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Abstract001

Neural Machine Translation (NMT) employs002
neural networks to model the probability distri-003
bution of the parallel corpus, with advances in004
network architectures resulting in a substantial005
enhancement in translation quality. The quality006
of the parallel corpus is also a significant factor007
in the translation quality. Despite the broad008
consensus on the positive correlation between009
corpus quality and translation quality, existing010
methods for assessing corpus quality fail to011
address the quantitative relationship between012
corpus quality and translation quality. It leads013
to the fact that corpus quality assessment has to014
rely on subjective experience or black-box lan-015
guage models to blur the relationship, divorced016
from the mathematical modeling of NMT. This017
brings unavoidable bias and unestimated im-018
pact to the NMT system. In response to the019
aforementioned issues, this paper proposes the020
Corpus Analysis Vector (CAV), a data-driven021
framework that mathematically formalises cor-022
pus quality by converting text sequences into023
matrices under the modelling of NMT. The pa-024
per employs the CAV framework to model the025
probability distribution of corpus and transla-026
tion quality, mathematically formalising the re-027
lationship in the context of the translation ac-028
curacy prediction task. The efficacy of CAV029
is validated through experimentation on mul-030
tiple benchmark datasets: CAV demonstrates031
efficacy in translation accuracy prediction by032
modelling the quantitative correlation between033
corpus quality and translation quality. The sub-034
sequent case studies are intended to illustrate035
the interpretability of the CAV in terms of iden-036
tifying quality-critical corpus features from a037
data-driven perspective. It has been demon-038
strated that, in addition to theoretical insights,039
CAV also has practical utility in guiding corpus040
filtering, thereby enhancing NMT systems.041

1 Introduction042

The Neural Machine Translation (NMT) task in-043

volves the generation of the target-side language044

sequence from the source-side one via a neural net- 045

work. The neural network stores the probability 046

distribution in the parameters, which are optimised 047

to approximate the distribution of the training par- 048

allel corpus. In the preceding decade, significant 049

advancements have been witnessed in the domain 050

of neural networks, with a notable enhancement in 051

the caliber of translation quality. This enhancement 052

is largely attributed to the attention mechanisms 053

within neural network architectures. 054

Conversely, corpus research continues to en- 055

counter numerous challenges. Despite the exten- 056

sive recognition of a positive correlation between 057

corpus and translation quality, there remains a 058

paucity of research investigating the quantitative 059

relationship between the two. Existing research 060

has superseded that quantitative relationship with 061

heuristic, subjective experiences, or black-box lan- 062

guage models. The mathematical modelling of 063

corpus quality assessment methods based on these 064

paradigms deviates from NMT due to the absence 065

of quantitative relationships. This lack of consis- 066

tency has the potential to result in the deletion of 067

information and the introduction of errors, as well 068

as impeding the analysis of the relationship be- 069

tween corpus quality and translation quality. This, 070

in turn, has consequences for the accuracy and flex- 071

ibility of downstream applications of corpus quality 072

assessment. 073

In order to address the aforementioned draw- 074

backs, this paper proposes the Corpus Analysis Vec- 075

tor (CAV), which directly bridges the corpus qual- 076

ity and translation quality, thus achieving a dual 077

purpose. Firstly, the CAV is data-driven, utilising a 078

mathematical framework to convert text sequences 079

into matrices, which is grounded in the mathemat- 080

ical modelling of the NMT task to preserve the 081

essential information and maintain consistency. In 082

this manner, CAV is responsible for conveying the 083

requisite information for the NMT task and the 084

original features of the corpus, including the corpus 085
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quality. Secondly, CAV is performance-oriented,086

