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ABSTRACT

Multimodal Large Language Models (MLLMs) typically process visual information
as a flat sequence of image patch tokens, which is computationally expensive and
lacks explicit semantic structure. This paper provides a systematic, vision-centric
analysis of region-based representations, which group patches into semantically
meaningful regions, as a more efficient and interpretable alternative. Our inves-
tigation is grounded in a key finding: MLLM performance is surprisingly robust
to the input order of patch tokens, as the visual encoder already encode spatial
information within the patches. This insight provides a foundational justification
for reorganizing patches into semantically coherent regions. We further identify
that the success of region-based methods depends on the quality of the visual fea-
tures, particularly their smoothness and locality. We systematically evaluate how to
enhance these properties through vision backbone selection, feature normalization,
and hybrid partitioning strategies. Through comprehensive evaluations, we demon-
strate that optimized region-based representations are a competitive alternative to
patch-based ones, offering a compelling path towards more efficient, interpretable,
and performant MLLM:s.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Liu et al., 2023a; 2024a; Zhu et al., 2024; Dai et al.,
2023) have achieved sophisticated capabilities in understanding and generating content across visual
and textual domains. The dominant paradigm for their visual encoding process involves converting
an image into a sequence of patch-based tokens using a Vision Transformer (ViT) (Dosovitskiy et al.,
2021), which are then fed into the LLM via a simple projector (Liu et al., 2023a). While effective, this
approach is computationally demanding due to the large number of visual tokens and lacks explicit
semantic structure, often treating foreground objects and background clutter with equal importance.

An emerging and promising alternative is the region-based representations (Shlapentokh-Rothman
et al., 2024), which group patch-based visual tokens into a smaller set of semantically meaningful
regions before fusing them with the LLM. This approach holds the promise of significant gains in
efficiency by reducing the number of visual tokens, and in interpretability by aligning tokens with
recognizable image regions. However, despite their potential, a deep, systematic understanding of
why region-based representations work and how to optimize their design for MLLMSs remains largely
under-explored. This work addresses this gap by providing a systematic, vision-centric analysis of
region-based representations and their design principles.

Our investigation begins with a fundamental question: why is reorganizing and aggregating patches
into regions a viable and effective strategy? A key insight from our work is that the performance
of standard MLLMs is surprisingly robust to the relative ordering of patch-based tokens in the
LLM sequence. In fact, ViT-based encoders (Dosovitskiy et al., 2021) already encode rich spatial
information directly into the feature representation of each patch token. This token-order robustness
provides a crucial justification for region-based approaches: if the strict grid order is not required for
the LLM, then reordering and reorganizing patches based on representation similarity is a principled
and effective strategy for creating more compact and structured visual inputs for MLLMs.

Building on this insight, we find that the primary factor leading to the success of region-based
representations is the visual feature quality, specifically the smoothness and locality of the underlying
visual features. Noisy or non-contiguous features can lead to poor region partitioning and aggregation,
undermining the final performance. Through a series of controlled experiments, we identify several
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key strategies to enhance region-based representations: 1) selecting pretrained vision backbones
that produce smoother feature maps (e.g., SigLIP (Zhai et al., 2023) or RADIO (Ranzinger et al.,
2024b) over standard CLIP (Radford et al., 2021)); 2) applying additional feature normalization
layers (Zhang & Sennrich, 2019) before aggregation; and 3) combining semantic-based partitioning
from models like SAM (Kirillov et al., 2023) with feature-based clustering (Ester et al., 1996) to
create more robust region-based representations.

To ground our analysis, we conduct comprehensive evaluations across a suite of MLLM benchmarks,
including MMStar (Chen et al., 2024b), POPE (Li et al., 2023b), CV-Bench (Tong et al., 2024a),
and OCR-Bench (Liu et al., 2023b). Our experiments demonstrate that well-designed region-based
representations are a competitive alternative to the traditional patch-based counterpart, performing
particularly well in vision-language tasks requiring strong object and spatial awareness. Beyond
task performance, our analysis critically examines efficiency and interpretability. We demonstrate
the token reduction benefits of region-based methods and use attention visualization to understand
how these structured representations reveal the model’s focus. Our main contributions are: (1)
We provide a foundational insight justifying region-based representations by demonstrating that
MLLM performance is robust to the input order of patch tokens, as spatial information is already
encoded in the features. (2) We identify visual feature smoothness as a key factor for effective
region-based representations and propose concrete strategies to improve it, including vision backbone
selection, feature normalization, and hybrid partitioning methods. (3) We demonstrate empirically
that optimized region-based representations are a competitive alternative to patch-based systems,
offering a compelling path towards more efficient, interpretable, and performant MLLMs, especially
on tasks requiring object-level understanding.

2 FROM PATCH TO REGION: ESTABLISHING A NEW PERCEPTION LEVEL

Why Move Beyond Patches: Towards Vision-Centric Perception. Modern MLLMs (Liu et al.,
2023a; 2024a; Zhu et al., 2024; Dai et al., 2023) predominantly use a patch-based visual encoding
paradigm. In this approach, a visual encoder divides an image into a fixed grid of patches, extracting
a feature vector for each. These features are then projected by a connector module into the LLM’s
embedding space, creating a sequence of “’visual tokens.” These are concatenated with text prompts
and fed into the LLM, which is then fine-tuned on visual instruction datasets to align the modalities.
However, this standard patch-based approach has significant limitations. First, it scales poorly
with image resolution: the number of visual tokens grows quadratically, leading to prohibitive
computational costs and straining the LLM’s context length. Second, a uniform grid is content-
agnostic, arbitrarily dissecting objects and forcing the LLM to reconstruct concepts from a disjointed,
low-level mosaic.

