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Abstract

Scenario-based testing is essential for validating the performance of autonomous
driving (AD) systems. However, such testing is limited by the scarcity of long-
tailed, safety-critical scenarios in existing datasets collected in the real world. To
tackle the data issue, we propose the Adv-BMT framework, which augments real-
world scenarios with diverse and realistic adversarial traffic interactions. The core
component of Adv-BMT is a bidirectional motion transformer (BMT) model to
perform inverse traffic motion predictions, which takes agent information in the
last time step of the scenario as input, and reconstruct the traffic in the inverse of
chronological order until the initial time step. The Adv-BMT framework is a two-
staged pipeline: it first conducts adversarial initializations and then inverse motion
predictions. Different from previous work, we do not need any collision data for
pretraining, and are able to generate realistic and diverse collision interactions.
Our experimental results validate the quality of generated collision scenarios by
Adv-BMT: training in our augmented dataset would reduce episode collision rates
by 20%. Demo and code are available at https://metadriverse.github.io/
adv-bmt/.

1 Introduction

In recent years, autonomous driving (AD) agents have achieved unprecedented performance in
simulations [3, 9, 23]. However, handling corner traffic situations, especially collision scenarios,
remains a major challenge. A major cause is that safety-critical scenarios are missing from real-world
driving datasets due to high costs and risks of data collections. Without enough collision training
data, it is hard for the autonomous driving (AD) planners and prediction models to learn safe driving
in challenging and risky scenarios. This motivates the need for simulating different real-world
accidents. To generate realistic collision trajectories, previous works [15, 27, 18] leveraged learned
real-world traffic priors, and optimized predictions on collision-encouraging objectives. However,
our evaluations of these baselines reveal that the generated behaviors are insufficiently diverse and
yield a low collision generation rate.

We tackle this challenge by rethinking the motion prediction architecture itself. We introduce the
Bidirectional Motion Transformer (BMT), a new model that learns to predict both future and history
trajectories for all agents, conditioned on their current states. Similar to recent autoregressive traffic
forecasting models [24, 16, 30], BMT tokenizes continuous trajectories into discrete control actions.
Distinct from prior work, BMT employs a temporally reversible tokenization scheme that enables
unified forward (future) and reverse (history) motion prediction within the same framework.

We utilize BMT model into our Adv-BMT framework for realistic and diverse collision traffic gener-
ations from real-world driving data. While existing works follow a standard paradigm, which selects
a convenient neighbor agent and modifies the behavior to attack the ego agent, Adv-BMT inserts new
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Figure 1: Overview of Adv-BMT. The framework mainly consists of three steps: (1) it adds an
adversarial agent (ADV) with a sampled collision state into the current scenario; (2) it predicts
reversely for the adversarial trajectory; (3) it performs rule-based checks and rejects physically
implausible ones.

agents (ADV) with diverse collision interactions, maintaining realistic interaction with other traffic
agents. In short, Adv-BMT is a three-staged pipeline: first, it initializes diverse collision frames be-
tween a new adversary agent (ADV) and ego vehicle; then, it reconstructs the adversarial trajectories
via BMT’s reverse predictions; finally, it conducts rule-based checks and rejects trajectories with
physically implausible collision initializations. An overview of our framework is illustrated in Fig. 1.
It is worth noting that that there is no collision data included in our model training.

Adv-BMT is designed with multiple generation modes to support varying levels of agent interactions
and realism. By default, traffic agents follow their recorded trajectories to preserve consistency with
the real-world driving log, while the adversarial agent is generated to interact within this fixed context.
This enables targeted scenario editing while maintaining overall scene plausibility. To address
limitations in interactivity, Adv-BMT also supports a closed-loop reverse prediction mode, in which
all agents are jointly predicted to generate a fully reactive traffic scenario, without teacher-forcing any
agent behaviors during predictions. Additionally, an optional forward refinement step allows traffic
agents to respond to the newly introduced adversary, enabling a more interactive and dynamically
consistent outcome. Together, these modes allow Adv-BMT to balance realism, controllability, and
diversities for different use cases.

