fundamen-
tal representation power of tokenization. In Figure
4, the unnormalized decoder head is able to success-
fully capture the shapes of various functions with
which the pointwise head struggles, even with un-
bounded training data. The issue with using the
pointwise head stems from two main factors: (1)
requiring y-normalization, which leads to numeric
instabilities especially with functions with very high
or unbounded y-ranges, and (2) struggling to model
abrupt or high rates of change (i.e. large Lipschitz
constants). In contrast, the unnormalized decoder
head does not encounter these issues due to its ability to express a very high range of y-values.

In Table 1, as a sanity check over higher-dimensional functions, synthetic continuous objectives from the
Black-box Optimization Benchmarking (BBOB) suite (Elhara et al., 2019) can also be sufficiently fitted by
both the unnormalized and normalized decoder heads just as well as the pointwise and Riemann heads.
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y

Figure 4: Visual fit to ground truth is better. Curve fitting plots for various 1D functions. Both models are trained
over 100K (x, y) points, where x is uniformly sampled from a bounded range. Note that these results occur regardless
of xy-scales, which are omitted for brevity.

4.2 Real-World Regression

In Figure 5, over real-world OpenML (Vanschoren et al., 2013) regression tasks from OpenML-CTR23
(Fischer et al., 2023) and AMLB (Gijsbers et al., 2024), we show that using the unnormalized decoder head
is competitive to using a regular pointwise head given the same amount of training data. In fact, we see
that in the majority of tasks, the decoder outperforms the pointwise head, and in a few cases, the gap can
be quite significant (>0.3).
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Figure 5: Higher (↑) is better. Kendall-Tau regression scores over AMLB and OpenML-CTR23 tasks using up to
10K maximum training points. Each bar averaged over 10 runs and bars from the same task (but different regressors)
are stacked on top of each other and sorted by gap performance gap.

In Figure 6, we compare the use of a normalized decoding head, Riemann histogram head, and a pointwise
head, when varying the amount of training data. We first observe the data inefficiency of using the histogram
head on selected regression tasks - in certain cases, the histogram head plateaus, unable to even achieve the
performance of the decoder head, regardless of the amount of training data.

Furthermore, interesting observations can be made when comparing against the standard pointwise head as
a baseline. In high data regimes (≈104 data points), there are cases in which it also plateaus earlier than
the decoding head. In low data regimes (≈101 data points), one would expect the decoding head to struggle
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Figure 6: Lower (↓) is better. Relative mean squared error (MSE) over selected AMLB tasks. Each method used a
min-max linear scaling normalization on y-values.

more as it needs to learn numeric token representations, but as it turns out, the pointwise head can perform
worse due to numeric instabilities of its own. Due to undertraining, the pointwise head required appending
a sigmoid activation to enforce the normalized output to be within [0,1] to avoid extremely high MSE errors.

4.3 Density Estimation

In Figure 7, we further see the decoding head’s ability to perform density estimation over various shapes.
Given unbounded training data it is able to capture the overall distribution p(y|x) well, although there can
be slight outlier noise as shown by lighter points. In Appendix A.5 we show that even baseline heads such as
Mixture Density Networks (MDNs) (Bishop, 1994) and Riemann distributions also suffer from noisy outputs.
While one can enforce the sampling to be tighter (e.g. lowering temperature) to remove noise, this tighter
sampling can unfortunately also reduce expressivity. In general, we find that vanilla temperature sampling
with temperature ≈1.0 is the best way to match p(y|x).

Half Moons Zig-Zag Spiral Hollow Square

x

y

Sample Ground Truth

Figure 7: Fit to ground truth is better. Density estimation visualization over various shapes using an unnormalized
decoder head with vanilla temperature sampling. Note that these results occur regardless of xy-scales, which are
omitted for brevity.
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In Table 2, we display the negative log-likelihood (NLL) on a collection of representative real-world datasets
from the UCI regression repository (Dua & Graff, 2017) (full results over 25 datasets in Appendix A.4). We
see that MDN head performance has high variability, at times able to perform the best but also extremely
poorly depending on the task. Meanwhile both decoding heads remain reliable overall (NLL<0.7 always).
In comparison, the Riemann head consistently underperforms in every task.