We argue for moving to region-based representations, where each visual token corresponds to a
meaningful object or segment in the image. This shift offers a threefold advantage: 1) Efficiency:
It breaks the quadratic scaling bottleneck, enabling high-resolution understanding with a relatively
stable number of tokens. 2) Semantic Grounding: It provides the LLM with inputs that align with
human-like perception, allowing for more direct reasoning about entities and their relationships. 3)
Interpretability: The model’s attention over meaningful regions can offer clearer insights into its
reasoning process. These advantages frame region-based representations as a critical step toward
building more scalable and vision-centric MLLMs.

Basic Formulation of Region-based Representations. The construction of region-based repre-
sentations can be conceptualized as a two-stage process that operates on the output of a standard
visual encoder: (1) region partitioning and (2) feature aggregation. First, given an input image, a
pretrained visual encoder produces a grid of patch features, FF € RH*W XD where H x W is the
spatial resolution of the feature map and D is the feature dimension. In parallel, a set of K binary
masks, {my, ma, ..., mg}, is generated, where each mask m;, € {0, 1}*W defines a specific
region by identifying the spatial locations of the patch features belonging to it. One way of deriving
these masks is using open-world segmenters like SAM (Kirillov et al., 2023; Ravi et al., 2024), and
then resizing the segmentation masks into the feature resolution. Alternative sources of regions, like
clustering, will be discussed in the following sections.

In the second stage, feature aggregation, a single representative feature vector r is computed for
each region k to replace the raw patch features. This is achieved by first selecting the subset of patch
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features F}, corresponding to the mask my, and then applying an aggregation function .A:
ri = A{Fi; | me(i, j) = 1})

The most straightforward aggregation method is to apply simple average pooling, where all patch
features within a region are averaged to produce the final region feature. In the following sections,
we will also discuss a more complex, cross-attention-based feature aggregation method.

Under this formulation, the conventional patch-based approach can be viewed as a special case of
region-based representations where each patch constitutes its own singleton region. This perspective
allows us to frame our investigation not as a comparison of two disparate methods, but as an analysis
of the effects of moving along the perceptual level from a fine-grained, uniform grid to coarse-grained
but semantically meaningful regions.

3 UNDERSTANDING REGION-BASED REPRESENTATION

Having established the motivation for region-based representations, we now turn to a systematic
analysis of these concepts. In this section, we start by evaluating region-based representation,
followed by additional observations on the rationale as well as the main challenge for region-based
representations, as well as the potential remedies to mitigate the challenge. Our goal is not only
to measure performance on standard benchmarks but also to gain a deeper understanding of the
trade-offs between patch-based and various region-based approaches, especially concerning their
efficiency and interpretability.

We followed the same training pipeline of LLaVA v1.5 (Liu et al., 2024a), using the same data and
training hyperparameters. In all experiments, we also use the same LLM vicuna-7b-v1.5 (Zheng et al.,
2023) to align with LLaVA v1.5. We use sam2.1-hiera-large (Ravi et al., 2024) as the segmentation
model for generating regions. We tested over three visual encoders, CLIP (clip-vit-large-patch14-
336) (Radford et al., 2021), SigLIP2 (google/siglip2-so400m-patch14-384) (Tschannen et al., 2025),
RADIOV2.5 (radio-v2.5-1) (Heinrich et al., 2025).

3.1 EVALUATION ASPECTS

To ensure a thorough comparison, we extend our focus beyond benchmark performance to cover
three critical aspects:

Performance. We evaluate the models’ capabilities across seven benchmarks covering varying
capabilities. POPE (Li et al., 2023b) focuses on measuring object hallucination by asking about
whether specific objects are present in an image. OCRBench (Liu et al., 2023b) assesses the model’s
ability to read and comprehend text in images under various scenarios. CV-Bench (Tong et al., 2024a)
repurposes classic vision tasks like spatial relationship and object counting to evaluate the model’s
spatial reasoning and fundamental 2D/3D perception. Finally, four comprehensive benchmarks
MME (Fu et al., 2023), MM-Vet (Yu et al., 2024), MMBench (Liu et al., 2024b), and MMStar (Chen
et al., 2024b), cover the diverse abilities of MLLMs, ranging from foundational perception tests
to expert-level reasoning challenges. For CV-Bench, we slightly modified the prompt to align the
prompt templates with other benchmarks. To facilitate a more detailed comparison, we further dive
into specific sub-categories to reveal the specific advantages of region-based representation.

Interpretability. We assess the model’s interpretability both qualitatively and quantitatively. Our
analysis primarily focuses on the attention patterns the LLM assigns to visual tokens, as this provides
insight into which parts of the image the model deems most important for its reasoning process.
Additionally, we utilizes the annotations provided by PixCV-Bench (Siam, 2025), which contains
segmentation masks of the object of interest for questions in CV-Bench, to compute a focus metric for
quantitatively evaluating the attention attended to visual tokens during MLLM inference. Specifically,
for each regular visual token, if the patch/region it represents has over a certain threshold of the area
overlapping with the mask annotation, this token would be considered as a target token. Then, the
focus metric is defined by the averaged total attention score of the answer tokens attending to target
visual tokens.

Efficiency. We analyze the average number of visual tokens produced by different methods at
various resolutions, which is particularly important for evaluating the efficiency gains of region-based
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Vision Encoder | #Tokens | POPE  OCRBench CV-Bench MMStar MME Perception  MME Cognition  MMBench ~ MM-Vet

Patch-based Representations

CLIP 576 86.05 331 55.82 33.47 1499.80 300.00 66.84 32.1

SigLIP2 729 85.98 405 60.03 35.27 1462.61 320.71 67.53 35.1

RADIOV2.5 576 85.82 315 56.92 36.00 1494.28 304.64 67.35 29.60
Region-based Representations (from clustering)

CLIP 257 85.80 310 57.66 35.80 1493.47 305.71 66.84 29.60

SigLIP2 334 85.67 379 59.68 36.33 1542.31 323.57 69.67 35.8

RADIOV2.5 124 84.51 280 58.10 35.47 1456.17 350.00 65.38 26.70

Table 1: MLLM performance under various vision encoders. We use the default resolution for CLIP
and SigLIP2 and use 384 for RADIOV2.5. #Tokens denotes the average visual token count per image.
We report: F1 score for POPE, Perception & Cognition score for MME, and total or averaged score
for all other benchmarks. Improved metrics from patch-based to region-based are bolded.

