
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEW HYBRID FINE-TUNING PARADIGM FOR LLMS:
ALGORITHM DESIGN AND CONVERGENCE ANALYSIS
FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning Large Language Models (LLMs) typically involves either full fine-
tuning, which updates all model parameters, or Parameter-Efficient Fine-Tuning
(PEFT), which adjusts a small subset of parameters. However, both approaches
have inherent limitations: full fine-tuning is computationally expensive, while
PEFT often struggles to learn new knowledge and exhibits suboptimal perfor-
mance. To overcome these issues, we propose a novel hybrid fine-tuning approach
that jointly updates both LLMs and PEFT modules using a combination of zeroth-
order and first-order optimization methods. To analyze our new algorithm, we
develop a theoretical framework centered on the concept of hybrid smoothness
condition, which accounts for the heterogeneous nature of the optimization land-
scape in joint LLM and PEFT training. We derive a rigorous convergence analysis
for the convergence of reshuffling-type SGD algorithm under multiple learning
rates and demonstrate its effectiveness through extensive empirical studies across
various downstream tasks and model architectures. On the practical side, our re-
sults demonstrate consistent performance improvement, making the approach a
viable solution for large-scale language model fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as an important paradigm in natural language pro-
cessing (NLP), demonstrating remarkable capabilities across a wide range of tasks. To adapt these
models for specific domains or to modify their core behaviors, researchers commonly employ full
fine-tuning for downstream tasks (Malladi et al., 2023; Zhang et al., 2024; VM et al., 2024; Mi-
naee et al., 2024), which updates all parameters of an LLM. However, this method is extremely
computationally expensive, requiring the calculation of gradients for the entire model. To address
this limitation, two common approaches have introduced: (1) Zeroth-order full fine-tuning (Malladi
et al., 2023; Zhang et al., 2024; Gautam et al., 2024; Tang et al., 2024; Wang et al., 2024; 2025): This
type of methods approximates gradients without directly computing them, reducing computational
overhead while still updating all model parameters. (2) Parameter-Efficient Fine-Tuning (PEFT)
methods (Lester et al., 2021; Hu et al., 2021; Li & Liang, 2021): These techniques aim to adapt
LLMs by tuning only a small portion of parameters while keeping the base model frozen.

However, directly applying either of these methods has been shown to be insufficient: As pointed
out by (Gudibande et al., 2023) and (Ghosh et al., 2024), the PEFT method (e.g. LoRA) does not
learn new knowledge, while the zeroth-order full fine-tuning suffers from slow convergence due to
the lack of gradient information (Nesterov & Spokoiny, 2017). These limitations highlight a critical
gap in current approaches, leading to the following question:

Q1: How can we achieve both benefits of full fine-tuning and PEFT methods
while maintaining the efficiency?

To address this question, we propose a novel approach, hybrid fine-tuning, which jointly updates
both the PEFT module and the LLM. We integrate both first-order (FO) and zeroth-order (ZO) opti-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Log-scale comparison of gradient
norm to local gradient Lipschitz con-
stant during OPT-125M (Zhang et al.,
2022) training on the SST2 dataset
(Socher et al., 2013). The colorbar in-
dicates the number of gradient updates.

(b) Comparison of gradient Lipschitz
constant L for different modules (OPT-
125M and LoRA (Hu et al., 2021)).
The base LLM exhibits a significantly
larger, necessitating a smaller learning
rate in the gradient updating.

Figure 1: Visualization of smoothness structures in hybrid fine-tuning a large language model. These
complex characteristics pose new challenges for the convergence analysis of traditional optimization
algorithms, motivating us to consider a relaxed smoothness condition, hybrid smoothness condition
(Definition 1), for the hybrid fine-tuning method.

mization techniques for conducting PEFT and updating the base model simultaneously. By leverag-
ing ZO methods, we can perform fine-tuning on the base LLM without calculating the full gradient,
thereby effectively learning new knowledge. Meanwhile, our method updates PEFT modules using
the FO gradient information, speeding up traditional ZO full fine-tuning.

To assess efficiency, we analyze the convergence of our proposed approach, which presents new
theoretical challenges in the analysis. As demonstrated in existing literature (Zhang et al., 2019;
Carmon et al., 2020), the optimal learning rate is closely tied to the local smoothness of the loss
landscape. This dependence is especially critical in our setting, where the complex architecture of
modern LLMs and the heterogeneous nature of hybrid fine-tuning introduce two key challenges:

a) A dynamic changing gradient Lipschitz constant. The local smoothness structure of LLMs
evolves dynamically during training. This phenomenon, first observed by (Zhang et al., 2019)
for LSTM-based language models, extends to transformer-based architectures, underscoring the
complexity of LLM fine-tuning. The Figure 1a illustrates this dynamic behavior in OPT-125M
(Zhang et al., 2022), a transformer-based language model.

b) Heterogeneous smoothness across parameters. The base LLM and PEFT modules exhibit
distinct smoothness characteristics. Due to differences in architecture and scale, components in
our proposed hybrid fine-tuning approach naturally possess diverse smoothness properties. This
heterogeneity is demonstrated in the Figure 1b, which compares the gradient Lipschitz constants
between the base LLM and the LoRA module.

These challenges highlight a significant gap between existing theoretical frameworks and the practi-
cal implementation of hybrid fine-tuning methods: Traditional convergence analysis of optimization
algorithms cannot be applicable for such complicated loss surface, which also leads to the following
central question:

Q2: How can we develop a unified theoretical framework that accurately char-
acterizes the convergence of SGD for hybrid fine-tuning while accounting for
their distinct characteristics and behaviors?

To answer this question, we develop a novel theoretical framework centered around the concept of
hybrid smoothness condition. This framework provides a more accurate characterization of the op-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

timization landscape in joint LLM and PEFT training, enabling rigorous analysis of convergence
properties and optimization dynamics. We summarize our main contributions in this paper as fol-
lows:

(1) We propose the hybrid fine-tuning paradigm, a novel approach that addresses the limitations of
both full fine-tuning and traditional PEFT methods. By combining zeroth-order optimization
for LLMs with first-order methods for PEFT modules, we achieve a balance between adaptation
power and computational efficiency. This innovative strategy further reveals the hybrid smooth-
ness condition (Definition 1) of the hybrid structure, highlighting a new theoretical challenge
arising from the heterogeneous structure of joint LLM and PEFT optimization.

(2) To address the challenge posed by hybrid smoothness condition, we introduce a unified theoreti-
cal framework for analyzing hybrid optimization problems arising in hybrid fine-tuning. Within
this framework, we establish the convergence of SGD with Random Reshuffling (Theorem 1),
addressing a previously unresolved gap in optimization theory. Notably, our analysis extends the
optimal sample complexity guarantees from the standard smooth loss class to the more general
hybrid smooth loss function class.

(3) We conduct extensive empirical studies to evaluate the effectiveness of our hybrid fine-tuning
approach across a diverse set of downstream tasks and model architectures. As shown in Fig-
ure 3 and Table 1, hybrid fine-tuning consistently outperforms existing methods across 18
model-task combinations (spanning three architectures and six tasks), achieving the highest
accuracy in 94.5% of the cases (17 out of 18). Empirical evidence of faster convergence is fur-
ther validated in Figure 4. Notably, these improvements incur no additional memory overhead
compared to the FO counterpart, as demonstrated in Table 2.

2 HYBRID FINE-TUNING AND HYBRID SMOOTHNESS CONDITION

2.1 OUR PROPOSED METHOD: THE HYBRID FINE-TUNING

To balance the adaptation power of full fine-tuning with the efficiency of PEFT, we introduce hybrid
fine-tuning, where both the base LLM and a lightweight PEFT module are updated jointly.

Methodology. Our hybrid fine-tuning approach jointly updates both the PEFT module parameters
and the base LLM parameters. The parameters updating tasks can be formulated as a class of
optimization problems where the parameter space is partitioned into two distinct subspaces: Let
x ∈ Rdx denote the LLM parameters and y ∈ Rdy the PEFT module parameters, d = dx + dy . For
a dataset D = {ξi}ni=1 we minimize the empirical loss:

min
(x,y)∈Rd

f(x, y) :=
1

n

n∑
i=1

f(x, y; i) . (1)

In hybrid fine-tuning, we leverage ZO optimization for the x parameters, which avoids computing
the full gradient and thus significantly reduces memory requirements. Simultaneously, we update
the much smaller PEFT module parameters (the y parameter) using the FO gradient information,
which leads to faster convergence and better performance compared to solely ZO methods. Our
algorithm is described in Algorithm 1:

The optimization strategy is implemented using SGD with random reshuffling, a common practice
in deep learning (Paszke et al., 2019; Abadi et al., 2016) demonstrated improved efficiency in ex-
isting theoretical literature (Ma & Zhou, 2020; Safran & Shamir, 2020; Mishchenko et al., 2020;
Gürbüzbalaban et al., 2021; Liu & Zhou, 2024). Here, ηx and ηy are the learning rates for x and
y parameters, respectively, T is the total number of epochs, D = {ξi}ni=1 is the dataset with n

samples, and xt,i and yt,i are the parameter values after the i-th iteration of the t-th epoch. ∇̂xf

and ∇yf are the stochastic gradients with respect to x and y. Here, we use ∇̂xf to represent the
gradient estimator of∇xf . It is commonly estimated using the two-point gradient estimator defined
as follows:

∇̂xf(x, y; ξ) :=
f(x+ µv, y; ξ)− f(x, y; ξ)

µ
v, (2)

where v is a random Gaussian vector with identity covariance matrix (that is, v ∼ N(0, Id)) and µ
is the perturbation stepsize.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: SGD with Random Reshuffling for Hybrid Fine-Tuning
Input: Learning rate η = [ηx ηy] , number of epochs T , dataset D = {ξi}ni=1
Initialize the parameter at (x0, y0);
for t = 1 to T do

Shuffle the dataset D to obtain Dt;
xt,0, yt,0 ← xt−1, yt−1;
for i = 1 to n do[

xt,i

yt,i

]
←
[
xt,i−1

yt,i−1

]
−
[
ηx 0
0 ηy

] [
∇̂xf(xt,i, yt,i; ξt,i)
∇yf(xt,i, yt,i; ξt,i)

]
;

end
end
xt ← xt,n;
Output: Final parameters xT

2.2 CHALLENGES IN HYBRID FINE-TUNING: THE HYBRID SMOOTHNESS CONDITION

Besides intuitively designing the hybrid fine-tuning strategy, we conduct rigorous theoretical anal-
ysis on the convergence of Algorithm 1. However, the convergence analysis reveals theoretical
challenges stemming from the complex optimization landscape of hybrid fine-tuning. Traditional
analysis often relies on the L-smoothness assumption, which states that the gradient is Lipschitz
continuous with a constant L, or equivalently, ∇2f(w) ⪯ LId. While L-smoothness has been
demonstrated to hold for all smooth functions over a compact domain (Hewitt & Stromberg, 2012),
this assumption is often too restrictive for deep learning models and particularly for our proposed
hybrid setting. We recap these limitations we have introduced:

a) The gradient Lipschitz constant L is dynamically changing during training. The constant L
usually fails to maintain uniformity over the entire parameter space. In many practical scenarios,
different regions of the parameter space may exhibit vastly different smoothness properties. For
instance, (Zhang et al., 2019) has demonstrated that the local smoothness constant L is linear in
the gradient norm. We also have illustrated this non-uniformity for transformer-based language
models in Figure 1a.

b) The gradient Lipschitz constant L can be different for different parameters. The base LLM
(the x parameter) and the PEFT module (the y parameter) inherently possess different structural
properties and scales. For example, small randomly-initialized modules often have smaller L
compared to large pre-trained neural networks. This consideration becomes particularly crucial
in hybrid systems where we deal with fundamentally different types of parameters. We have
illustrated this point in the Figure 1b: The LoRA module demonstrates a substantially lower L
value compared to the base LLM.

