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Abstract

Scenario-based testing is essential for validating the performance of autonomous
driving (AD) systems. However, such testing is limited by the scarcity of long-
tailed, safety-critical scenarios in existing datasets collected in the real world. To
tackle the data issue, we propose the Adv-BMT framework, which augments real-
world scenarios with diverse and realistic adversarial traffic interactions. The core
component of Adv-BMT is a bidirectional motion transformer (BMT) model to
perform inverse traffic motion predictions, which takes agent information in the
last time step of the scenario as input, and reconstruct the traffic in the inverse of
chronological order until the initial time step. The Adv-BMT framework is a two-
staged pipeline: it first conducts adversarial initializations and then inverse motion
predictions. Different from previous work, we do not need any collision data for
pretraining, and are able to generate realistic and diverse collision interactions.
Our experimental results validate the quality of generated collision scenarios by
Adv-BMT: training in our augmented dataset would reduce episode collision rates
by 20%. Demo and code are available at https://metadriverse.github.io/
adv-bmt/.

1 Introduction

In recent years, autonomous driving (AD) agents have achieved unprecedented performance in
simulations [5, 11, 26]. However, handling corner traffic situations, especially collision scenarios,
remains a major challenge. A major cause is that safety-critical scenarios are missing from real-world
driving datasets due to high costs and risks of data collections. Without enough collision training
data, it is hard for the autonomous driving (AD) planners and prediction models to learn safe driving
in challenging and risky scenarios. This motivates the need for simulating different real-world
accidents. To generate realistic collision trajectories, previous works [17, 30, 20] leveraged learned
real-world traffic priors, and optimized predictions on collision-encouraging objectives. However,
our evaluations of these baselines reveal that the generated behaviors are insufficiently diverse and
yield a low collision generation rate.

We tackle this challenge by rethinking the motion prediction architecture itself. We introduce the
Bidirectional Motion Transformer (BMT), a new model that learns to predict both future and history
trajectories for all agents, conditioned on their current states. Similar to recent autoregressive traffic
forecasting models [27, 18, 33], BMT tokenizes continuous trajectories into discrete control actions.
Distinct from prior work, BMT employs a temporally reversible tokenization scheme that enables
unified forward (future) and reverse (history) motion prediction within the same framework.

We utilize BMT model into our Adv-BMT framework for realistic and diverse collision traffic gener-
ations from real-world driving data. While existing works follow a standard paradigm, which selects
a convenient neighbor agent and modifies the behavior to attack the ego agent, Adv-BMT inserts new
agents (ADV) with diverse collision interactions, maintaining realistic interaction with other traffic

∗Equal contribution

https://metadriverse.github.io/adv-bmt/
https://metadriverse.github.io/adv-bmt/


agents. In short, Adv-BMT is a three-staged pipeline: first, it initializes diverse collision frames be-
tween a new adversary agent (ADV) and ego vehicle; then, it reconstructs the adversarial trajectories
via BMT’s reverse predictions; finally, it conducts rule-based checks and rejects trajectories with
physically implausible collision initializations. An overview of our framework is illustrated in Fig. 1.
It is worth noting that that there is no collision data included in our model training.

Adv-BMT is designed with multiple generation modes to support varying levels of agent interactions
and realism. By default, traffic agents follow their recorded trajectories to preserve consistency with
the real-world driving log, while the adversarial agent is generated to interact within this fixed context.
This enables targeted scenario editing while maintaining overall scene plausibility. To address
limitations in interactivity, Adv-BMT also supports a closed-loop reverse prediction mode, in which
all agents are jointly predicted to generate a fully reactive traffic scenario, without teacher-forcing any
agent behaviors during predictions. Additionally, an optional forward refinement step allows traffic
agents to respond to the newly introduced adversary, enabling a more interactive and dynamically
consistent outcome. Together, these modes allow Adv-BMT to balance realism, controllability, and
diversities for different use cases.

We summarize our contributions as follows: (1) We introduce the bidirectional motion transformer
with temporally reversible motion tokenizations; (2) We develop Adv-BMT for realistic and diverse
safety-critical traffic simulations; (3) We leverage Adv-BMT in a closed-loop setting to dynamically
create challenging environments for reinforcement learning agents.

2 Related Work

Driving Motion Predictions and Simulations. The task of motion prediction focuses on forecast-
ing the future trajectories of traffic participants conditioned on their initial map context and agent
states. Recent work uses transformer models to autoregressive sequence modeling. A set of work
utilizes discretized motion tokenizations to perform next token predictions: Trajeglish [14] discretizes
motion representations using a k-disk-based tokenization scheme to represent position and angle
differences for relative movements. MTR++ [19] directly represents motion on continuous space
in Gaussian mixture distributions. MotionLM [18] models trajectory deltas. BehaviorGPT [33]
performs next-patch predictions with future motion chunks, instead of single-step predictions. The
BMT model constructs two sets of motion tokens based on inter-frame accelerations, enabling both
forward prediction of future motions and inverse reconstruction of past motions. Another set of
works [8, 32, 31, 12, 29, 15, 28, 24] leverage diffusion models for motion predictions.

Safety-Critical Traffic Scenario Generation. To generate collision traffic, a classic line of previous
works use a two-staged method: first uses a traffic prior to generate realistic agent trajectories, then
use collision-sensitive objectives for trajectory optimization or candidate selections. STRIVE [17]
models traffic by a variational autoencoders but requires computationally expensive per-scenario
optimizations. CAT [30] leverages transformer motion decoder [7] and selects the collision trajectories
and simulates in MetaDrive [11] for closed-loop adversarial environments. SEAL [20] uses a skill-
based adversarial policy with collision-related objectives. SafeSim [3] proposes a diffusion model
with a test-time collision-sensitive guidance loss to control the collision type and adversarial agent
selections. Another line of work such as [16] use a reinforcement learning (RL) based approach, which
parametrizes trajectories and goal constraints to generate safety-critical interactions. AdvSim [23]
directly perturbs actor trajectories using a kinematic model and optimizes via a black-box adversarial
loss. Another line of recent work such as [4] uses a conditional normalizing flow to model the
distribution of real-world safety-critical trajectories. CrashAgent [9] and LCTGen [21] leverage
free-form texts as inputs and extract embeddings to parameterize scene initializations and agent
driving directions. Different from previous approaches, Adv-BMT generates collision scenarios in
three steps: first samples a collision state, then conduct reverse predictions, finally forcast traffic
agents accordingly.