Region Resolution  #Tokens Focus | OCRBench MME MME .
Source OCR  code reasoning
Patch 576 10.57 315 125 425
Segment 384 101 16.22 250 125 57.5
Cluster 124 13.39 280 125 50
Combined 134 14.88 264 1325 52.5
Patch 576 1296 10.91 357

Segment 768 104 15.80 275

Combined 768 159 14.72 260

Table 2: Visual token count, attention focus metric, as well as OCR performance under different
resolutions and from different mask sources for region-based representations.

models and understanding the trade-offs between computational cost and performance. Similar
to Interpretability, we also compute the average number of visual tokens produced by different
region-based settings on CV-Bench and report it as a quantitative efficiency metric.

3.2 EVALUATING REGION-BASED REPRESENTATION

Table 1 shows our three evaluation aspects of different visual encoders under both patch and region-
based settings. Performance. As we can see, all visual encoders demonstrate region-based repre-
sentation as a competitive alternative to patch-based representations, with specific MME Cognition
tasks showing consistent benefits. Breakdown performance on OCR-related tasks in Table 2 reveals
that region-based representation does not always help OCR, which we hypothesize to be related to
region mask quality. If each character is assigned an independent region, region-based representation
should be helpful as it effectively separates characters. On the other hand, if multiple characters are
crowded within the same region or some characters are not recognized as any region, region-based
representation would conversely hurt, as it confuses or even loses information about certain characters.
Our hypothesis is empirically validated by the visualizations of regions shown in Figure 2, where
the quality of the segmented region matches the performance fluctuation. Efficiency. In Table 1,
2, all region-based representation variants show reduced visual token count, while RADIOvV2.5
enjoys the most efficiency improvements. The rationale behind this will be discussed in Section 4.2.
Interpretability. When compared with patch-based representation, all region-based representa-
tions provide more interpretable attention, characterized by the improved focus metric and attention
visualizations shown in Fig. 1.

Summarizing the three aspects, we conclude that region-based representations work as a promising
alternative for patch-based representations, and thus obtained the key finding 1:

Region-based representations are competitive alternatives to traditional patch-based represen-

tations. This is supported by competitive (or sometimes even improved) performance, improved
efficiency, and better interpretability from our analysis.

3.3 NON-SENSITIVITY OF VISUAL TOKEN ORDERING

One potential concern about region-based representation might be that it breaks the predefined order
of how LLMs receive visual tokens. In the patch-based representation, LLLM receives all patch
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(a) Patch (b) Segmentation (c) Clustering (d) Combined

Figure 1: Visualized attention to different parts of the image from different methods. Region-based
methods all represent high interest in the zebra, while patch-based models only have high attention
on either random or fixed positions. For region-based representations, we additionally visualize the
attention of the global mask as a ”G” letter top-left.

x = 10
if x < 20:
print("Hello")
else:
print("world")

(a) OCRBench (b) MME OCR  (c¢) MME code reeasoning

Figure 2: Visualized regions from segmentation, for OCRBench and MME code reasoning subset.

Setting | POPE  OCRBench CV-Bench MMStar
Patch-based
A: CLIP+RMSNorm 85.83 317 58.19 33.93
B: A+random order 85.73 312 58.80 34.27
C: RADIOV2.5+RMSNorm 85.43 319 58.54 34.60
D: C+random order(trained) 85.10 313 57.45 36.33
&: C+random order(w/o/ training) - - - 35.07
F: C+pre-shuffle - - - 28.27
G: D+pre-shuffle - - - 28.20
Region-based (from combined source, at 768x resolution)
H: RADIOV2.5 86.43 275 57.15 33.93
Z: H+random order 86.43 279 57.98 32.80

Table 3: Effect of the order of visual tokens. pre—shuffle means randomly shuffle the image
patches before the visual encoder, rather than randomly shuffle the visual tokens fed into LLM.

representations in a default scanline order, which is intuitive and follows fixed patterns, which might
be a soft-encoding of the spatial information in the image. However, regions in an image can have
an irregular shape, while the “correct” order for those regions remains unclear. To address this, we
sort the regions according to their center-of-mass by default, and compare the scanline order with a
random order under both patch-based and region-based settings in Table ??. From the results, the
order of the visual tokens has no or a negligible impact on preserving MLLM’s spatial relations,
regardless of whether MLLM is trained to adapt such order. On the other hand, shuffling image
patches would immediately degrade performance, indicating that the spatial information are primarily
encoded in the positional embeddings in the visual encoder.

The spatial information of visual tokens is encoded in the learned positional embeddings in
the visual encoder, rather than the visual tokens’ relative order.

4 MAJOR CHALLENGE FOR REGION-BASED REPRESENTATIONS

While the concept of aggregating patch features into region-level representations is intuitive and
competitive, its effectiveness is fundamentally contingent on the quality and consistency of the
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underlying patch features. In this section, we propose a critical and often overlooked challenge from
the visual encoder aspect for region-based representations, followed by approaches that can mitigate
this issue.

4.1 VISUAL FEATURE INCOHERENCE IN VISUAL ENCODERS

The fundamental premise of feature aggregation is that patch features within the same region can be
effectively compressed into a region-level feature with minimal information loss, which naturally
relies on the following assumption: Raw features from visual encoders are spatially coherent. That
is, 1) the features primarily contain information about the local patch, and 2) the features of two
adjacent and semantically similar patches are also similar.

