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Abstract

Pre-trained language models (PLMs), such as001
BERT and GPT, have revolutionized the field002
of NLP, not only in the general domain but also003
in the biomedical domain. Most prior efforts in004
building biomedical PLMs have resorted sim-005
ply to domain adaptation and focused mainly006
on English. In this work we introduce eHealth,007
a Chinese biomedical PLM built from scratch008
with a new pre-training framework. This new009
framework pre-trains eHealth as a discrimina-010
tor through both token- and sequence-level dis-011
crimination. The former is to detect input to-012
kens corrupted by a generator and recover their013
original identities from plausible candidates,014
while the latter is to further distinguish corrup-015
tions of a same original sequence from those of016
others. As such, eHealth can learn language se-017
mantics at both token and sequence levels. Ex-018
tensive experiments on 11 Chinese biomedical019
language understanding tasks of various forms020
verify the effectiveness and superiority of our021
approach. We release the pre-trained model to022
the public,1 and will also release the code later.023

1 Introduction024

Pre-trained language models (PLMs) such as BERT025

(Devlin et al., 2019) and its variants (Yang et al.,026

2019; Liu et al., 2019) have revolutionized the field027

of NLP, establishing new state-of-the-art on con-028

ventional language understanding and generation029

tasks. Following the great success in the general do-030

main, researchers have started to investigate build-031

ing domain-specific PLMs in highly specialized032

domains, e.g., science (Beltagy et al., 2019), law033

(Chalkidis et al., 2020), or finance (Liu et al., 2020).034

Biomedicine and healthcare, as a field with large,035

rapidly growing volume of free text and continually036

increasing demand for text mining, has received037

massive attention and achieved rapid progress.038

Biomedical PLMs are typically built by adapting039

a general-domain PLM to the biomedical domain040
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with (almost) the same model architecture and train- 041

ing objectives, as exemplified by BioBERT (Lee 042

et al., 2020), PubMedBERT (Gu et al., 2020), and 043

BioELECTRA (Kanakarajan et al., 2021). This 044

domain adaptation is achieved via either continual 045

pre-training on in-domain text (Gururangan et al., 046

2020), or pre-training from scratch further with an 047

in-domain vocabulary (Gu et al., 2020; Lewis et al., 048

2020b), which has shown to be particularly useful 049

for English biomedical text understanding. 050

As for the Chinese biomedical field, MC-BERT 051

(Zhang et al., 2020) and PCL-MedBERT are two 052

initial attempts that continually pre-train a general- 053

domain BERT on in-domain text. But unfortunately 054

they fail to achieve satisfactory performance com- 055

pared with their general-domain rivals (Zhang et al., 056

2021a). SMedBERT (Zhang et al., 2021b) and EM- 057

BERT (Cai et al., 2021) also continually pre-train 058

from the general-domain BERT, but in knowledge- 059

enhanced fashions. These two models rely on ex- 060

ternal (and often private) knowledge and have not 061

been released to the public yet. So far there is still a 062

lack of publicly available, high-quality biomedical 063

PLMs in Chinese. 064

In this paper we present eHealth, a Chinese lan- 065

guage representation model pre-trained over large- 066

scale biomedical text corpora. Unlike most previ- 067

ous studies that simply resort to direct domain adap- 068

tation, we build eHealth with a new self-supervised 069

learning framework, which, similar to ELECTRA 070

(Clark et al., 2020), consists of a discriminator and 071

a generator. The generator is to produce corrupted 072

input, and the discriminator, as the final target en- 073

coder, is trained via multi-level text discrimination. 074

Specifically, we employ (i) token-level discrimina- 075

tion that discriminates corrupted tokens from origi- 076

nal ones, and (ii) sequence-level discrimination that 077

further discriminates corruptions of a same original 078

sequence from those of others in a contrastive learn- 079

ing fashion (Chen et al., 2020). This multi-level 080

discrimination enables eHealth to learn language 081
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semantics at both token and sequence levels.082