We summarize our contributions as follows: (1) We introduce the bidirectional motion transformer
with temporally reversible motion tokenizations; (2) We develop Adv-BMT for realistic and diverse
safety-critical traffic simulations; (3) We leverage Adv-BMT in a closed-loop setting to dynamically
create challenging environments for reinforcement learning agents.

2 Related Work

Driving Motion Prediction. The task of motion prediction focuses on forecasting the future trajec-
tories of traffic participants conditioned on their initial map context and agent states. Recent work
uses transformer models to autoregressive sequence modeling. A set of work utilizes discretized
motion tokenizations to perform next token predictions: Trajeglish [12] discretizes motion repre-
sentations using a k-disk-based tokenization scheme to represent position and angle differences
for relative movements. MTR++ [17] directly represents motion on continuous space in Gaussian
mixture distributions. MotionLM [16] models trajectory deltas. SMART builds a k-disk–clustered
vocabulary of motion tokens, containing coordinates, heading, and shape. BehaviorGPT [30] per-
forms next-patch predictions with future motion chunks, instead of single-step predictions. The
BMT model constructs two sets of motion tokens based on inter-frame accelerations, enabling both
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forward prediction of future motions and inverse reconstruction of past motions. Another set of
works [6, 29, 28, 10, 26, 13, 25, 22] leverage diffusion models for motion predictions.

Safety-Critical Traffic Scenario Generation. To generate collision traffic, a classic line of previous
works use a two-staged method: first uses a traffic prior to generate realistic agent trajectories, then
use collision-sensitive objectives for trajectory optimization or candidate selections. STRIVE [15]
models traffic by a variational autoencoders but requires computationally expensive per-scenario
optimizations. CAT [27] leverages transformer motion decoder [5] and selects the collision trajectories
and simulates in MetaDrive [9] for closed-loop adversarial environments. SEAL [18] uses a skill-
based adversarial policy with collision-related objectives. SafeSim [1] proposes a diffusion model
with a test-time collision-sensitive guidance loss to control the collision type and adversarial agent
selections. Another set of work such as [14] use a reinforcement learning (RL) based approach, which
parametrizes trajectories and goal constraints to generate safety-critical interactions. AdvSim [21]
directly perturbs actor trajectories using a kinematic model and optimizes via a black-box adversarial
loss. Another line of recent work such as [2] uses a conditional normalizing flow to model the
distribution of real-world safety-critical trajectories. CrashAgent [7] and LCTGen [19] leverage
free-form texts as inputs and extract embeddings to parameterize scene initializations and agent
driving directions. Different from previous approaches, Adv-BMT generates collision scenarios in
three steps: first samples a collision state, then conduct reverse predictions, finally forcast traffic
agents accordingly.

3 Method

Classical motion prediction models forecast future trajectories based on the current states of traffic
agents. Building on this foundation, we propose the reverse motion prediction problem. To address
both tasks within a unified framework, we introduce the Bidirectional Motion Transformer (BMT)
model, which is able to perform both tasks. Finally, we present the Adv-BMT framework and describe
how it leverages BMT model as the core to generate realistic and diverse safety-critical interactions.

3.1 Bidirectional Motion Prediction

Forward Prediction Reverse Prediction

Figure 2: Bidirectional predictions on the ego
agent (red). BMT supports predictions for future
motions (left) and historical motions (right) jointly
for all prediction agents.

We first introduce the bidirectional motion pre-
diction task, shown in Fig. 2. Consider a traffic
scenario with at most N agents and a prediction
horizon of T steps. The trajectory of agent i
is represented as ω i = {ω i0, ω

i
1, . . . , ω

i
T }, where

each state ω it → Rd encodes its position, velocity,
and heading at time t. We introduce a prediction
direction indicator D → {Forward,Reverse}, to
specify whether the model predicts future or past
motion over the horizon.

For each predicted traffic agent, we construct a
sequence of motion tokens Zi = {zi1, . . . , z

i
T },

by applying the motion tokenization function
ε(·) between consecutive states. In the forward
setting, the tokens are derived in chronological
order, from ω i0 to ω iT . In the reverse setting, the
temporal order of the trajectory is inverted, and
the tokens are generated by applying ε(·) back-
ward from the current state toward the initial
state. This formulation yields a bidirectional token sequence that enables BMT to model both forward
and reverse motion dynamics in a unified token space. The tokenization function ε(·) is further
detailed in Section 3.2.