Dataset MDN UD ND R
Airfoil 0.12 ± 0.11 0.40 ± 0.01 0.34 ± 0.01 1.33 ± 0.14
Bike 4.59 ± 0.86 0.12 ± 0.00 0.10 ± 0.01 0.36 ± 0.05
Elevators 0.30 ± 0.43 0.15 ± 0.00 0.13 ± 0.00 1.12 ± 0.02
Gas 0.68 ± 0.25 0.02 ± 0.01 0.02 ± 0.00 0.20 ± 0.09
Housing 0.22 ± 0.13 0.41 ± 0.03 0.38 ± 0.03 1.56 ± 0.21
Kin 40K 7.49 ± 0.73 0.19 ± 0.01 0.12 ± 0.01 0.39 ± 0.03
Pol 1.49 ± 0.41 0.01 ± 0.00 0.01 ± 0.00 0.18 ± 0.02
Protein 1.07 ± 0.44 0.34 ± 0.00 0.41 ± 0.01 1.55 ± 0.04
Pumadyn32nm 0.69 ± 1.26 0.55 ± 0.00 0.58 ± 0.02 2.32 ± 0.03
Wine 0.05 ± 0.12 0.24 ± 0.01 0.21 ± 0.01 1.67 ± 0.14
Yacht 0.21 ± 0.10 0.39 ± 0.02 0.23 ± 0.05 1.29 ± 0.38

Table 2: Lower (↓) is better. Avg. NLL (± StdDev) of test examples on UCI datasets over 10 train-test splits.
Abbreviations: (UD, ND) = (unnormalized, normalized) decoder heads respectively; R = Riemann.

4.4 Ablation: Role of Decoding Head Size

We ablate the effect of the decoding head’s size on performance. We first fix the tokenization for the
normalized decoding head (B=10, K=4) and then sweep the number of layers, heads, and hidden units.
In Figure 8, we observe that larger decoding heads do sometimes help, but only up to a certain point, at
which overfitting can occur. This was also observed over regression over BBOB functions and with the
unnormalized decoding head, but we omitted these results for brevity.
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Figure 8: Lower (↓) is better. NLL over UCI datasets, when varying different axis (layers, heads, units) from a fixed
default of (3, 4, 128) respectively.
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4.5 Ablation: Error Correction

One can also improve regression behavior using techniques purely by modifying sequence representations.
Inspired by the field of coding theory, we can use error correction, where we may simply have the decoding
head repeat its output multiple times (t1, . . . , tK , t′

1, . . . , t′
K , t′′

1 , . . . , t′′
K , . . .) during training, and at inference

perform majority voting on each location k ∈ {1, . . . , K}.
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Figure 9: Lower (↓) is better. Relative MSE over selected AMLB tasks, when varying output repetitions.

In Figure 9, we focus on the unnormalized case when using mean aggregation, where performance can be
significantly harmed from extreme outliers. We see that when using regular tokenization (repeat count=1),
as more samples are drawn, the likelihood of drawing outliers increases the error. However, the error can
be substantially decreased by training the decoding head to decode the same tokens repeatedly and allow
better scaling with samples, although repeating too many times may make learning more difficult. Not all
error correction techniques improve results however - in Appendix A.3, we briefly observe negative results
applying other types of error correction, and we leave exploring the space of such methods for future work.

5 Impact Statement

This work establishes the validity of training using decoding heads on cross-entropy losses for regression.
Regression is a broad method for many areas of machine learning and science, and there are multiple potential
societal consequences for its application, none of which we feel must be specifically highlighted here.

6 Conclusion and Future Work

Throughout this paper, we thoroughly investigated the many benefits but also drawbacks of using decoding-
based regression. We described a natural tokenization scheme for both normalized and unnormalized y-
values, and theoretically established its risk minimization properties. Empirically, we showed that it can be
competitive as, or even outperform traditional pointwise heads for regression tasks. Furthermore, it is also
capable of density estimation over a variety of conditional distributions p(y|x), and can further outperform
common baseline heads such as Gaussian mixtures and Riemann distributions.