As a new Chinese biomedical PLM, eHealth has083

two distinguishing features: built-from-scratch and084

easy-to-deploy. By the former we mean that unlike085

all prior arts that start pre-training from a general-086

domain Chinese BERT and directly use the asso-087

ciated vocabulary, eHealth is pre-trained entirely088

from scratch with a newly built in-domain vocabu-089

lary. This vocabulary, as we will show later in our090

experiments, can better tokenize biomedical text091

and may lead to better understanding of such text.092

And by the latter we mean that eHealth relies solely093

on the text itself, requiring no additional retrieval,094

linking, or encoding of relevant knowledge as those095

knowledge-enhanced models do, and thereby could096

be applied rather easily during fine-tuning.097

We evaluate eHealth on 11 diversified Chinese098

biomedical language understanding tasks, includ-099

ing (i) the 8 tasks of text classification and match-100

ing, medical information extraction, and medical101

term normalization from the CBLUE benchmark102

(Zhang et al., 2021a), and (ii) another 3 medical103

question answering tasks cMedQNLI (Zhang et al.,104

2020), webMedQA (He et al., 2019), and NLPEC105

(Li et al., 2020). Experimental results reveal that106

eHealth, as a standard base-sized model pre-trained107

from scratch on biomedical corpora, consistently108

outperforms previous state-of-the-art PLMs in al-109

most all cases, no matter those from the general110

domain or biomedical domain, and no matter those111

base-sized or even large-sized.112

The main contributions of this work are two-fold.113

Firstly, we propose a new Chinese biomedical PLM114

and release the pre-trained model to the public.115

This new model shows superior ability in Chinese116

biomedical text understanding and is easy to deploy.117

Secondly, we devise a new algorithm for language118

model pre-training and verify its effectiveness in119

the biomedical domain. This pre-training algorithm120

is quite generic and may be readily adapted to other121

domains beyond biomedicine. We leave such ex-122

ploration open to future work.123

2 Background124

Before diving into the details of our approach, we125

briefly discuss related studies on building PLMs in126

general and biomedical domains.127

General Domain PLMs. Recent years have seen128

remarkable success of PLMs in the field of NLP.129

These PLMs are typically built with self-supervised130

learning over massive unlabeled text in the general131

domain, e.g., Wikipedia, newswire, or Web articles 132

(Radford et al., 2018). Masked language modeling 133

(MLM), which trains a model to recover the identi- 134

ties of a small subset of masked-out tokens (typi- 135

cally 15%), is the most prevailing self-supervised 136

objective, first introduced in BERT (Devlin et al., 137

2019) and then widely adopted by follow-up stud- 138

ies (Liu et al., 2019; Lan et al., 2020; Joshi et al., 139

2020; Sun et al., 2020). Despite their effectiveness 140

and popularity, MLM-based approaches can only 141

learn from those 15% masked-out tokens per input, 142

and therefore incur high compute costs. 143

To address this low efficiency issue, ELECTRA 144

(Clark et al., 2020) uses a new pre-training frame- 145

work. Specifically, it corrupts an input sequence by 146

replacing some of the tokens with plausible alter- 147

natives sampled from an auxiliary generator, and 148

trains a discriminator to predict for each token in 149

that sequence whether it is original or replaced, i.e., 150

replaced token detection (RTD). As the discrimina- 151

tor can learn from all input tokens rather than just 152

15% of them, ELECTRA enjoys better efficiency 153

and accelerates training. 154

While achieving empirical success, there are con- 155

cerns about whether the over-simplified RTD task 156

of ELECTRA, as a binary classification problem, is 157

informative enough for language modeling (Aroca- 158

Ouellette and Rudzicz, 2020). Xu et al. (2020) and 159

Shen et al. (2021) thus proposed training the model 160

via a generalization of RTD while a simplification 161

of MLM, by recovering for each token its origi- 162

nal identity from a few plausible candidates, rather 163

than from the whole vocabulary. 164

Another limitation of ELECTRA is that it is pre- 165

trained solely at the token level but lacks semantics 166

at the sequence level. Incorporating sequence level 167

signals, e.g., next sentence prediction (Devlin et al., 168

2019), sentence order prediction (Lan et al., 2020), 169

and sentence contrastive learning (Fang et al., 2020; 170

Meng et al., 2021), has been widely accepted in the 171

community and shown to be beneficial in specific 172

tasks (Lewis et al., 2020a; Guu et al., 2020). 173

In this paper, to build a Chinese biomedical PLM, 174

we employ the ELECTRA framework which favors 175

the efficiency of pre-training. Within this frame- 176

work, we strengthen the oversimplified RTD task 177

and introduce sequence-level signals, which further 178

improves the quality of pre-training. 179

Biomedical PLMs. Continual pre-training is per- 180

haps the most straightforward way to build biomed- 181

ical PLMs, in which the model weights are initial- 182
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ized from a well-trained general-domain model and183

the same vocabulary is used (Alsentzer et al., 2019;184

Lee et al., 2020). Also, there are findings showing185

that pre-training from scratch using domain spe-186

cific data along with domain specific vocabulary187

would bring further improvements, particularly in188

English (Gu et al., 2020; Lewis et al., 2020b). Early189

attempts focused on adapting BERT, while recent190

studies have switched to its modern variants like191

RoBERTa, ALBERT, and ELECTRA (Kanakara-192

jan et al., 2021; Alrowili and Shanker, 2021).193

While great efforts have been made to build En-194

glish biomedical PLMs, there is only a few studies195

discussing building biomedical PLMs in Chinese,196

e.g., MC-BERT (Zhang et al., 2020), SMedBERT197

(Zhang et al., 2021b), and EMBERT (Cai et al.,198

2021), all resumed from a general-domain BERT,199

with the latter two further in knowledge-enhanced200

fashions.2 Models like this typically require extra201

knowledge and consequently the retrieval, linking,202

and encoding of such knowledge. They are not that203

easy to be applied to downstream tasks.204

3 Methodology205

This section presents eHealth, a Chinese language206

model pre-trained from biomedical text. It in gen-207

eral follows the generator-discriminator framework208

of ELECTRA, where the generator G is introduced209

to construct pre-training signals and the discrimina-210

tor D is used as the final target encoder. But unlike211

ELECTRA that merely adopts a token-level binary212

classification to train the discriminator, we train it213

with (i) a more informative token-level discrimina-214

tion, and (ii) another sequence-level discrimination.215

The overview of eHealth is illustrated in Figure 1.216

3.1 Generator217

The generatorG is a Transformer encoder (Vaswani218

et al., 2017) trained by masked language modeling219

(MLM). Given an input sequence x=[x1, · · · , xn],220

it first selects a random set of positions to mask221

out and replaces tokens at these positions with a222

special symbol [MASK].3 This masked sequence,223

denoted as xM , is then passed into the Transformer224

encoder to produce contextualized representations225

hG(x
M ), and thereafter a softmax layer to predict226

2Actually there are two versions of EMBERT, one initial-
ized with BERT and the other with MC-BERT, which is also
resumed from BERT.

3Typically 15% of the tokens are masked out, among which
80% are replaced with [MASK], 10% replaced with a random
token, and 10% kept unchanged.

Generator

Discriminator

[CLS] A _ C _ E F

[CLS] A B C D E F

{B, B', B''} {D, D', D''}

O O O R O O

[CLS] A B _ D _ F

Generator 

Discriminator

[CLS] A B C D E F

{C, C', C''} {E, E', E''}

O O R O R O

postive

+ select C

+ select E

sampling sampling

Original input: ABCDEF

+ select D

RTD 
MTS

CSP O: original
R: replaced

Figure 1: Overview of eHealth. Each input sequence is
corrupted twice independently by the generator. These
two corruptions are fed into the discriminator for re-
placed token detection (RTD) and multi-token selection
(MTS), i.e., token-level discrimination. And they also
form a positive pair for contrastive sequence prediction
(CSP), i.e., sequence-level discrimination.

the original identities of those masked-out tokens: 227

pG(xt|xM ) =
exp

(
e(xt)

ThG(x
M )t

)∑
x′∈V exp

(
e(x′)ThG(xM )t

) . (1) 228

Here, pG(xt|xM ) is the probability that G predicts 229

token xt appears at the t-th masked position in xM , 230

hG(x
M )t the contextualized representation for that 231

position, e(·) the embedding lookup operation on 232

each token, and V the vocabulary of all tokens. The 233

corresponding loss function is: 234

LMLM(x,xM ;G) =
∑

t:xM
t =[MASK]

