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Abstract
Understanding causal relations of systems is a fundamental problem in science. The study of causal
discovery aims to infer the underlying causal structure from uncontrolled observational samples.
One major approach is to assume that causal structures follow structural equation models (SEMs),
such as the additive noise model (ANM) and the post-nonlinear (PNL) model, and to identify these
causal structures by estimating the SEMs. Although the PNL model is the most general SEM for
causal discovery, its estimation method has not been well-developed except for the bivariate case.
In this paper, we propose a new causal discovery method based on the multivariate PNL model. We
extend the bivariate method to estimate multi-cause PNL models and combine it with the iterative
sink search scheme used for the ANM. We apply the proposed method to synthetic and real-world
causal discovery problems and show its effectiveness.
Keywords: multivariate causal discovery, structural equation models, post-nonlinear causal model

1. Introduction

Understanding causal structures of systems is a fundamental question in science and has been stud-
ied in various fields such as biology, economics, and social science (Rhein and Strimmer, 2007;
Londei et al., 2006; Morgan and Winship, 2014; Moneta et al., 2013). While conducting random-
ized experiments is the most effective way to identify causal structures, it is often impossible for
ethical, technical or cost reasons (Spirtes and Zhang, 2016). Therefore, it is important to develop
causal discovery methods that infer causal structures from uncontrolled observational data.

Using structural equation models (SEMs) is one major approach in causal discovery. In SEM-
based methods, causal structures are assumed to follow parameterized causal models and inferred
by estimating the parameters from data. An important property of causal SEMs is identifiability
that is a theoretical guarantee that true causal structures can be uniquely identifiable if the joint
distributions of data are known. Constructing flexible identifiable models and then developing their
estimation methods are the main focuses in SEM-based study.

Various identifiable SEMs and their estimation methods have been proposed so far. The linear
non-Gaussian acyclic model (LiNGAM) (Shimizu et al., 2006) is one of the most studied models. In
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LiNGAM, a causal structure is represented as a directed acyclic graph (DAG) and each effect vari-
able is generated as the linear combination of cause variables followed by an additive unobserved
noise that is independent of the causes. There has been proposed an efficient estimation method
named DirectLiNGAM (Shimizu et al., 2011; Hyvärinen and Smith, 2013). While LiNGAM is a
simple and well-studied model, it may suffer from degradation in complex real-world applications
due to the linear assumption. The additive noise model (ANM) is proposed as a more flexible
model that can handle nonlinear causal relations (Hoyer et al., 2009). In ANM, cause variables
are transformed nonlinearly and then added to an unobserved noise independent from the causes.
ANM is proved identifiable except for some trivial cases and an estimation method based on re-
gressions, named regression with subsequent independence test (RESIT), is proposed (Hoyer et al.,
2009; Peters et al., 2014). As a more realistic model, Zhang and Hyvärinen (2010) proposed the
post-nonlinear (PNL) model inspired by real-world data observation processes. In the PNL model,
cause variables are transformed and added to a noise variable in the same manner as ANM and
then transformed again by a nonlinear invertible function. The second transformation represents the
sensor or measurement distortion, which is frequently encountered in practice. Although the PNL
model is one of the most flexible identifiable causal SEMs, which covers ANM and LiNGAM, its
estimation methods are not well-developed except the bivariate case (Zhang and Hyvärinen, 2009;
Zhang et al., 2015; Uemura and Shimizu, 2020; Tu et al., 2021).

Uemura and Shimizu (2020) proposed an estimation method of the bivariate PNL model and
a causal discovery procedure based on it, named autoencoder-based causal discovery for the PNL
model (AbPNL). AbPNL represents the two nonlinearities with neural networks and estimates them
by minimizing two loss terms corresponding to two assumptions of the model: the independence
of the cause and the noise and the invertibility of the second nonlinearity. The losses are defined
as Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005) and a reconstruction loss,
respectively, and minimized directly by a stochastic gradient descent method. Given samples of two
variables, AbPNL estimates the models of the two candidate causal directions and infer the true
direction as the one that fits the model better. While AbPNL is easy to use owing to no assumptions
on neural network structures and the straightforward optimization procedure, it is limited to the
bivariate cases and cannot be applied to multivariate cases unless an exhaustive search is performed,
which is usually infeasible in practice.

