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ABSTRACT

Generalizing from observed to new related environments (out-of-distribution) is
central to the reliability of classifiers. However, most classifiers fail to predict
label Y from input X when the change in environment is due a (stochastic) input
transformation T te ˝X 1 not observed in training, as in training we observe T tr ˝X 1,
where X 1 is a hidden variable. This work argues that when the transformations
in train T tr and test T te are (arbitrary) symmetry transformations induced by a
collection of known m equivalence relations, the task of finding a robust OOD
classifier can be defined as finding the simplest causal model that defines a causal
connection between the target labels and the symmetry transformations that are
associated with label changes. We then propose a new learning paradigm, asymme-
try learning, that identifies which symmetries the classifier must break in order to
correctly predict Y in both train and test. Asymmetry learning performs a causal
model search that, under certain identifiability conditions, finds classifiers that
perform equally well in-distribution and out-of-distribution. Finally, we show how
to learn counterfactually-invariant representations with asymmetry learning in two
simulated physics tasks and six image classification tasks.

1 INTRODUCTION

A significant challenge in classification tasks happens when the test distribution differs from the
training distribution (i.e., the task requires out-of-distribution (OOD) generalization), since not
accounting for the distribution shift can lead to poor generalization accuracy (Geirhos et al., 2020;
Hu et al., 2020; Koh et al., 2020; D’Amour et al., 2020). If the learner sees examples from the
test distribution, finding a classifier invariant to the distribution shift can still be a data-driven
task (e.g., classical domain adaptation Ben-David et al. (2007); Muandet et al. (2013); Zhao et al.
(2019)). This includes cases such as invariant risk minimization (Arjovsky et al., 2019) and its
generalizations (Bellot & van der Schaar, 2020), where the training data and the test data distributions
overlap in a way that can be exploited by data-driven algorithms (Creager et al., 2021; Krueger et al.,
2021; Rosenfeld et al., 2020).

However, if the learner sees no examples from the test distribution, the task is not purely data-driven
and requires assumptions about the data generation process. More formally, our work considers
general OOD tasks with training distribution P pY tr, X trq, where X tr :“ T tr ˝ X:, with X: as a
hidden variable with distribution P pX:q and T tr P T is a random input transformation in training
T tr : X Ñ X , where t ˝ x is the application of transformation t P T on x P X . The difference
between train and test is a change in input transformation with Y te :“ Y tr and X te :“ T te ˝ X:,
where P pT trq ‰ P pT teq. We are interested in learning an invariant classifier that generalizes well in
held out examples from the training and test distributions.

The definition of transformation matters in this task. We first seek to generalize the existing literature
on transformation invariances, e.g. (Shawe-Taylor, 1993; Kondor & Trivedi, 2018; Finzi et al., 2021;
Maron et al., 2018; Murphy et al., 2019b; Mouli & Ribeiro, 2021; Bronstein et al., 2017). Our
transformations are tied to equivalence relations rather than transformation groups, which frees them
from the need to have inverses (in order to form a transformation group). Our transformations may
not have inverses.
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We also explain why the task of learning an invariant OOD classifier is not, in general, solvable via
traditional data augmentation. Before we continue describing our OOD learning task, it is important
to clarify the connection between Pearl’s causal hierarchy and invariant representation learning.

Pearl’s causal hierarchy and invariant representation learning. Pearl’s causal hierarchy (Pearl
& Mackenzie, 2018; Bareinboim et al., 2020)) has three layers: Observational (Layer 1), interventional
(Layer 2), and counterfactual (Layer 3). Upper layers can perform lower layer tasks, but not vice-versa
(see Bareinboim et al. (2020)). Tasks should be described using the lowest layer that can solve them.

Layer 1: Any task that can be performed without constraints on the causal model, i.e., by data alone,
is observational (Layer 1). Traditional domain adaptation is a Layer 1 task. Note that a classifier that
performs well OOD is itself a Layer 1 classifier, since it tries to predict P pY te|X teq.

Layer 2: Without observations from P pX teq and/or P pY te|X teq, learning an OOD classifier requires
some assumptions about the data generation process (Layers 2 or 3 assumptions). Data augmentation
is traditionally an interventional task (Layer 2), with new interesting methods increasingly using
causal language (Ilse et al., 2021; Teney et al., 2020). For instance, in a task predicting an image’s
foreground, knowing how to act on an image in trainingX tr to change the background seen in training
to the backgrounds seen in test X te “ T ˝X tr with a transformation T , implies we know how to
predict P pY |X, dopT qq.