− log pG(xt|xM ), (2) 235

where the summation is taken only over the masked 236

positions. The generator is used to construct pre- 237

training signals for the discriminator, and will be 238

discarded after pre-training. 239

3.2 Discriminator 240

The discriminator D, as our final target encoder, is 241

also a Transformer architecture. It takes as input 242

corrupted sequences constructed by the generator, 243

and is trained through two-level text discrimination, 244

i.e., token-level and sequence-level, so as to encode 245

language semantics at both levels. 246

Token-Level Discrimination. We consider two 247

token-level tasks: replaced token detection (RTD) 248

and multi-token selection (MTS). RTD is the stan- 249

dard pre-training task of ELECTRA, which detects 250

replaced tokens in a corrupted sequence, and MTS 251

further selects original identities for those replaced 252

tokens. Specifically, given input sequence x and 253

its masked version xM , for each masked position t, 254
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we sample a token from the generator’s prediction255

x̂t ∼ pG(xt|xM ) (cf. Eq. (1)), replace the original256

token xt with x̂t, and create a corrupted sequence257

xR. We also create a set of candidate tokens, de-258

noted as St, for each masked position t, by drawing259

k non-original tokens from pG(xt|xM ) along with260

the original token xt. The discriminator D encodes261

the corrupted sequence xR and produces contextu-262

alized representations hD(xR).263

RTD learns to discriminate whether each token264

in xR is original or replaced, i.e., coming from the265

true data distribution or the generator distribution.266

It uses a sigmoid layer on top of hD(xR) to perform267

this binary classification, where the probability that268

xRt matches the original token xt is determined as:269

270

pD(xRt = xt) =
1

1 + exp(−wThD(xR)t)
, (3)271

and the corresponding loss function is:272

LRTD(x,x
R;D)=

n∑
t=1

[
−1(xRt =xt) log pD(xRt =xt)273

−1(xRt 6=xt) log(1− pD(xRt =xt))
]
. (4)274

As merely a binary classification task, RTD might275

not be informative enough for language modeling.276

MTS strengthens RTD by training the discrimi-277

nator to further recover original identities of those278

replaced tokens. For each position t where the to-279

ken is replaced, i.e., xRt 6= xt, MTS corrects the280

token and recovers its original identity from candi-281

date set St. The probability of picking the original282

identity xt out of St for the correction is:283

pD(xt|xR, St) =
exp

(
e(xt)

ThD(xR)t
)∑

x′∈St
exp

(
e(x′)ThD(xR)t

) , (5)284

where e(·) is again the embedding lookup opera-285

tion. The loss function is defined as:286

LMTS(x,x
R,S;D) =

∑
t:xR

t 6=xt

− log pD(xt|xR, St), (6)287

where S = {St}t:xR
t 6=xt

is a collection of candidate288

sets at all positions with replaced tokens, and the289

summation is taken only over these positions. MTS290

is essentially a (k+1)-class classification problem.291

It is more challenging than RTD and hence pushes292

the discriminator to learn representations that en-293

code richer semantic information (Xu et al., 2020;294

Shen et al., 2021).295

Sequence-Level Discrimination. Besides token-296

level tasks, we consider a sequence-level task in ad-297

dition, i.e., contrastive sequence prediction (CSP)298

which learns to discriminate corruptions of a single 299

original sequence from those of the others. CSP 300

employs a classic contrastive learning framework 301

(Chen et al., 2020). Specifically, for each original 302

input sequence we create two corrupted versions, 303

each by independently picking some random posi- 304

tions to mask out and filling the masked positions 305

with samples from the generator, just like how we 306

do in token-level discrimination as described above. 307

The two corruptions of a same original sequence x, 308

denoted as xR
i and xR

j , are taken as a positive pair, 309

and corruptions of other sequences within the same 310

minibatch as x are regarded as negative examples, 311

the set of which is denoted as N(x). The CSP task 312

is then to identify xR
j in N(x) for a given xR

i , and 313

the contrastive loss is accordingly defined as: 314

LCSP(x,x
R
i ,x

R
j ;D)=− log

exp
(
s(xR

i ,x
R
j )/τ

)∑
xR
k
∈N(x) exp

(
s(xR

i ,x
R
k )/τ

) ,
(7) 315

where s(·, ·) is the similarity measure between two 316

sequences and τ is a temperature hyperparameter. 317

We represent each sequence by the `2-normalized 318

representation of its [CLS] token, i.e., µD(·) = 319

hD(·)1/‖hD(·)1‖ where hD(·)1 stands for the rep- 320

resentation of the first token in a sequence output by 321

the discriminatorD, and determine the similarity as 322

s(u,v) = µD(u)
TµD(v). This contrastive learn- 323

ing task requires xR
i and xR

j to stay close to each 324

other while away from other corrupted sequences 325

in the same minibatch, and therefore encourages 326

the discriminator to learn representations invariant 327

to token-level alterations. A similar task has been 328

considered recently by Meng et al. (2021) to help 329

build general-domain PLMs, but it uses a different 330

data transformation procedure to generate positive 331

pairs by random cropping, resulting in asymmetric 332

encoding of sequence pairs. 333

3.3 Model Training 334

Putting the generator and discriminator as well as 335

their associated tasks together, we train eHealth by 336

minimizing the following combined loss: 337

min
G,D

LMLM+λ1LRTD+λ2LMTS+λ3LCSP. (8) 338

The first term is a generator loss, and the latter three 339

are discriminator losses which are not propagated 340

through the generator. λ1, λ2, λ3 are hyperparame- 341

ters balancing these loss terms. After pre-training, 342

we throw out the generator and fine-tune only the 343

discriminator on downstream tasks. 344
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4 Experiments345