Figure 3: Visualized raw features and corresponding feature norms. Features are visualized through
principal component analysis (PCA). CLIP and SigLIP2 show high-norm artifacts known as “regis-
ters”, while other models produce smoother features and less extreme high-norm artifacts.

However, the above assumption is frequently violated by modern visual encoders, particularly those
supervised by image-text pairs such as the CLIP series (Radford et al., 2021; Cherti et al., 2023;
Fang et al., 2024) and the SigLIP series (Zhai et al., 2023; Tschannen et al., 2025). On the other
hand, visual encoders like DINOvV2 (Oquab et al., 2023) have better feature coherence due to their
self-supervised training objective, but they are never pre-aligned with the language modality, making
them unsuitable for MLLM integration. Figure 3 demonstrates the feature incoherency of common
visual encoders.

Decomposing Incoherence. Our observation of visual feature incoherence manifests two primary
factors: high-norm artifacts and non-smoothness.

One well-documented source of incoherence is the presence of high-norm artifacts in the feature
map. It has been shown that Vision Transformers (ViTs) spontaneously learn to use semantically
sparse patches as “registers” to store global information during processing, and explicitly introducing
a small number of register tokens helps mitigate this phenomenon (Darcet et al., 2024). These register
patches develop feature vectors with exceptionally high norms that are unrepresentative of their local
visual content. When these artifact features are included in the feature aggregation for a larger region,
their high magnitude can dominate the resulting representations, effectively corrupting the aggregated
feature and diverting the LLM’s attention. Figure 3 demonstrates these “register” artifacts in the
feature norm map.

Beyond these distinct artifacts, we also observe a more general non-smoothness in the feature space.
Ideally, adjacent patches that belong to the same object or surface should have highly similar feature
vectors, creating a smooth transition across the feature map. Yet, many language-supervised encoders
produce features with surprisingly low similarity between neighboring patches. This noisy, disjointed
representation makes it difficult to learn localized information. When aggregating features across a
semantic region, this non-smoothness causes averaging a collection of dissimilar vectors, washing
out subtle but important details, and eventually failing to produce a truly representative feature for
the region. Denoising-ViT (Yang et al., 2024) considers such non-smoothness as noise in the feature
map, and further shows that these artifacts can be traced back to the learned patterns in the positional
embeddings, and can be removed by appending a denoising layer in the end.
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The incoherency of the raw visual features is the major challenge in the development of region-

based representation, characterized by high-norm artifacts as well as non-smoothness between
adjacent patches.

4.2 ATTEMPTS TO MITIGATE INCOHERENCE

Given that visual feature incoherence is a fundamental challenge, we explore several distinct but
complementary strategies to mitigate its negative impact on region-based representations. These
approaches operate at different stages of the visual encoding procedure: (1) seeking more coherent
raw features; (2) processing the raw features through normalization; (3) revisiting different sources of
obtaining region masks; and (4) alternative, learnable feature aggregation approaches.

Agglomerative Visual Encoders Recent works (Tong et al., 2024a; Shi et al., 2025; Li et al.,
2025c;a) have explored utilizing visual representations from multiple visual encoders or unfreezing
the visual encoders to further boost the performance. Despite their efforts might mitigate the
incoherency issue to some extent, these approaches might introduce extra complexities and does
not help when a single visual encoder is enforced. To better compare different visual encoders and
simplify training and evaluation, we focus on using a single frozen visual encoder.

In addition to adopting multiple visual encoders at the same time, agglomerative visual encoders (Hein-
rich et al., 2025; Sariyildiz et al., 2024; Shang et al., 2024) combine the strengths of different visual
encoders through multi-teacher agglomeration. By jointly distilling from CLIP (Radford et al.,
2021), SigLIP (Zhai et al., 2023), DINOv2 (Oquab et al., 2023), and SAM (Kirillov et al., 2023),
these models obtain both language alignment abilities from language-supervised models as well
as fine-grained perception and segmentation abilities from self-supervised models. In terms of the
feature coherence, RADIOV2.5 (Heinrich et al., 2025) reaches a better balance between language
alignment and feature coherence, as shown in Figure 3. Reduced token counts in Table 1 also confirm
the effectiveness of adopting RADIOV2.5, where improved feature coherency allows RADIOV2.5 to
create fewer regions through clustering introduced in Sec 4.2.

Normalization The high-norm artifacts present in visual features are particularly problematic even
for patch-based MLLMs, as these outlier tokens can disproportionately capture the model’s attention,
rendering other informative visual tokens ineffective. A direct and efficient way to address this is
to apply a normalization layer immediately after extracting features from the visual encoder. This
simple addition helps to tame the magnitude of outlier features, preventing them from dominating the
subsequent attention mechanisms. It’s worth noting that this step may be less critical for RADIOV2.5,
as it already applies PHI-S (Ranzinger et al., 2024a) to normalize teacher representations in its
training objective, resulting in student features that are inherently more uniform in magnitude.

Table 4 compares the results with/without RMSNorm (Zhang & Sennrich, 2019) normalization on the
raw features of visual encoders. Overall, as shown by the MMStar performance changes, region-based
representations benefit from normalization, especially on the comprehensive benchmark MMStar.
Patch-based representations, though, also benefit from removing high-norm outliers and derive more
localized attention patterns as shown in Figure 6 in the appendix, but do not receive performance
gains. We attribute this to the information loss from the rescaling behavior of normalization.

Different sources of region Here, we investigate three primary sources for deriving regions, each
offering a different trade-off between semantic grounding and feature consistency.

From Segmentation. Generating masks from an open-world segmenter like SAM (Kirillov et al.,
2023; Ravi et al., 2024) is the most straightforward way of obtaining regions. This approach prioritizes
semantics, as the resulting regions directly correspond to objects or background of the scene. In this
work, we mainly adopt the design proposed by Shlapentokh-Rothman et al. (2024), but remove the
SLIC (Achanta et al., 2012) refinement step for simplicity.