Layer 3: Counterfactuals are the most challenging task. We start our description with an example.
Consider a random continuous transformation T tr

2 (in training) which changes to random transfor-
mation T te

2 (in test). Let X: describe a hidden variable such that X tr :“ T1 ˝ T
tr
2 ˝ T3 ˝ X

: and
X te :“ T1 ˝ T

te
2 ˝ T3 ˝X

:, where T1 and T3 are independent continuous random transformations and
P pT tr

2 q ‰ P pT te
2 q. Assume the target variable Y depends only onX:, T1, and T3. To counterfactually

ask what would have happened to the observed input x if we had forced dopT tr
2 “ t̃2q, we are

inquiring about XpT tr
2 “ t̃2q|X

tr “ x. Note that dopT tr
2 “ t̃2q does not change Y . Also note that the

knowledge of X tr “ x is an indirect statement about T tr
2 since P pT tr

2 |X
tr “ xq ‰ P pT tr

2 q. That is,
for x, x1 P X ,

P pXpT tr
2 “ t̃2q “ x1|X tr “ xq “

ż

t

P pXpT tr
2 “ t̃2q “ x1|T tr

2 “ t,X tr “ xqdP pT tr
2 “ t|X tr “ xq.

(1)
Equation (1) and the difference between the causal hierarchy layers will be relevant for our results.

Contributions. Our contributions can be described as follows:

1. We introduce a generalization of transformation groups via symmetry transformations tied to equiv-
alence classes that removes the requirement of invertible transformations common in definitions
using transformation groups.

2. We introduce the concept of counterfactual invariant representations for symmetry transformations
and show how it can be described as a counterfactual task for causal structure discovery.

3. Finally, we introduce asymmetry learning, which describes a representation regularization that,
under a set of assumptions, learns the correct counterfactual invariant OOD classifier.

2 SYMMETRIES AND TRANSFORMATIONS

Geometrically, an object is called symmetric if there is a transformation on the object that does not
change its shape (in some definition of shape). For example, a square is symmetric with respect to
rotations. The notion of symmetry however is not restricted to geometric notions. In general, we
can define a mathematical object as symmetric if there is a transformation on the object that returns
another object equivalent to the first (Rosen, 2008, Chapter 10). It is clear from this definition of
symmetry that we first need to define what we mean by equivalent objects. For instance, we say two
geometrical objects are equivalent if they have the same shape, but we need a more general definition.

We define an input symmetry in a space X with at least two elements as an equivalence relation „.
An equivalence relation in X is a binary relation „ such that for all a, b, c P X , we have (i) a „ a,
(ii) a „ b ðñ b „ a, and (iii) (a „ b and b „ cq ùñ a „ c. Equivalence relations allow us to
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define equivalent objects in X : a „ b means a is equivalent to b. The set of all objects equivalent to
some a P X is called the equivalence class of a, defined as ras :“ tx P X : x „ au. Note that
one can define m ě 2 equivalence relations on the same input space. The equivalence class of x
with respect to equivalence relation k is denoted rxspkq, k “ 1, . . . ,m. Two inputs a, b P X might
be equivalent under one equivalence relation „1, but not equivalent under a different equivalence
relation „2, that is, we can have both b P rasp1q and b R rasp2q. Still, even in this last case it is
possible that a is equivalent to some other input c ‰ b in both equivalence relations, i.e., it is possible
Dc P X , c ‰ a, s.t. c P rasp1q X rasp2q. We denote the collection of equivalence classes of X under
the equivalence relation „k as the quotient space X { „k:“ trxspkq | x P X u.
Transformation group example. Consider the bijective transformations t : X Ñ X of a transformation
group G, t P G. We now define an equivalence relation over G as t ˝ x „G x for all t P G. The
equivalence class rxspGq is x’s orbit defined as rxspGq :“ tx1 : Dt P G,x1 “ t ˝ xu. For example, if
G is the group that permutes the elements of vectors in R3, then p1, 2, 3q „G p2, 1, 3q.

Property functions example. Another way of deriving an equivalence relation is via functions of the
input space z : X Ñ Rp, where the output zpxq is a particular property of the vector x P X . For
example, given an observation of length T from a dynamical system, x P RdˆT , a possible property
function could be zenergyp¨q that computes the energy of the dynamical system. Assuming there are
m known properties z1, . . . , zm with zi : X Ñ Rpi , we can construct corresponding equivalence
relations „1, . . . ,„m such that for any x,x1 P X , x „i x1 if zjpxq “ zjpx

1q,@j ‰ i. In words, two
inputs are equivalent under „i if they have the same properties for all zj , j ‰ i.

Symmetry transformations. As seen above, symmetries can be defined without defining how the
input is transformed to create the equivalence classes, although defining a set of transformations is
useful when describing the equivalence class. Given an equivalence relation „, we can define a set of
transformations T that respect the equivalence relation such that @t P T ,@x P X , t ˝x „ x. We call
T the set of symmetry transformations of „. Similar to transformations groups, T always has the
identity transformation tid ˝ x “ x, but in contrast, all the transformations in T need not be bijective.