3 Method

Classical motion prediction models forecast future trajectories based on the current states of traffic
agents. Building on this foundation, we propose the reverse motion prediction problem. To address
both tasks within a unified framework, we introduce the Bidirectional Motion Transformer (BMT)
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Figure 1: Overview of Adv-BMT. The framework mainly consists of three steps: (1) it adds an
adversarial agent (ADV) with a sampled collision state into the current scenario; (2) it predicts
reversely for the adversarial trajectory; (3) it performs rule-based checks and rejects physically
implausible ones.

model, which is able to perform both tasks. Finally, we present the Adv-BMT framework and describe
how it leverages BMT model as the core to generate realistic and diverse safety-critical interactions.

3.1 Bidirectional Motion Prediction

Forward Prediction Reverse Prediction

Figure 2: Bidirectional predictions on the ego
agent (red). BMT supports predictions for future
motions (left) and historical motions (right) jointly
for all prediction agents.

We first introduce the bidirectional motion pre-
diction task. Consider a traffic scenario with
at most N agents and a prediction horizon of
T steps. The trajectory of agent i is repre-
sented as τ i = {τ i0, τ i1, . . . , τ iT }, where each
state τ it ∈ Rd encodes its position, velocity, and
heading at time t. We introduce a prediction
direction indicator D ∈ {Forward,Reverse}, to
specify whether the model predicts future or past
motion over the horizon.

For each predicted traffic agent, we construct a
sequence of motion tokens Zi = {zi1, . . . , ziT },
by applying the motion tokenization function
ϕ(·) between consecutive states. In the forward
setting, the tokens are derived in chronological
order, from τ i0 to τ iT . In the reverse setting, the
temporal order of the trajectory is inverted, and
the tokens are generated by applying ϕ(·) back-
ward from the current state toward the initial
state. This formulation yields a bidirectional token sequence that enables BMT to model both forward
and reverse motion dynamics in a unified token space. The tokenization function ϕ(·) is further
detailed in Section 3.2.

3.2 Bidirectional Motion Transformer (BMT)

Token Space. BMT’s bidirectional motion tokens are derived from a simplified bicycle dynamics
model. Both forward and reverse tokens are defined over the same shared token space—a set
of discrete bins of acceleration and yaw rate pairs. We uniformly quantize the control space of
accelerations a ∈ [−amax, amax] and yaw rates δ ∈ [−δmax, δmax] into K bins each, yielding a total
of K2 discrete motion tokens, where amax = 10m/s, δmax = π

2 , and K = 33.
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Motion Token Reconstruction. A key step in BMT is to reconstruct continuous trajectories from
discrete motion tokens, bridging between physical motion and the token vocabulary. Each token
encodes a low-level control command defined by an acceleration a and a yaw rate ω. Starting from the
current agent state τ = (x, y, θ, v), the token is applied over a time interval ∆t to update the agent’s
position, heading, and velocity. BMT adapts midpoint integration to propagate the state, which
provides a stable and realistic approximation of vehicle dynamics. Intuitively, the speed and heading
are updated using their midpoint values, ensuring that the reconstructed trajectory remains smooth
and physically consistent. This reconstruction procedure allows BMT to decode token sequences into
continuous motion trajectories in both forward and reverse prediction settings.

Model Architecture. The BMT architecture overview is shown in Fig. 3. BMT has a scene
encoding component used to obtain embeddings for scenario contexts with separate embeddings for
map polylines, traffic lights, and agent initial states. Then, we use Fourier-encoded edge features [22]
to represent the spatial and directional information between these encoded entities, which are then
passed to the transformer encoder with self-attention layers for the relational embeddings.

...

... <s> <s>

Motion Predictor
Map

Encoder

 <e> <e>

Tokens in backward
prediction

Tokens in forward
prediction

Figure 3: BMT architecture. BMT consists of a
scene encoder and a GPT-style motion decoder. It
employs two sets of motion tokens for forward and
reverse predictions to generate the next-step token
for each agent. All predictions are conditioned
only on the map information and the one-step cur-
rent state of all predicted agents.

The prediction decoder predicts subsequent mo-
tion tokens in an autoregressive manner, with
only initial agent information for the first frame,
along with the scene embedding obtained from
the Scene Encoder. The motion decoder incor-
porates self-attention over the initial agent token
embeddings, and three relation computations
separately: agent-to-agent (a2a), agent-to-time
(a2t), and agent-to-scene (a2s), with each rela-
tion embedding then passed to its cross-attention
layers. The output agent embeddings are con-
catenated and repeated a number of times. The
output agent motion embeddings are mapped
to the vocabulary of discretized motion tokens
through MLPs. More details can be found in the
Appendix.

Training. BMT is trained to learn a policy that
reproduces the distribution of real-world driv-
ing behaviors. At each step, the model predicts
a discrete motion token for every agent based
on its past tokens, current state, and the scene
context. To align these predictions with the ground-truth behaviors in the dataset, we minimize a
cross-entropy loss between the predicted and observed token distributions:

Ltrain = − ED

[
T∑

t=1

N∑
i=1

log πθ

(
zit | zi1:t−1,M

)]
, (1)

where πθ is the token prediction policy parameterized by θ. Intuitively, this objective encourages
the model to assign high probability to motion tokens that correspond to real trajectories, thereby
capturing the joint distribution of multi-agent actions in traffic.

During inference, BMT generates motion tokens autoregressively, sampling one token at a time
conditioned on its previous predictions. We apply nucleus (top-p) sampling to promote behavioral
diversity while remaining faithful to the learned distribution. To mitigate exposure bias, the model
rolls out on its own sampled tokens rather than the ground-truth sequence, ensuring consistency
between training and inference.

3.3 Adv-BMT for Safety-critical Interaction

The BMT model serves as the core that captures the distribution of realistic multi-agent motions
in Adv-BMT framework. Building upon this foundation, we develop Adv-BMT, an adversarial
scenario generation framework designed to generate realistic and safety-critical traffic interactions.
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Figure 4: Diverse collision headings generated by Adv-BMT from the same driving log input,
visualized from a third-person perspective.