While this method ensures that regions are semantically meaningful, it is agnostic to the underlying
patch features. A single segmentation mask can easily encompass a set of highly incoherent or noisy
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Vision Encoder | POPE  OCRBench CV-Bench MMStar

No Normalization

CLIP 86.05 331 55.82 33.47

SigLIP2 85.98 405 60.03 35.27

RADIO 85.82 315 56.92 36.00
Using RMSNorm

CLIP 85.39 321 56.09 32.87

SigLIP2 86.17 389 57.67 34.93

RADIO 85.26 314 57.67 34.80

Region-based Representations (from clustering)
Normalization | POPE OCRBench CV-Bench MMStar

No 84.91 273 58.31 33.13
RMSNorm 84.51 280 58.10 35.47

Table 4: With and without normalization for patch-based models. Upper: results for patch-based
representations; Below: results for region-based representations (from clustering).

patch features, especially when using CLIP-like visual encoders. Aggregating these features, for
instance through simple averaging, can lead to a representation that is not truly representative of the
region’s visual content.

From Clustering. An alternative approach is to generate regions by directly clustering the patch
features themselves with respect to spatial locality as well as feature similarity. This method explicitly
addresses the feature coherence challenge by grouping patch features based on similarity. This idea
coincides with ToMe (Bolya et al., 2023; Bolya & Hoffman, 2023), which is later adopted in MLLM
token compression works (Weng et al., 2024; Li et al., 2024), but here we still view this as a method
for generating region masks. Compared with the standard ToMe, our implementation includes two
key modifications: (1) we apply token merging only after the final layer of the visual encoder; and (2)
we set a threshold on feature similarity instead of merging to a fixed number of regions.

By design, this approach produces regions with high internal feature consistency, but comes with
a trade-off: the shape of a cluster-based region can be arbitrary and may not align with any clear
semantic concept. As shown in Figure 4, this method may also produce small, single-patch clusters
that correspond to feature artifacts.

Combining Segmentation and Clustering. To get the best of both worlds, we additionally propose
a hybrid method that combines the semantic grounding of segmentation with the feature-coherent
properties of clustering. The process is as follows: first, we use SAM to generate an initial set of
semantically coherent regions. Then, for any large regions generated by segmentation, we apply a
clustering algorithm to further split them based on patch feature similarity. Since we are already
operating within a semantically meaningful area, we no longer need to consider the spatial localities
of the patches during clustering. We then apply the classic clustering algorithm DBSCAN (Ester
et al., 1996) to partition patch features. This combined approach aims to balance both semantic and
feature consistency, producing regions that are more suitable for robust feature aggregation. Figure 4
provides a visualization of regions derived from all three sources, illustrating how the combined
method resembles a mixture of the two.

(a) Segmentation (b) Clustering (c) Combined (d) CLIP (e) SigLIP2  (f) RADIOV2.5

Figure 4: Left: Regions from different sources. Patch features are derived from RADIOv2.5 (Heinrich
et al., 2025). right: Regions generated from clustering on different patch features.
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MMStar
CP FP IR LR ST MA Avg

Average-pooling aggregation
SAM ‘86.09 255 56.41 ‘58.40 32.80 40.00 3040 19.60 29.20 35.07

Region ‘

POPE OCRBench CV—Bench‘
Source

Combined | 86.55 277 56.73 56.80 34.00 4240 30.00 24.80 25.20 35.53
Cross-attention aggregation

SAM 85.70 275 57.84 58.80 32.00 40.40 30.00 19.60 24.40 34.20
Combined | 85.79 260 56.54 5520 3040 42.00 31.60 16.80 27.20 33.87

Table 5: Different region representation aggregation methods under 768x. MLLMSs not always benefit
from increasing resolution.

For the clustering-based region source, we fix the threshold to be 0.7 using cosine similarity. For
combined region source, we adopt the implementation of DBSCAN in scikit-learn (Pedregosa
etal., 2011) and RAPIDS cuML (Raschka et al., 2020), and apply clustering on segmented regions
with more than 10 patches. Due to implementation issues, we use eps=0.7, min_samples=3 under
normalized L2 distance in practice, which is equivalent to cosine distance under another threshold.
Figure 4 visualizes regions generated from different sources and patch features. Consistent with our
previous conclusion and main results in Table 1, RADIOV2.5 produces less and more sementically
meaningful clusters, demonstrating its advantage in adopting region-based representation.

Cross-Attention Feature Aggregation We have introduced simple average pooling as a feature
aggregation method, where all patch features within a region are averaged to produce a single region-
level feature. While simple, this approach may not be optimal, especially when dealing with the
feature incoherence discussed above.

To address this issue, we propose an alternative, learnable aggregation approach using a multi-head
cross-attention module, in which the pooled feature is added by a learnable bias and attends to the
patch features belonging to that region. This allows the model to dynamically learn which patch
features are more representative and up-scale their importance, while down-weighting the influence
of noisy or outlier features. The resulting aggregated representations can potentially retain more
selective and nuanced information, making it a more robust way to form region features despite the
underlying feature incoherence.

However, the results in Table 5 do not show a meaningful advantage of cross-attention compared with
simple pooling. We suspect a simple cross-attention module is still not expressive enough to handle
the incoherence, and a more complex design might be needed to make a difference from simple
pooling.

Based on the above analysis, we summarize the last finding:

Multiple potential solutions exist to mitigate incoherence. The most effective and fundamental
way is to adopt a more coherent visual encoder, e.g. RADIOv2.5. Other solutions include

normalizing features before aggregation, switching or combining different sources of regions,
but at a cost of information loss and sacrificing the semantic consistency of regions. Adopting a
more complex aggregation mechanism might also work, but a more complex design is needed.