To rigorously characterize the phenomenon observed in hybrid fine-tuning, we adapt the concept
of generalized smoothness (Zhang et al., 2019; Li et al., 2024) to our hybrid setting, leading to the
hybrid smoothness condition:
Definition 1 (Hybrid smoothness). A function f : Rdx × Rdy → R has the hybrid generalized
smoothness property if there exist two non-negative non-decreasing sub-quadratic functions ℓx :
R≥0 → R≥0 and ℓy : R≥0 → R≥0 such that for all (x, y):[

ℓx(∥∇f(x, y)∥)Idx
0

0 ℓy(∥∇f(x, y)∥)Idy

]
⪰ ∇2f(x, y).

This definition allows the smoothness bound to depend on the current gradient norm and differ
between the x and y parameter blocks. It naturally captures the dynamic and heterogeneous nature
of the optimization landscape. It is easy to see that the standard L-smoothness is a special case
where ℓx(t) = ℓy(t) = L for all t. As demonstrated by (Zhang et al., 2019; Li et al., 2024), many
neural network loss landscapes are empirically observed to be generalized smooth but not L-smooth.

The Impact of Hybrid Smoothness Condition. The generalized smoothness condition presents a
significant challenge in training our proposed hybrid system, particularly motivating the use of two

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

distinct learning rates. In the following example of our proposed hybrid LLM fine-tuning structure,
we have two sets of parameters: (1) the original LLM parameters x, and (2) the PEFT module
parameters y. we jointly train the LLM with a Prompt Encoder (Lester et al., 2021) on the SST-2
dataset (Socher et al., 2013). We observe that the base LLM merely takes much smaller learning
rate; if we choose the learning rate to ensure the base LLM’s convergence, the training loss decreases
in an unacceptably slow rate (Figure 2a). However, if we choose the learning rate larger than the
base LLM’s tolerance, the training loss explodes and quickly diverges (Figure 2b). The best practice
is choosing a smaller learning rate for the base LLM and a larger learning rate for the PEFT module
(Figure 2c).

(a) Under the small learning rate
η = 10−6, the full fine-tuning
decrease as expected. However,
prompt tuning converges slowly
and stagnates at a higher loss.

(b) With a large learning rate
η = 10−3, the prompt tuning
decreases as expected, while full
fine-tuning exhibits unstable be-
havior, resulting in loss explo-
sion.

(c) Hybrid fine-tuning with dis-
tinct learning rates (ηx = 10−6

for the base model, ηy = 10−3

for prompt tuning) provides both
stable and faster convergence.

Figure 2: Comparison of training loss curves under different learning rate configurations for full
fine-tuning and prompt tuning on the SST-2 dataset (Socher et al., 2013) with the base model OPT-
1.3b (Zhang et al., 2022). This example illustrates the necessaity of using different learning rates in
hybrid-tuning structure.

This example illustrates the practical benefits of considering hybrid smoothness condition and the
resulting use of different learning rates in hybrid fine-tuning. It is naturally to ask if this observation
can be rigorously supported by the convergence analysis. We address this question in the next
subsection.

2.3 THEORETICAL ANALYSIS

Recall that our objective is to solve the optimization problem presented in Eq. (1). To handle the
generalized smooth structure, we introduce the following definition:

Definition 2 (Coercive). A continuous function f : Rd → R is coercive if the sub-level set {x ∈
Rd | f(x) ≤ a} is compact for all a ∈ R.

In the existing literature of generalized smoothness (Li et al., 2024), this assumption is usually
replaced with an equivalent statement: the objective function f(x, y) tends to positive infinity when
(x, y) approaches the boundary of its domain. We make the following standard assumptions to
regularize the function class and subsequently provide the non-asymptotic convergence analysis.

Assumption 1 (Regularity Conditions). The objective function f(x, y) := 1
n

∑n
i=1 f(x, y; i) de-

fined in Eq. (1) satisfies the following conditions:

(1) f(·) is coercive.

(2) f(·) is bounded below by
f∗ := inf

(x,y)∈Rd
f(x, y) > −∞.

(3) f(·) and each individual loss function f(·; i) are twice continuously differentiable.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

These regularity conditions are essential for several reasons: Coercivity prevents the optimization
process from diverging too far. The lower bound guarantees that the optimization problem is well-
posed. Twice continuous differentiability allows for the application of various optimization tech-
niques and facilitates theoretical analysis. All of them are standard and widely used in the optimiza-
tion literature (Li et al., 2024).
Assumption 2 (Bounded Variance). There exists σ such that for all x ∈ Rd,

1

n

n∑
i=1

∥∇f(x, y; i)−∇f(x, y)∥2 ≤ σ2.

This bounded variance assumption is standard in the analysis of reshuffling-type SGD. We note that
this assumption could be further weakened to the expected smoothness (Mishchenko et al., 2020;
Khaled & Richtárik, 2020). We maintain the current version for the simplicity.

With both assumptions in place, we analyze the complexity of Algorithm 1 under the hybrid smooth-
ness condition (Definition 1). Our main theoretical result is summarized in the following theorem:
Theorem 1. Suppose that Assumption 1 and Assumption 2 hold for the objective function f(x, y) :=
1
n

∑n
i=1 f(x, y; i), with satisfying the hybrid smoothness condition (Definition 1). Let {(xt, yt)}Tt=1

be the SGD dynamic generated by Algorithm 1 for solving the optimization problem Eq. (1). Let
learning rates ηx, ηy be chosen as

ηx ≤ min

{
O(1

Lxndx
),O(1√

TnLx,max

)

}
, ηy ≤ min

{
O(1

Lyn
),O(1√

TnLy,max

)

}
,

and the perturbation stepsize µ and the smoothness characteristics of the x and y parameters
Lx, Ly, Lx,max, Ly,max are specified in the appendix. Let δ ∈ (0, 1). If the maximum number
of epoch T is chosen as T ≥ O(ϵ

−2

δ + ϵ−4

n), then with the probability at least 1− δ,
1

T

∑
t<T

E ∥∇f (xt, yt)∥2 ≤ ϵ2.

Given that each epoch processes n data points, the total gradient complexity is nT ≥ O(ϵ
−2n
δ +ϵ−4).

This result is optimal when ϵ is sufficiently small, aligning with the best-known upper bounds es-
tablished in previous convergence analyses for both generalized smooth non-convex objectives (Li
et al., 2024; Zhang et al., 2019) and L-smooth non-convex objectives (Mishchenko et al., 2020;
Khaled & Richtárik, 2020). Importantly, it also matches the known lower bound for the SGD algo-
rithm (Arjevani et al., 2023), further confirming its optimality.

Remark. On the theoretical side, our analysis highlights the asymmetry between the learning
rates ηx and ηy , which arises from the distinct smoothness properties of each variable. This result
emphasizes the necessity of adopting tailored learning rate schedules when optimizing modules
with hybrid smoothness, an aspect not addressed in standard SGD analysis, validating our empirical
observation in Section 2.2. Furthermore, to the best of our knowledge, there is no prior work in
the optimization literature that investigates optimization methods under generalized smoothness
while accounting for random reshuffling. Our results constitute the first convergence analysis in
this setting.

3 EXPERIMENTS

Following a similar setting of ZO-Bench (Zhang et al., 2024), we evaluate the performance of our
proposed method on six representative datasets using three different LLMs. Experimental results
show that our proposed method consistently achieves superior performance and faster convergence.

Tasks & Datasets. We assessed our approach on 6 representative NLP tasks including the sen-
timent classification task on the SST2 dataset Socher et al. (2013), the sentence differing task on
the WSC dataset Levesque et al. (2012), contextualized word and sense representation and word
sense disambiguation task on the WiC dataset Pilehvar & Camacho-Collados (2018), the question
answering task on the COPA dataset Roemmele et al. (2011), and the common sense reasoning task
on the WinoGrande dataset Sakaguchi et al. (2021).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Experimental Setting. Following the methodology of Malladi et al. (2023); Zhang et al. (2024),
we assessed our approach on 6 representative NLP tasks including the sentiment classification task
on the SST2 dataset Socher et al. (2013), the sentence differing task on the WSC dataset Levesque
et al. (2012), contextualized word and sense representation and word sense disambiguation task on
the WiC dataset Pilehvar & Camacho-Collados (2018), the question answering task on the COPA
dataset Roemmele et al. (2011), and the common sense reasoning task on the WinoGrande dataset
Sakaguchi et al. (2021). The models we use in our experiments include OPT-1.3b Zhang et al.
(2022), Vicuna-7b Chiang et al. (2023), and LLaMA-7b Zhang et al. (2023b). We compare the per-
formance of our approach against standard PEFT methods including first-order prompt tuning Lester
et al. (2021), LoRA tuning Hu et al. (2021), and prefix tuning Li & Liang (2021). For each dataset,
we randomly sample 1,000 examples for training, 1,000 examples for evaluation, and 100 examples
for development. Performance is evaluated using accuracy or F1 score, as appropriate for each task.
All experiments utilize SGD as the optimizer. In the case of prompt tuning and prefix tuning, the
prompts are initialized according to the predefined settings in Table E.2 of Malladi et al. (2023),
while for LoRA tuning, we initialize with zeros. We perform hyperparameter tuning for all methods
and report the best configurations. To ensure a fair comparison, we keep the cardinality of the hy-
perparameter search spaces identical. We set the maximum number of training steps to 20,000, with
early stopping applied when applicable. The detailed hyperparameter setting, overviews of the tasks
and PEFT methods, hyper-parameter setting, and the full results are reported in the supplementary
materials.

3.1 COMPARISON WITH FO AND ZO FULL FINE-TUNING

We begin by evaluating our method on the medium-sized OPT-1.3b model to assess the performance
gains over both FO and ZO full-parameter fine-tuning.

Results. We apply our proposed hybrid fine-tuning method to six benchmark tasks using the OPT-
1.3b model. As shown in Figure 3, hybrid fine-tuning outperforms its corresponding FO-PEFT
counterpart, as well as both FO and ZO full fine-tuning in most scenarios. For example, when
using the Prompt Encoder as the PEFT module, hybrid fine-tuning consistently achieves the highest
performance across all six tasks, demonstrating robust improvements over all baseline approaches.