Join of equivalence relations. Similar to how two groups can be joined to form a larger group, two
equivalence relations can be joined to form a coarser equivalence relation. Given two equivalence
relations, „1 and „2, their join „1 _ „2 is defined as: for all x,x1, xp„1 _ „2qx

1 if and only if
there exists a chain of equivalence relations x „k1 x1, . . . , xh´1 „kh x1 with all kj P t1, 2u. It
is easy to check that „1 _ „2 is an equivalence relation.

We are now ready to define a general causal model that defines the training and test distributions in
our setting.

3 SCM FOR SYMMETRY-BASED OOD TASKS

Let X ,Y denote the input and output spaces respectively. We define our general structural causal
model (SCM) as follows. We define X: P X as the unobserved canonically ordered input

X: :“ gpUuq , (2)

with Uu a background random variable and g : Uu Ñ X is a measurable map. This definition is
general enough to define any task.

There are m possible symmetries given in the form of equivalence relations „1, . . . ,„m over the
input space X . Let T pkq denote a set of symmetric transformations t on X corresponding to the
equivalence relation „k, 1 ď k ď m. In other words, for all x P X and t P T pkq, we have
pt ˝ xq „k x. Similarly, let T be the set of all symmetric transformations with respect to the
join equivalence relation „1,...,m”„1 _ . . ._ „m. We can think of transformation t P T as a

path x
tpk1q

ÝÝÝÑ x1 ¨ ¨ ¨xh´1
tpkhq

ÝÝÝÑ xh that starts at x, applies a transformation tpk1q P T pk1q to get
x1 P rxs

pk1q, and so on until it stops and outputs a value xh, h ě 1.

Let U1, . . . , Um be independent background variables associated with the m symmetries, where
Ui P Ui, i “ 1, . . . ,m. These background variables together select a function tpU1, . . . , Umq
from the set T as follows. Each Uk independently selects a countable sequence of transformations
t
pkq
1,Uk

, t
pkq
2,Uk

, . . . P T pkq. Then, tpU1, . . . , Umq is defined by interleaving these transformations
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Figure 1: Example that illustrates a few important concepts. (a) Training data shows how Equations (2) to (4)
define the training distribution P pX tr, Y tr

q. Task: Given an image of a rod (shown in brown), we wish to
predict the orientation of the rod, i.e., whether the rod is upright or flat (Y :“ hpUrotq). In this example, we
have D “ trotu (image rotations 0˝ and 90˝) and sD “ ttransu (horizontal translations of ´5, 0,`5 units) as
any horizontal translation does not affect the orientation of the rod. (b) The test data (only a single example
shown) suffers an OOD shift through a different distribution over P pUtransq, where non-zero translations can
happen before the second rotation. (c) Here we illustrate why an invariance that is good for traditional data
augmentation, such as counting the brown pixels in the green shaded area, would fail in test if, say, a `5 units
horizontal translation happens before a rotation. (d) Here we illustrate why counterfactual language is needed
to define how the input data would change in the presence of changes to Utrans. Using counterfactuals, it is
finally clear that the invariant representation must be able to also consider the number of brown pixels inside the
horizontal purple and green bands (among other horizontal bands).

tpU1, . . . , Umq :“ pt
p1q
1,U1

˝ ¨ ¨ ¨ ˝ t
pmq
1,Um

q˝ ¨ ¨ ¨ ˝ pt
p1q
r,U1

˝ ¨ ¨ ¨ ˝ t
pmq
r,Um

q˝ ¨ ¨ ¨ to construct the path described
above. Since T p1q, T p2q, . . . contain the identity transformation, tpU1, . . . , Umq can be described by
a finite sequences of transformations. The observed X is the result of a transformation of X:

X :“ tpU1, . . . , Umq ˝X
: . (3)

Finally, the label Y is defined as a function of the untransformed canonical input X: as

Y :“ hpX:, pUiqiPD, UY q , (4)

where D Ď t1, . . . ,mu is unknown. This means that Y is not invariant with respect to equivalence
relations „i, i P D, i.e., examples x and x1 P rxspiq can have different labels. A distribution over the
variables Uu, tUiumi“1, UY entails a joint distribution P pX,Y q over the observed variables.

Illustrative SCM example. Figure 1 illustrates our data generation process. The training data
Figure 1(a) has X: defined as a centered upright brown rod (i.e., X: is deterministic). The label Y
is defined by the rotation transformations T rot “ tT rot

0˝ , T
rot
90˝u. The image can also be horizontally

translated by t´5, 0, 5u units via transformations T trans “ tT trans
´5 , T trans

0 , T trans
`5 u (only 0 and `5

translations are depicted), but Y does not depend on these horizontal translations. The transforma-
tions applied to X: are randomly chosen via Urot and Utrans, which are two bidimensional vectors
indexing a sequence four transformations that interleave rotations and translations (see Figure 1). A
representation that counts the number of brown pixels in the green shaded area of X tr is enough to
achieve 100% accuracy in the training distribution. We formally define OOD distribution shifts next
using Figure 1 for illustration.

