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Abstract

Neural Machine Translation (NMT) employs
neural networks to model the probability distri-
bution of the parallel corpus, with advances in
network architectures resulting in a substantial
enhancement in translation quality. The quality
of the parallel corpus is also a significant factor
in the translation quality. Despite the broad
consensus on the positive correlation between
corpus quality and translation quality, existing
methods for assessing corpus quality fail to
address the quantitative relationship between
corpus quality and translation quality. It leads
to the fact that corpus quality assessment has to
rely on subjective experience or black-box lan-
guage models to blur the relationship, divorced
from the mathematical modeling of NMT. This
brings unavoidable bias and unestimated im-
pact to the NMT system. In response to the
aforementioned issues, this paper proposes the
Corpus Analysis Vector (CAV), a data-driven
framework that mathematically formalises cor-
pus quality by converting text sequences into
matrices under the modelling of NMT. The pa-
per employs the CAV framework to model the
probability distribution of corpus and transla-
tion quality, mathematically formalising the re-
lationship in the context of the translation ac-
curacy prediction task. The efficacy of CAV
is validated through experimentation on mul-
tiple benchmark datasets: CAV demonstrates
efficacy in translation accuracy prediction by
modelling the quantitative correlation between
corpus quality and translation quality. The sub-
sequent case studies are intended to illustrate
the interpretability of the CAV in terms of iden-
tifying quality-critical corpus features from a
data-driven perspective. It has been demon-
strated that, in addition to theoretical insights,
CAV also has practical utility in guiding corpus
filtering, thereby enhancing NMT systems.

1 Introduction

The Neural Machine Translation (NMT) task in-
volves the generation of the target-side language

sequence from the source-side one via a neural net-
work. The neural network stores the probability
distribution in the parameters, which are optimised
to approximate the distribution of the training par-
allel corpus. In the preceding decade, significant
advancements have been witnessed in the domain
of neural networks, with a notable enhancement in
the caliber of translation quality. This enhancement
is largely attributed to the attention mechanisms
within neural network architectures.

Conversely, corpus research continues to en-
counter numerous challenges. Despite the exten-
sive recognition of a positive correlation between
corpus and translation quality, there remains a
paucity of research investigating the quantitative
relationship between the two. Existing research
has superseded that quantitative relationship with
heuristic, subjective experiences, or black-box lan-
guage models. The mathematical modelling of
corpus quality assessment methods based on these
paradigms deviates from NMT due to the absence
of quantitative relationships. This lack of consis-
tency has the potential to result in the deletion of
information and the introduction of errors, as well
as impeding the analysis of the relationship be-
tween corpus quality and translation quality. This,
in turn, has consequences for the accuracy and flex-
ibility of downstream applications of corpus quality
assessment.

In order to address the aforementioned draw-
backs, this paper proposes the Corpus Analysis Vec-
tor (CAV), which directly bridges the corpus qual-
ity and translation quality, thus achieving a dual
purpose. Firstly, the CAV is data-driven, utilising a
mathematical framework to convert text sequences
into matrices, which is grounded in the mathemat-
ical modelling of the NMT task to preserve the
essential information and maintain consistency. In
this manner, CAV is responsible for conveying the
requisite information for the NMT task and the
original features of the corpus, including the corpus



quality. Secondly, CAV is performance-oriented,
which refers to translation quality in this paper,
directly bridging the relationship between corpus
quality and translation quality by constructing the
probability distribution of CAV and translation ac-
curacy. In this manner, the quantitative relationship
between the corpus quality and the translation qual-
ity is modelled in the probability distribution of
the CAV and the translation accuracy. Specifically,
the paper first provides the fundamental formula-
tion of CAV, which contains the computation of
the transformation matrix. The translation accu-
racy prediction task is then proposed, along with
the corresponding neural network to model and
approximate the probability, respectively.

The experimental results, drawn from publicly
available corpora, demonstrate the impressive per-
formance of CAV in the translation accuracy pre-
diction task. These results indicate a strong quanti-
tative correlation between corpus quality and trans-
lation quality. This paper further provides an in-
depth analysis of the experimental results using
CAY, demonstrating the interpretability and great
potential of CAV as a corpus quality assessment
tool.