5 CONCLUSION

In this work, we demonstrate that region-based visual representations are a compelling alternative to
the conventional patch-based encoding in MLLMSs. Our key insight that MLLMs are robust to the
input order of patch tokens justifies the principled reorganization of patches into semantic regions.
The success of region-based representations relies on smooth and localized visual features, and thus
the performance can be enhanced through vision backbone selection, feature normalization, and
hybrid region partitioning. Our findings provide an actionable framework for developing MLLMs
that are more efficient, interpretable, and effective on tasks requiring object-level understanding.
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A RELATED WORK

Multiple Large Language Models (MLLMs). Building upon Large Language Models (LLMs),
MLLMs integrates the ability to perceive and reason about visual information. Pioneering works
such as LLaVA (Liu et al., 2023a; 2024a), MiniGPT-4 (Zhu et al., 2024; Chen et al., 2023a), and
InstructBLIP (Dai et al., 2023; Li et al., 2023a) have established the fundamental architecture that
connects a pre-trained visual encoder and a pre-trained LLM with an MLP-based or transformer-
based connector via visual instruction tuning. Recent study on MLLMs is centered around enhancing
MLLM capabilities in visual grounding (Peng et al., 2024; Chen et al., 2023b; Lai et al., 2024; Rasheed
et al., 2024), complex reasoning (Dong et al., 2025; Guo et al., 2024), and unified generation (Chen
et al., 2025; Fan et al., 2025), mainly from the data perspective. In contrast, this work examines the
relatively less explored component of visual information.

Visual Encoders for MLLMs. Pre-trained with vision-language alignment, CLIP (Radford et al.,
2021) is the predominant visual encoder in early MLLMs. Variants of CLIP (Zhai et al., 2023;
Tschannen et al., 2025; Fang et al., 2024) present improved vision-language understanding and
are widely adopted. Recent study (Tong et al., 2024b;a) reveals the inherent shortcomings in
CLIP representation, and proposes to combine multiple visual encoders (e.g., DINOv2 (Oquab
et al., 2023) and convolutional CLIP (Liu et al., 2022; Cherti et al., 2023)) in MLLMs. Also,
agglomerative models (Ranzinger et al., 2024b; Heinrich et al., 2025; Shang et al., 2024; Sariyildiz
etal., 2024; Lu et al., 2025) combine the strengths of multiple teachers into one unified encoder. In
this work, we compare choices of CLIP (Radford et al., 2021), SigLIP2 (Tschannen et al., 2025), and
RADIOvV2.5 (Heinrich et al., 2025) in detail.

Region-Based Representations and Token Merging. The idea of grouping image pixels into seman-
tically coherent regions and perceiving them as structured elements is recently revisited (Shlapentokh-
Rothman et al., 2024; Garg et al., 2024; Khosla et al., 2025b; Xiao et al., 2025; Khosla et al., 2025a)
given the advancements in deep visual representations (Oquab et al., 2023; Radford et al., 2021)
and the segment anything models (Kirillov et al., 2023; Ravi et al., 2024). Compared with patch
tokens directly from ViTs (Dosovitskiy et al., 2021), region-based representations can significantly
reduce the number of tokens to process. Meanwhile, token merging methods (Bolya & Hoffman,
2023; Shang et al., 2025; Chen et al., 2024a; Cai et al., 2025; Yang et al., 2025b; Li et al., 2025b)
combine multiple patch tokens into fewer while more informative ones for MLLMs. We investigate
the strengths of region-based token merging through comprehensive experiments.

B SUMMARY OF KEY FINDINGS (FROM MAIN PAPER)

Here, we reiterate the key findings in the main paper for better reference:

1. Region-based representations are competitive alternatives to traditional patch-based represen-
tations. This is supported by competitive (or sometimes even improved) performance, improved
efficiency, and better interpretability from our analysis.

2. The spatial information of visual tokens is encoded in the learned positional embeddings in the
visual encoder, rather than the visual tokens’ relative order.

3. The incoherency of the raw visual features is the major challenge in the development of region-
based representation, characterized by high-norm artifacts as well as non-smoothness between
adjacent patches.

4. Multiple potential solutions exist to mitigate incoherence. The most effective and fundamental way
is to adopt a more coherent visual encoder, e.g. RADIOV2.5. Other solutions include normalizing
features before aggregation, switching or combining different sources of regions, but at a cost of
information loss and sacrificing the semantic consistency of regions. Adopting a more complex
aggregation mechanism might also work, but a more complex design is needed.

Fig. 5 demonstrates the approaches we investigate to mitigate incoherence.

C LIMITATIONS AND FUTURE WORK

In this work, we mainly focus on evaluating the design choices of encoding region-based visual
information in MLLMs, and stick to a relatively simple MLLM training pipeline with a frozen visual

15



Under review as a conference paper at ICLR 2026

Clustering

Region Masks

@

Generating &/ Region Feature
L Region Masks "’—i’-' Aggregation
Input Image i T R = 4

— S

Patch Features

Visual
Encoder

Extra Tokens
Ordering
Multimodal
Projection

Large Language Model

Figure 5: Approaches to mitigate incoherence. The orange boxes denote the design choices we
investigate, while the blue boxes denote the fixed part.

encoder to better understand the native differences between visual encoders. For the same reason,
we only conduct experiments on language-supervised visual encoders. Potential future steps may
include switching to more recent training recipes and data, and unfreezing the visual encoders to
observe how different visual encoders can benefit from further fine-tuning.

Long video understanding tasks are not included in our evaluation, because fitting in more frames
under the same context length is a key issue Weng et al. (2024); Chen et al. (2024c). This might bring
an additional key advantage of region-based representations, as they produce fewer visual tokens.

Despite comparing multiple sources of regions, our exploration in the region-based representation
aggregation part does not bring uniform performance gains, leaving a potential direction for alternative
designs that surpass simple pooling.