The overview of Adv-BMT framework is illustrated in Fig.1. From the input scenario, Adv-BMT
first samples diverse collision states between ego agent and a new adversarial agent (ADV), then
reconstructs complete trajectories via reverse motion predictions. A rule-based reject sampling
mechanism is used for selecting collision initializations.

T = 20 T = 50 T = 80

Ego Agent Adversary Agent Traffic Agent

Figure 5: Diverse collision timings generated by
Adv-BMT from the same driving log input, visual-
ized in a bird’s-eye view.

Diverse Adversarial Initialization. While ex-
isting works select a convenient neighbor agent
and utilize its initial information, Adv-BMT
inserts new agents (ADV) with diverse colli-
sion initializations for different opponent inter-
actions. We visualize an example result in 5.
Formally, we define the collision state as to in-
clude the position, time, velocity, and heading
at the collision step. The collision time can be
varied, sampled from the first second to the last
time step of the ego trajectory length. Similarly,
ADV’s collision headings are randomly sampled.
ADV’s collision position can be calculated from
collision heading and the ego vehicle’s collision
position. Last but not least, collision velocity
is calculated from sampling a offset from ego
vehicle’s speed at collision step.

Multi-agent Adversarial Interaction. A key
advantage of Adv-BMT lies in its ability to gen-
erate realistic and flexible multi-agent interactions surrounding the adversarial agent (ADV). Starting
from sampled collision initializations, the ADV is added into the scene together with existing traffic
participants. BMT then performs reverse-time prediction to reconstruct plausible interaction histories
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that lead to the designated collision state. To balance realism, controllability, and scene reactivity,
Adv-BMT provides several generation modes with different levels of multi-agent coupling:

1. Adv-BMT with replayed traffic agents: In this mode, traffic agents are teacher-forced
to follow their original recorded trajectories, while only the adversarial agent’s history is
predicted in reverse time. This preserves the original traffic flow and ensures high scene
fidelity. Teacher-forcing prevents unintended deviations (e.g., traffic agents switching lanes
or diverging from the original trajectory) that may occur if the model predicts all agents in
the closed-loop manner. As a result, BMT reconstructs the adversarial agent’s trajectory to
fit into the original scenario.

2. Adv-BMT with closed-loop reverse prediction: This mode removes teacher-forcing and
jointly predicts the trajectories of all agents, including both traffic participants and the
adversarial agent, in a single reverse prediction pass. By allowing all agents to evolve
backward in time simultaneously, the scene develops coherently as a fully interactive
scenario. This setting enables rich multi-agent dynamics and can produce fully synthesized
safety-critical scenarios.

3. Adv-BMT with forward refinement: This hybrid mode first applies teacher-forced reverse
prediction to generate the adversarial agent, then runs an additional forward prediction pass
to enable traffic agents to react to its presence. This introduces interaction and reactivity
without discarding the structure of the original recorded scene, offering a middle ground
between strict replay and fully closed-loop generation.

These complementary modes provide a controllable trade-off between scene realism, interactivity,
and controllability, enabling users to select the most suitable configuration for different evaluation
objectives.

Rule-based Rejection Sampling. We design Adv-BMT to have diverse initializations, which do
not guarantee the realism of the collision outcomes. To address this issue, we implement a rule-based
filtering rejection mechanism for ADV candidates. Specifically, we first measure the driving distance
and average speed of ADV candidates; if it moves too short and mostly wanders at the designated
position waiting for the ego vehicle, then it is considered invalid. Meanwhile, we check the max
curvature (the rate of change for heading): given a candidate ADV trajectory, we compute the
curvature constraint using: κt = ∆θt/∆st, where ∆θt is the absolute heading change between time
steps, and ∆st is the displacement between consecutive positions. Adv-BMT rejects a prediction if
maxt(κt) > κthreshold, where κthreshold = 0.8 is a predefined curvature limit that we found useful. We
enforce a curvature constraint to ensure that the trajectory remains within the predefined threshold,
rejecting ADV candidates that exhibit unrealistically sharp turning behavior. With our straightforward
rule-based rejection sampling mechanism, we are able to maintain realistic collision events between
the ADV and the ego vehicle.

4 Experiments

We first assess the BMT model on its ability to generate realistic and diverse traffic behaviors in
Section 4.1. We then evaluate quality of Adv-BMT scenarios compared to three baseline methods in
Section 4.2. Furthermore, in Section 4.3 we evaluate the utility for the downstream learning task,
and assess whether training a reinforcement learning (RL) planner in Adv-BMT scenarios lead to
improved performance and robustness compared to log-replay traffic flows.

Dataset. All experiments use driving data from the Waymo Open Motion Dataset (WOMD) [6]
with formats managed by ScenarioNet [10]. WOMD contains 10Hz scenarios, each with 1 second of
history and 8 seconds of future trajectories. Each scenario includes up to 128 traffic agents including
vehicles, cyclists, pedestrians along with high-definition maps. To reduce computational cost, we
downsample each scenario to 2Hz, yielding 19 prediction steps. We randomly select 500 scenes
for both open-loop evaluation and RL training. We use 6 prediction modes for each scene during
open-loop evaluations in Section 4.1 and Section 4.2.

Metrics. To evaluate the realism of BMT predictions, we adopt standard open-loop prediction
accuracy metrics: Scenario Final Displacement Error (SFDE) and Scenario Average Displacement
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Table 1: We evaluate BMT under three types of prediction tasks in a closed-loop setting for all traffic
agents, without replaying any agents. In the bidirectional mode, forward prediction is performed
based on the reverse prediction results. The number of prediction modes is set to six.

(a) Realism of BMT predictions.

Method SFDEavg SFDEmin SADEavg SADEmin VehCollmin VehCollavg JSDvelocity JSDTTC

Reverse 3.92 2.70 5.53 5.11 0.03 0.05 0.17 0.02
Forward 3.52 2.35 2.39 1.98 0.03 0.05 0.23 0.30
Reverse + Forward 3.29 2.01 2.38 1.74 0.03 0.06 0.22 0.35

(b) Diversity of BMT predictions.