which refers to translation quality in this paper,087

directly bridging the relationship between corpus088

quality and translation quality by constructing the089

probability distribution of CAV and translation ac-090

curacy. In this manner, the quantitative relationship091

between the corpus quality and the translation qual-092

ity is modelled in the probability distribution of093

the CAV and the translation accuracy. Specifically,094

the paper first provides the fundamental formula-095

tion of CAV, which contains the computation of096

the transformation matrix. The translation accu-097

racy prediction task is then proposed, along with098

the corresponding neural network to model and099

approximate the probability, respectively.100

The experimental results, drawn from publicly101

available corpora, demonstrate the impressive per-102

formance of CAV in the translation accuracy pre-103

diction task. These results indicate a strong quanti-104

tative correlation between corpus quality and trans-105

lation quality. This paper further provides an in-106

depth analysis of the experimental results using107

CAV, demonstrating the interpretability and great108

potential of CAV as a corpus quality assessment109

tool.110

The three principal contributions of this paper111

are as follows:112

• Corpus Analysis Vector (CAV): This paper113

proposes a data-driven corpus feature repre-114

sentation method based on task-specific math-115

ematical modelling. This approach overcomes116

the limitations of heuristic-driven approaches117

and black-box feature extraction.118

• Translation Accuracy Prediction: The119

model establishes quantitative connections be-120

tween corpus quality and translation quality121

through the probability distribution modelling122

of CAV representation and translation accu-123

racy.124

• Downstream Application: The dual utility125

of CAV is demonstrated in two distinct capac-126

ities: firstly, as a quantitative corpus quality127

assessment tool in the context of translation128

error analysis, and secondly, as a data filtering129

guidance mechanism within the framework of130

neural machine translation systems.131

2 Background 132

2.1 Corpus Quality Assessment 133

The two primary objects of corpus quality assess- 134

ment for the NMT task are the parallel corpus and 135

the translations. The evaluation of translation qual- 136

ity serves to assess the performance of the NMT 137

system by measuring the quality of the generated 138

translations. BLEU (Papineni et al., 2002) is a 139

metric of considerable popularity, the function of 140

which is to calculate the precision of n-grams with 141

an overlap of between 1 and 4, based on precision. 142

While ROUGE (Lin, 2004), as an assessment tool, 143

is based on recall, a concept first formally intro- 144

duced in the context of summaries. Furthermore, 145

a considerable number of neural network-based 146

translation quality assessment methods have been 147

developed in recent times (Guzmán et al., 2017, 148

2019; Ma et al., 2016; Shao et al., 2024; Gunasekar 149

et al., 2024). 150

Parallel corpus quality assessment employs 151

sentence-level feature representations, primarily 152

utilised for the execution of corpus filtering tasks. 153

A number of the assessments employ sentences 154

as representatives within the aligned multilingual 155

embedding space, for example, XLM-R (Con- 156

neau et al., 2019), MUSE(Conneau et al., 2017), 157

LaBSE(Feng et al., 2020) and LASER(Schwenk 158

and Douze, 2017). There exist alternative works 159

based on pre-trained models or LLM to directly 160

score parallel sentence pairs, e.g., COMET (Rei 161

et al., 2020), NMTscore(Vamvas and Sennrich, 162

2022), and BERTscore(Zhang et al., 2019). 163

The aforementioned automated corpus quality 164

assessment methods are at the sentence level, de- 165

viating from the token-level conditional probabil- 166

ity modelling of the NMT task, which introduces 167

unavoidable noise. Furthermore, the models em- 168

ployed in these approaches are contingent on addi- 169

tional corpora that exhibit considerable variability 170

in their adaptability to different language pairs and 171

scenarios. These corpora are predominantly black- 172

boxed, resulting in uncertainty impacts on the NMT 173

system. Furthermore, extant research has neglected 174

to explore the quantitative relationship between cor- 175

pus quality and translation quality. The absence of 176

such a quantitative relationship has impeded the ex- 177

ecution of in-depth studies of the role of the corpus 178

in NMT systems. 179
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2.2 Neural Machine Translation180