D BROADER IMPACTS

This work shares the common risks associated with other MLLMs, including the potential to introduce
or amplify existing societal biases. While we rely solely on publicly available benchmarks, models,
and training data, which avoids private or personal information, biases present in these resources may
still influence final outcomes. We do not specifically target fairness mitigation in this study, but we
recognize its importance and encourage future research to address these concerns. All resources used
are publicly released to support transparency, reproducibility, and community-driven scrutiny.

E EXPERIMENT DETAILS

E.1 IMPLEMENTATION DETAILS

Generating Regions from SAM. As mentioned in the main paper, we use SAM2’s Ravi et al.
(2024) automatic mask generator for deriving the segmentation of the whole image. In practice,
we observe that the number of masks produced from each image largely depends on the contents
of the image. To control the number of regions at a consistent level, we set multiple segmentation
granularities with an increasing points-per-side parameter and decreasing mask filtering parameters.
When increasing granularity, the automatic mask generator is provided with more point prompts
and filter out fewer low-quality masks, therefore producing more masks in the end. We start at an
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intermediate granularity, and re-generate segmentation masks at a higher/lower granularity when the
number of masks produced exceeds the soft lower/upper bound.

Different from Shlapentokh-Rothman et al. (2024)’s default implementation of upsampling the
features into the size of the masks, we alternatively downsample the masks into the size of the patch
features to reduce both GPU memory usage and computation cost, as well as aligning with the setting
of the clustering alternative. Specifically, masks are first preprocessed into the same size as the
input resolution of the vision encoder (e.g., 384 x 384, following similar steps including padding
and resizing as the input image), and then downsampled to the size of the patch-level feature map
(e.g., 24 x 24). Since each image patch is reduced to one pixel in the patch-level feature map, we
alternatively use the following downsampling method: we average pool masks within each image
patch, and those pixels with pooled values higher than a certain threshold are retained in the mask.
This means whether a downsampled pixel is retained depends on the size of the overlapping area
between the mask and the original patch. By setting a small threshold, we can avoid small regions
from vanishing unless they are extremely small.

Generating Regions from Clustering. We mainly adopt UnSAM’s Wang et al. (2024) iterative
merging as the clustering method:

1. We start by setting each patch as a single region;

2. Aregion’s feature is defined by the average of the patch features covered by the region;

3. We iteratively merge adjacent regions with the highest feature cosine similarity, until it drops
below a certain threshold;

4. The remaining regions after iterative merging are considered to be the result regions.

We additionally use priority queues and disjoint sets to optimize the clustering process.

E.2 HYPERPARAMETERS

Training. We adopt the same training hyperparameters of LLaVA-1.5 Liu et al. (2024a): total
batch size=256, learning rate=1e-3 for visual feature alignment, total batch
size=128, learning rate=2e-5 for visual instruction tuning. For both stages, we train
only one epoch with bf 1oat 16 precision using a fixed seed 42.

Inference. During inference, we set temperature=0, or equivalently, greedy decoding on all
benchmarks. For short answer tasks, we unify the question prompt to be jimage; + [question] +
“Answer the question using a single word or phrase.” For QA tasks, we unify the question prompt
to be jimage; + [question] + [options] + “Answer with the option’s letter from the given choices
directly.”

Region-based Representation. When generating regions using SAM, we set three seg-
mentation granularities with the following parameters: points-per-side=48, 64, 96,
pred-iou-thresh=0.6,0.5,0.4, stability-score-thresh=0.92,0.9,0.85,
and set the soft bounds on the number of regions to be [80, 160]. For MMstar Chen et al. (2024b) and
OCRBench Liu et al. (2023b), we only keep the first two granularities and reduce the soft lower
bound to 64 for simplicity and faster generation. When downsampling masks, we set the threshold of
valid pixels to be 0.07.

When using clustering to generate regions, we set the similarity threshold to be 0.7. When combining
segmentation and clustering, we use DBSCANEster et al. (1996) with metric=12, eps=0.7,
min samples=3 to further split the segmentation masks containing at least 10 patches into smaller
regions according to the normalized patch features.

In cross-attention region feature aggregation, we set num heads=16, and use the average-pooled
patch feature as the single query token.