OOD distribution shift. Let sD “ t1, . . . ,muzD be the complement of the set of symme-
try relations D that Y depends on. We define the OOD distribution shift between train and
test as a shift in the distribution of P ppUiqiPsDq, influencing the distribution of input transforma-
tions in Equation (3), which in turn can shift the distributions P pX trq, P pY tr|X trq, P pY tr, X trq to
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P pX teq, P pY te|X teq, P pY te, X teq respectively. Since X does not causally affect Y in our structural
causal model (Equation (4)), changes in input transformations are able to shift P pY |Xq. For example,
in Figure 1(b) the test data (only a single example shown) could suffer an OOD shift due to a different
distribution over P pUtransq that introduces non-zero translations before the second rotation. Note
that the representation that counted the number of brown pixels in the green shaded area, which was
perfect for the training inputs X tr, will achieve poor accuracy in the test inputs X te.

Learning OOD classifiers. Equation (4) shows that the label Y is invariant to changes in the
distribution of pUiqiPsD in the test distribution, but we do not know sD. Hence, if our representation of
X is invariant to changes in the distribution of pUiqiPsD, we will be able to perform the OOD task.

4 ASYMMETRY LEARNING & FINDING THE RIGHT REPRESENTATION
SYMMETRY FOR THE OOD TASK

4.1 FINDING OOD-INVARIANT REPRESENTATIONS AS CAUSAL STRUCTURE DISCOVERY

We first define the process of finding an OOD invariant representations for the symmetries t„iuiPsD
our classifier should be invariant to in the test data. Since Y does not depend on tUiuiPsD, we will
make a representation of X that is invariant to transformations driven by tUiuiPsD.

Definition 1 introduces the concept of counterfactual invariance for symmetry transformations. We
note that this definition is less restrictive than the parallel work of Veitch et al. (2021, Definition 1.1):
whereas Veitch et al. (2021, Definition 1.1) require invariance over the entire sample space, we only
require invariance over the test support of transformation variable Ui. The definitions are equivalent
if the test support is the entire sample space of Ui.
Definition 1 (Counterfactual-invariant representations for symmetric transformations). Assume the
SCM defined in Equations (2) to (4). A representation Γi : X Ñ Rd, d ě 1, is counterfactual-
invariant to the transformations T1,Ui , T2,Ui , . . . of equivalence relation „i, 1 ď i ď m, if

Γipxq “ ΓipXpUi “ ũiq|X “ xq

almost everywhere, @ũi P supppU te
i q,@x P supppX trq, where supppAq is the support of random

variable A. A representation ΓS : X Ñ Rd, d ě 1, is counterfactual-invariant to a subset
S Ď t1, . . . ,mu if it is jointly counterfactual-invariant to the transformation indices tUjujPS of
equivalence relations t„jujPS.

We refer the reader to Equation (1) for the relationship between the counterfactual variables XpUi “
ũq|Ui “ u and XpUi “ ũq|X “ x. Figure 1(d) illustrates why counterfactual language is important
for our task: It states that given an input X tr “ x we need to know how it would have been different
if we had chosen a different distribution P pUtransq resulting in a different sequence of transformations
T1,Utrans , T2,Utrans . From Figure 1(c) it is clear that we cannot simply data-augment our training data
with translations, since we would think that counting brown pixels in the green shaded area is an
invariant representation for Utrans.

Up until now we have not imposed restrictions on the types of transformations T piq, i “ 1, . . . ,m,
we consider in this work. Our next results require imposing conditions on these transformations.
Definition 2 (Equivalence class lumpability). The quotient space X { „i is the set of equivalence
classes of X with respect to equivalence relation „i, i “ 1, . . . ,m. Let rxspiq P X { „i be the
equivalence class of x P X with respect to equivalence relation „i. Then, X { „i is said to be
lumpable with respect to a transformation set T if @rxspiq P X { „i and @t P T ,

Drx1spiq P pX { „iq s.t. x˚ P rxspiq ùñ t ˝ x˚ P rx1spiq.

In words, if the lumpability condition in Definition 2 holds for an equivalence relation„i with respect
to a set of transformations T , then every transformation in T maps all points within an equivalence
class rxspiq P X { „ to points in a another equivalence class rx1spiq P pX { „q. To illustrate
the lumpability condition, consider two transformation groups G1 and G2 whose transformations
commute, i.e., @pt1, t2q P G1 ˆG2, t1 ˝ t2 “ t2 ˝ t1. Then the equivalence classes imposed by Gi,
i.e., the orbits rxspiq “ tti ˝ x : @ti P Giu, are lumpable with respect to the transformations Gj , for
i, j P t1, 2u and j ‰ i.
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(i) Causal DAG

... ...

(ii) Causal DAG in (i) with
counterfactual-invariant
representation of X

... ...