Figure 3: Comparison among Hybrid Fine-Tuning (Hybrid), FO PEFT methods (FO-PEFT), FO full
fine-tuning (FO-FT), and ZO full fine-tuning (ZO-FT). In 13/18 ≈ 72.2% combinations, Hybrid
Fine-Tuning outperforms both ZO and FO full fine-tuning.

3.2 PERFORMANCE ON LARGE LANGUAGE MODELS FINE-TUNING

Here we conduct extensive experiments to evaluate the effectiveness of our proposed hybrid fine-
tuning approach.

Results. In Table 1, we present the comparison between the proposed hybrid fine-tuning and its
corresponding FO PEFT fine-tuning. In the aggregate view (right panel), hybrid tuning outperforms
FO-based PEFT in 17 out of 18 cases (94.5%), demonstrating its consistent advantage. In the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Experiment results for various fine-tuning methods applied to three large language mod-
els across six NLP tasks. Highlighted cells denote the best score for each comparision pair. The
left panel (Pairwise Comparison) presents side-by-side comparisons of each Hybrid variant with its
corresponding first-order (FO) method (e.g. FO-Prompt vs. Hybrid-Prompt), enabling direct per-
formance comparisons. The Hybrid method outperforms its FO counterpart in 41 out of 54 cases
(≈ 76%). The right panel (First-Order PEFT vs. Hybrid) groups all FO-based methods (Prompt,
Prefix, LoRA) separately from their Hybrid counterparts, emphasizing the overall gains from hybrid
fine-tuning. In 17 out of 18 comparisons (≈ 94.5%), Hybrid variants yield superior performance.

Pairwise Comparison First-Order PEFT vs. Hybrid

Model Task SST-2 RTE WSC WiC COPA WinoG. Task SST-2 RTE WSC WiC COPA WinoG.
Task Type ——— Classification ——– — Reasoning — Task Type ——— Classification ——– — Reasoning —

L
la

m
a-

2-
7b

FO-Prompt 95.6 59.9 36.5 58.5 88.0 67.2 FO-Prompt 95.6 59.9 36.5 58.5 88.0 67.2
Hybrid-Prompt 95.9 59.9 61.5 64.4 88.0 68.9 FO-Prefix 91.1 60.6 51.9 51.7 83.0 66.2
FO-Prefix 91.1 60.6 51.9 51.7 83.0 66.2 FO-LoRA 94.6 62.1 60.6 61.6 84.0 68.5
Hybrid-Prefix 91.6 60.6 42.3 51.5 85.0 64.3 Hybrid-Prompt 95.9 59.9 61.5 64.4 88.0 68.9
FO-LoRA 94.6 62.1 60.6 61.6 84.0 68.5 Hybrid-Prefix 91.6 60.6 42.3 51.5 85.0 64.3
Hybrid-LoRA 93.4 62.5 60.6 61.7 88.0 66.3 Hybrid-LoRA 93.4 62.5 60.6 61.7 88.0 66.3

V
ic

un
a-

7b
-v

1.
5 FO-Prompt 94.4 82.3 64.4 61.0 84.0 65.8 FO-Prompt 94.4 82.3 64.4 61.0 84.0 65.8

Hybrid-Prompt 95.0 70.1 55.8 64.7 84.0 66.3 FO-Prefix 90.0 70.4 61.5 56.6 80.0 64.1
FO-Prefix 90.0 70.4 61.5 56.6 80.0 64.1 FO-LoRA 94.6 80.1 53.8 58.5 85.0 66.7
Hybrid-Prefix 90.7 80.9 66.3 52.4 83.0 74.0 Hybrid-Prompt 95.0 70.1 55.8 64.7 84.0 66.3
FO-LoRA 94.6 80.1 53.8 58.5 85.0 66.7 Hybrid-Prefix 90.7 80.9 66.3 52.4 83.0 74.0
Hybrid-LoRA 92.2 82.0 72.1 66.8 84.0 66.7 Hybrid-LoRA 92.2 82.0 72.1 66.8 84.0 66.7

O
PT

-1
.3

b

FO-Prompt 91.3 52.3 44.2 57.5 74.0 57.8 FO-Prompt 91.3 52.3 44.2 57.5 74.0 57.8
Hybrid-Prompt 91.7 62.5 57.7 63.3 77.0 59.9 FO-Prefix 92.2 48.3 61.5 52.5 77.0 58.3
FO-Prefix 92.2 48.3 61.5 52.5 77.0 58.3 FO-LoRA 92.2 54.8 59.6 52.5 78.0 59.0
Hybrid-Prefix 91.7 52.7 55.8 52.7 78.0 60.0 Hybrid-Prompt 91.7 62.5 57.7 63.3 77.0 59.9
FO-LoRA 92.2 54.8 59.6 52.5 78.0 59.0 Hybrid-Prefix 91.7 52.7 55.8 52.7 78.0 60.0
Hybrid-LoRA 92.3 61.0 61.5 55.5 78.0 58.3 Hybrid-LoRA 92.3 61.0 61.5 55.5 78.0 58.3

pairwise comparison setting (left panel), where each FO PEFT method is compared with its hybrid
variant across three models and six tasks, the hybrid fine-tuning achieves better performance in 41
out of 54 combinations (≈ 76%). These results underscore the effectiveness of hybrid fine-tuning,
highlighting its potential as a more robust strategy for adapting LLMs to diverse downstream tasks.

3.3 VISUALIZATION OF THE IMPROVED CONVERGENCE RATE

To verify that hybrid fine-tuning converges faster than other methods, we present the training curves
(including the training loss, validation accuracy, and the test accuracy) for OPT-1.3B Zhang et al.
(2022) model on SST-2 Socher et al. (2013) dataset in Figure 4.

Results. We observe that a significant efficiency gain in terms of training steps. For example,
as shown in Figure 4, the hybrid fine-tuning takes around 2,500 steps to achieve 90% accuracy,
while other methods require at least 12,500 steps to reach the same accuracy. This trend is observed
across different tasks, PEFT methods, and model architectures, suggesting that the efficiency of
hybrid tuning scales well (e.g. for Vicuna-7b-v1.5 model on the WinoGrande dataset provided in
the supplementary materials).

3.4 MEMORY USAGE ANALYSIS

In this section, we consider the memory usage of the hybrid fine-tuning approach. Let |xℓ| and |yℓ|
denote the parameter sizes of the ℓ-th layer in the base LLM and the PEFT module, respectively, with
|x| :=

∑
ℓ |xℓ| ≫ |y| :=

∑
ℓ |yℓ| in most practical scenarios. During first-order optimization, each

computational graph node stores local gradient states, represented as aℓ for the LLM and bℓ for the
PEFT module. A key observation is that despite updating additional parameters with the inclusion
of both the base LLM and the PEFT module, the hybrid fine-tuning approach does not increase the
asymptotical memory usage (i.e. as |y|

|x| → 0). While the theoretical memory footprint of Hybrid ZO-
SGD (LLM+PEFT) is |x|+ |y|, it remains dominated by |x| in practice. Thus, the hybrid fine-tuning

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Training curves for OPT-1.3B model with the prompt tuning on the SST2 dataset. The
Hybrid Fine-Tuning method achieves significantly faster convergence than the other two baselines.

Table 2: Comparison of theoretical, asymptotical, and empirical memory usage for different fine-
tuning optimizers. |x| and |y| denote the parameter counts of the base LLM and the PEFT module,
respectively, with |y|/|x|→ 0. |a| and |b| are the per-layer gradient states kept during optimization.

Optimizer Theoretical Memory Asymptotical Memory Empirical Memory Consumed GPU
FO-SGD
(LLM)

∑
ℓ

max
{
|aℓ|, |xℓ|

}
+ |x|

∑
ℓ

max
{
|aℓ|, |xℓ|

}
54 GB 2×A6000

ZO-SGD
(LLM) maxℓ |xℓ| maxℓ |xℓ| 32 GB 1×A6000

FO-SGD
(Prompt)

∑
ℓ

max
{
|bℓ|, |yℓ|

}
+ |x| |x| 46 GB 1×A6000

Hybrid ZO-SGD
(LLM+Prompt)

∑
ℓ

max
{
|bℓ|, |yℓ|

}
+max

ℓ
|xℓ|+ |x| |x| 46 GB 1×A6000

method enables updating more parameters without significantly increasing memory consumption,
ensuring scalability even for large-scale LLMs.

Results. Furthermore, our empirical results confirm this observation. Table 2 reports both the the-
oretical memory requirements of several fine-tuning strategies and their actual peak GPU memory
usage when fine-tuning Llama-2-7B on the SST-2 dataset. The hybrid approach not only signif-
icantly reduces memory overhead compared to FO full fine-tuning (≈ 15% reduction), but also
matches the memory footprint of FO prompt tuning (Lester et al., 2021).

3.5 EXTENDED COMPARISON OF GRADIENT LIPSCHITZ CONSTANT

In this subsection, we present extended experiments to further examine the local geometry of the op-
timization landscape. Specifically, we directly estimate and compare the gradient Lipschitz constants
associated with the base model parameters (x) and the PEFT parameters (y) variables across multi-
ple models (OPT-1.3b and LLaMa-2-7b). As shown in Figure 5, these additional results consistently
support our hybrid smoothness assumption by showing that the x-coordinates exhibit noticeably
larger Lipschitz constants, indicating the necessity of applying a different learning rate scale.

3.6 EXTENDED COMPARISON WITH THE ADAM+LORA BASELINE

In our previous comparison, using SGD across all methods was driven by our theoretical focus; the
core of our contribution is the convergence analysis for our hybrid method under the novel Hybrid
Smoothness condition , which we developed specifically for SGD with Random Reshuffling.

To further validate the effectiveness of our approach, we conduct an additional set of experiments
comparing Hybrid-LoRA with the Adam+LoRA baseline. This extended evaluation examines
whether the performance gains observed in our main results persist under the widely applied op-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 5: Extended comparison of gradient Lipschitz constant L for OPT-1.3b (Left) and LLaMa-
2-7b (Right) in different modules (Base LLM and Prefix Tuning). The base LLM exhibits a signifi-
cantly larger Lipschitz constant, further confirming our observation in Figure 1b.

Table 3: Pairwise comparison between FO and Hybrid variants on
OPT-1.3b across six NLP tasks. Additionally compared to Table 1,
we include the Adam optimizer as the baseline. Notably, our pro-
posed method still achieves advanced performance without adopt-
ing the Adam optimizer. In principle, our approach can be further
enhanced by replacing the SGD update for the PEFT module with
Adam to further accelerate the training.

Model Task SST-2 RTE WSC WiC COPA WinoG.

O
PT

-1
.3

b

FO-LoRA
(Adam) 91.7 58.6 58.7 64.1 66.0 60.1

FO-LoRA
(SGD) 92.2 54.8 59.6 52.5 78.0 59.0

Hybrid-LoRA
(SGD) 92.3 61.0 61.5 55.5 78.0 58.3

Table 4: Empirical memory
usage of different optimizers
for the OPT-1.3b model. We
note that the Adam optimizer
takes three-time memory of
the SGD optimizer due to.