The objective of the Neural Machine Translation181

task is to generate target-side token sequences with182

the utility of neural networks, given the correspond-183

ing source-side token sequences, which are referred184

to as parallel sentence pairs of the source and target185

languages. It is possible to divide NMT into two186

distinct paradigms: the autoregressive paradigm,187

which generates one token at a step, and the non-188

autoregressive paradigm, which generates all to-189

kens at one step. The present paper focuses on190

supervised autoregressive natural language process-191

ing (NLP), hereafter referred to as NMT The math-192

ematical modelling of NMT is predicated on the193

conditional probability of a sequence. Given the194

source-side token sequence S = {s1, s2, · · · , sJ}195

and the parallel target-side token sequence T =196

{t1, t2, · · · , tK}, the joint probability of the target-197

side token sequence P (T | S) is defined as:198

P (T | S) =
K∏
i=1

P (ti | S, T̂<i) (1)199

where T̂<i is the generated target pre-order se-200

quence before ti, and P (ti | S, T̂<i) is the proba-201

bility of ti given the source-side token sequence202

and the generated target-side pre-order sequence.203

The teacher-forcing strategy, which can avoid the204

influence of the biased generated pre-order se-205

quence, calculates the probability P (ti | S, T<i)206

with ground truth target pre-order sequence T<i.207

2.3 Attention-based Networks208

The multi-head attention mechanism (Waswani209

et al., 2017) effectively addressed the long-distance210

dependency issue and notably enhanced the trans-211

lation quality of the NMT system, as formalized as212

follows:213

MultiHead(Q,K, V ) =

Concat(head1, . . . , headh)WO

headi = Attention(QWQ
i ,KWK

i , V W V
i )

(2)214

where Q,K, V refer to query, key, and value215

vectors, WO is the output projection matrix,216

WQ
i ,WK

i ,W V
i are projection matrices of the217

i-th head, Concat(·) concatenates all heads,218

Attention(·) computes headi as follows:219

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (3)220

where dk is the dimension of the key vectors,
√
dk 221

is the scaling factor, softmax is the softmax func- 222

tion applied row-wise, and QK⊤ calculates the 223

score matrix, which is the core of the attention 224

mechanism. 225

The flexible score matrix enables the attention 226

mechanism to effectively calculate and extract the 227

association and difference between query and key 228

vectors. In the context of machine learning, a self- 229

attention mechanism that aligns the query and key 230

vectors can facilitate the extraction of internal in- 231

formation from the vector. This process enables the 232

realization of feature extraction. A cross-attention 233

mechanism, in which the query and key vectors are 234

distinct, emphasizes the inter-association and dis- 235

crepancy, thereby facilitating feature fusion. The 236

multi-head design enables each head to focus on 237

different information independently, thereby en- 238

hancing the attention mechanism’s feature extrac- 239

tion and expression ability. 240

3 Methodology 241

The technical particulars and other prerequisites 242

are delineated before the exposition of the specific 243

methodology. Firstly, this paper adopts the token 244

level as the granularity, i.e., the overall situation of 245

each token in the dictionary over the whole corpus. 246

Token-level granularity is instrumental in ensuring 247

the consistency of NMT mathematical modeling, 248

neural networks, and evaluation metrics. This, in 249

turn, ensures that the study is both rigorous and ac- 250

curate, while consistent with the holistic nature of 251

quality assessment. Secondly, this paper adopts the 252

teacher-forcing strategy while training and testing 253

the baseline neural network. According to the con- 254

ditional probability modeling of NMT, the teacher- 255

forcing strategy is strictly consistent with NMT’s 256

conditional probability modeling. Moreover, this 257

strategy effectively avoids the accumulation of er- 258

rors. Thirdly, the Translation Accuracy Prediction 259

(TAP) task is distinct from the Translation Quality 260

Assessment (TQA) and the Translation Quality Es- 261

timation (TQE) tasks. TAP utilizes corpus features 262

to predict token-level translation accuracy, thereby 263

modeling the probability distribution between cor- 264

pus quality and translation quality. The subsequent 265

two tasks are designed to evaluate the quality of 266

the generated translations. 267
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3.1 Corpus Analysis Vector268