This section first describes our experimental setups346

for pre-training and fine-tuning, and then presents347

evaluation results and further ablation.348

4.1 Pre-training Setups349

Pre-training Data. We use four Chinese datasets350

for pre-training: (i) Dialogues consisting of about351

100 million de-identified doctor-patient dialogues352

from online healthcare services; (ii) Articles con-353

sisting of about 6.5 million popular scientific arti-354

cles on medicine and healthcare oriented to the gen-355

eral public; (iii) EMRs consisting of about 6.5 mil-356

lion de-identified electronic medical records from357

specific hospitals; and (iv) Textbooks consisting of358

about 1,500 electronic textbooks on medicine and359

clinical pathology. The contents of these datasets360

are quite diversified, covering most aspects of bio-361

medicine, namely scientific, clinical, and consumer362

health (Jin et al., 2021). After collecting raw text,363

we conduct minimum pre-processing of deduplica-364

tion and denoising on each of the four datasets. We365

then tokenize the text using a newly built in-domain366

vocabulary (detailed later). Sequences longer than367

512 tokens are segmented into shorter chunks ac-368

cording to sentence boundaries, and those shorter369

than 32 tokens are discarded. Table 1 summarizes370

the datasets used for pre-training.371

In-domain Vocabulary. Unlike previous studies372

that continually pre-train from and thereby use the373

vocabulary of a general-domain Chinese BERT, we374

train eHealth from scratch with its own in-domain375

vocabulary built specifically for Chinese biomedi-376

cal text. Gu et al. (2020) have shown that training377

from scratch with an in-domain vocabulary is a bet-378

ter choice than continue pre-training while build-379

ing English biomedical PLMs, primarily because380

the in-domain vocabulary can better handle highly381

specialized biomedical terms. This, however, has382

never been investigated in the Chinese biomedical383

field. To build the in-domain vocabulary, we ran-384

domly sample 1M documents from the pre-training385

data, convert all characters to lowercase, normalize386

special Unicodes like half-width characters or en-387

closed alphanumerics, and split Chinese characters,388

digits, and emoji Unicodes. Then we use the open-389

source implementation from the Tensor2Tensor li-390

brary4 to create a WordPiece vocabulary (Wu et al.,391

4https://github.com/tensorflow/
tensor2tensor

Corpus Size # Tokens Sub-domain

Dialogues 94.6GB 31.1B consumer health
Articles 11.2GB 3.5B consumer health
EMRs 16.0GB 4.5B clinical
Textbooks 5.1GB 1.6B scientific

Total 126.9GB 40.7B N/A

Table 1: Corpora used for eHealth pre-training.

免疫组化IHC测定TSHR阳性 (Positive expression of TSHR
by immunohistochemistry (IHC))

BERT: 免,疫,组,化, i, ##hc,测,定, ts, ##hr,阳,性
eHealth: 免,疫,组,化, ihc,测,定, tshr,阳,性

ECOG评分4分者 (Those with ECOG score of 4)
BERT: eco, ##g,评,分, 4,分,者

eHealth: ecog,评,分, 4,分,者

但不包括HIV/AIDS (But excluding HIV/AIDS)
BERT: 但,不,包,括, hiv, /, ai, ##ds

eHealth: 但,不,包,括, hiv, /, aids

胸部增强CT及头颅MRI (Enhanced chest CT & skull MRI)
BERT: 胸,部,增,强, ct,及,头,颅, mr, ##i

eHealth: 胸,部,增,强, ct,及,头,颅, mri

Table 2: Comparison of tokenization results obtained
by BERT and eHealth. Differences highlighted in bold.

2016). We throw out tokens appearing less than 5 392

times and keep the vocabulary of size to about 20K 393

tokens, which is similar to the general-domain Chi- 394

nese BERT. Table 2 compares tokenization results 395

obtained by (i) the original vocabulary of standard 396

BERT and (ii) our newly built in-domain vocabu- 397

lary. We can see that as both the two vocabularies 398

are mainly based on single Chinese characters, the 399

differences between them are not that significant 400

as in English. But still the in-domain vocabulary 401

works pretty better on abbreviations of specialized 402

biomedical terms, including not only those rare 403

ones like IHC (immunohistochemistry) and TSHR 404

(thyroid stimulating hormone receptor), but also 405

those relatively popular ones like AIDS (acquired 406

immune deficiency syndrome) and MRI (magnetic 407

resonance imaging). 408

Pre-training Configurations. We train eHealth 409

with the standard base-size configuration, just like 410

most previous biomedical PLMs. The discrimina- 411

tor gets 12 Transformer layers, each with 12 atten- 412

tion heads, 768 hidden size, and 3072 intermediate 413

size. And we follow Clark et al. (2020) to set the 414

generator 1/3 the size of the discriminator and tie 415

their token and positional embeddings. To generate 416

masked positions, we perform Chinese word seg- 417

mentation and use the whole word masking strategy 418

5
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Dataset Task Train Dev Test Metric

CMeEE Named Entity Recognition 15,000 5,000 3,000 Micro-F1
CMeIE Relation Extraction 14,339 3,585 4,482 Micro-F1
CHIP-CDN Clinical Term Normalization 6,000 2,000 10,192 Micro-F1
CHIP-CTC Sentence Classification 22,962 7,682 10,000 Macro-F1
KUAKE-QIC Sentence Classification 6,931 1,955 1,994 Accuracy
CHIP-STS Sentence Pair Matching 16,000 4,000 10,000 Macro-F1
KUAKE-QTR Sentence Pair Matching 24,174 2,913 5,465 Accuracy
KUAKE-QQR Sentence Pair Matching 15,000 1,600 1,596 Accuracy

cMedQNLI (Zhang et al., 2020) Question Answer Matching 80,950 9,065 9,969 Micro-F1
webMedQA (He et al., 2019) Question Answer Matching 252,850 31,605 31,655 Precision@1
NLPEC (Li et al., 2020) Multiple Choice 18,117 2,500 550 Accuracy

Table 3: Downstream tasks used for evaluation. Tasks in the first group are from CBLUE (Zhang et al., 2021a).