(iii) Asymmetry learning: Causal model search using 
     information in asymmetry (illustration with m=3). 
     Red arrows indicate the asymmetry being
     considered in the causal model.

(a) (b)

Label Y=0
Label Y=1

(c)

Figure 2: (a) (i) True causal DAG; (ii) causal DAG of counterfactual invariant representation; (iii) Causal model
search. (b) Partial order over invariant representations (arrows indicate higher invariance). (c) An example figure
where training data has a single example per equivalence class in X { „1 (green rectangles). Then, we have
COMPpFt1u,Dq “ COMPpFH,Dq even though Ft1u is more invariant (simpler) than FH.

Figure 2a(i) shows our structural causal graph where an edge Ui Ñ Y exists only if i P D. Then,
we use the definition of lumpability to prove that, under certain conditions, a most-expressive
representation Γi invariant with respect to „i allows us to identify if there is no edge Ui Ñ Y in the
causal DAG.
Theorem 1 (Counterfactual invariance & causal DAG identification). Let X { „i be lumpable given
every T pjq, j ‰ i as in Definition 2. Then, the structural causal DAG implied by Equations (2) to (4)
(depicted in Figure 2a(i)) does not contain the edge Ui Ñ Y iff

|P pY |ΓipXq, UY q ´ P pY |X,UY q|TV “ 0, (5)

@P pX:q,@P pU1q, . . . ,@P pUmq, where Γi is a most-expressive representation that is invariant with
respect to „i.

The proof is in the Appendix. With the lumpability assumption of X { „i, Γi in Theorem 1 is a
counterfactual-invariant representation. We now use Figure 2a(ii) to describe the result in Theorem 1.
We first note that the representation Γ

sD depicted in the figure is counterfactual invariant to sD, and
hence also counterfactual invariant to k P sD. Next we see that since the representation Γ

sD is
counterfactual invariant to Uk, there is no arrow Uk Ñ Γ

sDpXq in Figure 2a(ii). If there is no arrow
Uk Ñ Y , the missing arrows from Uk to Γ

sDpXq will have no influence in the ability of Γ
sDpXq

to predict Y , assuming Γ
sD is most-expressive. If there is an arrow Uk Ñ Y , cutting the arrow

Uk Ñ Γ
sDpXq creates a loss in predictive performance from Γ

sDpXq to Y for some distribution of the
background and observable variables. If Γ

sDpXq never loses any predictive power over Y for any
distribution of the background and observable variables, then there is no arrow Uk Ñ Y .
Assumption 1 (Asymmetry learning training data). In asymmetry learning we assume that every
X { „i, i P t1, . . . ,mu is lumpable given T pjq, j ‰ i, and that in a large training dataset sampled
from pY tr, X trq, an arrow Uj Ñ Y in the causal DAG of Figure 2a(i), j P t1, . . . ,mu, contains
observations of tUjujPD that violate Equation (5). Hence, if Equation (5) holds for some i P
t1, . . . ,mu in this dataset, we can conclude that there is no arrow Ui Ñ Y in the true causal DAG.
See Appendix A for a justification of this assumption.

Next we use Assumption 1 and the previous results to search for the right OOD invariance.

4.2 CAUSAL STRUCTURE DISCOVERY OF RELEVANT SYMMETRIES

We need a general procedure for obtaining the unknown set D, which is equivalent to finding all
transformations indices tUiuiPD Ď tU1, . . . , Umu that act as confounders between Y and X in the
causal DAG in Figure 2a(i). Finding whether an edge exists or not in the causal DAG is known as the
causal structure discovery problem (e.g., Heinze-Deml et al. (2017)). The principle of our search
is learning the causal structure with the fewest possible edges into Y (i.e., where Y is invariant to
most Ui, i “ 1, . . . ,m) while also maximizing the likelihood of the observed data. Accordingly,
we take the score-based causal discovery approach (Chickering (2002); Huang et al. (2018)) that
assigns scores to each allowed DAG based on the training data and the complexity of the DAG to
find a minimal causal structure that fits the training data. This idea is visualized in Figure 2a(iii)
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where causal graphs with more edges between the transformation indices into Y are defined to have
higher complexity and are higher up in the partial ordering. Our search space is simpler than typical
structure discovery tasks: The DAGs in our search space have the same structure for X and only
differ in edges of the form Ui Ñ Y, i P t1, . . . ,mu. Next, we describe a scoring criterion that uses
Theorem 1 and counterfactual-invariant representations to assign scores to the corresponding causal
structures.