Corpus Analysis Vector (CAV) is a representation269

that converts the textual corpus into matrices. The270

technical core of CAV is the conversion matrix,271

which converts the text corpus into matrices while272

following the conditional probability modeling of273

NMT to retain the necessary information. Under274

this premise, CAV can simultaneously satisfy the275

previously mentioned granularity consistency, en-276

suring the accuracy. The subsequent section will277

illustrate the formulation of CAV through the trans-278

formation process from text corpus to CAV.279

According to the conditional probability model-280

ing of NMT, when a neural network is generating281

a certain target-side token, the probability distri-282

bution of the token is determined by its preceding283

sequence. More specifically, this probability is284

determined by all the tokens of the source-side se-285

quence and the tokens that precede that token in286

the target-side sequence. Given the parallel cor-287

pus where the source-side dictionary Tsrc with Nsrc288

tokens, the target-side dictionary Ttgt with Ntgt to-289

kens, the CAV is a set of matrices as follows:290

CAV = {CAV (t) | t ∈ Ttgt}

CAV (t) =
∑

seq(t)∈SEQ(t)

F(t, seq(t)) (4)291

where CAV is the matrix set of CAV (t), SEQ(t)292

is the set of sequences seq(t) containing token t,293

and F(t, seq(t)) is the converted matrix of seq(t)294

in response to t.295

Given the parallel sequence pair296

{seqsrc(t), seqtgt(t)}, where the target-side297

sequence is seqtgt(t) = {t1, t2, . . . , tm} contain-298

ing token t, the parallel source-side sequence is299

seqsrc(t) = {s1, s2, . . . , sn}, the formulation of300

F(t, seq(t) is as follows:301

Tc = Concat(Ts,Tt)

seqc(t) = Concat(seqs(t), seqt(t))

iti = IdxTc(ti), ∀ti ∈ Tc

p(t, ti) = Idxseqc(t)(t)− Idxseqc(t)(ti),

∀t ∈ Tt, ti ∈ Tc

F (t, seqc(t)) = M ∈ Z(Ns+Nt)×Lmax

∀ti ∈ Tc, Mr,c =


1, r = iti , c = |p(t, ti)|,

p(t, ti) ≥ 0

0, otherwise
(5)

302

where Tcat is the concatenated dictionary of Tsrc 303

and Ttgt, seqcat(t) is the concatenated sequence of 304

seqsrc(t) and seqtgt(t), IndexTcat(ti) is the index of 305

ti in the concatenated dictionary Tcat, p(t, ti) is 306

the relative position of t and ti, F(t, seq(t) returns 307

the matrix M ∈ Z(Nsrc+Ntgt)×Lmax that stores the 308

parallel sequence pair {seqsrc(t), seqtgt(t)}, where 309

Lmax is the maximum length of the concatenated 310

sequences, and Mr,c is the element of matrix M in 311

the r-th row and c-th column. 312

In this way, M stores the identity and rel- 313

ative position information of all the preceding 314

sequence tokens of the parallel sequence pair 315

{seqsrc(t), seqtgt(t)} in response to token t, i.e., all 316

the source sequence tokens and the target sequence 317

tokens before t. Thus, the CAV (t) is obtained by 318

accumulating all the matrices M corresponding to 319

the parallel sequence pairs {seqsrc(t), seqtgt(t)} in 320

response to t At this juncture, the CAV has suc- 321

cessfully stored the requisite information, which 322

includes pertinent data from which the corpus qual- 323

ity can be induced. 324

3.2 Attention-based Network For Translation 325

Accuracy Prediction 326

As previously stated, CAV is a collection of corpus 327

features for each token of the target side, where 328

there are intricate relationships among the corpus 329

features of each token. Consequently, the proposed 330

neural network is designed to mine internal relation- 331

ships, which is precisely the strength of the atten- 332

tion mechanism. Furthermore, given the common 333

dictionary scale of NMT tasks, direct utilization of 334

the attention mechanism necessitates substantial re- 335

source consumption, necessitating dimensionality 336

reduction on CAV as a prerequisite.