Optimizer Emp. Mem.
FO-SGD
(LLM) 11.2 GB

ZO-SGD
(LLM) 6.8 GB

FO-Adam
(LoRA) 11.0 GB

Hybrid ZO-SGD
(LLM+LoRA) 10.7 GB

timization settings. The results reported in Table 3 demonstrate that Hybrid-LoRA still maintains
its advantage while using smaller memory (as indicated by Table 4). We also emphasize that our
framework is extensible, and one could construct a “Hybrid-Adam” variant by replacing the SGD
update for the PEFT module with Adam. We view this as an interesting direction for future work.

4 CONCLUSION

In conclusion, this work introduces a novel hybrid fine-tuning approach for LLMs that combines
zeroth-order optimization for the base model with first-order optimization for PEFT modules. Mo-
tivated by the hybrid smoothness condition of our hybrid fine-tuning system (Definition 1), we
develop a theoretical framework centered on this theoretical challenge introduced by the hybrid
fine-tuning method. Our empirical examples (Section 2.2) and convergence analysis (Theorem 1)
demonstrate the necessity of applying different learning rates for different modules. Our analysis
achieves the best-known sample complexity under much milder conditions in the existing litera-
ture. Extensive empirical evaluations across multiple NLP tasks, model architectures, and PEFT
techniques validate the theoretical insights and show consistent performance gains over traditional
fine-tuning methods as shown in Table 1. By addressing fundamental challenges in joint LLM and
PEFT training, our work opens new avenues for efficient LLM fine-tuning and provides a solid
foundation for future research on optimizing hybrid systems in machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265–283, 2016.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

Eric L Buehler and Markus J Buehler. X-lora: Mixture of low-rank adapter experts, a flexible frame-
work for large language models with applications in protein mechanics and molecular design. APL
Machine Learning, 2(2), 2024.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov,
Aleksandr Beznosikov, Martin Takáč, Pavel Dvurechensky, and Bin Gu. The power of first-order
smooth optimization for black-box non-smooth problems. arXiv preprint arXiv:2201.12289,
2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, S Ramaneswaran, Deepali Aneja, Zeyu
Jin, Ramani Duraiswami, and Dinesh Manocha. A closer look at the limitations of instruction
tuning. In Forty-first International Conference on Machine Learning, 2024.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint
arXiv:2305.15717, 2023.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, 186:49–84, 2021.

Edwin Hewitt and Karl Stromberg. Real and abstract analysis: a modern treatment of the theory of
functions of a real variable. Springer Science & Business Media, 2012.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Thir-
teenth international conference on the principles of knowledge representation and reasoning,
2012.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence
of zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1827–1838, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Liu Liu, Minhao Cheng, Cho-Jui Hsieh, and Dacheng Tao. Stochastic zeroth-order optimization via
variance reduction method. arXiv preprint arXiv:1805.11811, 2018.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Zijian Liu and Zhengyuan Zhou. On the last-iterate convergence of shuffling gradient methods.
arXiv preprint arXiv:2403.07723, 2024.

Shaocong Ma and Yi Zhou. Understanding the impact of model incoherence on convergence of
incremental sgd with random reshuffle. In International Conference on Machine Learning, pp.
6565–6574. PMLR, 2020.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
with vast improvements. Advances in Neural Information Processing Systems, 33:17309–17320,
2020.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for eval-
uating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Itay Safran and Ohad Shamir. How good is sgd with random shuffling? In Conference on Learning
Theory, pp. 3250–3284. PMLR, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Pri-
vate fine-tuning of large language models with zeroth-order optimization. arXiv preprint
arXiv:2401.04343, 2024.

Kushala VM, Harikrishna Warrier, Yogesh Gupta, et al. Fine tuning llm for enterprise: Practical
guidelines and recommendations. arXiv preprint arXiv:2404.10779, 2024.

Fei Wang, Li Shen, Liang Ding, Chao Xue, Ye Liu, and Changxing Ding. Simultaneous computation
and memory efficient zeroth-order optimizer for fine-tuning large language models. arXiv preprint
arXiv:2410.09823, 2024.

Liangyu Wang, Jie Ren, Hang Xu, Junxiao Wang, Huanyi Xie, David E Keyes, and Di Wang. Zo2:
Scalable zeroth-order fine-tuning for extremely large language models with limited gpu memory.
arXiv preprint arXiv:2503.12668, 2025.

Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In The
Twelfth International Conference on Learning Representations, 2023.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023a.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-
init attention. arXiv preprint arXiv:2303.16199, 2023b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Zeroth-Order Optimization in Fine-Tuning LLMs Recent work has explored ZO optimization
methods for fine-tuning LLMs, which aligns with our approach of using ZO methods for the LLM
component in hybrid fine-tuning. Malladi et al. (2023) demonstrated the compatibility of zeroth-
order methods with both full fine-tuning and PEFTs. This laid the groundwork for our hybrid ap-
proach that combines zeroth-order LLM updates with first-order PEFT updates. Zhang et al. (2024)
provided a comprehensive benchmark for ZO optimization in LLM fine-tuning, offering valuable
insights that informed our experimental design. Ling et al. (2024) combines the ZO fine-tuning of
LLMs with the federated learning. Several studies have incorporated variance reduction techniques
(Gautam et al., 2024) into ZO methods or second-order method (Zhao et al., 2024) to enhance sta-
bility and convergence in fine-tuning LLMs. While we focus on a different aspect, these stability
improvements could easily be integrated into our hybrid framework. Existing literature (Liu et al.,
2024; Guo et al., 2024; Zhang et al., 2024) also discusses the sparsity of pre-trained LLMs, which
further enhances the performance of ZO optimization approach.

Generalized Smoothness of Large Machine Learning Models The concept of generalized
smoothness has emerged as a crucial theoretical framework for understanding the optimization land-
scape of large machine learning models, including LLMs. Recent studies have shown that traditional
smoothness assumptions often fail to capture the complex optimization landscape of deep neural net-
works (Zhang et al., 2019; Li et al., 2024). More explicitly, Zhang et al. (2019) demonstrated that the
local smoothness constant in neural networks is often proportional to the gradient norm, challeng-
ing the conventional assumption of uniform smoothness. This insight aligns with our observations
in hybrid fine-tuning, where different components of the model (LLM and PEFT modules) exhibit
distinct smoothness properties. Li et al. (2024) introduced a generalized smoothness condition that
allows for non-uniform smoothness across the parameter space, which is more representative of the
behavior observed in practice for large models. This work provides a foundation for our hybrid gen-
eralized smoothness framework, which extends these ideas to account for the heterogeneous nature
of joint LLM and PEFT optimization.

B NOTATIONS

In this paper, the optimization problem is formulated as minimizing f(x, y), where x ∈ Rdx repre-
sents the parameters of the base language model and y ∈ Rdy represents the parameters of the PEFT
module. The function f is assumed to have hybrid generalized smoothness, characterized by non-
negative, non-decreasing sub-quadratic functions ℓx and ℓy (Definition 1). In the SGD, we consider
epoch-wise optimization algorithm described in Algorithm 1. This approach ensures us to access
each data point exactly once over an entire epoch, which is particularly common is the data loader
provided by existing modern machine learning frameworks such as PyTorch and TensorFlow. Here,
ηx and ηy denote the learning rates for x and y respectively, T is the number of epochs, and n is the
dataset size. We ∇̂xf to denote the zeroth-order gradient estimator for x, while ∇yf represents the
standard gradient for y. With these given, for each epoch t, we define the following notations:

gt =

n∑
i=1

∇xf(xt,i, yt,i; ξt,i), ĝt =

n∑
i=1

∇̂xf(xt,i, yt,i; ξt,i),

ht =

n∑
i=1

∇yf(xt,i, yt,i; ξt,i).

Here, gt represents the true gradient with respect to x accumulated over an entire epoch. It captures
the overall direction of stochastic gradient descent for the x parameters across all samples in the
epoch. ĝt is an estimate of this gradient. In practice, we often don’t have access to the true gradient
and must rely on estimates. The difference between gt and ĝt quantifies the estimation error in our
gradient calculations. ht is the true gradient with respect to y accumulated over the epoch.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C SUPPORTING LEMMAS

In this section, we present several lemmas used to build our convergence analysis. Lemma 1,
Lemma 2, Lemma 3, and Lemma 4 are fundamental properties of generalized smoothness provided
by Li et al. (2024). We adapt them to the setting of hybrid system fine-tuning.
Lemma 1 (The generalized version of Lemma 3.3 from Li et al. (2024)). Let f : Rd = Rdx×Rdy →
R be a twice continuously differentiable function satisfying the hybrid generalized smoothness prop-
erties. Suppose that (x, y) ∈ Rd satisfies ∥∇f(x, y)∥ ≤ G. Then there exist non-negative constant
Lx = ℓx(G) and Ly = ℓy(G) such that for all (x1, y1), (x2, y2) ∈ B(x, G

Lx
)× B(y, G

Ly
):

1. ∥∇xf(x1, y
′)−∇xf(x2, y

′)∥ ≤ Lx∥x1 − x2∥, for all y′ ∈ Rdy .

2. ∥∇yf(x
′, y1)−∇yf(x

′, y2)∥ ≤ Ly∥y1 − y2∥, for all x′ ∈ Rdx .

3. Let Id represent the identity matrix with the size d× d.

f(x1, y1) ≤f(x2, y2) +

〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+

1

2
[x1 − x2 y1 − y2]

[
LxIdx 0

0 LyIdy

] [
x1 − x2

y1 − y2

]
.

Proof. Let (x, y) ∈ Rd = Rdx ×Rdy be arbitrary. By the assumption of twice continuous differen-
tiability and the mean value theorem, we have

∇xf(x2, y)−∇xf(x1, y) =

∫ 1

0

∇2
xxf(x1 + t(x2 − x1), y)(x2 − x1)dt.

Taking the norm of both sides and applying the generalized smoothness of f (Definition 1), we
obtain

∥∇2
xxf(x, y)∥ ≤ ℓx(∥∇f(x, y)∥) ≤ Lx,

where the last inequality is by the monotonicity of ℓx and the bounded gradient condition. We apply
this inequality to the integral yields the first inequality. The second inequality for the y-gradient is
obtained similarly. For the third inequality, we still consider the mean value theorem:

f(x1, y1)− f(x2, y2) =

∫ 1

0

〈
∇f(z(t),

[
x1 − x2

y1 − y2

]〉
dt

=

∫ 1

0

[〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+

〈
∇f(z(t))−∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉]
dt

=

〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+

∫ 1

0

〈
∇f(z(t))−∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
dt

≤
〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+ Ly∥y1 − y2∥2

∫
tdt+ Lx∥x1 − x2∥2

∫
tdt,

where z(t) := (1 − t)

[
x2

y2

]
+ t

[
x1

y1

]
for 0 ≤ t ≤ 1. Then the proof is completed by re-arranging

this inequality.