(Cui et al., 2020). We also use dynamic masking419

with masked positions decided on-the-fly. During420

pre-training, we mostly follow the hyperparameters421

recommended by ELECTRA and do not conduct422

hyperparameter tuning. For newly introduced hy-423

perparameters, we set the loss balancing terms λ1424

= 50, λ2 = 20, λ3 = 1 (cf. Eq. (8)), the number425

of sampled non-original tokens k = 5 (cf. Eq. (5)),426

and temperature τ = 0.07 (cf. Eq. (7)). We train427

with a batch size of 384 and max sequence length428

of 512 for 1.65M steps. The full set of pre-training429

hyperparameters is listed in Appendix A.430

4.2 Evaluation Setups431

Downstream Tasks. We evaluate on the Chinese432

Biomedical Language Understanding Evaluation433

(CBLUE) benchmark (Zhang et al., 2021a), which434

is composed of 8 diversified biomedical NLP tasks,435

ranging from medical text classification and match-436

ing to medical information extraction and medical437

term normalization. We further consider three med-438

ical question answering tasks, namely cMedQNLI439

(Zhang et al., 2020), webMedQA (He et al., 2019),440

and NLPEC (Li et al., 2020). The former two are441

formalized as question-answer matching problems,442

and the last one a multiple choice problem. Table 3443

summarizes the train, dev, test split and metric used444

for each task. We refer readers to Appendix C and445

D for further details.446

Baseline Models. We compare eHealth against447

state-of-the-art general-domain Chinese PLMs of:448

(i) BERT-base (Devlin et al., 2019); (ii) ELECTRA-449

base/large (Clark et al., 2020); (iii) RoBERTa-wwm450

-ext-base/large (Liu et al., 2019) trained via MLM451

with whole word masking strategy; (iv) MacBERT-452

base/large (Cui et al., 2020) trained via improved453

MLM as a correction task. BERT-base is officially454

released by Google,5 and the other models are re- 455

leased by Cui et al. (2020).6 Besides, we compare 456

to Chinese biomedical PLMs including: (v) PCL- 457

MedBERT;7 (vi) MC-BERT (Zhang et al., 2020);8 458

(vii) EMBERT (Cai et al., 2021); and (viii) SMed- 459

BERT (Zhang et al., 2021b), all initialized from 460

Google’s BERT-base. The full models of EMBERT 461

and SMedBERT are not released to the public, so 462

we just copy the results reported by their authors 463

on medical question answering tasks. 464

Fine-tuning Configurations. During fine-tuning, 465

we build a lightweight task-specific head on top of 466

the pre-trained encoders for each task. The specific 467

design of these heads is elaborated in Appendix E. 468

For each PLM on each task, we tune the batch size, 469

learning rate, and training epochs in their respective 470

ranges, and determine the optimal setting according 471

to dev performance averaged over three runs with 472

different seeds. The other hyperparameters are set 473

to their default values as in ELECTRA (Clark et al., 474

2020). The full set of fine-tuning hyperparameters 475

is listed in Appendix B. 476

4.3 Main Results 477

Table 4 reports the performance of different PLMs 478

on CBLUE test sets. Note that CBLUE test labels 479

are not released, and one has to submit prediction 480

files to retrieve final scores. To avoid frequent sub- 481

missions that probe the unseen test labels, we only 482

submit best single run on dev sets for testing. The 483

results show that: (i) The two previous biomedical 484

PLMs, MC-BERT and PCL-MedBERT, indeed per- 485

5https://github.com/google-research/
bert

6https://github.com/ymcui/MacBERT
7https://code.ihub.org.cn/projects/

1775
8https://github.com/alibaba-research/

ChineseBLUE
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Model CMeEE CMeIE CDN CTC STS QIC QTR QQR Avg.

General-domain base-sized models
BERT-base 66.5 60.6 69.7 68.6 84.7 85.2 59.2 82.5 72.1
ELECTRA-base 65.1 60.4 69.9 67.7 84.4 85.2 61.8 84.0 72.3
MacBERT-base 66.8 61.5 69.7 69.1 84.4 86.0 61.0 83.5 72.7
RoBERTa-wwm-ext-base 66.7 61.4 69.3 68.3 84.2 86.0 60.9 82.7 72.4

General-domain large-sized models
ELECTRA-large 66.1 59.3 70.8 68.9 85.1 84.1 62.0 85.7 72.8
MacBERT-large 67.6 62.2 70.9 69.7 86.5 85.7 62.5 83.5 73.6
RoBERTa-wwm-ext-large 67.3 62.2 70.6 70.6 85.4 86.7 61.7 86.1 73.8

Biomedical base-sized models
MC-BERT-base 66.6 60.7 70.1 69.1 85.4 85.3 61.6 82.3 72.6
PCL-MedBERT-base 66.6 60.8 69.9 70.4 84.8 85.3 60.2 83.3 72.7
eHealth-base (ours) 66.9 62.1 71.9 69.3 86.2 87.3 63.9 85.7 74.2

Table 4: Performance (%) of different PLMs on CBLUE test sets. Results generated by the single best run on dev
sets. Best scores from base-sized models highlighted in bold, and best scores from large-sized models underlined.

cMedQNLI webMedQA NLPEC
Model dev | test dev | test dev | test

General-domain base-sized models
BERT-base 96.4 | 96.4 79.6 | 79.8 67.1 | 54.6
ELECTRA-base 96.0 | 95.9 79.2 | 79.1 69.8 | 54.1
MacBERT-base 96.3 | 96.2 79.9 | 79.8 68.7 | 53.8
RoBERTa-base 96.2 | 96.2 79.7 | 79.9 68.1 | 54.3

General-domain large-sized models
ELECTRA-large 96.4 | 96.2 80.0 | 80.1 71.8 | 60.0
MacBERT-large 96.3 | 96.3 80.0 | 80.4 70.8 | 56.7
RoBERTa-large 96.3 | 96.2 79.7 | 79.7 71.1 | 56.5

Biomedical base-sized models
MC-BERT-base 96.4 | 96.5 80.0 | 79.9 68.2 | 54.2
PCL-MedBERT-base 96.3 | 96.2 79.2 | 79.5 67.4 | 52.0
EMBERT† – | 96.6 – | 80.6 – | –
SMedBERT‡ 96.6 | 96.9 79.3 | 81.7 – | –
eHealth-base (ours) 97.3 | 97.2 80.5 | 80.7 73.6 | 62.4

Table 5: Performance (%) of different PLMs on medi-
cal QA tasks. RoBERTa-base/large refers to RoBERTa-
wwm-ext-base/large. Results marked by † and ‡ copied
from original literatures (Cai et al., 2021; Zhang et al.,
2021b). Other results produced by ourselves, averaged
over best three runs on the dev set of each task. Best
scores from base-sized models highlighted in bold and
best scores from large-sized models underlined.