Figure 1: Architecture of ANTAP

337
As shown in Fig. 1, the Attention-based Network 338

For Translation Accuracy Prediction (ANTAP) con- 339

sists of three primary components, namely, the 340
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downscale module, the attention module, and the341

prediction module.342

The original input CAVin has a dimension of343

batch×(Nsrc+Ntgt)×Lmax, where the first dimen-344

sion refers to the batch size, the second refers to the345

concatenated dictionary scale, the third refers to346

the maximum concatenated sequence length. AN-347

TAP employs the adaptive mean pooling technique,348

which involves the downsampling of the final two349

dimensions of the CAV. The subsequent embedding350

modules perform a straightforward information in-351

tegration of the final two dimensions of the CAV,352

each responsible for embedding the downsampled353

dimensions. The following is the formulation of354

the aforementioned downscale module:355

CAVds = GELU
(

AdaptiveAvgPool2D
(

LayerNorm(CAVin)
))

CAVemb = EmbLinear2nd
(

GELU
(
EmbLinear3rd(CAVds)

T
))

(6)356

where CAVds is the downsampled vector,357

AdaptiveAvgPool2D(·) controls the downsam-358

pling factor, EmbLinear2nd(·) and EmbLinear3rd(·)359

transformation of the second and third dimensions360

of CAVds, respectively.361

The embedded vector is then fed into the Mul-362

tihead Attention Module, which is designed as re-363

ferred to (Waswani et al., 2017) to extract the intri-364

cate relationships among the tokens, as follows:365

CAV ′
attn = Multihead

(
LayerNorm(CAVin)

)
+ CAVin

CAVattn = FFN
(
CAV ′

attn

)
(7)366

where CAV ′
attn is the intermediate variable of367

CAVattn, and FFN(·) consists of linear layers and368

the activation function as referred to (Waswani369

et al., 2017).370

The multi-attention mechanism’s long-range per-371

formance facilitates the integration of features rep-372

resenting complex relationships among tokens that373

interact with each other into CAVattn.374

Considering the token-level translation accuracy375

as a scalar, the prediction module of the neural376

network needs to integrate the features extracted by377

the attention module. In particular, the prediction378

module of the network consists of alternating linear379

layers and activation functions as follows: 380

CAVflat = PredModule(Flatten(CAVattn)) (8) 381

where Flatten(·) flattens the last two dimensions 382

of CAVattn, PredModule(·) downsamples the flat- 383

tened vector step by step until reduced to 1. Con- 384

sequently, ANTAP attains token-level translation 385

accuracy by leveraging token-level CAV as the in- 386

put. 387

3.3 Translation Accuracy Prediction Task 388

The subsequent section delineates the Translation 389

Accuracy Prediction (TAP) task, which is designed 390

to model the quantitative relationship between cor- 391

pus quality and translation quality. The TAP task, 392

therefore, aims to predict token-level translation 393

accuracy, operating under the assumption that the 394

given baseline network has been adequately trained. 395

Under this consideration, the discrepancy in ac- 396

curacy between tokens is mainly attributable to 397

the probability distribution of the parallel corpus. 398

Given the corpus features C = {c1, c2, . . . , cN}, 399

the mathematical modeling of the TAP task is as 400

follows: 401

P (Acc | C) =
N∏
i=1

P (acci | ci,F(C)) (9) 402

where ci ∈ Rd is the corpus feature of the i- 403

th token, C determines the token-level accuracy 404

Acc = {acc1,acc2, . . . ,accN} with the probabil- 405

ity distribution, and F(C) is the quantitative rela- 406

tionship between corpus features and translation 407

accuracy. 408

4 Experiment 409

4.1 Dataset And Settings 410

The datasets selected for this study are drawn 411

from the publicly accessible datasets, namely 412

WMT14 English-German (En-De), WMT17 413

English-Chinese (En-Zh), WMT21 German-Upper 414

Sorbian (De-Hsb), and WMT21 Russian-Chuvash 415

(Ru-Chv). These corpora encompass a wide range 416

of scenarios, from those with limited resources to 417

those with abundant resources, and span multiple 418

language pairs. The pre-processing stage involves 419

a series of essential steps, including the implemen- 420

tation of blank line filtering, special symbol filter- 421

ing, length filtering, lower-case conversion, tok- 422

enization, and sub-word processing, as outlined in 423

(Ott et al., 2019). Depending on the experimental 424
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Table 1: Baseline BLEU Scores