Numerous ways to extend decoding-based regression include improved tokenization schemes or other basis
distributions besides piecewise constants. Further applications exist in other domains such as computer
vision, where the encoder may be a convolutional network, or for multi-target regression, where the regressor
needs to predict multiple different y-value targets. More broadly however, we hope this will also be a valuable
reference for the language modeling community and that it provides a principled explanation for the use of
supervised fine-tuning over numeric targets.
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Appendix

A Additional Experiments

A.1 Data Scaling: Extended

For completeness, we display the plots over all tasks in AMLB (Gijsbers et al., 2024). We confirm the
data-efficiency of the decoder head against the Riemann distribution head on nearly every regression task.
Furthermore, we observe numerous cases where both distributional methods outperform the pointwise head,
especially in low data regimes.
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Figure 10: Lower (↓) is better. Regression performance as a function of training data scaling between using
the normalized decoder vs. Reimannian distribution as regression heads. Each point was averaged over 10
training runs over random combinations of datapoints from the original AMLB task’s training set.
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A.2 BBOB Curve Fitting: Extended

In Figure 11, we compare the curve fitting properties of multiple regression heads. We see overall that the
decoder head is competitive and has both pros and cons for specific function landscapes from the BBOB
benchmark.
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Figure 11: Higher (↑) is better. Extended results from Table 1 in the main body. Regression performance as
a function of input dimension over BBOB functions using Kendall-Tau correlation. Each point was averaged
over 10 training runs, each with 100K training points (x, y) where each x is sampled uniformly from [−5, 5]
coordinate-wise. Note: Some functions such as RosenbrockRotated or GriewankRosenbrock are undefined
when dimension is 1, so we skip those points.
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A.3 Alternative Tokenization Schemes: Hamming-Distance

One possible criticism of the default tree-based tokenization in the normalized decoding case, is the vul-
nerability to small changes in the left-most significant tokens, which can cause large numeric changes in
the actual number. Qin (2018) notes this and proposes an alternative “Hamming Distance-based” binary
representation which is robust to bitwise edits, and upper bounds the possible distortion |y′−y| as a function
of the edit distance between the Hamming representations of y′ and y. For example, if the binary length
is 3, the representation for all integers {0, 1, . . . , 23} is {(000), (001), (010), (100), (011), (101), (110), (111)}
which can also be used in the normalized case for {0/23, 1/23, . . . , 7/23} ⊂ [0, 1]. In Figure 12, we show
however, such a representation may not lead to better regression results, which we hypothesize is due to this
representation being more difficult to learn.
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Figure 12: Lower (↓) is better. Regression performance while vary sampling size from y ∼ pθ(·|x) using
binary tree-based tokenization vs. Hamming representation on normalized decoder with mean aggregation.
Each point was averaged over 10 training runs over random size-1000 combinations of the original AMLB
task’s training data points.
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A.4 Full UCI Density Estimation Results

We obtained the datasets from https://github.com/treforevans/uci_datasets which preprocessed and
scraped the data from the official UCI website at https://archive.ics.uci.edu/.

Dataset Mixture Density Network Unnormalized Decoder Normalized Decoder Riemann
Airfoil 0.12 ± 0.11 0.40 ± 0.01 0.34 ± 0.01 1.33 ± 0.14
AutoMPG 0.21 ± 0.07 0.32 ± 0.03 0.41 ± 0.05 1.62 ± 0.17
Autos 0.32 ± 0.23 0.48 ± 0.05 0.47 ± 0.07 2.60 ± 0.76
Bike 4.59 ± 0.86 0.12 ± 0.00 0.10 ± 0.01 0.36 ± 0.05
BreastCancer 0.32 ± 0.09 0.48 ± 0.05 0.64 ± 0.03 2.85 ± 0.37
Challenger -0.29 ± 0.66 0.14 ± 0.14 0.06 ± 0.08 0.87 ± 0.77
Concrete 0.15 ± 0.05 0.43 ± 0.03 0.41 ± 0.04 1.67 ± 0.20
Elevators 0.30 ± 0.43 0.15 ± 0.00 0.13 ± 0.00 1.12 ± 0.02
Energy 0.40 ± 0.14 0.17 ± 0.03 0.16 ± 0.05 0.38 ± 0.20
Fertility -0.06 ± 0.16 0.31 ± 0.09 0.46 ± 0.13 2.41 ± 0.61
Gas 0.68 ± 0.25 0.02 ± 0.01 0.02 ± 0.00 0.20 ± 0.09
Housing 0.22 ± 0.13 0.41 ± 0.03 0.38 ± 0.03 1.56 ± 0.21
KeggDirected 2.41 ± 1.10 0.05 ± 0.00 0.05 ± 0.00 0.22 ± 0.02
Kin 40K 7.49 ± 0.73 0.19 ± 0.01 0.12 ± 0.01 0.39 ± 0.03
Parkinsons 0.59 ± 0.18 0.40 ± 0.02 0.39 ± 0.03 1.40 ± 0.33
Pol 1.49 ± 0.41 0.01 ± 0.00 0.01 ± 0.00 0.18 ± 0.02
Protein 1.07 ± 0.44 0.34 ± 0.00 0.41 ± 0.01 1.55 ± 0.04
Pumadyn32nm 0.69 ± 1.26 0.55 ± 0.00 0.58 ± 0.02 2.32 ± 0.03
Slice 7.09 ± 0.09 0.05 ± 0.00 0.02 ± 0.00 0.08 ± 0.02
SML 1.31 ± 0.59 0.21 ± 0.01 0.11 ± 0.01 0.35 ± 0.03
Solar -1.40 ± 0.29 0.04 ± 0.01 0.04 ± 0.01 0.61 ± 0.12
Stock -0.15 ± 0.15 0.27 ± 0.04 0.32 ± 0.04 1.63 ± 0.46
TamiElectric 0.01 ± 0.00 0.46 ± 0.00 0.69 ± 0.00 2.70 ± 0.00
Wine 0.05 ± 0.12 0.24 ± 0.01 0.21 ± 0.01 1.67 ± 0.14
Yacht 0.21 ± 0.10 0.39 ± 0.02 0.23 ± 0.05 1.29 ± 0.38