The three principal contributions of this paper
are as follows:

* Corpus Analysis Vector (CAV): This paper
proposes a data-driven corpus feature repre-
sentation method based on task-specific math-
ematical modelling. This approach overcomes
the limitations of heuristic-driven approaches
and black-box feature extraction.

e Translation Accuracy Prediction: The
model establishes quantitative connections be-
tween corpus quality and translation quality
through the probability distribution modelling
of CAV representation and translation accu-
racy.

* Downstream Application: The dual utility
of CAV is demonstrated in two distinct capac-
ities: firstly, as a quantitative corpus quality
assessment tool in the context of translation
error analysis, and secondly, as a data filtering
guidance mechanism within the framework of
neural machine translation systems.

2 Background

2.1 Corpus Quality Assessment

The two primary objects of corpus quality assess-
ment for the NMT task are the parallel corpus and
the translations. The evaluation of translation qual-
ity serves to assess the performance of the NMT
system by measuring the quality of the generated
translations. BLEU (Papineni et al., 2002) is a
metric of considerable popularity, the function of
which is to calculate the precision of n-grams with
an overlap of between 1 and 4, based on precision.
While ROUGE (Lin, 2004), as an assessment tool,
is based on recall, a concept first formally intro-
duced in the context of summaries. Furthermore,
a considerable number of neural network-based
translation quality assessment methods have been
developed in recent times (Guzmén et al., 2017,
2019; Ma et al., 2016; Shao et al., 2024; Gunasekar
et al., 2024).

Parallel corpus quality assessment employs
sentence-level feature representations, primarily
utilised for the execution of corpus filtering tasks.
A number of the assessments employ sentences
as representatives within the aligned multilingual
embedding space, for example, XLM-R (Con-
neau et al., 2019), MUSE(Conneau et al., 2017),
LaBSE(Feng et al., 2020) and LASER(Schwenk
and Douze, 2017). There exist alternative works
based on pre-trained models or LLM to directly
score parallel sentence pairs, e.g., COMET (Rei
et al., 2020), NMTscore(Vamvas and Sennrich,
2022), and BERTscore(Zhang et al., 2019).

The aforementioned automated corpus quality
assessment methods are at the sentence level, de-
viating from the token-level conditional probabil-
ity modelling of the NMT task, which introduces
unavoidable noise. Furthermore, the models em-
ployed in these approaches are contingent on addi-
tional corpora that exhibit considerable variability
in their adaptability to different language pairs and
scenarios. These corpora are predominantly black-
boxed, resulting in uncertainty impacts on the NMT
system. Furthermore, extant research has neglected
to explore the quantitative relationship between cor-
pus quality and translation quality. The absence of
such a quantitative relationship has impeded the ex-
ecution of in-depth studies of the role of the corpus
in NMT systems.



2.2 Neural Machine Translation

The objective of the Neural Machine Translation
task is to generate target-side token sequences with
the utility of neural networks, given the correspond-
ing source-side token sequences, which are referred
to as parallel sentence pairs of the source and target
languages. It is possible to divide NMT into two
distinct paradigms: the autoregressive paradigm,
which generates one token at a step, and the non-
autoregressive paradigm, which generates all to-
kens at one step. The present paper focuses on
supervised autoregressive natural language process-
ing (NLP), hereafter referred to as NMT The math-
ematical modelling of NMT is predicated on the
conditional probability of a sequence. Given the
source-side token sequence S = {s1, 82, - ,Ss}
and the parallel target-side token sequence 7' =

{t1,t2, -+ ,tx }, the joint probability of the target-
side token sequence P (7" | S) is defined as:
K
P(T | S) =] Pt | S, T<) )
i=1

where T'; is the generated target pre-order se-
quence before t;, and P(t; | S,T;) is the proba-
bility of ¢; given the source-side token sequence
and the generated target-side pre-order sequence.
The teacher-forcing strategy, which can avoid the
influence of the biased generated pre-order se-
quence, calculates the probability P(t; | S,T<;)
with ground truth target pre-order sequence 7.