Proposed DAG scoring criterion. For each DAG in the search space, we wish to assign a score
based on the training data D “ tpxpiq,ypiqun

tr

i“1 under Assumption 1 for a classification task with
C classes. Theorem 1 shows that there is a correspondence between a causal structure without the
edge Ui Ñ Y and a predictive probability gap between the original input and a most-expressive
representation Γi that is counterfactually-invariant to Ui. Thus, under Assumption 1, we can represent
the causal search from Figure 2a(iii) in terms of a search over counterfactually-invariant representation
function classes as shown in Figures 2a(iii) and 2b. Formally, we are given a collection of function
classes F :“ tFS : S Ď t1, . . . ,muu,where FS is a family of functions ΓS that are counterfactually-
invariant to all Ui, i P S (Definition 1). We wish to score each of the function classes FS P F to
indirectly learn the correct causal structure.

The minimum description length (MDL) principle (Schwarz, 1978) is commonly used for causal
structure discovery (Budhathoki & Vreeken, 2016; 2017) and comes with the key insight that learning
from data can be viewed as compressing it. Given the collection F and the training dataset D,
MDL finds the function class FS P F that compresses D the most. While there are several ways of
encoding a dataset given the function class, normalized maximum likelihood (NML) code is known
to be optimal (Shtarkov, 1987). NML code is computed as follows

LnmlpFS,Dq “ ´LpFS|Dq ` COMPpFS,Dq , (6)

where LpFS|Dq “ supΓSPFS

řntr

i“1 logP pypiq|ΓSpx
piqqq is the maximum log-likelihood of FS given

the data and

COMPpFS,Dq “ log

»

—

—

—

–

ÿ

yp1q,...,ypn
trq:

ypiqPt0,...,Cu

sup
ΓSPFS

ntr
ź

i“1

P pypiq|ΓSpx
piqqq

fi

ffi

ffi

ffi

fl

, (7)

measures the complexity of the function class FS by computing how well it can represent different
label distributions for the given inputs txpiqun

tr

i“1 in training. We can estimate the combinatorial sum
in Equation (7) by uniformly sampling random labels for all the training examples.

Since COMPpFS,Dq is computed using the training data, it may underestimate the complexity of
function classes if, for instance, all the training examples are generated with Ui “ ui. Then, Ftiu and
FH are given the same score even though Ftiu is clearly more invariant and thus, a simpler function
class. This can happen in practice if, say, all images are upright in training with no rotations applied;
both rotation-invariant and rotation-sensitive function classes get the same complexity score.

In order to break the above ties of our COMP score, asymmetry learning adds an additional term to the
NML score that chooses models that have higher invariance based on the partial order (see Figure 2b).
We extend the penalty proposed by Mouli & Ribeiro (2021) and useRpFSq :“ |tF 1 : F 1 P F ,F 1 ą

FSu|, the number of function classes that are higher in the partial order than FS, as the tie-breaking
term. For example, in figure RpFt1uq “ |tFt1,2u,Ft1,3u,Ft1,2,3uu| “ 3. We define the final score of
each function class FS P F as

SpFS,Dq “ LnmlpFS,Dq `RpFSq . (8)

The score in Equation (8) can be minimized by a score-based causal discovery algorithm to obtain
the final DAG. We use Greedy Equivalence Search (Chickering, 2002) to showcase a concrete
instantiation of asymmetry learning. Other score-based structure discovery algorithms could also be
used.
Greedy Equivalence Search. Greedy Equivalence Search (GES) is a greedy search algorithm that
optimizes a given scoring function over DAGs. In our setting, the search begins with a DAG with no
edges of the form Ui Ñ Y, i P t1, . . . ,mu. In the first phase, GES adds these edges one at a time
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Table 1: Results for different function classes on the pendulum task with D “ t1u and D “ t1, 2u. RpFq,
{COMPpF ,Dq and SpF ,Dq are discussed as in Section 4.2. Bold values indicate the function class chosen by
GES method with the proposed scoring criterion. Test accuracy is computed on the extrapolated dataset after
shifting the distribution of P ptUiuiPsDq.

D “ t1u D “ t1, 2u

Model class Architecture RpFq {COMPpF ,Dq SpF ,Dq Train Acc. Test Acc. {COMPpF ,Dq SpF ,Dq Train Acc. Test Acc.

F2 X Ñ z1 Ñ Y 0 0.282 23.89 98.5 (0.9) 98.3 ( 1.4) 0.501 532.84 72.7 (0.4) 69.4 (0.5)
F1 X Ñ z2 Ñ Y 0 0.382 633.32 63.8 (7.0) 51.2 ( 1.0) 0.292 284.75 85.2 (0.5) 84.6 (0.2)
FH X Ñ Y 2 1.256 26.80 98.9 (0.8) 77.6 (11.5) 0.995 4.54 99.7 (0.2) 99.5 (0.2)

that maximally improve the score in Equation (8) until there is no improvement. In the second phase,
GES begins from the DAG obtained at the end of first phase and deletes edges one at a time until
such deletions do not improve the score. The DAG obtained at the end of the second phase is the final
output of the algorithm. Under the causal Markov and faithfulness assumptions, Chickering (2002)
showed that GES is optimal in the large sample limit if the scoring function is locally consistent.