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

BLEU 26.77 21.01 47.72 17.70

platform, the pre-processing filters out sub-word425

sequences longer than 128, and sets the source-426

side and target-side maximum sub-word dictionary427

scale to 40k.428

The baseline translation network is trained to429

model the probability distribution of the training430

set. Thus, the paper explores the relationship be-431

tween corpus quality and translation quality on the432

training set. It is imperative that a subset parti-433

tioning of the target-side dictionary is performed,434

entailing the random division of the target-side dic-435

tionary into training, development, and testing sub-436

sets in a ratio of 8:1:1. The ANTAP was trained437

with MSE as the objective, with the AdamW op-438

timizer. The ANTAP model was evaluated using439

the following metrics: MSE, MAE, RMSE, and R2.440

The experimental platform employs the Ubuntu441

22.04 operating system, accompanied by 512GB442

of RAM, utilising an A6000 GPU with 48GB of443

memory.444

4.2 Baseline Translation Network445

The baseline model selected for this experiment446

adopts the basic Transformer model (Waswani447

et al., 2017), where the parameter configuration is448

consistent with that employed in the original paper.449

As previously mentioned, the baseline translation450

network was trained and tested using the teacher-451

forcing strategy and evaluated with SacreBLEU,452

as illustrated in the subsequent table. As demon-453

strated in Table 1, the baseline NMT system has454

attained the performance levels of other baseline455

NMT systems documented in the literature on the456

four corpora, which indicates that the models have457

been adequately trained.458

4.3 Translation Accuracy Prediction459

The experimental results of ANTAP on the TAP460

task are hereby exhibited in two states. State I: Op-461

timal checkpoint before the early-stop is triggered462

during the training process, where the ANTAP can463

be regarded as attaining its optimal performance464

on the test set. State II: Last checkpoint when the465

early-stop is triggered during the training process,466

Table 2: Training subsets scores of State I

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

MSE 0.0002 0.0016 0.0120 0.0001
MAE 0.0102 0.0147 0.0758 0.0060

RMSE 0.0149 0.0400 0.1098 0.0085
R2 0.9967 0.9823 0.5866 0.9991

Table 3: Test subsets scores of State II

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

MSE 0.0253 0.0108 0.0192 0.0397
MAE 0.1155 0.0356 0.0922 0.1511

RMSE 0.1589 0.1040 0.1384 0.1992
R2 0.6246 0.8824 0.3639 0.5093

where the ANTAP can be regarded as attaining its 467

optimal performance on the training set. Note that 468

to investigate the convergence and generalizabil- 469

ity of CAV-based ANTAP, ANTAP was deliber- 470

ately designed to eliminate the dropout mechanism. 471

The ensuing tables present the mean squared error 472

(MSE), the mean absolute error (MAE), the root 473

mean squared error (RMSE), and the R-squared 474

(R2) of ANTAP on the training and test subsets of 475

the four corpora. 476

As illustrated in Table 2, the performance of 477

CAV-based ANTAP on the training set of State I is 478

demonstrated. The table demonstrates the efficacy 479

of CAV-based ANTAP in terms of accuracy and 480

generalisation when applied to the WMT14 En-De, 481

WMT17 En-Zh, and WMT21 Ru-Chv corpora. Ad- 482

ditionally, ANTAP is capable of explaining more 483

than 98% of the variation in the dependent variable. 484

Despite achieving marginally lower scores, AN- 485

TAP still achieves considerable accuracy and gen- 486

eralisation on the WMT21 De-Hsb corpus, where 487

ANTAP is able to explain more than half of the 488

variance in the dependent variable. 489

As illustrated in Table 3, the performance of 490

CAV-based ANTAP on the test set of State I is 491

demonstrated. In comparison with the training set 492

of State I, ANTAP demonstrates lower levels of 493

accuracy and generalisation on the test set for all 494

four corpora. The performance of the test set on 495

the WMT17 En-Zh corpus is the closest to the 496

training set. Nevertheless, ANTAP continues to 497
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Table 4: Training subsets scores of State II