3.2 Bidirectional Motion Transformer (BMT)

Token Space. BMT’s bidirectional motion tokens are derived from a simplified bicycle dynamics
model. Both forward and reverse tokens are defined over the same shared token space—a set
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of discrete bins of acceleration and yaw rate pairs. We uniformly quantize the control space of
accelerations a → [↑amax, amax] and yaw rates ϑ → [↑ϑmax, ϑmax] into K bins each, yielding a total
of K2 discrete motion tokens, where amax = 10m/s, ϑmax = ω

2 , and K = 33.

Motion Token Reconstruction. A key step in BMT is to reconstruct continuous trajectories from
discrete motion tokens, bridging between physical motion and the token vocabulary. Each token
encodes a low-level control command defined by an acceleration a and a yaw rate ϖ. Starting from the
current agent state ω = (x, y, ϱ, v), the token is applied over a time interval !t to update the agent’s
position, heading, and velocity. BMT adapts midpoint integration to propagate the state, which
provides a stable and realistic approximation of vehicle dynamics. Intuitively, the speed and heading
are updated using their midpoint values, ensuring that the reconstructed trajectory remains smooth
and physically consistent. This reconstruction procedure allows BMT to decode token sequences into
continuous motion trajectories in both forward and reverse prediction settings.

Model Architecture. The BMT architecture overview is shown in Fig. 3. BMT has a scene
encoding component used to obtain embeddings for scenario contexts with separate embeddings for
map polylines, traffic lights, and agent initial states. Then, we use Fourier-encoded edge features [20]
to represent the spatial and directional information between these encoded entities, which are then
passed to the transformer encoder with self-attention layers for the relational embeddings.

...

... <s> <s>

Motion Predictor
Map

Encoder

 <e> <e>

Tokens in backward
prediction

Tokens in forward
prediction

Figure 3: BMT architecture. BMT consists of a
scene encoder and a GPT-style motion decoder. It
employs two sets of motion tokens for forward and
reverse predictions to generate the next-step token
for each agent. All predictions are conditioned
only on the map information and the one-step cur-
rent state of all predicted agents.

The prediction decoder predicts subsequent mo-
tion tokens in an autoregressive manner, with
only initial agent information for the first frame,
along with the scene embedding obtained from
the Scene Encoder. The motion decoder incor-
porates self-attention over the initial agent token
embeddings, and three relation computations
separately: agent-to-agent (a2a), agent-to-time
(a2t), and agent-to-scene (a2s), with each rela-
tion embedding then passed to its cross-attention
layers. The output agent embeddings are con-
catenated and repeated a number of times. The
output agent motion embeddings are mapped
to the vocabulary of discretized motion tokens
through MLPs. More details can be found in the
Appendix.

Training. BMT is trained to learn a policy that
reproduces the distribution of real-world driv-
ing behaviors. At each step, the model predicts
a discrete motion token for every agent based
on its past tokens, current state, and the scene
context. To align these predictions with the ground-truth behaviors in the dataset, we minimize a
cross-entropy loss between the predicted and observed token distributions:

Ltrain = ↑ ED

[
T∑

t=1

N∑

i=1

log ςε

(
zit | z

i
1:t↑1,M

)
]
, (1)

where ςε is the token prediction policy parameterized by ϱ. Intuitively, this objective encourages
the model to assign high probability to motion tokens that correspond to real trajectories, thereby
capturing the joint distribution of multi-agent actions in traffic.

During inference, BMT generates motion tokens autoregressively, sampling one token at a time
conditioned on its previous predictions. We apply nucleus (top-p) sampling to promote behavioral
diversity while remaining faithful to the learned distribution. To mitigate exposure bias, the model
rolls out on its own sampled tokens rather than the ground-truth sequence, ensuring consistency
between training and inference.
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Figure 4: Diverse collision headings generated by Adv-BMT from the same driving log input,
visualized from a third-person perspective.