Lemma 2 (The generalized version of Lemma 3.5 from Li et al. (2024)). Let f : Rdx×Rdy → R be
a twice continuously differentiable function satisfying the hybrid generalized smoothness properties.
Let f∗ = infx,y f(x, y) be the global minimum of f . Then, for all (x, y) ∈ Rdx×Rdy , the following
inequalities hold:

1. ∥∇xf(x, y)∥2 ≤ 2ℓx(2∥∇f(x, y)∥) · (f(x, y)− f∗)

2. ∥∇yf(x, y)∥2 ≤ 2ℓy(2∥∇f(x, y)∥) · (f(x, y)− f∗)

3. 1
2 [∇f(x, y)]

⊤

[
Idx

ℓx(2∥∇f(x,y)∥) 0

0
Idy

ℓy(2∥∇f(x,y)∥)

]
∇f(x, y) ≤ f(x, y)− f∗.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. The first and the second inequalities are directly implied by Lemma 3.5 from Li et al. (2024)
by projecting the objective function f to a subspace of the domain. Here, we provide the proof
for the third inequality. By Lemma 1 where we choose G = ∥∇f(x, y)∥, we have that for any
(x1, y1), (x2, y2) ∈ B(x, G

Lx
)× B(y, G

Ly
),

f(x1, y1) ≤ f(x2, y2)+

〈
∇f(x2, y2),

[
x1 − x2

y1 − y2

]〉
+
1

2
[x1 − x2 y1 − y2]

[
LxIdx 0

0 LyIdy

] [
x1 − x2

y1 − y2

]
.

Choosing (x2, y2) = (x, y), x1 = x− ∇xf(x,y)
ℓx(2∥∇f(x,y)∥) , and y1 = y − ∇yf(x,y)

ℓy(2∥∇f(x,y)∥) , we obtain

f∗ ≤ f(x− ∇xf(x, y)

ℓx(2∥∇f(x, y)∥)
, y − ∇yf(x, y)

ℓy(2∥∇f(x, y)∥)
)

≤ f(x, y)− 1

2
[∇f(x, y)]⊤

[
Idx

ℓx(2∥∇f(x,y)∥) 0

0
Idy

ℓy(2∥∇f(x,y)∥)

]
∇f(x, y).

Then the proof is completed.

Lemma 3 (The generalized version of Corollary 3.6 from Li et al. (2024)). Let f : Rdx ×Rdy → R
be a twice continuously differentiable function satisfying the hybrid generalized smoothness proper-
ties. Suppose that f(x, y)− f∗ ≤ F for some (x, y) ∈ Rd and F ≥ 0. Denoting G := sup{u ≥ 0 |
u2 ≤ 2max(ℓx, ℓy)(u) · F}, then ∥∇f(x, y)∥ ≤ G <∞.

Proof. Let max(ℓx, ℓy)(u) := max{ℓx(u), ℓy(u)}. Since both ℓx and ℓy are sub-quadratic, it con-
cludes G is finite (by Corollary 3.6 from Li et al. (2024)). From Lemma 2, we have

1

2
[∇f(x, y)]⊤

[
Idx

max(ℓx,ℓy)(2∥∇f(x,y)∥) 0

0
Idy

max(ℓx,ℓy)(2∥∇f(x,y)∥)

]
∇f(x, y)

≤1

2
[∇f(x, y)]⊤

[
Idx

ℓx(2∥∇f(x,y)∥) 0

0
Idy

ℓy(2∥∇f(x,y)∥)

]
∇f(x, y)

≤f(x, y)− f∗.

Therefore, we obtain
∥∇f(x, y)∥2 ≤ 2max(ℓx, ℓy)(2∇f(x, y)) · F.

It concludes that if the function value is bounded, then the gradient is also bounded.

Here, we summarize the previous results in the following lemma. The constant G (determined by
the function value upper bound F) is defined in Lemma 3 and the constant Lx and Ly (determined
by the gradient norm upper bound G) is defined in Lemma 1.
Lemma 4. Suppose that Assumption 1 holds for the objective function f(x, y) :=
1
n

∑n
i=1 f(x, y; i), with all individual loss functions f(·; i) are twice continuously differentiable and

satisfy the hybrid generalized smoothness properties. Let GF := {(x, y) ∈ Rd | f(x, y)−f∗ ≤ F}.
Then the following statements hold:

1. The objective function f(·) has G-bounded gradient over GF ; that is, ∥∇f(x, y)∥ ≤ G for
all (x, y) ∈ GF .

2. The objective function f(·) has (Lx, Ly)-Lipschitz gradient over GF ; that is, ∥∇xf(x, y)−
∇xf(x

′, y)∥ ≤ Lx∥x − x′∥ and ∥∇yf(x, y) − ∇yf(x, y
′)∥ ≤ Ly∥y − y′∥ for all

(x, y), (x′, y′) ∈ GF .

3. The individual loss function f(·; i) has (Gx,max, Gy,max)-bounded gradient over GF ; that
is, ∥∇xf(x, y; ξ)∥ ≤ Gx,max and ∥∇yf(x, y; ξ)∥ ≤ Gy,max for all (x, y) ∈ GF and all
ξ ∈ {1, 2, . . . , n}.

4. The individual loss function f(·; i) has (Lx,max, Ly,max)-Lipschitz gradient over GF ;
that is, ∥∇xf(x, y; ξ) − ∇xf(x

′, y; ξ)∥ ≤ Lx,max∥x − x′∥ and ∥∇yf(x, y; ξ) −
∇yf(x, y

′; ξ)∥ ≤ Ly,max∥y − y′∥ for all (x, y) ∈ GF and all ξ ∈ {1, 2, . . . , n}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. By Assumption 1, GF is a compact set. By the twice continuous differentiability of the ob-
jective function f(·) (and all individual loss functions f(·; i)), all statements holds by its continuity.
More precise evaluation is given in Lemma 1 for Lx and Ly , and in Lemma 3 for G.

The following lemma characterizes the accuracy of zeroth-order gradient estimation. We note that
the choice of zeroth-order gradient estimator is not the crucial part in our analysis; the following
gradient estimation method can be replaced with any common zeroth-order optimization techniques,
including the mini-batch zeroth-order gradient estimation Nesterov & Spokoiny (2017), the uniform
smoothing Gasnikov et al. (2022), and the variance reduction Liu et al. (2018).
Lemma 5. Let f : Rd → R be a function with twice continuous differentiability. Define the two-
point zeroth-order gradient estimator of∇f(x) as

∇̂f(x) := 1

µ
[f(x+ µv)− f(x)] v,

where µ > 0 is the perturbation stepsize, v ∈ Rd is a Gaussian vector with the covariance matrix
Id. Suppose that f has G-bounded gradient and L-Lipschitz gradient at x. Then

1. E⟨g, ∇̂f(x)−∇f(x)⟩ ≤ µ
2L(d+ 3)3/2∥g∥, for any g ∈ Rd.

2. E∥∇̂f(x)−∇f(x)∥2 ≤ 32d∥∇f(x)∥2 + 108µ2L2d4.

Proof. Throughout this proof, we follow the random gradient-free oracles given by Nesterov &
Spokoiny (2017). That is, define

fµ(x) = Ev∼N(0,Id)f(x+ µv);

then the gradient estimator ∇̂f(x) is an unbiased estimator of ∇fµ(x). For the first inequality, we
have

E⟨g, ∇̂f(x)−∇f(x)⟩ (i)= E⟨g,∇fµ(x)−∇f(x)⟩
(ii)
=

µ

2
L(d+ 3)3/2∥g∥.

where (i) applies the unbiasedness of Gaussian smoothing and (ii) applies Lemma 3 from Nesterov
& Spokoiny (2017). For the second inequality, we have

E∥∇̂f(x)−∇f(x)∥2 ≤ 2E∥∇̂f(x)∥2 + 2∥∇f(x)∥2

(i)

≤ 8(d+ 4)∥∇fµ(x)∥2 + 6µ2L2(d+ 4)3 + 2∥∇f(x)∥2

(ii)

≤ 32d∥∇f(x)∥2 + 108µ2L2d4.

where (i) applies Lemma 5 from Nesterov & Spokoiny (2017) and (ii) again applies Lemma 3 from
Nesterov & Spokoiny (2017).

Lemma 6. Suppose that Assumption 1 and Assumption 2 hold for the objective function f(x, y) :=
1
n

∑n
i=1 f(x, y; i), with all individual loss functions f(·; i) are twice continuously differentiable and

satisfy the hybrid generalized smoothness properties. Let

ϵt =
1

n

n∑
i=1

∇̂f(xt,i, yt,i; ξt,i)−
1

n

n∑
i=1

∇f(xt,i, yt,i; ξt,i) +
1

n

n∑
i=1

∇f(xt,i, yt,i; ξt,i)−∇f(xt, yt),

be the gradient approximation error over the t-th epoch. Given any F,H > 0, define the stopping
time as τ = τ1 ∧ τ2, where τ1 := mint{t | f(xt+1, yt+1) − f∗ > F} ∧ T and τ2 := mint{t |
∥ϵt∥ > H} ∧ T . Let the learning rates satisfy ηx ≤ min{ 1

2Lx,maxn
, 1
384Lxndx

} and ηy ≤ 1
2Ly,maxn

and the perturbation stepsize µ ≤ G
Lx

6

d
3/2
x

. Then

f(xτ , yτ)− f∗ +
∑
t<τ

[∇f(xt, yt)]
⊤
[
n
4 ηxIdx

0
0 n

3 ηyIdy

]
∇f(xt, yt)

≤f0 − f∗ +

[
σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ)

]
T,

where o(µ) ≤ 3ηxµnLxdxG is a small error term when µ is chosen small.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. For arbitrary stopping time τ , we start from the smoothness given by Lemma 1:

f(xt+1, yt+1)− f(xt, yt)

≤
〈
∇f(xt, yt),

[
xt+1 − xt

yt+1 − yt

]〉
+

1

2
[xt+1 − xt yt+1 − yt]

[
LxIdx 0

0 LyIdy

] [
xt+1 − xt

yt+1 − yt

]
= ⟨∇xf(xt, yt), xt+1 − xt⟩+ ⟨∇yf(xt, yt), xt+1 − xt⟩+

Lx

2
∥xt+1 − xt∥2 +

Ly

2
∥yt+1 − yt∥2

(i)
= −ηxn⟨∇xf(xt, yt),

ĝt
n
− gt

n
⟩ − ηxn⟨∇xf(xt, yt),

gt
n
⟩+ η2xLxn

2∥ ĝt
n
− gt

n
∥2 + η2xLxn

2∥gt
n
∥2

− ηyn⟨∇yf(xt, yt),
ht

n
⟩+ η2yLyn

2∥ht

n
∥2,

where (i) we applies the derivation of Eq.(38) from Mishchenko et al. (2020) with setting ηx ≤ 1
2Lx

and ηy ≤ 1
2Ly

. We note that the y parameter update doesn’t involve the gradient estimation; so, we

keep the original stochastic gradient ht for this step. Let E1 = −ηxn⟨∇xf(xt, yt),
ĝt
n −

gt
n ⟩ and

E2 = η2xLxn
2∥ ĝtn −

gt
n ∥

2, representing the errors caused by the zeroth-order gradient estimation.
Then we obtain

f(xt+1, yt+1)− f(xt, yt) ≤ −ηxn⟨∇xf(xt, yt),
gt
n
⟩+ η2Lxn

2∥gt
n
∥2 + E1 + E2

− ηyn⟨∇xf(xt, yt),
ht

n
⟩+ η2Lyn

2∥ht

n
∥2.