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

MSE 0.0000 0.0001 0.0000 0.0000
MAE 0.0014 0.0020 0.0033 0.0005

RMSE 0.0022 0.0083 0.0069 0.0008
R2 0.9999 0.9992 0.9984 1.0000

Table 5: Test subsets scores of State II

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

MSE 0.0254 0.0112 0.0232 0.0414
MAE 0.1154 0.0341 0.0949 0.1526

RMSE 0.1593 0.1061 0.1523 0.2034
R2 0.6229 0.8777 0.2298 0.4884

demonstrate commendable accuracy and capacity498

for generalisation.499

As illustrated in Table 4, the performance of500

CAV-based ANTAP on the training set of State II501

is demonstrated. The table demonstrates the effi-502

cacy of CAV-based ANTAP in terms of accuracy503

and generalisation when applied to all four corpora.504

The analysis of these corpora reveals that ANTAP505

is capable of explaining more than 99% of the vari-506

ation in the dependent variable.507

As illustrated in Table 5, the performance of508

CAV-based ANTAP on the test set of State II is509

demonstrated. In comparison with the training set510

of State II, ANTAP demonstrates lower levels of ac-511

curacy and generalisation on the test set than on the512

training set for all four corpora. The performance513

of the test set on the WMT17 En-Zh corpus is the514

closest to that of the training set. In comparison515

with the test set of State I, ANTAP demonstrates516

slightly lower levels of accuracy and generalisation517

on all four corpora. Nevertheless, ANTAP con-518

tinues to demonstrate commendable accuracy and519

capacity for generalisation.520

In summary, the CAV-based ANTAP demon-521

strates impressive accuracy and fitting capabili-522

ties. Furthermore, CAV-based ANTAP exhibits523

favourable generalisation capabilities. Up to this524

point in the study, the paper has effectively estab-525

lished a quantitative relationship between the cor-526

pus quality and the translation quality, which has527

been achieved by constructing probability distribu-528

tions for CAV and translation accuracy. 529

4.4 Case Study 530

In terms of the translation quality, tokens charac- 531

terised by low translation accuracy are of greater 532

concern than tokens characterised by high trans- 533

lation accuracy. The present section thus aims to 534

conduct a case study with CAV in order to analyse 535

the causes of the poor translation accuracy. Follow- 536

ing the conditional probability model of NMT, it 537

is theorised that the underperformance of specific 538

tokens is attributable to the presence of analogous 539

tokens within the antecedent sequence of the for- 540

mer, i.e., the CAV exhibits similarity. In order to 541

validate the hypothesis, the low-precision token 542

in the target-side dictionary is first targeted, and 543

then the token with the highest cosine similarity, 544

referred to as the suspect tokens, to the CAV of 545

the targeted token is located. The following ta- 546

ble exhibits the target and suspect tokens for the 547

four corpora, along with their cosine similarity and 548

accuracy. 549

As illustrated in Table 6, the four corpora are 550

divided into three columns, from left to right, de- 551

noting the token, the cosine similarity, and the 552

token-level accuracy of the low-accuracy tokens 553

and suspect tokens. The suspect tokens exhibit 554

a high degree of cosine similarity to the CAV of 555

the target token. However, no discernible correla- 556

tion is observed between the translation accuracy 557

of the target and suspect tokens. It is hypothe- 558

sised that, under the conditional probability model 559

of NMT, translating tokens with a low degree of 560

CAV difference would be considerably more dif- 561

ficult. The translation accuracy of these tokens is 562

demonstrated to exhibit stochasticity and instability. 563

Supposing the tokens have the same CAV, i.e., in 564

the case of a one-to-many linguistic phenomenon, 565

instead of generating these two tokens with equal 566

probability, the NMT system generates them ran- 567

domly while maintaining the probability sum of 568