Table 3: Lower (↓) is better. Avg. NLL (± StdDev) of test examples on UCI datasets over 10 train-test
splits.
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A.5 Density Estimation Visualization: Extended

In Figure 13, we present further results on density estimation with various decoder sampling techniques (top-
k, top-p, low temperature) alongside MDN and Riemann baselines. We see that using vanilla temperature
sampling for the decoder is optimal and unbiased for capturing the shapes of all problems.
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Figure 13: Visualizing density estimation of p(y|x) on 1D problems. We used an unnormalized decoder with
(B = 10, E = 1, M = 5). Note that these results occur regardless of xy-scales, which are omitted for brevity.
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B Extended Theory

Proof of Theorem 1. Firstly, we observe that

argmin
θ

1
N

N∑
n=1
− log pθ(λK(Yn)) = argmin

θ
H(f̃K

N , pθ),

where f̃k
N is a discrete distribution that tracks the fraction of samples {Yn}N

n=1 that fall within each of the
2k uniformly-spaced bins in [0, 1]. Formally,

f̃k
N ((b1, . . . , bk)) = 1

N

N∑
n=1

1(λk(Yn) = (b1, . . . , bk)).

Conditioned on the samples {Yn}N
n=1, f̃k

N is a distribution on k-bit strings, and so by the K-bit universality
assumption, pK

θ∗ = f̃K
N . It follows that pk

θ∗ = f̃k
N ∀k ≤ K since if two discrete distributions are equal so are

any of their marginals. Then fk∗
N (x) ≡ 2kpk

θ∗(λk(x)) = 2kf̃k
N (λk(x)) lines up exactly as a 2k-bin histogram

estimator for f , for all k ≤ K.

Now, we can treat the problem as one of histogram estimation. Let’s consider a fixed k. We first observe
that the risk can be written as the sum of a squared bias term and a variance one. Specifically,

R(f, fk∗
N ) =

∫ 1

0
Bias(y)2dy +

∫ 1

0
Variance(y)dy,

where Bias(y) = E[fk∗
N (y)]− f(y) and Variance(y) = V(fk∗

N (y)) is the bias and variance of fk∗
N (y) at fixed y

respectively.

Now, label bins {Bj}2k−1
j=0 , where Bj = [jε, (j + 1)ε) and ε = 2−k is the bin width. Let pj =

∫
Bj

f(z)dz be
the true probability mass in bin Bj . With Nj as the number of samples in Bj , the expected value of the
estimator for y ∈ Bj is E[fk∗

N (y)] = E[Nj/(Nε)] = (Npj)/(Nε) = pj/ε.

Assume the true density f is twice continuously differentiable on [0, 1] (i.e., f ∈ C2([0, 1])). This implies f ,
f ′, and f ′′ are bounded on [0, 1]. Let M1 = supy∈[0,1] |f ′(y)| and M2 = supy∈[0,1] |f ′′(y)|.