Then we set ηx ≤ 1
2Lxn

and ηy ≤ 1
2Lyn

. By Eq.(39) from Mishchenko et al. (2020),

f(xt+1, yt+1)− f(xt, yt) +
ηxn

2
∥∇xf(xt, yt)∥2 +

ηyn

2
∥∇yf(xt, yt)∥2

≤ηxn

2

∥∥∥gt
n
−∇xf(xt, yt)

∥∥∥2 + ηyn

2

∥∥∥∥ht

n
−∇yf(xt, yt)

∥∥∥∥2 + E1 + E2.
Then we take expectation on both sides and decompose

∥∥∇xf(xt, yt)− gt
n

∥∥2 using Lemma 1 with
the Lipschitz constant Lx,max and

∥∥∇yf(xt, yt)− gt
n

∥∥2 with the Lipschitz constant Ly,max; more
explicitly, we have∥∥∥∇xf(xt, yt)−

gt
n

∥∥∥2 =

∥∥∥∥∥ 1n
n∑

i=1

∇xf(xt,0, yt,0; ξt,i)−
1

n

n∑
i=1

∇xf(xt,i, yt,i; ξt,i)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∇xf(xt,0, yt,0; ξt,i)−∇xf(xt,i, yt,i; ξt,i)∥2

≤
L2
x,max

n

n∑
i=1

∥xt,0 − xt,i∥2 .

Applying Assumption 2 and Lemma 5 from Mishchenko et al. (2020) to bound
L2

x,max

n

∑n
i=1 E ∥xt,0 − xt,i∥2, we obtain

f(xt+1, yt+1)− f(xt, yt) +
ηxn

2
∥∇xf(xt, yt)∥2 +

ηyn

2
∥∇yf(xt, yt)∥2

≤ηxn

2

L2
x,max

n
[η2xn

3∥∇xf(xt, yt)∥2 + η2xn
2σ2] +

ηyn

2

L2
y,max

n
[η2yn

3∥∇f(xt, yt)∥2 + η2yn
2σ2] +EE1 +EE2.

We re-write this inequality into the matrix form.

f(xt+1, yt+1)− f(xt, yt) + [∇f(xt, yt)]
⊤
[ηxn

2 0
0

ηyn
2

]
∇f(xt, yt)

≤σ2

2
n2
[
η3xL

2
x,max + η3yL

2
y,max

]
+EE1 +EE2 + [∇f(xt, yt)]

⊤

[
η3
xn

3L2
x,max

2 Idx 0

0
η3
yn

3L2
y,max

2 Idy

]
∇f(xt, yt).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

When choosing ηx ≤ 1
2Lx,maxn

and ηy ≤ 1
2Ly,maxn

, it ensures that

n

3

[
ηxIdx

0
0 ηyIdx

]
⪯
[ηxn

2 Idx
0

0
ηyn
2 Idy

]
−

[
η3
xn

3L2
x,max

2 Idx
0

0
η3
yn

3L2
y,max

2 Idy

]
.

Therefore, we let Λ2 = n
3

[
ηxIdx 0
0 ηyIdy

]
be a PSD matrix. Then we obtain

f(xt+1, yt+1)− f(xt, yt) + ∥Λ∇f(xt, yt)∥2 ≤
σ2

2
n2
[
η3xL

2
x,max + η3yL

2
y,max

]
+EE1 +EE2.

Then we apply Lemma 5 to bound EE1 and EE2, respectively. By the stopping time construction,
we have ∥∇xf(xt, yt)∥ ≤ ∥∇f(xt, yt)∥ ≤ G. Therefore, we have

EE1 = −ηxnE⟨∇xf(xt, yt),
ĝt
n
− gt

n
⟩

≤ ηx
µn

2
Lx(dx + 3)3/2G.

Similarly, we have

EE2 = η2xLxn
2E∥ ĝt

n
− gt

n
∥2

≤ η2xLxn
2
[
32dx∥∇xf(xt, yt)∥2 + 108µ2L2d4

]
.

We further simply the inequality by letting ηx ≤ 1
384Lxnd

. Then we have

f(xt+1, yt+1)− f(xt, yt) + [∇f(xt, yt)]
⊤
[
n
4 ηxIdx

0
0 n

3 ηyIdy

]
∇f(xt, yt)

≤ σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ),

where o(µ) represents a small error term when µ tends to 0. Lastly, we sum over t < τ and obtain

f(xτ , yτ)− f∗ +
∑
t<τ

[∇f(xt, yt)]
⊤
[
n
4 ηxIdx 0

0 n
3 ηyIdy

]
∇f(xt, yt)

≤f0 − f∗ +

[
σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ)

]
T,

which completes the proof. Here, o(µ) ≤ 3ηxµnLxdG by letting µ ≤ G
Lx

6

d
3/2
x

.

D PROOF OF THEOREM 1

Here, we re-state our main theorem with full details.

Theorem 2. Suppose that Assumption 1 and Assumption 2 hold for the objective function f(x, y) :=
1
n

∑n
i=1 f(x, y; i) and satisfy the hybrid generalized smoothness properties. Let δ ∈ (0, 1) and

{(xt, yt)}Tt=1 be the SGD with Random Shuffling dynamic generated by Algorithm 1 for solving the
optimization problem Eq. (1). Given F as

F =
8

δ
[f0 − f∗ + σ′],

where f0 := f(x0, y0) is the initial function value and σ′ is a constant-level value given by Eq. (4)
and H as

H = 2

√
[200G2 dx

n +G2 + σ2

n]T

δ
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

define the stopping time as τ = τ1 ∧ τ2, where τ1 := mint{t | f(xt+1, yt+1) − f∗ > F} ∧ T and
τ2 := mint{t | ∥ϵt∥ > H} ∧ T , where ϵt is defined in Lemma 6. If learning rates ηx, ηy , and the
perturbation stepsize µ are chosen such that

ηx ≤ min

{
1

2Lx,maxn
,

1

384Lxnd
,

√
2

T

1

σnLx,max

}
,

ηy ≤ min

{
1

2Ly,maxn
,

√
2

T

1

σnLy,max

}
, (3)

µ ≤ min

{
G

Lx

6

d3/2
,

1

3LxTndG

}
.

where all constant G,Lx,max, Ly,max, Lx, Ly are defined relying on F with presented in Lemma 4,
and the maximum number of epoch T is chosen as

T ≥ ϵ−2

[
2

δ
+

G2

8

]
+ ϵ−4

[
f0 − f∗ + 3

n

]
,

then with the probability at least 1− δ,
1

T

∑
t<T

E ∥∇f (xt, yt)∥2 ≤ ϵ2.

Proof. Let A :=
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 ≤ ϵ2

}
and B := {τ ≥ T } be two events. We consider

the following lower bound of the probability of event A by conditioning it on the event B:
P(A) ≥ P(A ∩B) = P(A|B)P(B)

≥ [1− P(Ac|B)][1− P(Bc)].

Our goal is to show that the probability of
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

(the event Ac|B)
and {τ < T} (the event Bc) are both small. We bound each term separately.

• First, we bound the probability of
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

. By Lemma 6,
we let

σ′ =

[
σ2

2
n2
[
η3yL

2
y,max + η3xL

2
x,max

]
+ o(µ)

]
T. (4)

If the event is conditioned on τ ≥ T , we always have ∥∇f (xt)∥ ≤ G for t = 1, 2, . . . , T−
1, where G is determined by Lemma 3. Then we obtain

P

(∑
t<T

∥∇f (xt, yt)∥2 > c
∣∣∣τ ≥ T

)
(i)

≤ P
(
e
∑

t<T ∥∇f(xt,yt)∥2

> ec
∣∣∣τ ≥ T

)
(ii)

≤ E
[
e
∑

t<T ∥∇f(xt,yt)∥2
∣∣∣τ ≥ T

]
/ec

(iii)

≤ exp

(∑
t<T

E ∥∇f (xt)∥2 +
G2

8

)
/ec

(iv)

≤ exp

(
1

ηminn
[f0 − f∗ + σ′] +

G2

8
− c

)
.

where (i) takes exponential on both sides, (ii) applies the Markov inequality, (iii) applies
the Hoeffding’s lemma, (iv) applies Lemma 6 with setting ηmin = min{ηx

4 ,
ηy

3 } and f0 :=
f(x0, y0).

Before we evaluate the necessary T , we need to choose hyper-parameters to make σ′ less
than some constant independent of d, n, or other crucial constants. To do so, we set

ηx ≤
√

2

T

1

σnLx,max
, ηy ≤

√
2

T

1

σnLy,max
, µ ≤ 1

3LxTndxG
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Then we obtain σ′ ≤ 2ηx+ηy. Let c = Tϵ2 and e
1

ηminn [f0−f∗+2ηx+ηy]+
G2

8 e−c ≤ δ
2 . Then

it solves

ϵ2T ≥ ln(
2

δ
) +

G2

8
+

1

ηminn
[f0 − f∗ + 2ηx + ηy]

T ≥ϵ−2

[
2

δ
+

G2

8

]
+ ϵ−2

[
f0 − f∗ + 2ηx + ηy

ηminn

]
.

• Then we bound the probability P(Bc) = P(τ < T). Recap that we consider the stopping
time defined as τ = τ1 ∧ τ2, where τ1 := mint{t | f(xt+1, yt+1) − f∗ > F} ∧ T and
τ2 := mint{t | ∥ϵt∥ > H} ∧ T . Here, ϵt is defined as

ϵt =
1

n

n∑
i=1

∇̂f(xt,i; ξt,i)−
1

n

n∑
i=1

∇f(xt,i; ξt,i)︸ ︷︷ ︸
est. err.

+
1

n

n∑
i=1

∇f(xt,i; ξt,i)−∇f(xt)︸ ︷︷ ︸
stoc. err.

. (5)

We note that for the last dy entries, the estimation error term is 0 since we do not apply
gradient estimation for this part. Both F and H in the definition of stopping times will be
determined later. Then we notice that

P(Bc) = P(τ < T) = P({τ1 < T} ∪ {τ2 < T})
= P(τ2 < T) + P(τ1 < T, τ2 ≥ T).

We bound each term separately as follows:

◦ Choose H such that P(τ2 < T) ≤ δ
4 : We have

P(τ2 < T) = P

(⋃
t<T

{∥ϵt∥ > H}

)
≤
∑
t<T

P (∥ϵt∥ > H)

(i)

≤
∑
t<T

3
n2E∥gt − ĝt∥2 + 3E∥ gtn −∇xf(xt, yt)∥2 + 3E∥ht

n −∇yf(xt, yt)∥2

H2

(ii)

≤

[
3

n

[
64d∥∇xf(xt, yt)∥2 + 216µ2L2

x,maxd
4
x

]
/H2

+
(
3L2

x,maxη
2
x + 3L2

y,maxη
2
y

) [
n2G2 + nσ2

]
/H2

]
T

(iii)

≤

[
200G2 dx

n + 2G2 + σ2

n

]
T

H2

where (i) applies the Markov inequality, (ii) applies Lemma 5 and Lemma 5 from
Mishchenko et al. (2020), and (iii) we choose a sufficiently small µ ≤ 8G

Lx,maxd
3/2
x

and

learning rates ηx ≤ 1√
3Lx,maxn

and ηy ≤ 1√
3Ly,maxn

to simplify the upper bound.