5 RESULTS

Pendulum task description. We evaluate the proposed method in a simulated classification task.
Our input x is a motion vector over time pθt, dθtdt q

T
t“1 of a simple pendulum of an unknown length l

after it is dropped from some initial angle θ0 with dθ0
dt “ 0. After an initial τ seconds of uninterrupted

motion, we simulate an elastic collision by placing another object of same mass at the bottom. The
classification task is to predict whether the kinetic energy imparted by the pendulum is enough to
move the second object beyond a certain threshold.

Physical properties and equivalence relations. We consider the following two properties of the
dynamical system described above: z1 : X Ñ R which computes the initial potential energy of
the system and z2 : X Ñ R which returns the time of collision. The equivalence relations „1 and
„2 are defined using these properties as defined in Section 2. For instance, two pendulum motion
curves x,x1 are equivalent with respect to „1, i.e., x „1 x1, if they have the same time of collision,
z2pxq “ z2px

1q. Then T p1q consists of transformations that change the initial potential energy of
the system (for example, by changing the length of the pendulum or the initial dropping angle θ0)
while keeping the time of collision same. Similarly, x „2 x1 if their respective potential energies
are the same and transformations in T p2q change the time of collision while keeping the same initial
potential energies. Note that the space of equivalence classes X { „1 is lumpable with respect to
T p2q and vice versa (Definition 2). Thus, by Theorem 1, we can use predictive performance of
counterfactual-invariant representations for scoring the causal DAGs.

Unknown D and OOD classification. We consider two scenarios for the label Y given X . First, if
the motion of the pendulum is not damped by friction, then Y depends only on z1pxq, i.e, D “ t1u.
Second, if the motion of the pendulum is damped, then Y depends on both z1pxq and z2pxq, i.e.,
D “ t1, 2u. The extrapolation test data is generated by shifting the distribution of the background
variables tUiuiPsD. The task of a structure discovery algorithm is to correctly identify D.

Results. We use the greedy equivalence search (GES, Section 4.2) algorithm to search over the
different causal graphs with the proposed scoring criterion defined in Equation (8). We build classes
of counterfactual-invariant representations FS corresponding to each possible value of S Ĺ t1, 2u,
where every ΓS P FS is invariant to tUiuiPS. For example, Ft1u is a family of feedforward neural
networks that only take z2pxq as input, i.e., invariant to z1pxq, whereas FH is a sequence model
(e.g., LSTM) with no invariance. Table 1 reports the estimated complexity {COMPpF ,Dq and the
final scores SpF ,Dq for the different function classes for the two tasks. The bold values indicate the
function class chosen by the GES algorithm. When D “ t1u, the greedy search stops after adding
the edge U1 Ñ Y as adding the second edge U2 Ñ Y only worsens (increases) the score. When
D “ t1, 2u, the greedy search is able to improve the score by adding both edges, first U1 Ñ Y and
then U2 Ñ Y . In both the cases, the extrapolation test accuracy achieved by the chosen model class
is the highest.

Image classification task. Appendices A.4 and A.5 also offers an application to image classification
using image transformation sets (groups and nongroups).
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6 RELATED WORK

Counterfactual inference and invariances. Recent efforts have brought causal inference to ma-
chine learning (extensively reviewed in Schölkopf et al. (2021); Schölkopf (2022)). Invariant Causal
Prediction (Peters et al., 2015; Heinze-Deml et al., 2018) and Invariant Risk Minimization meth-
ods (Arjovsky et al., 2019; Bellot & van der Schaar, 2020) learn representations that are invariant
across multiple environments but have been shown to be insufficient for OOD generalization in
classification tasks without additional assumptions Ahuja et al. (2021). Wang & Jordan (2021) use
counterfactual language to formally define and learn non-spurious representations from a single
environment that can extrapolate to new environments. Veitch et al. (2021) define counterfactual
invariant predictors fpXq when X has a single parent Z and provide conditions such predictors must
satisfy over the observed distribution (given an SCM). Kaushik et al. (2020; 2021) propose counter-
factual data augmentation for text datasets but they either require a fully-specified toy SCM or rely
on humans-in-the-loop to generate the counterfactual data. Other counterfactual methods (Johansson
et al., 2016; Shalit et al., 2017; Qidong et al., 2020) learn representations to predict counterfactual
change in some observed variables whereas in our setting, the transformation variables Ui that gener-
ate the observed X are unobserved. In-depth comparison of our work with the existing counterfactual
methods is presented in Appendix A.3.

Domain adaptation and domain generalization. Domain adaptation and domain generalization
(e.g. (Long et al., 2017; Muandet et al., 2013; Quionero-Candela et al., 2009; Rojas-Carulla et al.,
2018; Shimodaira, 2000; Zhang et al., 2015) and others) consider observed or known shifts in the
data distribution, for instance, given the test distribution P pX teq, rather than counterfactual questions.