2.3 Attention-based Networks

The multi-head attention mechanism (Waswani
et al., 2017) effectively addressed the long-distance
dependency issue and notably enhanced the trans-
lation quality of the NMT system, as formalized as
follows:

MultiHead(Q, K, V) =
Concat(heady, . .. ,headh)WO 2)
head; = Attention(QWiQ, KwE vwY)

where ), K,V refer to query, key, and value
vectors, WO is the output projection matrix,
WiQ, WZ-K, WiV are projection matrices of the
i-th head, Concat(-) concatenates all heads,

Attention(-) computes head; as follows:

QKT
e

Attention(Q, K, V') = softmax < > V 3)

where dj, is the dimension of the key vectors, v/d},
is the scaling factor, so ftmax is the softmax func-
tion applied row-wise, and QK | calculates the
score matrix, which is the core of the attention
mechanism.

The flexible score matrix enables the attention
mechanism to effectively calculate and extract the
association and difference between query and key
vectors. In the context of machine learning, a self-
attention mechanism that aligns the query and key
vectors can facilitate the extraction of internal in-
formation from the vector. This process enables the
realization of feature extraction. A cross-attention
mechanism, in which the query and key vectors are
distinct, emphasizes the inter-association and dis-
crepancy, thereby facilitating feature fusion. The
multi-head design enables each head to focus on
different information independently, thereby en-
hancing the attention mechanism’s feature extrac-
tion and expression ability.

3 Methodology

The technical particulars and other prerequisites
are delineated before the exposition of the specific
methodology. Firstly, this paper adopts the token
level as the granularity, i.e., the overall situation of
each token in the dictionary over the whole corpus.
Token-level granularity is instrumental in ensuring
the consistency of NMT mathematical modeling,
neural networks, and evaluation metrics. This, in
turn, ensures that the study is both rigorous and ac-
curate, while consistent with the holistic nature of
quality assessment. Secondly, this paper adopts the
teacher-forcing strategy while training and testing
the baseline neural network. According to the con-
ditional probability modeling of NMT, the teacher-
forcing strategy is strictly consistent with NMT’s
conditional probability modeling. Moreover, this
strategy effectively avoids the accumulation of er-
rors. Thirdly, the Translation Accuracy Prediction
(TAP) task is distinct from the Translation Quality
Assessment (TQA) and the Translation Quality Es-
timation (TQE) tasks. TAP utilizes corpus features
to predict token-level translation accuracy, thereby
modeling the probability distribution between cor-
pus quality and translation quality. The subsequent
two tasks are designed to evaluate the quality of
the generated translations.



3.1 Corpus Analysis Vector

Corpus Analysis Vector (CAV) is a representation
that converts the textual corpus into matrices. The
technical core of CAV is the conversion matrix,
which converts the text corpus into matrices while
following the conditional probability modeling of
NMT to retain the necessary information. Under
this premise, CAV can simultaneously satisfy the
previously mentioned granularity consistency, en-
suring the accuracy. The subsequent section will
illustrate the formulation of CAV through the trans-
formation process from text corpus to CAV.
According to the conditional probability model-
ing of NMT, when a neural network is generating
a certain target-side token, the probability distri-
bution of the token is determined by its preceding
sequence. More specifically, this probability is
determined by all the tokens of the source-side se-
quence and the tokens that precede that token in
the target-side sequence. Given the parallel cor-
pus where the source-side dictionary T with Ny
tokens, the target-side dictionary T with Nyg to-
kens, the CAV is a set of matrices as follows:

CAV = {CAV(t) | t € Tyg}
cAV(t)= Y F(tseq(t) @

seq(t)eSEQ(t)

where C' AV is the matrix set of CAV'(t), SEQ(?)
is the set of sequences seq(t) containing token ¢,
and F(¢, seq(t)) is the converted matrix of seq(t)
in response to ¢.

Given  the  parallel  sequence
{seqsc(t), seqigi(t)},  where the target-side
sequence is seqy(t) = {t1,t2,...,tn} contain-
ing token ¢, the parallel source-side sequence is
seqsc(t) = {s1,$2,...,5n}, the formulation of
F(t, seq(t) is as follows:

pair

T, = Concat(Tg, Ty)
seq.(t) = Concat(seq,(t), seq.(t))
it, = ldxr, (), Vt; € T
p(t,ti) = Idxgeq (1) (t) — Idxeq (1) (ti),
Vt € Ty, t; € T
F(t,seq.(t)) =M € 7(Ns+Nt) X Linax
Lor =iy, = Ip(t: )],
p(t,t;) >0
0, otherwise