Bias Analysis: Let yj = (j + 1/2)ε be the midpoint of bin Bj . For z ∈ Bj , by Taylor’s Theorem around
yj : f(z) = f(yj) + (z − yj)f ′(yj) + (z−yj)2

2 f ′′(ξz) for some ξz between z and yj . Integrating over Bj :

pj =
∫

Bj

f(z)dz =
∫

Bj

[
f(yj) + (z − yj)f ′(yj) + (z − yj)2

2 f ′′(ξz)
]

dz

= f(yj)
∫

Bj

dz + f ′(yj)
∫

Bj

(z − yj)dz +
∫

Bj

(z − yj)2

2 f ′′(ξz)dz

= εf(yj) + 0 + Rj ,

where the remainder term Rj =
∫

Bj

(z−yj)2

2 f ′′(ξz)dz. Since |z − yj | ≤ ε/2 and |f ′′(ξz)| ≤ M2, we have
|Rj | ≤

∫
Bj

(ε/2)2

2 M2dz = M2ε2

8
∫

Bj
dz = M2ε3

8 . Thus, Rj = O(ε3).

The bias for y ∈ Bj is Bias(y) = E[fk∗
N (y)] − f(y) = pj

ε − f(y) = εf(yj)+Rj

ε − f(y) = f(yj) + Rj

ε − f(y).
Expanding f(y) around yj : f(y) = f(yj) + (y − yj)f ′(yj) + (y−yj)2

2 f ′′(ηy) for ηy between y and yj .

Bias(y) = f(yj) +O(ε2)−
[
f(yj) + (y − yj)f ′(yj) +O(ε2)

]
= −(y − yj)f ′(yj) +O(ε2).
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Now, integrate the squared bias over bin Bj :

∫
Bj

Bias(y)2dy =
∫

Bj

[
−(y − yj)f ′(yj) +O(ε2)

]2
dy

=
∫

Bj

[
(y − yj)2(f ′(yj))2 − 2(y − yj)f ′(yj)O(ε2) +O(ε4)

]
dy

= (f ′(yj))2
∫

Bj

(y − yj)2dy −O(ε2)f ′(yj)
∫

Bj

(y − yj)dy +
∫

Bj

O(ε4)dy

= (f ′(yj))2
∫ ε/2

−ε/2
u2du−O(ε2)f ′(yj) · 0 +O(ε4) · ε (let u = y − yj)

= (f ′(yj))2
[

u3

3

]ε/2

−ε/2
+O(ε5)

= (f ′(yj))2 ε3

12 +O(ε5).

Summing over all bins:

∫ 1

0
Bias(y)2dy =

2k−1∑
j=0

∫
Bj

Bias(y)2dy =
2k−1∑
j=0

[
(f ′(yj))2 ε3

12 +O(ε5)
]

= ε2

12

2k−1∑
j=0

(f ′(yj))2ε +
2k−1∑
j=0
O(ε5)

= ε2

12

(∫ 1

0
(f ′(y))2dy +O(ε2)

)
+ 2kO(ε5)

= ε2

12

∫ 1

0
(f ′(y))2dy +O(ε4),

where the third line uses a known approximation error for the Riemann sum with midpoint rule applied to
(f ′)2 ∈ C1.

Variance Analysis: The variance for y ∈ Bj is Variance(y) = V(fk∗
N (y)) = V(Nj/(Nε)) = 1

(Nε)2 V(Nj).
Since Nj ∼ Binomial(N, pj), V(Nj) = Npj(1− pj).

Variance(y) = Npj(1− pj)
N2ε2 = pj(1− pj)

Nε2

= (εf(yj) +O(ε3))(1− εf(yj)−O(ε3))
Nε2

= εf(yj)− ε2f(yj)2 +O(ε3)
Nε2

= f(yj)
Nε

− f(yj)2

N
+O(ε/N).
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Integrating the variance:

∫ 1

0
Variance(y)dy =

2k−1∑
j=0

∫
Bj

(
f(yj)
Nε

+O(1/N)
)

dy

=
2k−1∑
j=0

(
f(yj)ε

Nε
+O(ε/N)

)

= 1
Nε

2k−1∑
j=0

f(yj)ε + 2kO(ε/N)

= 1
Nε

(∫ 1

0
f(y)dy +O(ε2)

)
+O(1/N) (Riemann sum error for f ∈ C2)

= 1
Nε

(1 +O(ε2)) +O(1/N)

= 1
Nε

+O(ε/N) +O(1/N).

Since we typically consider asymptotics where N →∞ and ε→ 0 such that Nε→∞, the dominant variance
term is 1/(Nε).