3.3 Adv-BMT for Safety-critical Interaction

The BMT model serves as the core that captures the distribution of realistic multi-agent motions
in Adv-BMT framework. Building upon this foundation, we develop Adv-BMT, an adversarial
scenario generation framework designed to generate realistic and safety-critical traffic interactions.
The overview of Adv-BMT framework is illustrated in Fig.1. From the input scenario, Adv-BMT
first samples diverse collision states between ego agent and a new adversarial agent (ADV), then
reconstructs complete trajectories via reverse motion predictions. A rule-based reject sampling
mechanism is used for selecting collision initializations.

T = 20 T = 50 T = 80

Ego Agent Adversary Agent Traffic Agent

Figure 5: Diverse collision timings generated by
Adv-BMT from the same driving log input, visual-
ized in a bird’s-eye view.

Diverse Adversarial Initialization. While ex-
isting works select a convenient neighbor agent
and utilize its initial information, Adv-BMT
inserts new agents (ADV) with diverse colli-
sion initializations for different opponent inter-
actions. We visualize an example result in 5.
Formally, we define the collision state as to in-
clude the position, time, velocity, and heading
at the collision step. The collision time can be
varied, sampled from the first second to the last
time step of the ego trajectory length. Similarly,
ADV’s collision headings are randomly sampled.
ADV’s collision position can be calculated from
collision heading and the ego vehicle’s collision
position. Last but not least, collision velocity
is calculated from sampling a offset from ego
vehicle’s speed at collision step.

Multi-agent Adversarial Interaction. A key
advantage of Adv-BMT lies in its ability to gen-

5



erate realistic and flexible multi-agent interactions surrounding the adversarial agent (ADV). Starting
from sampled collision initializations, the ADV is added into the scene together with existing traffic
participants. BMT then performs reverse-time prediction to reconstruct plausible interaction histories
that lead to the designated collision state. To balance realism, controllability, and scene reactivity,
Adv-BMT provides several generation modes with different levels of multi-agent coupling:

1. Adv-BMT with replayed traffic agents: In this mode, traffic agents are teacher-forced
to follow their original recorded trajectories, while only the adversarial agent’s history is
predicted in reverse time. This preserves the original traffic flow and ensures high scene
fidelity. Teacher-forcing prevents unintended deviations (e.g., traffic agents switching lanes
or diverging from the original trajectory) that may occur if the model predicts all agents in
the closed-loop manner. As a result, BMT reconstructs the adversarial agent’s trajectory to
fit into the original scenario.

2. Adv-BMT with closed-loop reverse prediction: This mode removes teacher-forcing and
jointly predicts the trajectories of all agents, including both traffic participants and the
adversarial agent, in a single reverse prediction pass. By allowing all agents to evolve
backward in time simultaneously, the scene develops coherently as a fully interactive
scenario. This setting enables rich multi-agent dynamics and can produce fully synthesized
safety-critical scenarios.

3. Adv-BMT with forward refinement: This hybrid mode first applies teacher-forced reverse
prediction to generate the adversarial agent, then runs an additional forward prediction pass
to enable traffic agents to react to its presence. This introduces interaction and reactivity
without discarding the structure of the original recorded scene, offering a middle ground
between strict replay and fully closed-loop generation.

These complementary modes provide a controllable trade-off between scene realism, interactivity,
and controllability, enabling users to select the most suitable configuration for different evaluation
objectives.

Rule-based Rejection Sampling. We design Adv-BMT to have diverse initializations, which do
not guarantee the realism of the collision outcomes. To address this issue, we implement a rule-based
filtering rejection mechanism for ADV candidates. Specifically, we first measure the driving distance
and average speed of ADV candidates; if it moves too short and mostly wanders at the designated
position waiting for the ego vehicle, then it is considered invalid. Meanwhile, we check the max
curvature (the rate of change for heading): given a candidate ADV trajectory, we compute the
curvature constraint using: φt = !ϱt/!st, where !ϱt is the absolute heading change between time
steps, and !st is the displacement between consecutive positions. Adv-BMT rejects a prediction if
maxt(φt) > φthreshold, where φthreshold = 0.8 is a predefined curvature limit that we found useful. We
enforce a curvature constraint to ensure that the trajectory remains within the predefined threshold,
rejecting ADV candidates that exhibit unrealistically sharp turning behavior. With our straightforward
rule-based rejection sampling mechanism, we are able to maintain realistic collision events between
the ADV and the ego vehicle.