Vt; € T, Mr,c =

(&)

where T, is the concatenated dictionary of Ty
and Tg, seqcar(t) is the concatenated sequence of
seqsc(t) and seqig(t), Indext,, (¢;) is the index of
t; in the concatenated dictionary Tea, p(t,t;) is
the relative position of ¢ and ¢;, F(t, seq(t) returns
the matrix M € ZNsetNa)xLm that stores the
parallel sequence pair {seqgc(t), seqy(t)}, where
Lnax is the maximum length of the concatenated
sequences, and M. . is the element of matrix M in
the r-th row and c-th column.

In this way, M stores the identity and rel-
ative position information of all the preceding
sequence tokens of the parallel sequence pair
{seqsc(t), seqig(t) } in response to token ¢, i.e., all
the source sequence tokens and the target sequence
tokens before ¢. Thus, the C AV (t) is obtained by
accumulating all the matrices M corresponding to
the parallel sequence pairs {seqs.(t), seqig(t)} in
response to ¢ At this juncture, the CAV has suc-
cessfully stored the requisite information, which
includes pertinent data from which the corpus qual-
ity can be induced.

3.2 Attention-based Network For Translation
Accuracy Prediction

As previously stated, CAV is a collection of corpus
features for each token of the target side, where
there are intricate relationships among the corpus
features of each token. Consequently, the proposed
neural network is designed to mine internal relation-
ships, which is precisely the strength of the atten-
tion mechanism. Furthermore, given the common
dictionary scale of NMT tasks, direct utilization of
the attention mechanism necessitates substantial re-
source consumption, necessitating dimensionality
reduction on CAV as a prerequisite.

Figure 1: Architecture of ANTAP

As shown in Fig. 1, the Attention-based Network
For Translation Accuracy Prediction (ANTAP) con-
sists of three primary components, namely, the



downscale module, the attention module, and the
prediction module.

The original input C' AV}, has a dimension of
batch x (N + Nigt) X Limax, where the first dimen-
sion refers to the batch size, the second refers to the
concatenated dictionary scale, the third refers to
the maximum concatenated sequence length. AN-
TAP employs the adaptive mean pooling technique,
which involves the downsampling of the final two
dimensions of the CAV. The subsequent embedding
modules perform a straightforward information in-
tegration of the final two dimensions of the CAV,
each responsible for embedding the downsampled
dimensions. The following is the formulation of
the aforementioned downscale module:

C AVy = GELU (AdaptiveAngoolZD (
LayerNorm(C'AV,)) )
CAVerp = EmbLinearznd(

GELU (EmbLinear3fd(CAms)T))
(6)
where CAVys is the downsampled vector,
AdaptiveAvgPool2D(-) controls the downsam-
pling factor, EmbLinear®™(-) and EmbLinear*™(.)
transformation of the second and third dimensions
of C AVys, respectively.

The embedded vector is then fed into the Mul-
tihead Attention Module, which is designed as re-
ferred to (Waswani et al., 2017) to extract the intri-
cate relationships among the tokens, as follows:

CAV,

attn

= Multihead (LayerNorm(CAVin)>
+ CAVy,
C AVyn = FEN (CAVa’tm)

(7N
where C' AV}, is the intermediate variable of
C AV, and FEN(+) consists of linear layers and
the activation function as referred to (Waswani
etal., 2017).

The multi-attention mechanism’s long-range per-
formance facilitates the integration of features rep-
resenting complex relationships among tokens that
interact with each other into C AV,.

Considering the token-level translation accuracy
as a scalar, the prediction module of the neural
network needs to integrate the features extracted by
the attention module. In particular, the prediction
module of the network consists of alternating linear

layers and activation functions as follows:
C AViay = PredModule(Flatten(C AV ))  (8)

where Flatten(-) flattens the last two dimensions
of C' AV, PredModule(-) downsamples the flat-
tened vector step by step until reduced to 1. Con-
sequently, ANTAP attains token-level translation
accuracy by leveraging token-level CAV as the in-
put.