E.3 COMPUTATIONAL RESOURCES

All training experiments are conducted on 4 NVIDIA H100 GPUs, which take roughly 16 hours to
complete each two-stage training under the default setting for patch-based representations. Other
settings have fluctuated training time from 7 hours to two days according to the specific setting.
Inference is conducted on a single NVIDIA H100 GPU.
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Region OCRBench CV-Bench
Source ~ Res Norm  Notes | #Tok Focus ‘ POPE ‘ TR ST.C D-O KIE HMER | Count Relation Distance Depth
CLIP
Patch no 576 12.54 | 86.05 | 173 128 19 11 0 48.73 59.08 68.00 50.17
Patch rms 576 11.96 | 8539 | 171 124 18 8 0 46.95 56.77 70.50 52.83
Patch rms  -CLS 576 - 85.83 | 168 124 19 6 0 51.27 63.38 69.17 51.67
Patch 336 rms  -order 576 - 85.74 | 170 120 18 4 0 48.48 64.46 72.67 52.83
Segment rms 101 1554 | 86.21 | 153 104 13 5 0 45.05 60.31 75.33 53.33
Cluster rms 257 1272 | 85.80 | 168 124 15 3 0 45.81 62.92 73.67 51.67
Combined rms 139 14.41 | 8548 | 157 113 14 4 0 46.07 59.54 73.00 53.17
SigLIP2
Patch no 729  11.31 | 85.99 | 217 146 22 20 0 56.35 69.85 65.67 50.83
Patch rms 729  11.51 | 86.17 | 210 146 19 14 0 5736 67.08 58.67 49.67
Segment 378  rms 101 1524 | 8496 | 180 98 18 5 0 48.48 63.23 71.17 50.00
Cluster rms 334 8.34 85.68 | 200 141 24 14 0 54.95 67.54 65.17 53.67
Combined rms 142 1421 | 8540 | 192 117 20 6 0 51.90 61.69 74.00 53.50
RADIO
Patch no 576 1057 | 85.82 | 189 106 11 9 0 52.16 62.62 64.83 50.83
Patch rms 576 1244 | 8525 | 189 107 11 7 0 52.79 63.85 67.17 49.17
Segment no 101 1629 | 84.82 | 148 79 9 1 0 46.83 65.85 64.50 50.17
Segment g4 TS 101 16.22 | 84.32 | 156 81 10 3 0 4632 60.15 69.17 55.17
Cluster no 117 1350 | 84.91 | 154 103 12 4 0 51.14  64.15 68.33 52.67
Cluster rms 124 13.39 | 8451 | 160 102 13 5 0 4924  60.62 71.50 53.67
Combined no 134 14.86 | 84.66 | 157 89 9 5 0 50.76 64.00 68.67 52.17
Combined rms 134 14.88 | 84.76 | 162 89 9 4 0 48.10 62.92 72.67 56.83
Patch 576 no 1296 1091 | 86.92 | 196 127 16 18 0 5241 67.08 68.67 53.33
Segment 576 rms 104 1580 | 8591 | 156 94 14 6 0 46.45 64.46 69.00 53.50
Combined 576  rms 159 14.72 | 86.05 | 162 103 14 5 0 48.10  62.77 66.67 53.33
Segment 768 no 105 15.67 | 85.70 | 165 97 9 4 0 5140  61.08 68.83 52.50
Combined 768 no 154 1446 | 85.79 | 146 98 14 2 0 48.73 62.15 67.83 50.33
Patch 384 no -CLS 576 - 85.40 | 196 108 10 5 0 50.89  65.08 68.50 52.83
Patch 384 no  -order 576 - 85.10 | 189 111 9 4 0 52.16 6292 66.67 50.67
Combined 768 no -CLS-glb - - 86.43 | 154 106 13 2 0 47.97 57.23 69.33 56.83
Combined 768 no -glb - - 86.26 | 156 107 18 2 0 49.24 58.77 71.00 56.17
Combined 768 no -order - - 86.43 | 157 103 15 4 0 50.25 64.46 70.17 50.00
RADIO, without cross-attention aggregation
Segment 384 no - - 84.14 | 160 78 10 4 0 48.22 62.46 68.33 50.50
Cluster 384  no - - 84.36 | 153 103 13 2 0 50.25 63.85 67.50 52.67
Combined 384  no - - 85.03 | 160 86 10 3 0 46.57 57.38 67.00 51.33
Segment 768 no - - 86.09 | 147 92 12 4 0 4822 5892 71.00 50.33
Combined 768 no - - 86.55 | 152 105 12 8 0 4759  59.69 70.00 52.67
RADIO + Qwen3-8BYang et al. (2025a)

Segment 384  rms 101 1699 | 84.69 | 126 69 13 1 0 49.11 66.62 63.33 60.50
Cluster 384  rms 129 1255 | 83.83 | 156 95 12 6 0 53.81 75.54 71.33 62.83
Combined 384  rms 138 1472 | 84.88 | 152 81 13 1 0 50.89 75.85 69.33 64.50

Table 6: Detailed evaluation results of various settings, as an addition to Tables 1-5 in the main paper.
MM Star detailed scores is not shown here, but can be found in the attachments.

F ADDITIONAL RESULTS

F.1 RESULTS ON OTHER LLMS

We additionally conduct a set of experiments on a more recent LLM Qwen3-8B Yang et al. (2025a),
with results included in the last few rows of Table 6. The results are consistent with our observation,
while having improved CV-Bench and MMstar performance.

F.2 DETAILED EXPERIMENTAL RESULTS

Table 6 shows the detailed metric scores under various settings (not including MMStar Chen et al.
(2024b)). Due to page limits, some of the results are not shown in the main paper. The complete
results are included in Table 6.

F.3 MORE VISUALIZATION

Fig. 7 shows additional patch feature visualization results based on more visual encoders. Fig. 8
shows more visualizations of MLLM’s attentions over visual tokens under different settings.
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(a) CLIP (b) SigLIP2 (c) AIMv2 (d) DINOV2  (e) DINOv2-reg (f) RADIOV2.5

Figure 7: More visualization results for different vision encoders. Rows 1-3: patch feature
(PCA); rows 4-6: regions from clustering; rows 7-9: patch feature norm. All results are
derived from their native resolution, except for RADIOv2.5, where we use 384 x 384. For
the visual encoders not mentioned in the main paper, the exact checkpoints used are: AIMv2:
aimv2-large-patchl4-448, DINOv2: vit_large_patchl4 dinov2.lvdl42m,
DINOv2-reg: vit_large_patchl4_reg4_dinov2.1lvdl42m.
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(a) Patch (b) Patch(RMSNorm) (c) Segmentation (d) Clustering (e) Combined

Figure 8: More visualizations of MLLM’s attentions over visual tokens.
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Figure 6: Left: feature norm before/after normalization.
Right: attention visualization before/after normalization.
From top to bottom: using CLIP, SigLIP2, RADIOv2.5.

21



	Introduction
	From Patch to Region: Establishing a New Perception Level
	Understanding Region-based Representation
	Evaluation Aspects
	Evaluating Region-based Representation
	Non-sensitivity of visual token ordering

	Major Challenge for Region-Based Representations
	Visual Feature Incoherence in Visual Encoders
	Attempts to Mitigate Incoherence

	Conclusion
	Related Work
	Summary of Key Findings (from Main Paper)
	Limitations and Future Work
	Broader Impacts
	Experiment Details
	Implementation Details
	Hyperparameters
	Computational Resources

	Additional Results
	Results on Other LLMs
	Detailed Experimental Results
	More visualization