4 Experiments

We first assess the BMT model on its ability to generate realistic and diverse traffic behaviors in
Section 4.1. We then evaluate quality of Adv-BMT scenarios compared to three baseline methods in
Section 4.2. Furthermore, in Section 4.3 we evaluate the utility for the downstream learning task,
and assess whether training a reinforcement learning (RL) planner in Adv-BMT scenarios lead to
improved performance and robustness compared to log-replay traffic flows.

Dataset. All experiments use driving data from the Waymo Open Motion Dataset (WOMD) [4]
with formats managed by ScenarioNet [8]. WOMD contains 10Hz scenarios, each with 1 second of
history and 8 seconds of future trajectories. Each scenario includes up to 128 traffic agents including
vehicles, cyclists, pedestrians along with high-definition maps. To reduce computational cost, we
downsample each scenario to 2Hz, yielding 19 prediction steps. We randomly select 500 scenes
for both open-loop evaluation and RL training. We use 6 prediction modes for each scene during
open-loop evaluations in Section 4.1 and Section 4.2.
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Table 1: We evaluate BMT under three types of prediction tasks in a closed-loop setting for all traffic
agents, without replaying any agents. In the bidirectional mode, forward prediction is performed
based on the reverse prediction results. The number of prediction modes is set to six.

(a) Realism of BMT predictions.

Method SFDEavg SFDEmin SADEavg SADEmin VehCollmin VehCollavg JSDvelocity JSDTTC

Reverse 3.92 2.70 5.53 5.11 0.03 0.05 0.17 0.02
Forward 3.52 2.35 2.39 1.98 0.03 0.05 0.23 0.30
Reverse + Forward 3.29 2.01 2.38 1.74 0.03 0.06 0.22 0.35

(b) Diversity of BMT predictions.

Method SDD FDD ADD

Reverse 8.35 - 3.13
Forward - 10.78 4.40
Reverse + Forward 8.49 12.78 7.00

Metrics. To evaluate the realism of BMT predictions, we adopt standard open-loop prediction
accuracy metrics: Scenario Final Displacement Error (SFDE) and Scenario Average Displacement
Error (SADE). For each, we report results on both the best prediction mode and the average over
all six prediction modes. We also measure the average number of agent collisions to capture
interaction realism. To assess the diversity of generated trajectories, we report Final Displacement
Diversity (FDD), Starting Displacement Diversity (SDD), and Average Displacement Diversity
(ADD), which quantify the spread of predicted positions across all prediction modes. We also
compute the Jensen–Shannon Divergence (JSD) values over velocity, acceleration, and time-to-
collision (TTC) distributions between generated and ground-truth trajectories. JSD measures the
similarity between two probability distributions, with lower values indicating closer alignment
between generated and real-world behaviors.

4.1 Evaluation of BMT Predictions

Results from Table 1a indicates that BMT performs realistic scenario generations in forward, back-
ward, and bidirectional predictions. Reverse predictions perform slightly worse than forward predic-
tions in realism metrics. Compared to single-pass prediction, bidirectional prediction exhibit higher
prediction accuracy. Despite these differences, the overall collision rate remains reasonable and
comparable for all prediction tasks, which indicates that BMT effectively generate realistic traffic
interactions. The results in Table 1b show that bidirectional prediction enhances the diversity of
generated agent behaviors across all displacement diversity metrics. Forward prediction exhibits
higher FDD and ADD scores than reverse prediction. This indicates that predicting future motions
encourages more explorations for variant directions.