3.3 Translation Accuracy Prediction Task

The subsequent section delineates the Translation
Accuracy Prediction (TAP) task, which is designed
to model the quantitative relationship between cor-
pus quality and translation quality. The TAP task,
therefore, aims to predict token-level translation
accuracy, operating under the assumption that the
given baseline network has been adequately trained.
Under this consideration, the discrepancy in ac-
curacy between tokens is mainly attributable to
the probability distribution of the parallel corpus.
Given the corpus features C = {cy,c2,...,cn},
the mathematical modeling of the TAP task is as
follows:

N
P(Acc | C) =[] P (acc; | ¢i, F(C))  (9)
=1

where ¢; € R? is the corpus feature of the i-
th token, C determines the token-level accuracy
Acc = {accy, accy, . . ., accy } with the probabil-
ity distribution, and F(C) is the quantitative rela-
tionship between corpus features and translation
accuracy.

4 Experiment

4.1 Dataset And Settings

The datasets selected for this study are drawn
from the publicly accessible datasets, namely
WMT14 English-German (En-De), WMT17
English-Chinese (En-Zh), WMT21 German-Upper
Sorbian (De-Hsb), and WMT21 Russian-Chuvash
(Ru-Chv). These corpora encompass a wide range
of scenarios, from those with limited resources to
those with abundant resources, and span multiple
language pairs. The pre-processing stage involves
a series of essential steps, including the implemen-
tation of blank line filtering, special symbol filter-
ing, length filtering, lower-case conversion, tok-
enization, and sub-word processing, as outlined in
(Ott et al., 2019). Depending on the experimental



Table 1: Baseline BLEU Scores

Table 2: Training subsets scores of State I

WMT14 WMT17 WMT21 WMT14 WMT17 WMT21
En-De En-Zh  De-Hsb Ru-Chv En-De En-Zh  De-Hsb Ru-Chv
BLEU 26.77 21.01 47.72 17.70 MSE 0.0002 0.0016 0.0120  0.0001
MAE 0.0102 0.0147 0.0758  0.0060
RMSE 0.0149 0.0400 0.1098  0.0085
platform, the pre-processing filters out sub-word R? 0.9967 0.9823 0.5866 0.9991

sequences longer than 128, and sets the source-
side and target-side maximum sub-word dictionary
scale to 40k.

The baseline translation network is trained to
model the probability distribution of the training
set. Thus, the paper explores the relationship be-
tween corpus quality and translation quality on the
training set. It is imperative that a subset parti-
tioning of the target-side dictionary is performed,
entailing the random division of the target-side dic-
tionary into training, development, and testing sub-
sets in a ratio of 8:1:1. The ANTAP was trained
with MSE as the objective, with the AdamW op-
timizer. The ANTAP model was evaluated using
the following metrics: MSE, MAE, RMSE, and R2.
The experimental platform employs the Ubuntu
22.04 operating system, accompanied by 512GB
of RAM, utilising an A6000 GPU with 48GB of
memory.

4.2 Baseline Translation Network

The baseline model selected for this experiment
adopts the basic Transformer model (Waswani
et al., 2017), where the parameter configuration is
consistent with that employed in the original paper.
As previously mentioned, the baseline translation
network was trained and tested using the teacher-
forcing strategy and evaluated with SacreBLEU,
as illustrated in the subsequent table. As demon-
strated in Table 1, the baseline NMT system has
attained the performance levels of other baseline
NMT systems documented in the literature on the
four corpora, which indicates that the models have
been adequately trained.

4.3 Translation Accuracy Prediction

The experimental results of ANTAP on the TAP
task are hereby exhibited in two states. State I: Op-
timal checkpoint before the early-stop is triggered
during the training process, where the ANTAP can
be regarded as attaining its optimal performance
on the test set. State II: Last checkpoint when the
early-stop is triggered during the training process,

Table 3: Test subsets scores of State II

WMT14 WMT17 WMT21
En-De En-Zh De-Hsb Ru-Chv
MSE 0.0253 0.0108 0.0192  0.0397
MAE 0.1155 0.0356 0.0922 0.1511
RMSE 0.1589 0.1040 0.1384  0.1992
R2 0.6246 0.8824 0.3639  0.5093

where the ANTAP can be regarded as attaining its
optimal performance on the training set. Note that
to investigate the convergence and generalizabil-
ity of CAV-based ANTAP, ANTAP was deliber-
ately designed to eliminate the dropout mechanism.
The ensuing tables present the mean squared error
(MSE), the mean absolute error (MAE), the root
mean squared error (RMSE), and the R-squared
(R?) of ANTAP on the training and test subsets of
the four corpora.