Method SDD FDD ADD

Reverse 8.35 - 3.13
Forward - 10.78 4.40
Reverse + Forward 8.49 12.78 7.00

Error (SADE). For each, we report results on both the best prediction mode and the average over
all six prediction modes. We also measure the average number of agent collisions to capture
interaction realism. To assess the diversity of generated trajectories, we report Final Displacement
Diversity (FDD), Starting Displacement Diversity (SDD), and Average Displacement Diversity
(ADD), which quantify the spread of predicted positions across all prediction modes. We also
compute the Jensen–Shannon Divergence (JSD) values over velocity, acceleration, and time-to-
collision (TTC) distributions between generated and ground-truth trajectories. JSD measures the
similarity between two probability distributions, with lower values indicating closer alignment
between generated and real-world behaviors.

4.1 Evaluation of BMT Predictions

Results from Table 1a indicates that BMT performs realistic scenario generations in forward, back-
ward, and bidirectional predictions. Reverse predictions perform slightly worse than forward predic-
tions in realism metrics. Compared to single-pass prediction, bidirectional prediction exhibit higher
prediction accuracy. Despite these differences, the overall collision rate remains reasonable and
comparable for all prediction tasks, which indicates that BMT effectively generate realistic traffic
interactions. The results in Table 1b show that bidirectional prediction enhances the diversity of
generated agent behaviors across all displacement diversity metrics. Forward prediction exhibits
higher FDD and ADD scores than reverse prediction. This indicates that predicting future motions
encourages more explorations for variant directions.

4.2 Evaluation of Adv-BMT Scenarios

In Table 2, we additionally use the adversarial attack success rate (i.e., the collision rate between
adversary and the ego), ADV-Traffic Collision Rate (i.e.,collision rates between adversary agents and
traffic agents), and the average Agent Collision (i.e., average traffic agent collision rate) to indicate
interaction realism. Two settings of Adv-BMT outperform baselines in both realism and diversity.
This validates Adv-BMT’s design of collision initialization + reverse predictions, which couldn’t
be achieved by other methods. While Adv-BMT generates highly adversarial behaviors, it also
preserves diversity of traffic interactions compared to baselines. FDD and SDD metrics suggest
that baselines generate nearly the same adversarial trajectories on the given scene. The JSD metrics
suggest Adv-BMT outperforms in realism metrics compared to baselines. BMT model is able to
achieve realistic motion predictions indicted by Waymo Open Sim Agent Challenge metrics [13],
which we add in Table 6 in our appendix. Furthermore, the results for Adv-BMT with filtering
indicate that our rule-based filter does not harm diversity and at the same time enhances the realism
metrics. Table 3 demonstrates the generation speed comparisons among all methods. Our evaluations
validate Adv-BMT as an efficient framework for realistic, diverse, and safety-critical generation.

Visualization. We simulate Adv-BMT scenarios in MetaDrive [11], rendering in both bird’s-eye
view and third-person perspective. In Fig. 5, Fig. 4, and Fig. 9, we show diverse Adv-BMT adversarial
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Table 2: Diversity and realism of generated adversarial behaviors. We compare Adv-BMT
scenarios with three baseline methods for safety-critical interactions, namely STRIVE [17], CAT [30],
and SEAL [20]. To be consistent with baseline methods in this evaluation only, we force Adv-BMT
to choose nearest neighboring agent and modify its behavior as the predicted adversary.

Method FDD ADD JSDVel JSDAcc JSDTTC Attack Succ. Agent Collmin ADV-Traffic Collmin

CAT 0.00 0.00 0.13 0.16 0.12 0.48 0.10 0.3
SEAL 0.00 0.00 0.18 0.25 0.17 0.55 0.12 0.32
STRIVE 0.01 0.00 0.11 0.22 0.12 0.38 0.09 0.32
BMT_TF 1.22 0.49 0.10 0.17 0.13 1.00 0.13 0.22
BMT_All 1.51 0.63 0.10 0.17 0.08 1.00 0.13 0.19
BMT_TF + Filter 2.32 1.00 0.08 0.12 0.09 1.00 0.13 0.12
BMT_All + Filter 1.97 0.83 0.13 0.14 0.08 1.00 0.12 0.09

Table 3: Generation speeds across methods. Among the four methods, CAT achieves the fastest
generation speed, followed by Adv-BMT with a slightly lower speed. SEAL and STRIVE are
comparatively slower.

Method CAT SEAL STRIVE Adv-BMT

500-avg (seconds) 0.80 2.36 9.53 1.02

behaviors in the collision directions on the same ego agent in several real-world traffic flows from
WOMD. Generated adversarial agents follow traffic rules and maintain realistic driving patterns.
Adv-BMT supports diverse adversarial agent types including vehicles, pedestrians, and cyclists, as
shown in Fig. 6. Adv-BMT makes full use of each driving log, which makes Adv-BMT suitable for
AD testing and adversarial training. A visual comparison between Adv-BMT and baseline methods
is shown in Fig. 7. When a baseline fails to select an existing traffic agent that is convenient for a
safety-critical attack, Adv-BMT is able to imagine a new agent at an appropriate position to perform
adversarial attacks on the ego vehicle.

4.3 Adversarial Learning

To validate the value of Adv-BMT scenarios in downstream autonomous driving (AD) tasks, we train
a reinforcement learning (RL) agent within augmented scenarios containing collision interactions
generated by Adv-BMT and baseline methods. To determine the quality of the augmented training
scenarios, we measure both the driving performance and the safety performance of the learned AD
agent compared to learning on the original training set. In our experiment, we conduct two sets
of training: (1) open-loop RL, where the agent is trained on a fixed training set with adversarial
scenarios generated based on ground-truth ego trajectories; and (2) closed-loop RL, where an adaptive
adversarial agent attacks the current ego agent based on its recent rollout trajectory records. The
adaptive adversarial agent’s motion is generated by Adv-BMT or a baseline method. Results are
shown in Table 4 and Table 5.

Setting. The training set contains 500 real-world scenarios randomly selected from the WOMD
training set. We train a Twin Delayed DDPG (TD3) agent for 1 million steps using 8 random seeds
to ensure robustness in MetaDrive [11] (hyperparameters listed in the appendix). We measure the
average reward, average step cost, average route completion rate (Compl.), and average episode cost
(cost sum) for driving performance measurement. To evaluate the impact of adversarial training
using Adv-BMT-generated scenarios, we assess policy performance across two distinct validation
environments: (1) 100 Waymo validation environments, which consist of unmodified real-world
driving scenarios from WOMD validation set, and (2) 100 Adv-BMT environments, which is the
augmented collision scenarios from the 100 validation scenes.