form better than general-domain BERT-base from486

which they started continual pre-training, verifying487

the effectiveness of domain adaptation in building488

domain-specific language models. However, these489

two biomedical PLMs fail to surpass some more490

advanced general-domain PLMs, e.g., MacBERT,491

of the same model size. (ii) As the model size in-492

creases, general-domain large-sized PLMs perform493

better than those base-sized, e.g., ELECTRA-large,494

MacBERT-large, and RoBERTa-wwm-ext-large ob-495

tain averaged improvements of 0.5%, 0.9%, and496

1.4% respectively over their base-sized models. (iii)497

eHealth, as a base-sized biomedical PLM, outper- 498

forms all baseline PLMs in terms of average score, 499

no matter those from the general or biomedical do- 500

main, and no matter those base-sized or large-sized. 501

It achieves an average improvement of 1.5% over 502

PCL-MedBERT-base, i.e., the best performing di- 503

rect opponent of the same model size, and even that 504

of 0.4% over the best performing large-sized model 505

RoBERTa-wwm-ext-large. These results demon- 506

strate the effectiveness and superiority of eHealth 507

in biomedical text understanding. 508

Table 5 further reports the performance of these 509

PLMs on medical question answering tasks, where 510

scores are averaged over the best three runs selected 511

on the dev split for each task. From the results we 512

can observe similar phenomena as on the CBLUE 513

benchmark. Still eHealth consistently outperforms 514

almost all those PLMs, showing its superior ability 515

in medical question answering. 516

4.4 Ablation Studies 517

We provide ablation studies on CBLUE benchmark 518

to show the effects of different pre-training tasks 519

and initialization strategies in eHealth. All variants 520

below are base-sized, trained with the same setting 521

as described in Section 4.1. The only exception is 522

that we train with a smaller batch size of 128 for 523

only 500K steps. 524

Effects of Pre-training Tasks. The discriminator 525

of eHealth is trained in a multi-task fashion, i.e., (i) 526

token-level discrimination of RTD and MTS and 527

(ii) sequence-level discrimination of CSP. To inves- 528

tigate the effects of different pre-training tasks, we 529

make comparison among: (i) the full setting where 530

the discriminator is trained via RTD, MTS, and 531
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Model CMeEE CMeIE CDN CTC STS QIC QTR QQR Avg.

The full setting 66.56 61.62 70.29 69.58 85.13 87.46 62.00 85.53 73.52
w/o CSP 66.47 61.25 69.81 69.65 84.61 86.71 61.54 84.52 73.07
w/o MTS 65.76 60.23 70.43 68.06 85.44 85.61 61.36 84.34 72.65
w/o CSP & MTS 65.56 60.01 70.08 68.46 84.35 86.51 61.08 84.40 72.56

R weights + B vocab 66.56 61.62 70.29 69.58 85.13 87.46 62.00 85.53 73.52
E weights + E vocab 65.92 61.54 70.86 69.53 85.75 86.21 62.38 85.59 73.47
R weights + E vocab 66.33 61.06 70.19 69.50 84.32 87.31 62.33 85.40 73.30

Table 6: Effects of pre-training tasks (top) and initialization strategies (bottom) on CBLUE test sets, where results
are generated by single best run on dev sets. All variants are base-sized, trained with batch size 128 for 500K steps.
R/B/E in the bottom group stands for R(andom)/B(iomedical)/E(LECTRA), respectively. Within each group best
scores are highlighted in bold, and second best scores underlined.

CSP; (ii) w/o CSP where the sequence-level CSP is532

removed; (iii) w/o MTS where the token-level MTS533

is removed; and (iv) w/o CSP & MTS where both534

CSP and MTS are removed and thus degenerates to535

standard ELECTRA pre-training. Table 6 (top) lists536

the results on CBLUE benchmark, from which we537

can see that: (i) The full setting performs the best538

among the four variants, always reporting the best539

or second best scores on all the 8 diversified tasks.540

Compared to standard ELECTRA pre-training (w/o541

CSP & MTS), it achieves an average improvement542

of 0.96%. This demonstrates the usefulness of our543

pre-training tasks, in particular CSP and MTS, to544

build effective PLMs. (ii) No matter CSP or MTS,545

when applied alone, is able to improve the standard546

ELECTRA pre-training solely with RTD. Between547

the two tasks, MTS is, in general, more powerful548

than CSP. Removing MTS brings an average drop549

of 0.87% on CBLUE test sets, while removing CSP550

only brings that of 0.45% on the same benchmark.551

Effects of Initialization Strategies. In this work552

we train eHealth entirely from scratch, with an in-553

domain vocabulary built specifically for Chinese554

biomedical text and the model weights randomly555

initialized. We refer to this strategy as “R(andom)556

weights + B(iomedical) vocab”. We compare it to557

the widely adopted continue pre-training strategy,558

where model weights are initialized from a general-559

domain ELECTRA and the associated vocabulary560

is also used, referred to as “E(LECTRA) weights +561

E(LECTRA) vocab”. Besides, to further verify the562

effects of that in-domain vocabulary, we consider563

another setting “R(andom) weights + E(LECTRA)564

vocab”, where model weights are still randomly565

initialized but the ELECTRA vocabulary is used.566

Table 6 (bottom) lists the results on CBLUE bench-567

mark, from which we can see that: (i) Pre-training568

from scratch with the newly built in-domain vocab-569

ulary (R weights + B vocab) overall performs better 570

than continue pre-training (E weights + E vocab), 571

even under a relatively small number of training 572

steps up to 500K.9 (ii) The improvements mainly 573

come from the in-domain vocabulary. After replac- 574

ing the vocabulary with that of the general-domain 575

ELECTRA (R weights + E vocab), the overall per- 576

formance drops from 73.52% to 73.30%. 577

5 Conclusion 578

This work presents eHealth, a Chinese biomedical 579

language model pre-trained from in-domain text of 580

de-identified online doctor-patient dialogues, elec- 581

tronic medical records, and textbooks. Unlike most 582

previous studies that directly adapt general-domain 583

PLMs to the biomedical domain, eHealth is trained 584

from scratch with a new self-supervised generator- 585

discriminator framework. The generator is used to 586

produce corrupted input and is discarded after pre- 587

training. The discriminator, as the final encoder, 588

is trained via multi-level discrimination: (i) token- 589

level discrimination that detects input tokens cor- 590

rupted by the generator and selects original tokens 591

from plausible candidates; and (ii) sequence-level 592

discrimination that further detects corruptions of 593

a same original sequence from those of the others. 594

As such, eHealth can learn language semantics at 595

both levels. Experimental results on CBLUE and 3 596

medical QA benchmarks demonstrate the effective- 597

ness and superiority of eHealth, which consistently 598

outperforms state-of-the-art PLMs from both the 599

general and biomedical domains. We release our 600

pre-trained model to the public. As the model re- 601

lies solely on text, it could be applied rather easily 602

during fine-tuning. 603

9The advantage, in fact, will be expanded further as the
training step increases according to our initial experiments.
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A Pre-training Hyperparameters833