As illustrated in Table 2, the performance of
CAV-based ANTAP on the training set of State I is
demonstrated. The table demonstrates the efficacy
of CAV-based ANTAP in terms of accuracy and
generalisation when applied to the WMT14 En-De,
WMT17 En-Zh, and WMT21 Ru-Chv corpora. Ad-
ditionally, ANTAP is capable of explaining more
than 98% of the variation in the dependent variable.
Despite achieving marginally lower scores, AN-
TAP still achieves considerable accuracy and gen-
eralisation on the WMT?21 De-Hsb corpus, where
ANTAP is able to explain more than half of the
variance in the dependent variable.

As illustrated in Table 3, the performance of
CAV-based ANTAP on the test set of State I is
demonstrated. In comparison with the training set
of State I, ANTAP demonstrates lower levels of
accuracy and generalisation on the test set for all
four corpora. The performance of the test set on
the WMT17 En-Zh corpus is the closest to the
training set. Nevertheless, ANTAP continues to



Table 4: Training subsets scores of State II

WMT14 WMT17 WMT21
En-De En-Zh De-Hsb Ru-Chv
MSE 0.0000 0.0001 0.0000  0.0000
MAE 0.0014 0.0020 0.0033  0.0005
RMSE 0.0022 0.0083 0.0069  0.0008
R2 0.9999 0.9992 0.9984  1.0000

Table 5: Test subsets scores of State II

WMT14 WMT17 WMT21
En-De En-Zh De-Hsb Ru-Chv
MSE 0.0254 0.0112 0.0232 0.0414
MAE 0.1154 0.0341 0.0949 0.1526
RMSE 0.1593 0.1061 0.1523 0.2034
R2 0.6229 0.8777 0.2298 0.4884

demonstrate commendable accuracy and capacity
for generalisation.

As illustrated in Table 4, the performance of
CAV-based ANTAP on the training set of State II
is demonstrated. The table demonstrates the effi-
cacy of CAV-based ANTAP in terms of accuracy
and generalisation when applied to all four corpora.
The analysis of these corpora reveals that ANTAP
is capable of explaining more than 99% of the vari-
ation in the dependent variable.

As illustrated in Table 5, the performance of
CAV-based ANTAP on the test set of State II is
demonstrated. In comparison with the training set
of State II, ANTAP demonstrates lower levels of ac-
curacy and generalisation on the test set than on the
training set for all four corpora. The performance
of the test set on the WMT17 En-Zh corpus is the
closest to that of the training set. In comparison
with the test set of State I, ANTAP demonstrates
slightly lower levels of accuracy and generalisation
on all four corpora. Nevertheless, ANTAP con-
tinues to demonstrate commendable accuracy and
capacity for generalisation.

In summary, the CAV-based ANTAP demon-
strates impressive accuracy and fitting capabili-
ties. Furthermore, CAV-based ANTAP exhibits
favourable generalisation capabilities. Up to this
point in the study, the paper has effectively estab-
lished a quantitative relationship between the cor-
pus quality and the translation quality, which has
been achieved by constructing probability distribu-

tions for CAV and translation accuracy.

4.4 Case Study

In terms of the translation quality, tokens charac-
terised by low translation accuracy are of greater
concern than tokens characterised by high trans-
lation accuracy. The present section thus aims to
conduct a case study with CAV in order to analyse
the causes of the poor translation accuracy. Follow-
ing the conditional probability model of NMT, it
is theorised that the underperformance of specific
tokens is attributable to the presence of analogous
tokens within the antecedent sequence of the for-
mer, i.e., the CAV exhibits similarity. In order to
validate the hypothesis, the low-precision token
in the target-side dictionary is first targeted, and
then the token with the highest cosine similarity,
referred to as the suspect tokens, to the CAV of
the targeted token is located. The following ta-
ble exhibits the target and suspect tokens for the
four corpora, along with their cosine similarity and
accuracy.