Analysis. Table 4 reports open-loop evaluations comparing RL policies trained on Adv-
BMT–generated scenarios against policies trained on baseline scenario sets. On the WOMD original
validation environments, Adv-BMT–trained agents outperform all baselines across metrics: episode
cost decreases by 10% and collision rate by 8%, while reward and route-completion remain com-
parable to the best baseline. Adding the optional forward refinement (Sec. 3.3) yields additional
gains—reward increases by 6%, episode cost decreases by 5%, and route completion improves
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Table 4: Open-loop RL agent evaluation. Each WOMD scenario is augmented with one collision
scenario, so that the ratio between real-world and safety-critical scenes is 1:1. For each method, we
augment the original dataset into a new training set.

(a) Evaluation in the Waymo validation environments

Training Scenarios Reward ↑ Cost ↓ Completion ↑ Collision ↓ Cost Sum ↓
Waymo [6] 32.03 ± 4.27 0.39 ± 0.07 0.72 ± 0.05 0.14 ± 0.02 1.41 ± 0.35

CAT [30] 30.37 ± 3.89 0.39 ± 0.05 0.71 ± 0.05 0.14 ± 0.02 1.73 ± 0.39

STRIVE [17] 31.30 ± 3.59 0.40 ± 0.04 0.73 ± 0.05 0.13 ± 0.03 1.51 ± 0.40

SEAL [20] 29.94 ± 5.14 0.39 ± 0.05 0.71 ± 0.04 0.12 ± 0.02 1.63 ± 0.44

Adv-BMT 31.47 ± 3.21 0.38 ± 0.03 0.73 ± 0.04 0.11 ± 0.02 1.35 ± 0.40

Adv-BMT (Refined) 33.22 ± 1.83 0.36 ± 0.03 0.74 ± 0.03 0.12 ± 0.02 1.39 ± 0.22

(b) Evaluation in the Adv-BMT validation environments

Training Scenario Reward ↑ Cost ↓ Completion ↑ Collision ↓ Cost Sum ↓
Waymo [6] 37.01 ± 6.16 0.64 ± 0.09 0.60 ± 0.07 0.30 ± 0.02 2.96 ± 0.63

CAT [30] 36.77 ± 4.95 0.62 ± 0.05 0.62 ± 0.05 0.29 ± 0.02 3.09 ± 0.56

STRIVE [17] 37.72 ± 5.38 0.63 ± 0.06 0.63 ± 0.06 0.29 ± 0.04 2.92 ± 0.68

SEAL [20] 35.74 ± 6.36 0.67 ± 0.08 0.60 ± 0.06 0.31 ± 0.01 2.97 ± 0.34

Adv-BMT 37.33 ± 3.57 0.62 ± 0.03 0.63 ± 0.04 0.25 ± 0.05 2.41 ± 0.43

Adv-BMT (Refined) 39.55 ± 2.94 0.59 ± 0.04 0.65 ± 0.02 0.27 ± 0.04 2.74 ± 0.54

Table 5: Closed-loop RL agent evaluation. We use the same augmented training set as in the
open-loop experiment. For the adaptive adversarial learning experiment, we implement an adaptive
generator for Adv-BMT and CAT [30]. We discard the other baseline methods due to their low
generation speeds.

(a) Waymo Validation Environments

Generator Reward ↑ Cost ↓ Completion ↑ Collision ↓ Cost Sum ↓
CAT 32.15 ± 2.89 0.38 ± 0.03 0.74 ± 0.04 0.10 ± 0.00 2.02 ± 0.24

Adv-BMT 33.13 ± 4.11 0.39 ± 0.03 0.74 ± 0.03 0.09 ± 0.00 1.25 ± 0.52

(b) Adv-BMT Environments

Generator Reward ↑ Cost ↓ Completion ↑ Collision ↓ Cost Sum ↓
CAT 39.47 ± 3.88 0.62 ± 0.05 0.63 ± 0.04 0.22 ± 0.02 2.51 ± 0.45

Adv-BMT 40.40 ± 6.39 0.57 ± 0.04 0.63 ± 0.05 0.22 ± 0.04 2.48 ± 0.97

slightly. On safety-critical test environments, Adv-BMT further reduces episode cost by 17% and
collision rate by 14% relative to the best baseline. With forward refinement, we observe further
improvements in driving capability, reflected in higher reward and completion rates. These results
indicate that training on Adv-BMT scenarios exposes agents to a broader distribution of high-risk
interactions, enabling more robust, safety-aware policies. The extra gains from forward refinement
underscore the importance of modeling reactive traffic around emerging incidents, which better
prepares agents for cascading hazards. Motivated by these findings, we next evaluate all methods in a
closed-loop RL setting.

Table 5 reports closed-loop RL results under reactive adversarial traffic generators. Relative to
the corresponding open-loop policy, the closed-loop policy improves across all metrics in both
real-world and safety-critical collision environments, indicating a substantially safer and more
robust AD policy. Compared with the strongest closed-loop baseline (CAT), our method achieves
higher reward, lower collision rate, and a 38% reduction in episode cost. These gains suggest that
training with Adv-BMT scenarios—featuring diverse adversarial behaviors and realistic, traffic-
consistent reactions—better train the agent to anticipate and mitigate high-risk interactions. Learning
in closed-loop further improves performance; by training the agent to respond online to reactive
opponents, it becomes better at anticipating dangerous situations, and staying safe in unfamiliar
or rapidly changing traffic conditions. The results also highlight the importance of the Adv-BMT
design, which enables the generation of realistic and flexible multi-agent interactions with the
adversarial agent. Demo videos of our trained safer RL agent can be found at the project page: https:
//metadriverse.github.io/adv-bmt/.
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Figure 6: Adv-BMT can also generate scenarios of pedestrian and cyclist adversarial agents.

SEALInput Adv-BMTSTRIVECAT

Ego Agent Baseline Agent Our Agent Traffic Agent

Figure 7: Baseline method comparisons. We present several examples where Adv-BMT successfully
generates collision interactions in scenarios where all baseline methods fail. Unlike the baselines,
Adv-BMT does not rely on the proximity of neighboring agents to the ego vehicle, enabling more
flexible and diverse adversarial attack strategies.