Total Risk: Combining the integrated squared bias and integrated variance:

R(f, fk∗
N ) =

∫ 1

0
Bias(y)2dy +

∫ 1

0
Variance(y)dy

=
(

ε2

12

∫ 1

0
(f ′(y))2dy +O(ε4)

)
+

(
1

Nε
+O(ε/N) +O(1/N)

)
= ε2

12

∫ 1

0
(f ′(y))2dy + 1

Nε
+O(ε4) +O(1/N). (assuming ε/N is smaller than 1/N)

Substituting ε = 2−k:

R(f, fk∗
N ) = 2−2k

12

∫ 1

0
(f ′(y))2dy + 2k

N
+O(2−4k + 1/N).

This gives the asymptotic risk. The O(2−4k + 1/N) term is negligible, and can be disregarded.
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C Additional Related Work

Here, we provide additional methods for learning conditional distributions over R and their pros and cons
compared to our proposed decoding-based method. While it may be interesting to more broadly benchmark
these methods in the future, our main focus in this paper however, is to provide the technical layout for
decoding-based regession and its general implications to language model training over numeric data as
a whole. Furthermore, many of the methods below significantly increase the complexity and number of
possible confounding factors, as they also modify the encoder. We emphasize the relative simplicity of our
method which only requires changing the regression head and not the entire network body.

One general paradigm has been via stochastic networks, in which stochastic activations or weights are used to
simulate multiple possible models. Very early works such as Sigmoid Belief Nets (Neal, 1992) later modified
for learning conditional distributions (Tang & Salakhutdinov, 2013) were introduced but have not seen wide
adoption due to their complex architectural modifications and expectation-maximization updates during
training.

Bayesian neural networks (Lampinen & Vehtari, 2001; Titterington, 2004; Goan & Fookes, 2020) can be seen
as more modern versions of the stochastic network approach, using additional techniques for architecture
creation (e.g. graphical models) and Bayesian inference (Markov Chain Monte Carlo or variational inference).
Similarly, Energy-based models (Teh et al., 2003) have been applied to regression (Gustafsson et al., 2020;
Liu et al., 2022) where p(y|x) ∝ exp(E(x, y)) has been shown to work even for convolutional representations
ϕ(x) over images, but has still seen limited use due their complex use of MCMC required at inference time.
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D Exact Experimental Details

For all models, we sweeped the encoder (basic MLP with ReLU activation) by varying the number of layers
within [2,3,4,5] and hidden units within [256, 512, 2048].

For x-normalization, we apply a mean and std scaling, i.e. x ← (x − xmean)/xstd where xmean, xstd are
coordinate-wise mean and standard deviations over all x’s in the training set. The preprocessed tensor is
then fed directly into the encoder.

For y-normalization, we apply min/max linear scaling, i.e. y ← (y−ymin)/(ymax−ymin) where ymin, ymax are
computed from the training set. This is applicable to models representing [0, 1] output range (i.e. Riemann
and Normalized Decoder). For Pointwise and Mixture Density heads, we further apply a shift y ← y − 0.5
to center the values within [−0.5, 0.5].

All models were trained with a maximum of 300 epochs. To prevent overfitting, we apply early stopping
(patience=5) where the validation split is 0.1 on the training set. Adam learning rates were sweeped over
[1e-4, 5e-4].

We further describe hyperparameters and sweeps for individual heads below:

Pointwise: Uses ReLU activations on every hidden layer.

• Weight decay: [0.0, 0.1, 1.0]

Unnormalized Decoder: Uses vanilla temperature sampling.

• Base B: [4, 8, 10]
• Exponent Digit Count E: [1, 2, 4]
• Mantissa Digit Count M : [2, 4, 8]
• Transformer size: (3 layers, 128 units, 4 heads) or (1 layer, 32 units, 1 head).

Normalized Decoder: Sampling same as unnormalized decoder.

• Base B: [2, 4, 8]
• Length K: [4, 8, 6]
• Transformer size: Same as unnormalized decoder.

Riemann/Histogram Distribution: We specify a bin count, which uniformly partitions the range [0, 1]
into equally spaced bins. Output is parameterized using softmax.

• Bin Count: [16, 64, 256, 1024, 4096, 16384]

Mixture Density Network: Given a mixture count M , the distribution head consists of mixture πM ∈
△M , mean µM ∈ RM , and standard deviation σM ∈ RM . Mixtures were parameterized using softmax, while
standard deviations were via ELU(x) + 1 activation to enforce positivity.

• Mixtures M : [1, 2, 5, 10, 20, 50, 1000]
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