4.2 Evaluation of Adv-BMT Scenarios

In Table 2, we additionally use the adversarial attack success rate (i.e., the collision rate between
adversary and the ego), ADV-Traffic Collision Rate (i.e.,collision rates between adversary agents and
traffic agents), and the average Agent Collision (i.e., average traffic agent collision rate) to indicate
interaction realism. Two settings of Adv-BMT outperform baselines in both realism and diversity.
This validates Adv-BMT’s design of collision initialization + reverse predictions, which couldn’t
be achieved by other methods. While Adv-BMT generates highly adversarial behaviors, it also
preserves diversity of traffic interactions compared to baselines. FDD and SDD metrics suggest
that baselines generate nearly the same adversarial trajectories on the given scene. The JSD metrics
suggest Adv-BMT outperforms in realism metrics compared to baselines. BMT model is able to
achieve realistic motion predictions indicted by Waymo Open Sim Agent Challenge metrics [11],
which we add in Table 6 in our appendix. Furthermore, the results for Adv-BMT with filtering
indicate that our rule-based filter does not harm diversity and at the same time enhances the realism
metrics. Table 3 demonstrates the generation speed comparisons among all methods. Our evaluations
validate Adv-BMT as an efficient framework for realistic, diverse, and safety-critical generation.
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Table 2: Diversity and realism of generated adversarial behaviors. We compare Adv-BMT
scenarios with three baseline methods for safety-critical interactions, namely STRIVE [15], CAT [27],
and SEAL [18]. To be consistent with baseline methods in this evaluation only, we force Adv-BMT
to choose nearest neighboring agent and modify its behavior as the predicted adversary.

Method FDD ADD JSDVel JSDAcc JSDTTC Attack Succ. Agent Collmin ADV-Traffic Collmin

CAT 0.00 0.00 0.13 0.16 0.12 0.48 0.10 0.3
SEAL 0.00 0.00 0.18 0.25 0.17 0.55 0.12 0.32
STRIVE 0.01 0.00 0.11 0.22 0.12 0.38 0.09 0.32
BMT_TF 1.22 0.49 0.10 0.17 0.13 1.00 0.13 0.22
BMT_All 1.51 0.63 0.10 0.17 0.08 1.00 0.13 0.19
BMT_TF + Filter 2.32 1.00 0.08 0.12 0.09 1.00 0.13 0.12
BMT_All + Filter 1.97 0.83 0.13 0.14 0.08 1.00 0.12 0.09

Table 3: Generation speeds across methods. Among the four methods, CAT achieves the fastest
generation speed, followed by Adv-BMT with a slightly lower speed. SEAL and STRIVE are
comparatively slower.

Method CAT SEAL STRIVE Adv-BMT

500-avg (seconds) 0.80 2.36 9.53 1.02

Visualization. We simulate Adv-BMT scenarios in MetaDrive [9], rendering in both bird’s-eye
view and third-person perspective. In Fig. 5, Fig. 4, and Fig. 9, we show diverse Adv-BMT adversarial
behaviors in the collision directions on the same ego agent in several real-world traffic flows from
WOMD. Generated adversarial agents follow traffic rules and maintain realistic driving patterns.
Adv-BMT supports diverse adversarial agent types including vehicles, pedestrians, and cyclists, as
shown in Fig. 6. Adv-BMT makes full use of each driving log, which makes Adv-BMT suitable for
AD testing and adversarial training. A visual comparison between Adv-BMT and baseline methods
is shown in Fig. 7. When a baseline fails to select an existing traffic agent that is convenient for a
safety-critical attack, Adv-BMT is able to imagine a new agent at an appropriate position to perform
adversarial attacks on the ego vehicle.

4.3 Adversarial Learning

To validate the value of Adv-BMT scenarios in downstream autonomous driving (AD) tasks, we train
a reinforcement learning (RL) agent within augmented scenarios containing collision interactions
generated by Adv-BMT and baseline methods. To determine the quality of the augmented training
scenarios, we measure both the driving performance and the safety performance of the learned AD
agent compared to learning on the original training set. In our experiment, we conduct two sets
of training: (1) open-loop RL, where the agent is trained on a fixed training set with adversarial
scenarios generated based on ground-truth ego trajectories; and (2) closed-loop RL, where an adaptive
adversarial agent attacks the current ego agent based on its recent rollout trajectory records. The
adaptive adversarial agent’s motion is generated by Adv-BMT or a baseline method. Results are
shown in Table 4 and Table 5.