5 Conclusion

We introduced Adv-BMT, a novel framework for generating diverse safety-critical driving scenarios
with realistic traffic interactions. Built on a Bidirectional Motion Transformer with the ability to
perform bidirectional motion prediction tasks, Adv-BMT is able to design a new adversarial agent
for each real-world scenario. A key advantage of Adv-BMT lies in its ability to generate realistic
and flexible multi-agent interactions surrounding the adversarial agent. Unlike previous frameworks
that select an existing neighboring vehicle and modify the corresponding trajectory for an adversarial
attack, Adv-BMT initializes candidate collisions for a new adversarial agent, reconstructs multi-agent
trajectories via inverse prediction, and optionally applies forward refinement for reactive, traffic-
consistent interactions. Adv-BMT is able to balance realism, controllability, and scene reactivity. Our
evaluations validate the quality of Adv-BMT scenarios in terms of interaction realism and diversity;
furthermore, we demonstrate that learning within the Adv-BMT traffic flow improves AD agents’
safety performance by a clear margin.

Limitations. Adv-BMT relies on long token sequences to represent multi-agent traffic scenes,
which would result in high memory and computation demands. Our empirical study focuses on
a single downstream task, reinforcement learning for an autonomous-driving agent; so broader
applicability remains to be validated.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, our main claims are supported by our experiments and arguments in the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a limitation section at the end of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We don’t have proofs and theories in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss all details and information needed to reproduce the experimental
results in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Yes, we publish our code and the dataset is public already.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and testing details are specified in our main paper and also
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss information of computer resources needed to reproduce in our
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper comply with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are addressed in our supplementary materials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no high risk for misuse of released data and model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work is unrelated in using existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced in our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not engage in crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not engage in research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM usage is not an important, original, or non-standard component of our
core methodology in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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In the appendix, we include additional technical details and results upon the main paper due to limit
of page length. Appendix A gives details on the model architecture and trainings, Appendix B gives
details for experiments, and Appendix C and D provides additional results to supplement those in the
main paper. In Appendix E, we claim the broader impacts of our methodology.

A Model Details

A.1 BMT Architecture

Preprocessing. The model takes real-world scenarios with the format from ScenarioNet [10], which
unifies real-world datasets including [1] [2] [25].

The model performs a series of preprocessing on both static map features and dynamic agent
trajectories. We compute the global boundary to extract a consistent map center and heading. Each
map feature is decomposed into a sequence of vectorized segments, where each vector is represented
by a start and end point in 3D coordinates. These vectors are then augmented with directional relative
positions, segment headings, and lengths. Semantic attributes are binary indicators that encode
feature types. The map feature types (lane, crosswalk, broken line, yellow line, stop sign, etc.) are
encoded for semantic information. Features are then centralized to map center. Traffic light states are
also encoded and aligned with the steps. Similarly, agent trajectories are also centralized for agent
feature encode, with information of (position, heading, velocity, shape, and type) extracted across
time for temporal sequences. Besides, there is reordering for ego agent and agents to be predicted.
We extract a 16-dimensional state vector at each timestep. The preprocessing ensures all trajectories
are represented in a consistent spatial frame and translated to an ego-centric coordinate system.

Tokenization. We formulate motion prediction as an auto-regressive next-token prediction prob-
lem, where each motion token corresponds to a discretized control input for a fixed time interval.
Tokenization process maps continuous agent motion (acceleration and yaw rate) into discrete 2D bins.
The tokenization process considers candidate tokens sampled from a fixed grid of bins, and simulates
the resulting motion over a short duration, and then selects the best-matching action by minimizing
the contour alignment error between the predicted agent shape and the ground-truth position and
heading. We adopt a simplified version of the bicycle model to parameterize agent motion using
longitudinal acceleration and yaw rate within predefined bounds: acceleration is limited to the range
of [−10, 10] m/s2, and the yaw rate is constrained to [−π/2, π/2] rad/s. With predicted motion token
sequences, the trajectory can be reconstructed by mapping the token back to the acceleration and yaw
angle change.

In both forward and reverse directions, motion tokens are decoded into continuous trajectories using
the same tokenizer. Given an initial state τt = (xt, yt, θt, vt), the forward decoding process simulates
the agent’s next state τt+1 by applying a tokenized control action zt = (at, δt) ∈ A, where A
denotes the discrete token space. This is repeated autoregressively over the sequence of predicted
tokens to reconstruct the full trajectory τ t:t+T . In contrast, reverse decoding starts from a known
future state τt+1, the model evaluates all possible token candidates zt ∈ A, simulates their inverse
dynamics using ∆t → −∆t, and selects the token that best reconstructs the preceding state τt. The
ability to operate in both directions is a key distinction of our approach: forward prediction enables
open-loop simulation of future behaviors, while reverse prediction allows us to trace back from a
desired outcome (e.g., a collision state) to plausible initiating actions.

Decoder Architecture. The decoder follows a GPT-like structure composed of stacked cross-
attention layers. Each layer integrates three structured attention modules: agent-to-agent (A2A), agent-
to-temporal (A2T), and agent-to-scene (A2S). These modules attend over dynamically constructed
graphs defined by spatial or temporal adjacency. Relational information across modalities is captured
via multiple embeddings: Agent-to-Agent Relation Embedding, Agent-to-Time Relation Embedding,
and Agent-to-Scene Relation Embedding, each encoding context-specific spatial information. For
token construction, several embeddings are used, including the Agent Type Embedding, Agent Shape
Embedding, Agent ID Embedding, and the Motion Token Embedding which maps discrete control
tokens. A Continuous Motion Feature Embedding is applied to embed acceleration and yaw rate
attributes. Auxiliary embeddings include the Special Token Embedding for indicating sequence
boundaries, and the Backward Prediction Indicator Embedding to distinguish between forward and
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backward prediction modes. For each attention edge, a relative relation embedding is computed using
a Fourier encoder and added to the key and/or value vectors. The input agent token X ∈ RB×T×N×d

(batch size B, time steps T , number of agents N , hidden dimension d) is progressively updated across
layers by aggregating contextual features from other agents, their temporal history, and relevant map
elements.

Motion Token Embedding. Specifically, each input agent token to the BMT motion decoder is
constructed by summing of embeddings of:

a. the motion token from the previous step (representing discretized acceleration and yaw rate),
b. agent shape (length, width, height),
c. agent type (e.g., vehicle, pedestrian),
d. agent identifier (embedded optionally),
e. special token type (e.g., <start>, <end>, or padding),

as well as a continuous motion delta feature embedded via a Fourier encoder. These components are
projected into the same hidden dimension and summed to form the input motion token embedding.