As illustrated in Table 6, the four corpora are
divided into three columns, from left to right, de-
noting the token, the cosine similarity, and the
token-level accuracy of the low-accuracy tokens
and suspect tokens. The suspect tokens exhibit
a high degree of cosine similarity to the CAV of
the target token. However, no discernible correla-
tion is observed between the translation accuracy
of the target and suspect tokens. It is hypothe-
sised that, under the conditional probability model
of NMT, translating tokens with a low degree of
CAV difference would be considerably more dif-
ficult. The translation accuracy of these tokens is
demonstrated to exhibit stochasticity and instability.
Supposing the tokens have the same CAV, i.e., in
the case of a one-to-many linguistic phenomenon,
instead of generating these two tokens with equal
probability, the NMT system generates them ran-
domly while maintaining the probability sum of
these two tokens constant.

To test the aforementioned hypotheses, ablation
experiments of CAV modifications were performed
in this paper. Specifically, the CAV is modified by
appending an artificial pseudo-token to the source-
side sequence tail of the targeted token to distin-
guish it from the suspect token. The subsequent
table illustrates the cosine similarity and accuracy
of target and suspect tokens in the NMT system
that has been trained using the modified corpus.

As illustrated in Table 7, the CAV similarities



Table 6: Original results of target and suspect token (Token/Accuracy)

WMT14 WMT17 WMT21

En-De En-Zh De-Hsb Ru-Chv

Target Token
Similar Token
Cosine Similarity

gesamteuropdi@@ 0.0000 vo  0.0116 prasese 0.0000 1e K Hu1 c e H e (.0000
0.2269 #l@@ 0.1645 jeju 0.4348 nyee 0.3173
0.9314 0.8420 0.8732

anstehenden
0.9857

Table 7: Ablation results of target and suspect token (Token/Accuracy)

WMT14

WMT17

WMT21

En-De

En-Zh

De-Hsb Ru-Chv

Target Token
Similar Token
Cosine Similarity

gesamteuropdi@ @ 0.4016  vo
anstehenden
0.7953

0.7011 prasese 0.8125 me xkHU Cc e He 0.6909
0.2409 Fl@@ 0.1865
0.7591

ny@@
0.6907

jeju  0.5652 0.3035

0.4498

of the target and suspect tokens are decreased. In
addition, the accuracy of the target tokens improves,
whereas there is no clear pattern in the change in
the accuracy of the suspect tokens. The increase in
target token accuracy is attributed to the modified
CAV of the target token has been differentiated
from the suspect token, while the uncertain change
in the accuracy of suspicious tokens is due to the
effect of other tokens in the corpus.

The ablation experiments confirmed our hypoth-
esis about the relationship between CAV similarity
and low translation accuracy.

5 Conclusions

In this paper, we propose a data-driven
performance-oriented corpus quality assess-
ment tool, a translation accuracy prediction task,
and a corresponding network based on the atten-
tion mechanism. Based on CAV and TAP tasks,
ANTAP successfully modelled the probability
distribution of CAV and translation accuracy, and
established the quantitative relationship between
corpus quality and translation quality. Besides, this
paper demonstrates the impressive capabilities of
CAV-based ANTAP in corpus quality assessment
and analysis, and also shows the great potential
of CAV in downstream applications, i.e., corpus
filtering.

6 Discussion

The corpus quality assessment method proposed
in this paper maintains a high level of consistency
by strictly following the conditional probability

modelling of NMT from the token-level perspec-
tive, which is different from the existing work at
the sentence level. Consequently, the methodology
outlined in this paper has exhibited a high degree
of efficacy in experimental settings. However, it
should be noted that the methodology of the pa-
per is not without limitations, which represent a
direction for future work. Firstly, it is evident that
CAYV, CAV-based ANTAP, and TAP tasks all rely
on a trained baseline model, which imposes lim-
itations on the application scenarios that can be
utilised. Consequently, the utilisation of unsuper-
vised methodologies founded upon CAV emerges
as a particularly auspicious research domain. Sec-
ond, the macroscopic properties of CAV can intro-
duce additional noise, such as an illusory corpus
that is not present in the corpus, but which con-
forms to CAV. While the impact of these potential
errors is deemed to be negligible in terms of the
experimental results in this paper, they are never-
theless worthy of note. In conclusion, it can be
argued that the corpus quality assessment and cor-
pus analysis paradigm outlined in this study have
considerable potential in the field of NMT.
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