In this paper, we propose a new method for multivariate nonlinear causal discovery based on the
PNL model. First, we extend the estimation of the bivariate PNL model of AbPNL to the multi-cause
model with multiple cause variables and a single effect variable. Then, we iterate the multi-cause
model estimation to identify the causal order of the variables in the same manner as the ANM case
in RESIT. Finally, we prune redundant edges of the causal DAG constructed from the causal order
to obtain the true causal structure. We also show the theoretical validity of the proposed procedure
in the multivariate PNL model. We apply the proposed method to synthetic and real-world datasets
and show its effectiveness.

2. Preliminaries

2.1. Multivariate Causal Discovery

In this paper, we address the following multivariate causal discovery problem. Let d variables X :=
{x1, x2, . . . , xd} with a density p(x1, x2, . . . , xd) have causal relations represented as a directed
graph with an adjacency matrix A := [ai,j ]d×d ∈ {0, 1}d×d, where xj is a direct cause of xi if and
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Figure 1: Network structure to estimate the bivariate PNL model in AbPNL. Circles and solid boxes
are variables and neural networks, respectively. Dotted boxes represent loss terms with
involving variables.

only if ai,j = 1. Our goal is to estimate A from observations D := {(x(s)1 , x
(s)
2 , . . . , x

(s)
d )}s=1,...,n

sampled i.i.d. from p(x1, x2, . . . , xd). We assume that the causal graph is a directed acyclic graph
(DAG), i.e. there is no cycle of directed edges on the graph.

2.2. Post-Nonlinear Causal Model

Zhang and Hyvärinen (2010) proposed the post-nonlinear (PNL) causal model taking account of
real-world data generating processes. In the PNL model, variables are generated as follows:

xi =

{
gi(fi(Xpai) + ei) if Xpai ̸= ∅,
ei otherwise,

(i = 1, . . . d) (1)

whereXpai is a set of direct cause variables, or parents, of xi and ei is an unobserved noise variable.
The inner function fi : R|Xpai | → R represents nonlinear mixture of the causes and the outer one
gi : R → R represents nonlinear distortion of sensors that often observed in real-world situations.
The noises are independent of each other, ei ⊥ ej (∀i ̸= j), and thus, a noise is independent of
each of the corresponding causes, ei ⊥ xj ∈ Xpai . The distortion gi is assumed to be invertible.
The PNL model is identifiable except for some special combinations of the functions and the noise
distributions (Zhang and Hyvärinen, 2009; Peters et al., 2011, 2014). The PNL model is known as
the most general identifiable causal model and is equivalent to LiNGAM when f is linear and g is
the identity and ANM when g is the identity.

2.3. Autoencoder-based causal discovery for PNL model (AbPNL)

Uemura and Shimizu (2020) proposed a bivariate causal discovery method named AbPNL. AbPNL
assumes that a causal relation follows the bivariate PNL model. Given two variables (x1, x2),
AbPNL estimates two models corresponding to two candidate causal directions, x1 → x2 and
x1 ← x2, and infers that the one with the better model fit is the correct direction based on the
identifiability of the model.

In the estimation process of a model, AbPNL uses neural networks to represent the functions
and trains them by minimizing a loss consisting of two terms corresponding to two assumptions of
the model: the independence between the cause and the noise and the invertibility of the distortion.
Suppose two variables {x, y} have the causal direction x → y, and consider the estimation of the
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bivariate PNL model,
y = g(f(x) + e). (2)

Figure 1 shows the network structure for the estimation. By the invertibility of g, the noise in (2)
can be written as

e = g−1(y)− f(x). (3)

AbPNL uses neural networks f̂ and ĥ for f and g−1 in (3), respectively. The first loss term encodes
the independence between x and e, which is measured by the empirical estimator of Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005). Let k and l be Gaussian kernel functions for
x and e, respectively, and {(x(s), y(s))}s=1,...m be the given samples, the loss is defined as

L1(θ, ϕ) := HSICb({(x(s), e(s))}s=1,...,m) :=
1

m2
trace(KHLH), (4)

where e(s) := ĥ(y(s);ϕ) − f̂(x(s); θ), K := [k(x(s1), x(s2))]m×m and L := [l(e(s1), e(s2))]m×m

are Gram matrices, H := I − m−111T, and 1 is an m-dimensional vector of ones. HSIC takes
a non-negative value and zero if and only if two variables are independent. The second loss term
encodes the invertibility of g. By representing g with a neural network ĝ as well as g−1, the second
loss term is defined as the reconstruction error of y,

L2(ϕ, ψ) :=
1

m

m∑
s=1

∣∣∣y(s) − ỹ(s)∣∣∣2 , (5)

where ỹ(s) := ĝ(ĥ(y(s);ϕ);ψ) is a reconstructed sample of y(s). The final loss function is defined
as

L(θ, ϕ, ψ) := (1− λ)L1(θ, ϕ) + λL2(ϕ, ψ), (6)

where λ ∈ (0, 1) is a balancing weight.