Setting. The training set contains 500 real-world scenarios randomly selected from the WOMD
training set. We train a Twin Delayed DDPG (TD3) agent for 1 million steps using 8 random seeds
to ensure robustness in MetaDrive [9] (hyperparameters listed in the appendix). We measure the
average reward, average step cost, average route completion rate (Compl.), and average episode cost
(cost sum) for driving performance measurement. To evaluate the impact of adversarial training
using Adv-BMT-generated scenarios, we assess policy performance across two distinct validation
environments: (1) 100 Waymo validation environments, which consist of unmodified real-world
driving scenarios from WOMD validation set, and (2) 100 Adv-BMT environments, which is the
augmented collision scenarios from the 100 validation scenes.

Analysis. Table 4 reports open-loop evaluations comparing RL policies trained on Adv-
BMT–generated scenarios against policies trained on baseline scenario sets. On the WOMD original
validation environments, Adv-BMT–trained agents outperform all baselines across metrics: episode
cost decreases by 10% and collision rate by 8%, while reward and route-completion remain com-
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Table 4: Open-loop RL agent evaluation. Each WOMD scenario is augmented with one collision
scenario, so that the ratio between real-world and safety-critical scenes is 1:1. For each method, we
augment the original dataset into a new training set.

(a) Evaluation in the Waymo validation environments

Training Scenarios Reward ↓ Cost ↔ Completion ↓ Collision ↔ Cost Sum ↔

Waymo [4] 32.03 ± 4.27 0.39 ± 0.07 0.72 ± 0.05 0.14 ± 0.02 1.41 ± 0.35

CAT [27] 30.37 ± 3.89 0.39 ± 0.05 0.71 ± 0.05 0.14 ± 0.02 1.73 ± 0.39

STRIVE [15] 31.30 ± 3.59 0.40 ± 0.04 0.73 ± 0.05 0.13 ± 0.03 1.51 ± 0.40

SEAL [18] 29.94 ± 5.14 0.39 ± 0.05 0.71 ± 0.04 0.12 ± 0.02 1.63 ± 0.44

Adv-BMT 31.47 ± 3.21 0.38 ± 0.03 0.73 ± 0.04 0.11 ± 0.02 1.35 ± 0.40

Adv-BMT (Refined) 33.22 ± 1.83 0.36 ± 0.03 0.74 ± 0.03 0.12 ± 0.02 1.39 ± 0.22

(b) Evaluation in the Adv-BMT validation environments

Training Scenario Reward ↓ Cost ↔ Completion ↓ Collision ↔ Cost Sum ↔

Waymo [4] 37.01 ± 6.16 0.64 ± 0.09 0.60 ± 0.07 0.30 ± 0.02 2.96 ± 0.63

CAT [27] 36.77 ± 4.95 0.62 ± 0.05 0.62 ± 0.05 0.29 ± 0.02 3.09 ± 0.56

STRIVE [15] 37.72 ± 5.38 0.63 ± 0.06 0.63 ± 0.06 0.29 ± 0.04 2.92 ± 0.68

SEAL [18] 35.74 ± 6.36 0.67 ± 0.08 0.60 ± 0.06 0.31 ± 0.01 2.97 ± 0.34

Adv-BMT 37.33 ± 3.57 0.62 ± 0.03 0.63 ± 0.04 0.25 ± 0.05 2.41 ± 0.43

Adv-BMT (Refined) 39.55 ± 2.94 0.59 ± 0.04 0.65 ± 0.02 0.27 ± 0.04 2.74 ± 0.54

Table 5: Closed-loop RL agent evaluation. We use the same augmented training set as in the
open-loop experiment. For the adaptive adversarial learning experiment, we implement an adaptive
generator for Adv-BMT and CAT [27]. We discard the other baseline methods due to their low
generation speeds.