these two tokens constant. 569

To test the aforementioned hypotheses, ablation 570

experiments of CAV modifications were performed 571

in this paper. Specifically, the CAV is modified by 572

appending an artificial pseudo-token to the source- 573

side sequence tail of the targeted token to distin- 574

guish it from the suspect token. The subsequent 575

table illustrates the cosine similarity and accuracy 576

of target and suspect tokens in the NMT system 577

that has been trained using the modified corpus. 578

As illustrated in Table 7, the CAV similarities 579
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Table 6: Original results of target and suspect token (Token/Accuracy)

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

Target Token gesamteuropäi@@ 0.0000 vo 0.0116 prašeše 0.0000 лекнисене 0.0000
Similar Token anstehenden 0.2269 翔@@ 0.1645 jeju 0.4348 пу@@ 0.3173

Cosine Similarity 0.9857 0.9314 0.8420 0.8732

Table 7: Ablation results of target and suspect token (Token/Accuracy)

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

Target Token gesamteuropäi@@ 0.4016 vo 0.7011 prašeše 0.8125 лекнисене 0.6909
Similar Token anstehenden 0.2409 翔@@ 0.1865 jeju 0.5652 пу@@ 0.3035

Cosine Similarity 0.7953 0.7591 0.4498 0.6907

of the target and suspect tokens are decreased. In580

addition, the accuracy of the target tokens improves,581

whereas there is no clear pattern in the change in582

the accuracy of the suspect tokens. The increase in583

target token accuracy is attributed to the modified584

CAV of the target token has been differentiated585

from the suspect token, while the uncertain change586

in the accuracy of suspicious tokens is due to the587

effect of other tokens in the corpus.588

The ablation experiments confirmed our hypoth-589

esis about the relationship between CAV similarity590

and low translation accuracy.591

5 Conclusions592

In this paper, we propose a data-driven593

performance-oriented corpus quality assess-594

ment tool, a translation accuracy prediction task,595

and a corresponding network based on the atten-596

tion mechanism. Based on CAV and TAP tasks,597

ANTAP successfully modelled the probability598

distribution of CAV and translation accuracy, and599

established the quantitative relationship between600

corpus quality and translation quality. Besides, this601

paper demonstrates the impressive capabilities of602

CAV-based ANTAP in corpus quality assessment603

and analysis, and also shows the great potential604

of CAV in downstream applications, i.e., corpus605

filtering.606

6 Discussion607

The corpus quality assessment method proposed608

in this paper maintains a high level of consistency609

by strictly following the conditional probability610

modelling of NMT from the token-level perspec- 611

tive, which is different from the existing work at 612

the sentence level. Consequently, the methodology 613

outlined in this paper has exhibited a high degree 614

of efficacy in experimental settings. However, it 615

should be noted that the methodology of the pa- 616

per is not without limitations, which represent a 617

direction for future work. Firstly, it is evident that 618

CAV, CAV-based ANTAP, and TAP tasks all rely 619

on a trained baseline model, which imposes lim- 620

itations on the application scenarios that can be 621

utilised. Consequently, the utilisation of unsuper- 622

vised methodologies founded upon CAV emerges 623

as a particularly auspicious research domain. Sec- 624

ond, the macroscopic properties of CAV can intro- 625

duce additional noise, such as an illusory corpus 626

that is not present in the corpus, but which con- 627

forms to CAV. While the impact of these potential 628

errors is deemed to be negligible in terms of the 629

experimental results in this paper, they are never- 630

theless worthy of note. In conclusion, it can be 631

argued that the corpus quality assessment and cor- 632

pus analysis paradigm outlined in this study have 633

considerable potential in the field of NMT. 634
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