3. Proposed Method

In this section, we propose a new multivariate nonlinear causal discovery method based on the PNL
model. Our basic idea is to extend the estimation method of the bivariate PNL model in AbPNL
to the multi-cause model and estimate the multivariate model by following the principle for the
multivariate ANM used in RESIT (Peters et al., 2014).

In the following sections, we first develop the estimation method of the multi-cause PNL model
that has multiple causes and a single effect by modifying the bivariate one in AbPNL. Then, we
introduce the procedure to identify the causal order of variables by iterating multi-cause estimations
and the theoretical validity. Finally, we describe the pruning method to construct a causal graph
from the causal order.

3.1. Estimation of the multi-cause PNL model

We extend the bivariate estimation procedure in AbPNL described in Section 2.3 to the multi-cause
PNL model defined as

y = g(f(X) + e), (7)
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Algorithm 1: IdentifyCausalOrder
input : Samples of d variables X = {x1, . . . , xd}
output : Causal order π
R← {1, . . . , d}, π ← []
repeat

for j ∈ R do
Estimate (7) with causes {xi}i∈R\{j} and effect xj .
qj ← degree of model fit

end
j∗ ← argmaxj qj
π ← [j∗, π]
R← R \ {j∗}

until |R| = 1
π ← [R(1), π]

where X is a set of causes, y is an effect, and e is an unobserved noise independent of ∀x ∈ X . The
difference from the bivariate model in (2) is the number of causes. Therefore, we can use most parts
of the bivariate algorithm except the function f and the first loss term L1. We deal with the former
simply by increasing the input dimension of the network f̂ to |X|. For the latter, the loss should
quantify the degree of dependence between the noise and each cause. To achieve this, we define the
multi-independence loss term as

L1(θ, ϕ) := max
x∈X

HSICb({x(s), e(s)}). (8)

Although other aggregation schemes such as mean and median could be used, we employ the max-
imum to make all HSIC values decrease evenly. Note that our modification is the generalization of
the original bivariate estimation, which is in the case of |X| = 1.

3.2. Identification of causal order

To identify the causal order of variables, we follow the iterative procedure proposed by Peters
et al. (2014). While the procedure is introduced for the multivariate ANM, it is also valid on the
multivariate PNL model by the following theorem.

Theorem 1 Suppose variables X follow a multivariate PNL model on DAG G. Then there exists a
multi-cause PNL model with an effect x ∈ X and causes X \ {x} if and only if x is a sink on G.

The “if” part is obvious from the definition. The converse can be easily verified in the same
manner as the ANM case (see Peters et al., 2014, A. 15)1. Based on the theorem, we can find a sink
variable on the true causal graph with estimations of multi-cause PNL models.

Algorithm 1 shows the pseudocode for identifying the causal order. Given d variables X , we
first estimate d possible multi-cause models with (d − 1) causes. Then, we select the effect of the
model that satisfies the PNL assumptions the best as a sink variable and exclude it from the variable
set. By iterating these steps, we identify the causal order.

1. For more detailed proof, see Appendix A.
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Algorithm 2: PruneRedundantEdges
input : Samples of d variables X = {x1, . . . , xd} and causal order π
output : Adjacency matrix A = {ai,j}d×d ∈ {0, 1}d×d

A← O
for k ∈ {2, . . . , d} do

i← π(k), C ← π(1 : k − 1)
if |C| ≥ 2 then

for j′ ∈ C do
Estimate (7) with causes {xj}j∈C\{j′} and effect xi.
if the model satisfy the assumptions then

C ← C \ {j′} /* Remove the edge xj′ → xi. */
end

end
else

if xi is independent of xC(1) then
C ← ∅ /* Remove the edge xC(1) → xi. */

end
end
for j ∈ C do

ai,j ← 1
end

end

We use residual independence loss values L1 for evaluating the goodness of model fit. To
reduce the effect of the overfitting, we calculate the values from test samples that are not used
for the model estimation. Although the reconstruction loss L2 should also be considered for fair
evaluation, it showed a small enough value in almost all the preliminary experiments. Therefore,
we pay attention to the independence loss, which is more difficult to minimize2.