Prediction Heads and Outputs. After processing through all decoding layers, the final hidden
state for each valid token is passed through a two-layer MLP head to produce logits over the motion
token space:

MLP(h) = W2 · ϕ(W1 · h) ∈ RK2

,
where ϕ(·) denotes the GELU activation and K2 is the number of discrete motion tokens (from a
K ×K acceleration–yaw bin grid).

The resulting logits are used to predict the next motion token at each time step. During inference, we
generate motion tokens using nucleus (top-p) sampling.

Trajectory Reconstruction Our model makes a prediction in the interval of 5 time steps (0.5
seconds). To simulate the effect of a motion token over a fixed time step ∆t = 0.5 s, we adopt
midpoint integration based on a simplified bicycle model. In forward predictions, given a current
state st = (xt, yt, θt, vt), the model computes the next speed and heading as vt+1 = vt + a · ∆t

and θt+1 = θt + ω · ∆t. The average speed and heading are then defined as v̄ = vt+vt+1

2 and

θ̄ =
(

θt+θt+1

2

)
. In reverse prediction, the process is reverted. In the backward direction, the process

is inverted. Given a future state st+1, the model enumerates all possible token candidates and inverts
the dynamics: vt = vt+1 − a · ∆t and θt = θt+1 − ω · ∆t. The average quantities v̄ and θ̄ are
computed similarly and used to derive the previous position:

xt = xt+1 − v̄ · cos(θ̄) ·∆t, yt = yt+1 − v̄ · sin(θ̄) ·∆t.

Training Loss. The decoder produces a logit tensor ẑ ∈ RB×T×N×|A|, where |A| is the number
of motion tokens (i.e., discretized acceleration–yaw pairs). The supervision target is the ground-
truth token sequence z∗ ∈ NB×T×N , derived by tokenizing agent trajectories. A binary mask
m ∈ {0, 1}B×T×N specifies which tokens are valid and should contribute to the training loss. The
training objective is computed over all valid entries using the cross-entropy loss:

Lmain =
1∑

b,t,n mb,t,n

∑
b,t,n

mb,t,n · CE(ẑb,t,n, z∗b,t,n),

where CE denotes the standard cross-entropy loss between the predicted logits and the ground-truth
discrete token.

Reverse Prediction. During reverse prediction, the model measures metrics separately for forward
and reverse token predictions. Let b ∈ {0, 1}B×T×N be a binary indicator for whether each token
comes from reverse prediction. Then we compute separate metrics:

Accuracyreverse =

∑
mb,t,n · bb,t,n · 1[ẑb,t,n = z∗b,t,n]∑

mb,t,n · bb,t,n
,

Entropyreverse =
1∑
m · b

∑
mb,t,n · bb,t,n · H(ẑb,t,n),
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Table 6: BMT Model Parameters.

Component Parameters Size (MB)
Scene Encoder 902,080 3.44

Map Polyline Encoder 22,656 0.09
Traffic Light Embedding MLP 1,024 0.00
Scene Relation Embedding 117,184 0.45
Scene Transformer Encoder 744,448 2.84
Scene Encoder Output Projection 16,512 0.06
Scene Output Pre-Normalization 256 0.00

Motion Decoder 4,385,025 16.73

Multi-Cross Attention Decoder 2,881,536 10.99
Motion Prediction Head 157,121 0.60
Motion Prediction Pre-Normalization 256 0.00
Agent-to-Agent Relation Embedding 418,432 1.60
Agent-to-Time Relation Embedding 418,432 1.60
Agent-to-Scene Relation Embedding 117,184 0.45
Agent Type Embedding 640 0.00
Motion Token Embedding 139,520 0.53
Agent Shape Embedding 17,152 0.07
Agent ID Embedding 16,384 0.06
Continuous Motion Feature Embedding 217,600 0.83
Special Token Embedding 512 0.00
Reverse Prediction Indicator Embedding 256 0.00

Total 5,287,105 20.17

with analogous expressions for forward prediction (i.e., for 1− bb,t,n).

Metrics. To measure the quality and diversity of the model’s predictions during training, we track
the perplexity:

Perplexity = exp

(
−
∑
a∈A

p̄a log(p̄a + ϵ)

)
, where p̄a =

1

M

M∑
i=1

1[ẑi = a],

and M is the number of valid tokens. We also track the number of distinct tokens used by both
predictions and ground truth:

Cluster =
∑
a∈A

1[p̄a > 0].

Total Loss. The total loss is the sum of all enabled components:

Ltotal = Lmain + λmapLmap + λtgLtg-total,

with default weights λmap = λtg = 1.

A.2 Training Details

Our model has 5.2 million trainable parameters, with detailed break downs indicatd in Table 6. We
trained BMT model on the training set of Waymo Open Motion Datasets [6]. WOMD contains 480K
real-world traffic with each scenario of length 9 seconds; traffic are composed by agents of vehicle,
pedestrian, and bicycle; Each scenario comes with a high-fidelity road map. During training, we use 8
NVIDIA RTX A6000 GPUs for our model training and fine-tunings. We trained BMT in two stages,
each with hyper-parameters indicated in Table 7. In the first stage, we pre-trained BMT for forward
prediction only with 1 million steps. Then, we fine-tuned BMT with reverse motion prediction in
fine-tuning with totally 1.5 million steps. We use AdamW optimizer for learning rate scheduling.
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Table 7: BMT Training settigs.

Forward Prediction
Hyper-parameter Value

Training steps 10E6
Batch sizes 2
Training Time (h) 185
Sampling Topp 0.95
Sampling temperature 1.0
Learning Rates 3E-4

Reverse Prediction
Hyper-parameter Value

Training steps 15E6
Batch size 2
Training Time (h) 310
Sampling Topp 0.95
Sampling temperature 1.0
Learning Rates 3E-4

REAR-END
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Sudden-brakeTurn

Cross

Ego Agent Adversary Agent Traffic Agent

Figure 8: Diverse adversarial behaviors generated by Adv-BMT.