(a) Waymo Validation Environments

Generator Reward ↓ Cost ↔ Completion ↓ Collision ↔ Cost Sum ↔

CAT 32.15 ± 2.89 0.38 ± 0.03 0.74 ± 0.04 0.10 ± 0.00 2.02 ± 0.24

Adv-BMT 33.13 ± 4.11 0.39 ± 0.03 0.74 ± 0.03 0.09 ± 0.00 1.25 ± 0.52

(b) Adv-BMT Environments

Generator Reward ↓ Cost ↔ Completion ↓ Collision ↔ Cost Sum ↔

CAT 39.47 ± 3.88 0.62 ± 0.05 0.63 ± 0.04 0.22 ± 0.02 2.51 ± 0.45

Adv-BMT 40.40 ± 6.39 0.57 ± 0.04 0.63 ± 0.05 0.22 ± 0.04 2.48 ± 0.97

parable to the best baseline. Adding the optional forward refinement (Sec. 3.3) yields additional
gains—reward increases by 6%, episode cost decreases by 5%, and route completion improves
slightly. On safety-critical test environments, Adv-BMT further reduces episode cost by 17% and
collision rate by 14% relative to the best baseline. With forward refinement, we observe further
improvements in driving capability, reflected in higher reward and completion rates. These results
indicate that training on Adv-BMT scenarios exposes agents to a broader distribution of high-risk
interactions, enabling more robust, safety-aware policies. The extra gains from forward refinement
underscore the importance of modeling reactive traffic around emerging incidents, which better
prepares agents for cascading hazards. Motivated by these findings, we next evaluate all methods in a
closed-loop RL setting.

Table 5 reports closed-loop RL results under reactive adversarial traffic generators. Relative to the
corresponding open-loop policy, the closed-loop policy improves across all metrics in both real-world
and safety-critical collision environments, indicating a substantially safer and more robust AD policy.
Compared with the strongest closed-loop baseline (CAT), our method achieves higher reward, lower
collision rate, and a 38% reduction in episode cost. These gains suggest that training with Adv-BMT
scenarios—featuring diverse adversarial behaviors and realistic, traffic-consistent reactions—better
train the agent to anticipate and mitigate high-risk interactions. Learning in closed-loop further
improves performance; by training the agent to respond online to reactive opponents, it becomes
better at anticipating dangerous situations, and staying safe in unfamiliar or rapidly changing traffic
conditions. The results also highlight the importance of the Adv-BMT design, which enables the
generation of realistic and flexible multi-agent interactions with the adversarial agent.
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Figure 6: Adv-BMT can also generate scenarios of pedestrian and cyclist adversarial agents.

SEALInput Adv-BMTSTRIVECAT

Ego Agent Baseline Agent Our Agent Traffic Agent

Figure 7: Baseline method comparisons. We present several examples where Adv-BMT successfully
generates collision interactions in scenarios where all baseline methods fail. Unlike the baselines,
Adv-BMT does not rely on the proximity of neighboring agents to the ego vehicle, enabling more
flexible and diverse adversarial attack strategies.

5 Conclusion

We introduced Adv-BMT, a novel framework for generating diverse safety-critical driving scenarios
with realistic traffic interactions. Built on a Bidirectional Motion Transformer with the ability to
perform bidirectional motion prediction tasks, Adv-BMT is able to design a new adversarial agent
for each real-world scenario. A key advantage of Adv-BMT lies in its ability to generate realistic
and flexible multi-agent interactions surrounding the adversarial agent. Unlike previous frameworks
that select an existing neighboring vehicle and modify the corresponding trajectory for an adversarial
attack, Adv-BMT initializes candidate collisions for a new adversarial agent, reconstructs multi-agent
trajectories via inverse prediction, and optionally applies forward refinement for reactive, traffic-
consistent interactions. Adv-BMT is able to balance realism, controllability, and scene reactivity. Our
evaluations validate the quality of Adv-BMT scenarios in terms of interaction realism and diversity;
furthermore, we demonstrate that learning within the Adv-BMT traffic flow improves AD agents’
safety performance by a clear margin.

Limitations. Adv-BMT relies on long token sequences to represent multi-agent traffic scenes,
which results in high memory and computational demands. Our empirical study focuses on a single
downstream task—reinforcement learning for an autonomous driving agent—so broader applicability
remains to be validated.
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