3.3. Pruning of redundant edges

To remove redundant edges on a DAG constructed from the identified causal order, we apply the
greedy pruning procedure (Peters et al., 2014). Algorithm 2 shows the pseudocode. The overall
flow is the same except that we modify the method of determining to prune to suit the PNL model.

Considering the causal DAG in which each variable is a direct cause of variables with later
causal order, we greedily remove unnecessary edges on each of its multi-cause substructures. The
greedy pruning procedure is done as follows. On a multi-cause substructure, we search for a cause
xj′ such that the other causes {xj}j∈C\{j′} and the effect xi still follow the PNL model if the cause
is removed. If such a cause exists, we remove the corresponding edge and repeat the procedure until
all the causes are checked.

2. Nevertheless, there is no theoretical guarantee that L2 always becomes small enough. Thus, in the following exper-
iments, we estimate one model multiple times and take the median over results with small enough values of L2. It
also takes effect on stabilizing results of stochastic optimization.
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Figure 2: Examples of randomly generated DAGs and samples (upper: linear, lower: nonlinear).

When there are one or more causes, we evaluate the goodness of model fit by checking whether
the independence assumption holds, as in Section 3.2. However, in contrast to the relative evaluation
in the sink identification, we use absolute criteria. It is because if a model y = g(f(x)+e) holds, the
model with another variable y = g′(f ′(x, z) + e′) also holds. It may cause the failure in removing
z in practice if we use the relative measure such as a difference of loss values. Therefore, we use
the independence test of HSIC (Gretton et al., 2008) between the estimated noise and the excluded
cause. When there is no cause, we use the test between the effect and the excluded cause.

4. Experiments

In this section, we conduct numerical experiments and show the effectiveness of the proposed
method on synthetic and real-world multivariate causal discovery problems.

4.1. Synthetic data

To investigate the empirical performance of the proposed method, we generated synthetic prob-
lems with the ground truths and evaluated the performance of the proposed method. We randomly
generated causal structures with linear and nonlinear causal relations. For each problem, we first
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Linear Problem Nonlinear Problem
dedit Nrev dedit Nrev

Proposed 0.81± 1.20 0.19± 0.51 2.16± 1.55 0.59± 0.70
RESIT(Linear) 0.23± 0.47 0.01± 0.10 3.80± 1.91 1.11± 0.96
RESIT(GAM) 0.24± 0.47 0.01± 0.10 3.21± 1.90 0.78± 0.87
RESIT(GP) 0.26± 0.52 0.01± 0.10 3.22± 1.87 0.77± 0.86
DirectLiNGAM 0.21± 0.43 0.00± 0.00 4.44± 2.64 1.52± 1.37

Table 1: Results of synthetic problems. Numbers are the averages and the standard deviations of
the edit distance dedit and the number of reversed edgesNrev over 100 synthetic problems.

constructed a causal DAG with d nodes by generating each edge with the probability3 of 2/(d− 1),
and allocated the variables for the nodes randomly. We used d = 4 in this experiment. Then, for
a linear problem, we assigned linear causal relations, xi =

∑
xj∈Xpai

βijxj + ei with uniformly
chosen coefficients βij ∼ U(−1, 1). For a nonlinear problem, we generated the PNL model in (1),
where fi and gi were sampled as the weighted sums of Gaussian processes and sigmoid functions,
respectively. We adjusted scales of variables so that signal-to-noise ratios become one to avoid
extreme cases. We generated 100 linear and 100 nonlinear causal structures and, on each struc-
ture, 2000 samples from uniform noises with the zero mean and the unit deviation. Figure 2 shows
examples of linear and nonlinear problems with their ground truth DAGs.

We followed the settings used in Uemura and Shimizu (2020) including the hyperparameters and
structures of neural networks. We used a half of samples for the model estimation and the rest for
the evaluation of model fit. In the identification of a sink, we estimated each model for t = 9 times
and used the median values of L2 of test samples over trials that achieve L1 < 10−3. Similarly, in
the pruning, we remove an edge if L1 < 10−3 achieved and the independence test (p = 5%) passed
in at least one estimation out of t. As compared methods, we used DirectLiNGAM (Shimizu et al.,
2011) and RESIT (Peters et al., 2014) with linear, GAM and GP regressions.