We mostly use the same hyperparameters as ELEC-834

TRA (Clark et al., 2020) and do not conduct hyper-835

parameter tuning during pre-training. As for those836

newly introduced hyperparameters, we sample k =837

5 non-original tokens for a certain position in the838

MTS task, use a temperature τ = 0.07 in the CSP839

task, and set the loss balancing tradeoffs λ1 = 50,840

λ2 = 20, λ3 = 1. The full pre-training setting is841

listed in Table 7.842

B Fine-tuning Hyperparameters843

During fine-tuning, we mostly use the default set-844

ting as suggested by BERT (Devlin et al., 2019) and845

ELECTRA (Clark et al., 2020), listed in Table 8.846

We also use exponential moving average (EMA)847

with a decay coefficient α of 0.9999. Then for848

each task we specify a proper maximum sequence849

length, tune for each PLM the batch size, learning850

rate, and training epochs in their respective ranges,851

and determine optimal configurations according to852

dev performance. The full tuning ranges are listed853

in Table 9.854

C CBLUE Benchmark855

CBLUE (Zhang et al., 2021a)10 is a benchmark856

for Chinese biomedical language understanding857

evaluation, consisting of 8 diversified biomedical858

NLP tasks as follows.859

CMeEE: Chinese Medical Entity Extraction.11860

The task is to identify medical entities from a given861

sentence and classify the entities into nine cate-862

gories including disease, symptom, drug, etc. The863

dataset contains 15K/5K/3K train/dev/test exam-864

ples from textbooks of clinical pediatrics.865

10https://github.com/CBLUEbenchmark/
CBLUE

11http://www.cips-chip.org.cn/2020/
eval1

Hyperparameter Value

Number of Layers 12
Hidden size 768
Intermediate size 3072
Number of attention heads 12
Attention head size 64
Embedding size 768
Generator size (multiplier for hidden size, 1/3intermediate size, number of attention heads)
Mask percentage 15
Learning rate decay Linear
Warmup steps 10000
Learning rate 2e-4
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Attention dropout 0.1
Dropout 0.1
Weight decay 0.01
Max sequence length 512
Batch size 384
Training steps 1.65M
Loss tradeoff λ1 50
Loss tradeoff λ2 20
Loss tradeoff λ3 1
Multi-token selection k 5
Contrastive sequence prediction τ 0.07

Table 7: Pre-training hyperparameters.

Hyperparameter Value

Learning rate decay Linear
Warmup ratio 0.1
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Attention dropout 0.1
Dropout 0.1
Weight decay 0.01
EMA decay 0.9999

Table 8: Default fine-tuning hyperparameters.

CMeIE: Chinese Medical Information Extraction 866

(Guan et al., 2020).12 The task is to recognize both 867

medical entities and their relationships from a given 868

sentence according to a predefined schema. There 869

are 44 relations defined in the schema, along with 870

their subject/object entity types. The dataset con- 871

tains about 14K/3.5K/4.5K train/dev/test examples, 872

which are also from textbooks of clinical pediatrics. 873

CHIP-CDN: CHIP Clinical Diagnosis Normaliza- 874

tion.13 The task is to normalize original diagnostic 875

terms into standard terminologies from the Interna- 876

tional Classification of Diseases (ICD-10), Beijing 877

Clinical Edition v601. The dataset contains about 878

12http://www.cips-chip.org.cn/2020/
eval2

13http://www.cips-chip.org.cn/2020/
eval3
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Task Batch size Learning rate Epochs Length

CBLUE benchmark
CMeEE 32 6e-5, 1e-4 2, 4, 8, 12 128
CMeIE 12 6e-5 50, 100, 150, 200, 250 300
CHIP-CDN 256 3e-5, 6e-5, 1e-4 2, 4, 8, 12, 16 32
CHIP-CTC 8, 16, 32 3e-5, 6e-5, 1e-4 2, 4, 8, 12, 16 160
CHIP-STS 8, 16, 32 3e-5, 6e-5, 1e-4 2, 4, 8, 12, 16 96
KUAKE-QIC 8, 16, 32 3e-5, 6e-5, 1e-4 2, 4, 8, 12, 16 128
KUAKE-QTR 8, 16, 32 3e-5, 6e-5, 1e-4 2, 4, 8, 12, 16 64
KUAKE-QQR 8, 16, 32 3e-5, 6e-5, 1e-4 2, 4, 8, 12, 16 64

Medical QA tasks
cMedQNLI 8, 16, 32 3e-5, 6e-5, 1e-4 1, 2, 3, 4 512
webMedQA 16, 32, 64 1e-5, 2e-5, 3e-5 1, 2, 3, 4 512
NLPEC 32 2e-5, 3e-5, 6e-5 10, 20, 30, 40 512

Table 9: Hyperparameter tuning ranges on CBLUE and medical QA benchmarks.