Then we choose

[
200G2 dx

n +2G2+σ2

n

]
T

H2 = δ
4 . It solves

H = 2

√
[200G2 dx

n +G2 + σ2

n]T

δ
. (6)

◦ Choose F such that P(τ1 < T, τ2 ≥ T) ≤ δ
4 . Because {τ1 < T, τ2 ≥ T} ⊂

{f(xτ , yτ)− f∗ > F
2 },

P(τ1 < T, τ2 ≥ T) ≤ P(f(xτ , yτ)− f∗ >
F

2
)

(i)

≤ 2E[f(xτ , yτ)− f∗]/F

≤ 2[f0 − f∗ + σ′]/F.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where (i) applies the Markov inequality. Let δ
4 = 2[f(x0)− f∗ + σ′]/F . It solves

F =
8

δ
[f(x0)− f∗ + σ′]. (7)

Combining both upper bounds with choosing H and F defined by Eq. (6) and Eq. (7),
respectively, we have

P(Bc) = P(τ < T) ≤ δ

2
.

Then we obtain the lower bound of P(A ∩B) as follows:
P(A ∩B) = P(A|B)P(B) ≥ [1− P(Ac|B)][1− P(Bc)]

≥ [1− δ

2
][1− δ

2
] = 1− δ +

δ2

4
≥ 1− δ.

Lastly, we discuss the hyper-parameter choices and the epoch complexity. To make Lemma 6 hold,
we have set ηx ≤ min{ 1

2Lx,maxn
, 1
384Lxndx

} and ηy ≤ 1
2Ly,maxn

and the perturbation stepsize

µ ≤ G
Lx

6

d
3/2
x

. When bounding the probability of
{

1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

and the

probability of P(τ < T), we additionally require

ηx ≤ min{
√

2

T

1

σnLx,max
,

1√
3Lx,maxn

},

ηy ≤ min{
√

2

T

1

σnLy,max
,

1√
3Ly,maxn

},

µ ≤ min{ 1

3LxTndxG
,

8G

Lx,maxd
3/2
x

}.

Therefore, in summary, we have

ηx ≤ min

{
1

2Lx,maxn
,

1

384Lxndx
,

√
2

T

1

σnLx,max

}
,

ηy ≤ min

{
1

2Ly,maxn
,

√
2

T

1

σnLy,max

}
,

µ ≤ min

{
G

Lx

6

d
3/2
x

,
1

3LxTndxG

}
.

Under these hyper-parameter choices, we also need to require

T ≥ ϵ−2

[
2

δ
+

G2

8

]
+ ϵ−2

[
f0 − f∗ + 2ηx + ηy

ηminn

]
,

where ηmin = min{ηx

4 ,
ηy

3 }, to ensure that the probability of{
1
T

∑
t<T ∥∇f (xt, yt)∥2 > ϵ2

∣∣∣τ ≥ T
}

is small (less than δ
2). We observe that by simply

setting ηmin ≤ ϵ2 (we can always make it by choosing T ≥ Θ(ϵ
−4

n2)), the above condition on T

degenerates to T ≥ Θ(ϵ
−4

n). Therefore, it concludes that if T = Θ(ϵ−4/n), with the probability at
least 1− δ,

1

T

∑
t<T

∥∇f (xt)∥2 ≤ ϵ2.

Then the proof is completed.

Here, we discuss how we determine the optimal value ηmin = Θ(ϵ2). In general, we can set ηmin =
Θ(ϵα), which leads to the condition on T : T ≥ Θ(ϵ−2−α). A smaller α is always better. However,

we need to ensure the learning rate condition is satisfied; that is, ηmin ≤ Θ(
√

1
T). It solves T ≤

Θ(ϵ−2α). We let ϵ−2α ≥ ϵ−2−α, which solves α ≥ 2. Therefore, when ηmin = Θ(ϵ2), the
complexity is optimal and attainable.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

SST2 Copa WinoGrande
steps µ steps µ steps µ

Llama-2-7b

ZO-FT 1.1× 104 10−5 1.6× 104 10−4 1.8× 104 10−5

FO-Prompt 6× 103 / 9× 103 / 9× 103 /
Hybrid-Prompt 1.5× 103 10−5 5× 103 10−5 9× 103 10−5

FO-Prefix 2× 104 / 1.5× 104 / 3× 103 /
Hybrid-Prefix 9.5× 103 10−5 7.5× 103 10−5 9× 103 10−5

FO-Lora 2× 104 / 2.5× 103 / 2.5× 103 /
Hybrid-Lora 1.6× 104 10−5 1.15× 104 10−5 4.5× 103 10−5

Vicuna-7b-v1.5

ZO-FT 1.0× 104 10−5 7× 103 10−5 1.75× 104 10−5

FO-Prompt 2× 104 / 1.3× 104 / 2× 104 /
Hybrid-Prompt 2× 103 10−5 1.5× 103 10−5 2× 104 10−6

FO-Prefix 2× 103 / 2× 104 / 2× 104 /
Hybrid-Prefix 2× 104 10−5 1.7× 104 10−5 4× 103 10−5

FO-Lora 2× 103 / 9× 103 / 3.5× 103 /
Hybrid-Lora 2× 104 10−5 2.5× 103 10−5 3× 103 10−5

OPT-1.3b

ZO-FT 2× 104 10−5 8.5× 103 10−4 8× 103 10−5

FO-Prompt 2× 104 / 1.6× 104 / 9.5× 103 /
Hybrid-Prompt 2× 104 10−5 2× 104 10−5 1.4× 104 10−5

FO-Lora 3× 103 / 1.9× 104 / 1.45× 104 /
Hybrid-Lora 4× 103 10−5 1.9× 104 10−5 3× 103 5× 10−4

FO-Prefix 2× 104 / 2× 104 / 9.5× 103 /
Hybrid-Prefix 8.5× 103 10−5 1.15× 104 10−5 2× 104 10−5

Table 5: A detailed breakdown of the optimal hyperparameters including training steps and µ spec-
ified in Eq. (2) and training specifics for each fine-tuning method applied to different model archi-
tectures across SST2, Copa, and WinoGrande tasks. Highlighted cells indicate efficient training
processes, showcasing the reduced steps required by hybrid approaches to achieve optimal perfor-
mance.

E EXPERIMENTAL DETAILS

In this paper, we evaluate our proposed hybrid-tuning method across a diverse spectrum of scenarios
including three distinct tasks, three transformer-based language models, and three PEFT methods.
This extensive exploration not only demonstrates the broad applicability of our approach but also
provides robust evidence for its effectiveness and versatility in enhancing model performance across
various domains and architectures. In this section, we will briefly review these components and
delve into more details of our experiment settings.

E.1 OVERVIEW OF TASKS

In this section, we briefly discuss the task we consider in our paper. All of tasks are ready to use
in the ZO-Bench code base Zhang et al. (2024) and we follow the default setting and the same
train/test/validation split of their original implementations.

Text Binary Classification In this paper, we consider the Stanford Sentiment Treebank v2 (SST2)
dataset Socher et al. (2013) and the Word-In-Context (WIC) dataset Pilehvar & Camacho-Collados
(2018), which presents the simplest binary text classification problem. The SST2 dataset is suffi-
ciently simple and convenience to use to verify our motivating examples (as demonstrated in Fig-
ure 1a and Figure 1b). The WIC dataset provides a more challenging task that requires understanding
word meanings in different contexts. Both datasets serve as excellent benchmarks for evaluating the
performance of our proposed methods in binary text classification tasks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Question Answering The Choice Of Plausible Alternatives (COPA) dataset Roemmele et al.
(2011) is a common benchmark for evaluating the commonsense causal reasoning ability of a lan-
guage model. It contains one thousand English-language questions answer pairs. We choose this
task to evaluate our approaches in improving the question-answering capabilities of models, partic-
ularly in scenarios requiring causal inference and commonsense reasoning.

Common Sense Reasoning Task We consider the WinoGrande dataset Sakaguchi et al. (2021)
and the Winograd Schema Challenge (WSC) dataset Levesque et al. (2012), which present a chal-
lenging common sense reasoning task. The WSC dataset is designed to evaluate machine under-
standing and reasoning capabilities by presenting pronoun disambiguation problems that require
human-like inference. The WinoGrande dataset is designed to be a more difficult and larger-scale
version of the original Winograd Schema Challenge, requiring models to demonstrate human-like
reasoning capabilities. By including WSC and WinoGrande in our experiments, we aim to assess
how well our approaches can enhance a model’s ability to reason about complex scenarios and make
appropriate inferences based on contextual information.

E.2 OVERVIEW OF PEFT MODULES

In this paper, we mainly consider three types of PEFT modules. In our proposed hybrid-tuning ap-
proach, we jointly train one of these PEFT modules with the base LLM to improve the convergence
and overall performance. The following paragraphs provide a detailed overview of the three main
PEFT modules considered in this study: Prompt Tuning, Prefix Tuning, and Low-Rank Adaptation
(LoRA). In our experiments, we follow the default configuration of Zo-Bench code base Zhang et al.
(2024) without making additional modifications. It is worth noting that our hybrid-tuning methods
are also applicable to other recently developed PEFT techniques including (1) other LoRA vari-
ants such as X-LoRA Buehler & Buehler (2024), Llama-Adapter Zhang et al. (2023b), AdaLoRA
Zhang et al. (2023a), LoHa Hyeon-Woo et al. (2021), and LoKr Yeh et al. (2023); (2) other soft
prompts techniques such as P-tuning Liu et al. (2021; 2023); and (3) Infused Adapter by Inhibiting
and Amplifying Inner Activation (IA3) methods Liu et al. (2022).

Prompt Tuning Prompt tuning Lester et al. (2021) is a lightweight fine-tuning method that
prepends trainable continuous prompt tokens to the input. These prompt tokens are optimized during
training while keeping the pre-trained language model parameters frozen. This approach allows for
task-specific adaptation with a small number of parameters. Prompt tuning is particularly effective
for large language models and can be seen as a form of soft prompting that learns optimal input
representations for specific tasks.

Prefix Tuning Prefix tuning Li & Liang (2021) extends the concept of prompt tuning by adding
trainable prefix tokens not only to the input but to each layer of the transformer model. This method
prepends a trainable continuous prefix to the keys and values of the self-attention layers in each
transformer block. By doing so, prefix tuning allows for more flexible and expressive task-specific
adaptations compared to prompt tuning, while still maintaining a relatively small number of trainable
parameters.

LoRA Low-Rank Adaptation (LoRA) Hu et al. (2021) is a parameter-efficient fine-tuning method
that adds low-rank decomposition matrices to the weights of the pre-trained model. Instead of di-
rectly updating the model’s weight matrices, LoRA introduces pairs of rank decomposition matrices
for each weight matrix being tuned. These low-rank matrices are initialized randomly and trained
to adapt the model to specific tasks. LoRA significantly reduces the number of trainable param-
eters while maintaining competitive performance compared to full fine-tuning. It offers several
advantages, including faster training, lower memory requirements, and the ability to switch between
multiple fine-tuned tasks efficiently by changing only the LoRA parameters.