Table 1 shows the results. As performance measures, we used the edit distance and the number
of reversed edges,

dedit(A,B) :=
∑
i,j

|ai,j − bi,j |, (9)

Nrev(A,B) :=
∑
i,j

ai,j × bj,i, (10)

where A := [ai,j ]d×d ∈ {0, 1}d×d and B := [bi,j ]d×d ∈ {0, 1}d×d are an estimated adjacency
matrix and its ground truth, respectively. While dedit represents the performance of the overall
estimation, Nrev measures that of the causal order identification more directly.

On the linear problems, all methods show good performance with dedit < 1. Intuitively, Di-
rectLiNGAM achieved the best and the performance decreases as the assumed models become
more complex. Although the proposed method took the largest edit distance, the difference from
the best is 0.6, which we think is still practically good enough. From the value of Nrev, we can find
that RESIT and DirectLiNGAM estimated correct causal orders and their misestimation is mainly

3. Under the probability, the expected number of edges on a DAG is d.
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sim1 sim2
dedit Nrev dedit Nrev

Proposed 0 0 3 1
RESIT(GAM) 7 1 15 2
DirectLiNGAM 3 0 6 0

Table 2: Results of fMRI simulation data. Numbers are the edit distance dedit and the number of
reversed edges Nrev on sim1 and sim2 datasets.

due to the pruning process. On the other hand, the proposed method failed in estimating the causal
order on some problems than other methods.

On the nonlinear problems, the result shows the opposite trend. DirectLiNGAM and RESIT
with the linear regression deteriorated because of the violation of their linear assumption. By virtue
of the nonlinearity, RESITs with GAM and GP regression improved the performance. The proposed
method improved the performance of DirectLiNGAM by 2.28 and RESIT by 1.05 in terms of the
edit distance. Considering that the expected number of edges in each problem is d = 4, we conclude
that the improvement is significant.

4.2. fMRI simulation data

To evaluate the proposed method in a more realistic scenario, we applied it to simulated fMRI data
(Smith et al., 2011). We used sim1 and sim2 datasets with 5 and 10 variables, respectively. Each
dataset consists of 50 time series and each series has 200 data points, which results in 10000 data
points in total. We used randomly chosen 5000 points and used 1000 as test samples in the proposed
method.

Table 2 and Figure 3 show the results. For RESIT, we only show the result of the GAM regres-
sion that outperformed the others. While all the three methods are comparable in terms of Nrev, the
proposed method showed the best performance in dedit. These facts and the estimated DAGs in the
figure suggest that the proposed method works correctly not only in the causal order identification
but also in the pruning procedure.

4.3. General Social Survey data

Finally, we applied the proposed method to General Social Survey data used in Shimizu et al. (2011)
and analyzed the result on a real-world problem. This sociological data consists of 1380 samples
and each sample has 6 variables: Father’s education, Father’s occupation, Number of siblings, Son’s
education, Son’s occupation and Son’s income. It is challenging to estimate their causal relations
because they may violate the model assumption such as the independence of noises. To obtain re-
sults with higher reliability, we estimated a DAG 10 times with bootstrapping (Efron and Tibshirani,
1993) and output the edges that appeared in at least half of all estimations. We set the number of
bootstrap samples to 600.

Figure 4 shows the estimated DAG. Although the true causal structure is unknowable, the pro-
posed method estimated the direction from father to son, which is the only undeniable true direction.
Moreover, the direction from son’s occupation to son’s income seems to be reasonable. On the other
hand, there are directions contrary to our intuition such as the one from occupation to education. In
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Figure 3: Estimated DAGs from fMRI simulation data (upper: sim1, lower: sim2). Solid and
dashed lines are estimated edges and ground truths, respectively.
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Figure 4: Estimated DAG from GSS data.

the case where the model assumptions are violated, a more detailed analysis of the proposed method
is necessary to ensure robustness, which we think is important future work.

5. Discussion

In this section, we discuss the properties of the proposed method, specifically the computational
complexity and the stabilization.