6K/2K/10K train/dev/test examples collected from879

de-identified electronic medical records.880

CHIP-CTC: CHIP Clinical Trial Classification881

(Zong et al., 2021).14 The task is to categorize eli-882

gibility criteria of clinical trials into 44 predefined883

semantic classes including age, disease, symptom,884

etc. The dataset consists of about 23K/7.5K/10K885

train/dev/test examples collected from the website886

of Chinese Clinical Trial Registry.887

CHIP-STS: CHIP Semantic Textual Similarity.15888

The task is to identify whether the semantics of two889

medical questions are identical or not. The dataset890

contains 16K/4K/10K train/dev/test question pairs891

collected from online healthcare services, covering892

5 diseases including diabetes, hypertension, hepati-893

tis, aids, and breast cancer.894

KUAKE-QIC: KUAKE Query Intent Classifica-895

tion. The task is to classify the intent of a medical896

search query into one of 11 predefined categories897

like diagnosis, etiology analysis, medical advice,898

etc. The dataset contains about 7K/2K/2K queries899

in the train/dev/test split, collected from Alibaba900

QUAKE search engine.901

KUAKE-QTR: KUAKE Query Title Relevance.902

The task aims to estimate the relevance between a903

search query and a webpage title. The relevance is904

divided into four levels: perfectly match, partially905

match, slightly match, and mismatch. The dataset906

contains about 24K/3K/5.5K query-title pairs in the907

train/dev/test split, collected from Alibaba QUAKE908

search engine.909

14https://github.com/zonghui0228/
chip2019task3

15http://www.cips-chip.org.cn:8000/
evaluation

KUAKE-QQR: KUAKE Query Query Relevance. 910

Similar to KUAKE-QTR, the task is to estimate the 911

relevance between two search queries Q1 and Q2. 912

The relevance is divided into three levels: perfectly 913

match, Q2 is a subset of Q1, Q2 is a superset of Q1 914

or mismatch. The dataset contains approximately 915

15K/1.6K/1.6K pairs of queries in the train/dev/test 916

split. The queries are also collected from Alibaba 917

QUAKE search engine. 918

D Medical QA Tasks 919

Besides CBLUE, we consider three medical ques- 920

tion answering (QA) tasks, detailed as follows. 921

cMedQNLI: This is a Chinese medical QA dataset 922

which formalizes QA as a question answer match- 923

ing problem (Zhang et al., 2020).16 Given a ques- 924

tion answer pair, the task is to identify whether the 925

answer addresses the question or not. The dataset 926

contains about 81K/9K/10K question answer pairs 927

in the train/dev/test split. 928

webMedQA: This dataset also formalizes medical 929

QA as a question answer matching problem (He 930

et al., 2019),17 just like cMedQNLI. But it is much 931

larger, containing roughly 250K/31.5K/31.5K ques- 932

tion answer pairs in the train/dev/test split. 933

NLPEC: This is a multiple choice QA dataset con- 934

structed using simulated and real questions from 935

the National Licensed Pharmacist Examination in 936

China (Li et al., 2020).18 Given a question along 937

with five answer candidates, the task is to select the 938

most plausible answer from the candidates using 939

16https://github.com/alibaba-research/
ChineseBLUE

17https://github.com/hejunqing/webMedQA
18http://112.74.48.115:8157
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呼 息 肌 麻 痹 和 呼 息 中 枢 受 累 患 者 因 呼 息 不 畅 可 并 发 肺 炎 、 肺 不 张 等 。
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Figure 2: A running example illustrating the sequence
tagging head used for CMeEE. Dark shaded entries rep-
resent a ground truth label of 1, and light shaded entries
a ground truth label of 0.

textual evidences extracted from the official exam940

guide. The dataset contains about 18K/2.5K/0.5K941

questions in the train/dev/test split.942

E Task-specific Heads943

We devise lightweight task-specific heads on top944

of pre-trained Transformer encoders to solve down-945

stream tasks in various forms. These task-specific946

heads are roughly categorized into five groups, used947

for named entity recognition, relation extraction,948

single sentence classification, sentence pair classi-949

fication, and multiple choice QA, respectively.950

Named Entity Recognition. CMeEE is the only951

task of this kind. It recognizes medical entities and952

classifies them into 9 predefined types. Nesting is953

allowed only in symptom entities, but not in entities954

of the other types. We therefore use a two-stream955

sequence tagging head for this task, one to identify956

symptom entities and the other to identify entities957

of the other 8 types. We choose the BIOES (i.e., Be-958

gin, Inside, Outside, End, Single) tagging scheme959

(Ratinov and Roth, 2009). Given a sequence with960

its contextualized representations output by a pre-961

trained encoder, we build two classifiers on top of962

these representations. The first assigns each token963

in the sequence into 5 classes to annotate symptom964

entities (4 type-specific B-, I-, E-, S- tags plus965

O tag), while the second assigns it into 33 classes966

to annotate entities of other types (32 type-specific967

B-, I-, E-, S- tags plus O tag). The two classifiers968

are trained jointly with a 1:1 balanced combined969

loss. Figure 2 gives a running example illustrating970

this two-stream sequence tagging head.971

Relation Extraction. CMeIE is the only task of972

this kind. It extracts subject-relation-object triples973

according to a predefined schema. There are totally974

44 relations defined in the schema and overlapping975

病理分型
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Entity Pointer

MHS-based
Relation Extraction

Figure 3: A running example illustrating the multi-head
selection layer used for joint entity and relation extrac-
tion in CMeIE. Dark shaded entries represent a ground
truth label of 1, and light shaded entries a ground truth
label of 0.

is allowed between these relations, i.e., one entity 976

may belong to multiple triples of different relations 977

(Zeng et al., 2018). To solve this overlapping prob- 978

lem, we use a multi-head selection (MHS) layer for 979

joint entity and relation extraction (Bekoulis et al., 980

2018). As illustrated in Figure 3, an entity pointer 981

is adopted to identify start and end of entity spans, 982

and then an MHS mechanism is further employed 983

to recognize possible relationships between pairs of 984

entity spans. The MHS module predicts if there ex- 985

ists a relation k between a subject entity starting at 986

position i and an object entity starting at position j 987

for every i, j, and k. This prediction probability is 988

calculated via a relation-specific biaffine operation 989

imposed upon the starting token representations of 990

subject and object entities. Finally, we jointly train 991

the entity pointer and MHS-based relation extractor 992

via a combined loss with balancing ratio of 1:50. 993

Single Sentence Classification. CHIP-CTC and 994

KUAKE-QIC are tasks of this kind, which classi- 995

fies a given sentence into one of a set of predefined 996

categories. We simply build a softmax classifier on 997

top of the final representation corresponding to the 998

initial [CLS] token for this classification task. 999

Sentence Pair Classification. The sentence pair 1000

matching tasks of CHIP-STS, KUAKE-QTR, and 1001

KUAKE-QQR, as well as the medical QA tasks of 1002

cMedQNLI and webMedQA are of this kind, aim- 1003

ing at predicting the semantic relationship between 1004

a pair of sentences according to a set of predefined 1005

labels. CHIP-CDN, after normalized terms have 1006

been retrieved for each original term, can also be 1007

formalized as a task of this kind, the aim of which is 1008

to judge if a normalized term matches the original 1009

term or not. Given a pair of sentences (S1, S2), we 1010

pack them into a single input sequence “[CLS]S1 1011

[SEP]S2[SEP]”, and feed this sequence into a 1012
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pre-trained encoder. Then we build a softmax clas-1013

sifier on top of [CLS] representation to conduct1014

sentence pair classification. For CHIP-CDN, we1015

retrieve 100 candidate normalized terms for each1016

original term from the whole ICD-10 vocabulary1017

using Elasticsearch before pairwise classification.1018

Multiple Choice QA. NLPEC is the only task of1019

this kind. It selects the most plausible answer from1020

5 answer candidates for a given question. Textual1021

evidences are also provided along with the question.1022

Let Q denote the question, {A1, A2, A3, A4, A5}1023

the answer candidates, and T the textual evidence.1024

For each answer candidate Ai, we pack it with the1025

question Q and textual evidence T , and construct a1026

single input sequence “[CLS]Ai[SEP]Q[SEP]1027

T[SEP]”. We feed this sequence into a pre-trained1028

encoder, and use [CLS] representation to estimate1029

if Ai answers Q given textual evidence T . In this1030

fashion, we transform multiple choice into binary1031

classification. At inference time, the candidate with1032

highest probability is chosen as the correct answer.1033
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