B Experiment Details

Training Environment. We conduct our reinforcement learning experiments using the MetaDrive
ScenarioEnv [11], which provides standardized driving environments for training and evaluating
autonomous agents. Each environment encodes sensor observations including LiDAR-based surround-
ings and physical dynamics. Specifically, the observation space consists of three key components:
(i) Ego state, which contains the ego vehicle’s current physical state such as speed, heading, and
steering; and (ii) surroundings, which encodes nearby traffic objects.

Actions are continuous and correspond to low-level vehicle control commands. The agent outputs a
2D normalized vector, which is then mapped to steering angle, throttle (acceleration), and brake signal.
The environment includes a compositional reward structure combining driving progress, collision
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Table 8: RL training settings.

Adv-BMT
Hyper-parameter Value

Scenario Horizon 9s
History Horizon 0s
Collision Step 1s–9s
Prediction Mode 8
Policy Training Steps 10E6

TD3
Hyper-parameter Value

Discounted Factor 0.99
Train Batch Size 1024
Learning Rate 1E-4
Policy Delay 200
Target Network 0.005

Table 9: Realism Results.
Method SFDEavg SFDEmin SADEavg SADEmin Collagent,min Collagent,avg

Reverse 3.92 2.69 5.53 5.11 0.03 0.05
Reverse + Adv-init 7.17 5.56 7.68 7.12 0.13 0.16
Reverse + Adv-init + Filter 6.93 5.30 7.58 7.02 0.12 0.15

Table 10: Diversity Results.
Method FDD ADD JSDvel JSDacc JSDTTC

Reverse 8.35 3.13 0.17 0.71 0.02
Reverse + Adv-init 9.89 3.82 0.22 0.64 0.13
Reverse + Adv-init + Filter 10.27 3.99 0.22 0.73 0.09

penalties, and road boundary violations. Driving reward is measured by forward lane progress, while
penalties are applied for collisions with other vehicles or drifting off-road.

Hyperparameter. The settings of our open-loop and closed-loop adversarial RL experiments
are shown in table 8. Note that in our closed-loop learning, Adv-BMT takes one frame of agent
information as input for adversarial generations, whereas all baseline methods take one second agent
history.

C Quantitative Results

C.1 Ablation Study

Reverse predictions with adversarial initializations exhibit greater deviation from the ground-truth
data and yield improved diversity. This behavior is expected, since adversarial initializations modify
the terminal positions and headings of selected agents, which propagates backward into more
varied histories. Importantly, our rule-based filtering does not reduce diversity; rather, it preserves
multimodality while improving realism metrics by removing physically implausible trajectories.

C.2 Waymo Open Sim Agents Challenge

We evaluate BMT results on 400 WOMD validation scenarios using the Waymo Open Sim Agents
Challenge (WOSAC) 2025 [13]. Evaluation results are summarized in Table 11. For the metrics,
smaller values of minADE indicate more accurate predictions, whereas larger values for the remaining
metrics indicate better performance. From the results, we observe that forward prediction achieves
much better performance than reverse prediction across all metrics, except for similar performance in
angular speed, angular acceleration, distance to the nearest object, and TTC. Note that the training
times for forward prediction and reverse prediction are similar (10E6 and 15E6 steps, respectively).
The WOSAC results indicate that our BMT model is better at predicting future motion than historical
motion.
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Table 11: WOSAC Evaluation results of BMT.

Metrics Reverse Forward
Linear speed 0.375 0.393
Linear acceleration 0.394 0.405
Angular speed 0.441 0.428
Angular acceleration 0.594 0.593
Distance to nearest object 0.405 0.388
Collision 0.521 0.951
Time to Collide 0.840 0.840
Distance to road edge 0.675 0.683
Offroad 0.564 0.934
Realism 0.554 0.753
Kinematic 0.451 0.455
Interactive 0.566 0.801
Map 0.596 0.862
minADE 2.148 1.344
Metametric 0.554 0.753

Upon reviewing the collisions detected in reverse predictions with real initializations, we found
that most occurred in crowded parking-lot areas, where clusters of parked vehicles or pedestrians
are close together. These were flagged as collisions by Waymo’s API, even though they may not
represent meaningful agent–agent interactions. This explains why metrics such as ADE and FDE
remain comparable across methods despite differences in collision scores.

The performance gap is primarily due to our training strategy: the model was pre-trained for forward
prediction (around 800k steps) and then fine-tuned for bidirectional prediction (around 1.5M steps).
We have included these details in Section A.2 (Training Details).

D Qualitative Results

Visualizations. Figure 9 presents six pairs of qualitative results generated by Adv-BMT. Across
different scenarios, the adversarial agents exhibit a diverse range of safety-critical driving behaviors,
demonstrating their ability to interact plausibly with realistic traffic participants. The visualizations
illustrate that Adv-BMT can generate multiple distinct collision outcomes from a single driving log.
This highlights a key advantage of Adv-BMT over baseline methods, which tend to produce identical
or highly similar adversarial behaviors for the same input scenario.

Demo Video. We submit a video within our supplementary materials. Here we provide vi-
sualizations with case studies through animated simulations of Adv-BMT scenarios, which in-
clude different types of vehicles, pedestrians, and bicycle agents. More demos are available at
https://metadriverse.github.io/adv-bmt/.

E Broader Impacts

Our work introduces a novel model for generating safety-critical traffic scenarios, aiming to improve
the safety reliability and driving robustness of AD systems. By modeling both forward and reverse
motion trajectories, our framework enables controllable and diverse simulation of rare and high-risk
traffic events. Our framework, Adv-BMT, benefits the development and testing of safer autonomous
agents by exposing failure cases under challenging interactions. However, generating adversarial
scenarios may potentially raise concerns about potential misuse, such as crafting unrealistic or
malicious simulations. To address this, our approach is designed for research and evaluation within
closed simulation environments. We encourage responsible usages of our model and encourage
integrating them into safety validation pipelines with appropriate regulations.
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Figure 9: Diverse adversarial behaviors generated by Adv-BMT.

26


	Introduction
	Related Work
	Method
	Bidirectional Motion Prediction
	Bidirectional Motion Transformer (BMT)
	Adv-BMT for Safety-critical Interaction

	Experiments
	Evaluation of BMT Predictions
	Evaluation of Adv-BMT Scenarios
	Adversarial Learning

	Conclusion
	Model Details
	BMT Architecture
	Training Details

	Experiment Details
	Quantitative Results
	Ablation Study
	Waymo Open Sim Agents Challenge

	Qualitative Results
	Broader Impacts