In the proposed method, we use neural networks to represent models and estimate them by op-
timizing their parameters using stochastic gradient descent methods. Since each neural network
represents a simple scalar function, it is unnecessary to be a complex design. Therefore, the train-
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ing time is much shorter than the general deep models such as image recognition and language
processing.

On the other hand, the number of estimations grows exponentially as the number of variables
increases. Given n variables, the identification of causal order requires n − 1 iterations. In each
iteration, we compare k models for the remaining k variables. Therefore, a total of n + (n −
1) + · · · + 2 = n(n − 1)/2 − 1 model estimations are required, which is the same as RESIT
and DirectLiNGAM. Additionally, the proposed method trains one model several times to stabilize
results. Consequently, the total number of training becomes t(n(n−1)/2−1), where t is the number
of training trials per one model. Similar to the identification of causal order, the pruning procedure
also requires an exponential number of estimations. For the worst case, where all the edges will be
pruned, a total of t(k(k− 1)/2− 1) estimations are required for each multi-cause substructure with
k cause variables4. The number of estimations increases as the ground truth DAG becomes sparse.

One effective approach to alleviate the computational time is parallelization. Since all the es-
timations in one iteration of the identification of causal order can be performed separately, we can
reduce the time by parallelizing them. If enough computational resources are available, we can
identify the causal order with n − 1 serial iterations. Similarly, the time of the pruning can be
reduced by the same manner. In the experiment in Section 4, we used this parallelization. We ad-
ditionally applied the proposed method to synthetic problems with n = 15 and confirmed that it
requires roughly one day for one problem on a server capable of (maximum) 40-threading5.

Estimating one model multiple times in the proposed method has a high impact on the total
computational time. Therefore, we think improving the stability is an important issue that should
be addressed not only for improving the performance of causal discovery but also for reducing the
computational time. One of the typical approaches is to change the optimizing algorithm, while
there is a trade-off between stability and speed. Another possible option is to add a regularization
term to the loss. To use this idea, we need to consider carefully the impact of changing the loss on
using its value when comparing models in the sink identification.

6. Conclusion

In this paper, we proposed a new multivariate nonlinear causal discovery method based on the PNL
model. We extended the bivariate estimation method to the multi-cause one and combined it with
the iterative schema for identifying the causal order. We then applied the greedy pruning method
to construct a resulting DAG. We showed the effectiveness of the proposed method with synthetic
and simulated fMRI data and analyzed the result on the real-world sociological data. We discussed
the computational cost of the proposed method and suggested parallelization as one alleviation. A
more fundamental improvement of stability is an important issue that needs to be addressed in the
future. As suggested in Section 4.3, a comprehensive analysis of the impact of model violation is
also necessary to ensure its performance on real-world applications.
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Appendix A. Proof of Theorem 1

In the following, we show detailed sketch of the proof of Theorem 1. For more strict proof, see
(Peters et al., 2014).

For “if” part, let x be a sink variable and X ′ be the other variables. From the definition of
the multivariate PNL model (1), there exists a PNL model such that x = g(f(X ′) + e), where
e ⊥ x′ ∈ X ′. Note that non-parent variables of x are ignored in terms of the function f .

For “only if” part, suppose there exists a PNL model with an effect y that is not a sink on
the true DAG G. Since y is not a sink, y has children on G. Let z be a sink on the subgraph
consisting of all children of y and D be descendants of z. Since D does not have children of y,
D ⊥ y | S ∪ {z} holds, where S = X \ {y, z} ∪ D. Therefore, from the assumption, there
exists a PNL model y = g′(f ′(S, z) + e′). On the other hand, since z is a child of y, there exists a
PNL model z = g(f(S, y) + e). Given the situation in which S was observed, this contradicts the
identifiability of the bivariate PNL model.
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Appendix B. Additional experiments on 15 variables

To investigate the applicability of the proposed method on a larger problem, we applied it to syn-
thetic problems used in Section 4.1 with n = 15. We used the same parameter settings of both the
problem generation and the proposed method, which are designed and tuned based on smaller prob-
lems. We conducted the experiments on Intel Xeon E5-2690 v4 2.60GHz servers with a maximum
of 40 parallelizations. The application to one problem was finished in about one day. Table 3 shows
the average results. While DirectLiNGAM outperforms the others on linear problems, the proposed
method shows better performance on nonlinear problems. Note that since the parameters of the
proposed method were tuned on smaller problems, we need additional experiments and analysis for
a more comprehensive evaluation.
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