E.3 CONVERGENCE OF HYBRID FINE-TUNING

In this subsection, we present the training curves (including the training loss, validation accuracy,
and the test accuracy) for OPT-1.3B Zhang et al. (2022) model on SST-2 Socher et al. (2013) dataset
in Figure 4. We observe that a significant efficiency gain in terms of training steps. The hybrid

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Training curves for OPT-1.3B model with the prompt tuning on the SST2 dataset with using the optimal
hyper-parameter indicated in Table 5. The hybrid-tuning achieves the significant better performance. Notably,
this phenomenon is also observed in other tasks and for other model architectures.

(b) Training curves for Vicuna-7b-v1.5 model with the prompt tuning on the WinoGrande dataset.

Figure 6: Comparison of training curves for different models and datasets. These results demonstrate
that the similar outperformance of hybrid-tuning is observed across various model architectures and
NLP tasks.

method consistently achieves optimal performance regarding the training loss. This trend is observed
across different tasks, PEFT methods, and model architectures, suggesting that the efficiency of
hybrid tuning scales well (e.g. for Vicuna-7b-v1.5 model on the WinoGrande dataset in Figure 6b).
A detailed breakdown of is provided in Table 5.

E.4 ESTIMATING SMOOTHNESS

In Figure 1a and Figure 1b, the smoothness of the loss landscape of the OPT-125M (and the LoRA
module) is estimated by approximating the norm of Hessian matrix at the stochastic data point using
the zeroth-order gradient estimation to the Hessian-vector products (HVPs):

Hessian(x)⊤v ≈
∑

ξ∈Batch

∇f(x+ hv; ξ)−∇f(x; ξ)
h

,

where∇f(x; ξ) is the stochastic gradient at x for the data point ξ in the given data batch, h is a small
perturbation size, and v is a random unit vector. We estimate the Frobenius norm ∥Hessian(x)∥F ≈√
Ev⊤H2v of the Hessian by sampling multiple random vectors and computing these HVPs.

For Figure 1a, we initialize the parameter of pre-trained binary classification OPT-125M model and
train it over the SST2 dataset for 5000 steps with setting the learning rate η = 5 × 10−5 and the
batch size 8. We sample 100 independent vectors from the unit sphere to estimate the HVP with the
perturbation h = 10−5 and obtain the Hessian norm as the approximation of the local smoothness
constant L.

For Figure 1b, we initialize the parameter of pre-trained binary classification OPT-125M model as
the base model and randomly initialize the LoRA module with the rank 16 and the LoRA Alpha 32

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(the detailed configuration can be found in the source code) and jointly train both components over
the SST2 dataset for 5000 steps with setting the learning rate η = 5× 10−5 and the batch size 8.We
collect all parameters along the SGD trajectories. We perturb the parameter of the base LLM and the
LoRA module, respectively, with 100 independent vectors from the unit sphere and the perturbation
h = 10−5 to estimate the smoothness.

E.5 OMITTED EXPERIMENTAL SETTINGS

Following the methodology of Malladi et al. (2023); Zhang et al. (2024), we assessed our approach
on 6 representative NLP tasks including the sentiment classification task on the SST2 dataset Socher
et al. (2013), the sentence differing task on the WSC dataset Levesque et al. (2012), contextualized
word and sense representation and word sense disambiguation task on the WiC dataset Pilehvar
& Camacho-Collados (2018), the question answering task on the COPA dataset Roemmele et al.
(2011), and the common sense reasoning task on the WinoGrande dataset Sakaguchi et al. (2021).
The models we use in our experiments include OPT-1.3b Zhang et al. (2022), Vicuna-7b Chiang
et al. (2023), and LLaMA-7b Zhang et al. (2023b). We compare the performance of our approach
against standard PEFT methods including first-order prompt tuning Lester et al. (2021), LoRA tun-
ing Hu et al. (2021), and prefix tuning Li & Liang (2021). For each dataset, we randomly sample
1,000 examples for training, 1,000 examples for evaluation, and 100 examples for development.
Performance is evaluated using accuracy or F1 score, as appropriate for each task. All experiments
utilize SGD as the optimizer. In the case of prompt tuning and prefix tuning, the prompts are ini-
tialized according to the predefined settings in Table E.2 of Malladi et al. (2023), while for LoRA
tuning, we initialize with zeros. We perform hyperparameter tuning for all methods and report the
best configurations. For all methods, we set the maximum number of training steps to 20,000, with
early stopping applied when applicable. The detailed hyperparameter setting, overviews of the tasks
and PEFT methods, hyper-parameter setting, and the full results are reported in the supplementary
materials.

For the zeroth-order approximation, we follow the same approach outlined by Malladi et al. (2023).
In the case of prompt tuning and prefix tuning, the prompts are initialized according to the pre-
defined settings in Table E.2 of Malladi et al. (2023), while for LoRA tuning, we initialize with
zeros. We perform hyperparameter tuning for all methods and report the best configurations. For all
methods, we set the maximum number of training steps to 20,000, with early stopping applied when
applicable.

E.6 HYPER-PARAMETER SEARCHING

In our experiments, we conducted systematic grid searches across all combinations of tasks, models,
and PEFT methods. For FO PEFT training configurations, we primarily grid-searched the learning
rate (among 0.001, 0.0001, 0.00001, and 0.000001), while maintaining fixed hyperparameters for
LoRA (rank=8, alpha=16) and Prompt Tuning (10 virtual tokens). In hybrid training configurations,
we adjust the search space to include both the base learning rate (0.001 and 0.0001) and the zero-
order (ZO) learning rate (10−6 and 10−7), creating a two-dimensional grid search with the same
number of hyper-parameter as the FO method. Notably, our hyperparameter configurations are
inspired by theoretical analysis of hybrid fine-tuning (i.e. the base LLM requires a smaller learning
rate), which allows us to strategically constrain the grid-search space. This theoretical guidance not
only reduces computational overhead but also demonstrates how theoretical insights can effectively
streamline the practical implementation of fine-tuning procedures.

All experiments maintained consistent training parameters including 5 epochs, batch size of 16,
and 20,000 maximum steps, with evaluation performed every 500 steps. The search strategy was
implemented using grid search methodology, with accuracy on the validation set as the optimization
metric.

F EXTENDED DISCUSSIONS ON WALL-CLOCK TIME

While standard zero-order methods often accelerate training by bypassing backpropagation (Malladi
et al., 2023; Zhang et al., 2024), our Hybrid Tuning maintains comparable efficiency by restricting
the expensive first-order updates solely to the PEFT module. This design ensures minimal com-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 7: Training performance of OPT-1.3B on SST-2 using prompt tuning versus wall-clock time.
The time cost of each method is: Hybrid Tuning (1.28 sec/step), FO-Prompt (0.80 sec/step), ZO-FT
(0.64 sec/step), and one forward pass (0.15 sec/step).

putational overhead despite requiring both forward-pass estimation and backpropagation. Empirical
tests on Llama-2-7b confirm that our method (2.36 sec/step) remains competitive with full-parameter
FO-SGD (2.27 sec/step) (one forward pass costs 0.34 sec/step). To visualize this efficiency, Figure 7
plots the training curve of OPT-1.3B (with prompt tuning) on the SST-2 dataset against wall-clock
time, as the comparison against Figure 4.

G THEORETICAL CONTRIBUTIONS

On the theoretical side, our work addresses key gaps in the current optimization literature.

• First, we introduce and analyze SGD under a novel hybrid smoothness condition (Defi-
nition 1), which generalizes both classical L-smoothness assumptions and ℓ-generalized
smoothness assumption; this condition better reflects the heterogeneous structure of mod-
ern hybrid models. To our best knowledge, this is the first formal treatment of SGD under
such a condition.

• Second, we extend the analysis to the random reshuffling setting, marking the first conver-
gence result that integrates generalized smoothness with reshuffling-based SGD algorithms.

• Finally, we improve the known sample complexity bounds for SGD under generalized
smoothness by applying sharper concentration techniques. This leads to a provable im-
provement in the dependence on the confidence parameter δ, reducing it from O(ϵ−4/δ) to
O(ϵ−2/δ + ϵ−4).

H BROADER IMPACTS

The proposed hybrid fine-tuning framework has the potential to broadly impact the development and
deployment of LLMs by addressing both computational efficiency and adaptability to new tasks. By
combining ZO optimization for the base LLM with FO optimization for PEFT module, the approach
enables scalable and memory-efficient training without sacrificing performance. This hybrid strat-
egy introduces a novel theoretical framework—the hybrid smoothness condition—that rigorously
accounts for heterogeneous parameter landscapes, offering insights relevant not only to NLP but
also to general large-scale machine learning systems. The framework could facilitate broader acces-
sibility of LLM fine-tuning in resource-constrained environments and inspire future work on hybrid
optimization in other domains.

I LIMITATIONS

While our hybrid fine-tuning approach demonstrates strong empirical performance and theoretical
convergence guarantees, it has several limitations. First, the effectiveness of the method relies on

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

tuning separate learning rates for the base LLM and PEFT modules, which may require additional
hyperparameter search. Second, the ZO optimization used for updating the base model, though
more memory-efficient, can still be computationally expensive due to repeated function evaluations,
especially for large-scale models. Finally, the current formulation is limited to joint training of
LLMs with PEFT modules and may not generalize directly to other forms of model composition,
such as mixture-of-agent or other multi-agent systems. Addressing these challenges remains an
avenue for future research.

J LLM USAGE

We primarily employed a large language model (LLM) as an auxiliary tool to support the prepara-
tion of this manuscript. The LLM was used for tasks such as language polishing, improving clarity,
and suggesting alternative phrasings. It did not generate new research ideas, perform data analy-
sis, or contribute substantively to the scientific content of the work. All conceptual development,
methodology, experimental design, and interpretation of results were carried out independently by
the authors. The authors take full responsibility for the content of this paper, including all text
revised with the aid of the LLM. The LLM is not considered an author or contributor.

28

	Introduction
	Hybrid Fine-Tuning and Hybrid Smoothness Condition
	Our Proposed Method: The Hybrid Fine-Tuning
	Challenges in Hybrid Fine-Tuning: The Hybrid Smoothness Condition
	Theoretical Analysis

	Experiments
	Comparison with FO and ZO Full Fine-Tuning
	Performance on Large Language Models Fine-Tuning
	Visualization of the Improved Convergence Rate
	Memory Usage Analysis
	Extended comparison of gradient Lipschitz constant
	Extended comparison with the Adam+LoRA Baseline

	Conclusion
	Related Work
	Notations
	Supporting Lemmas
	Proof of thm:main
	Experimental Details
	Overview of Tasks
	Overview of PEFT Modules
	Convergence of Hybrid Fine-Tuning
	Estimating Smoothness
	Omitted Experimental Settings
	Hyper-Parameter Searching

	Extended Discussions on Wall-Clock Time
	Theoretical Contributions
	Broader impacts
	Limitations
	LLM Usage