Causal structure discovery. The methods for causal structure discovery can be broadly classified
into two categories. Constraint-based approaches (e.g., Spirtes et al. (2001); Sun et al. (2007)) use
conditional independence tests and reject causal graphs that impose more independence than what
is observed in data. On the other hand, score-based causal discovery approaches (e.g., Chickering
(2002); Huang et al. (2018); Ding et al. (2020); Zhu et al. (2020)) assign scores to each allowed causal
graph based on the data and find the one with best score. While there are several works (Budhathoki &
Vreeken, 2016; 2017; Bornschein et al., 2021) that use minimum description length (MDL) (Schwarz,
1978) as a scoring criterion, we show why it is insufficient for out-of-distribution tasks and use an
additional term for tie-breaking. Goudet et al. (2017) minimize the divergence between a distribution
generated by a learnt causal DAG and the observed data distribution; however the method is limited
to orienting edges over observed variables, whereas our transformation variables Ui are unobserved.
Recently, GFlowNets Bengio et al. (2021a;b) have been used to sample DAGs proportional to a score
function for Bayesian structure learning Deleu et al. (2022), however we are interested in finding the
best DAG with the minimum score.

Group-invariant representations. Majority of the works strictly enforce G-invariances either within
the architecture (e.g., Zaheer et al. (2017); Cohen et al. (2016); Lyle et al. (2020); Murphy et al.
(2019a)) or via data-augmentation (Chen et al., 2020) and do not handle the case when the target
is actually influenced by the transformation of the input. Other works (Benton et al., 2020; Zhou
et al., 2020; van der Wilk et al., 2018; Anselmi et al., 2019) consider learning symmetries from
the training data but do not consider the extrapolation task that we show can be solved only under
certain conditions. Mouli & Ribeiro (2021) consider the special case where the transformations are
from normal subgroups and do not formally describe the causal task. These works rely on invertible
transformations while we define symmetries more generally via equivalence relations. Dubois et al.
(2021) also define invariances via equivalence relations and, under the assumption that all such
invariances hold in the data, the authors design methods for data compression. Our goal is rather
different: We want to discover which equivalence relations (transformations thereof) affect the label.

7 CONCLUSIONS
This work considered an out-of-distribution (OOD) classification task where the shift between train
and test environments is through different symmetry transformations of the input, where symmetry
transformations are defined via equivalence relations over the input space. We described the task of
finding symmetries that affect the label as a causal structure discovery task and show that, under certain
conditions, we can use the predictive performance of invariant representations on the observational
data to predict whether an edge exists in the causal DAG (Theorem 1). We then proposed an MDL-
based scoring for this causal structure discovery. Finally, we test our approach in two simulated
physics tasks and six image classification tasks.
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A APPENDIX

A.1 JUSTIFICATION FOR ASSUMPTION 1.

The above assumption is inspired by the deep relationship between symmetries and intelligence.
Young children, unlike monkeys and baboons, assume that a conditional stimulus F given another
stimulus D extrapolates to a symmetric relation D given F without ever seeing any such examples (Sid-
man et al., 1982). That is, if given D, action F produces a treat, the child assumes that given F, action
D also produces a treat. Young children differ from primates in their ability to use symmetries to
build conceptual relations beyond visual patterns (Sidman & Tailby, 1982; Westphal-Fitch et al.,
2012), allowing extrapolations from intelligent reasoning. However, forcing symmetries against
data evidence is undesirable, since symmetries can provide valuable information when they are
broken. Unsurprising, humans are generally able to quickly find and pay attention to some types of
asymmetries.

A.2 PROOF OF THEOREM 1

Theorem 1 (Counterfactual invariance & causal DAG identification). Let X { „i be lumpable given
every T pjq, j ‰ i as in Definition 2. Then, the structural causal DAG implied by Equations (2) to (4)
(depicted in Figure 2a(i)) does not contain the edge Ui Ñ Y iff

|P pY |ΓipXq, UY q ´ P pY |X,UY q|TV “ 0, (5)

@P pX:q,@P pU1q, . . . ,@P pUmq, where Γi is a most-expressive representation that is invariant with
respect to „i.

Proof. Notation (following Equation (3)): The observed input X is X :“
tpU1, . . . , Ui´1, ui, Ui`1, . . . , Umq ˝ X: where tpU1, . . . , Umq is obtained by interleaving
the transformation sequences from each individual U1, . . . , Um and we have set Ui “ ui.

Necessity: We wish to show that if the SCM does not contain edge Ui Ñ Y , then Equation (5) holds
for all P pX:q, P pU1q, . . . , P pUmq. By this assumption, Y outputs the same label for any value of Ui.
Consider the collection of equivalence classes X { „i. By the lumpability condition of Definition 2, all
transformations tpjq P T pjq, j ‰ i, map all points in one equivalence class of„i to points in a different
one. On the other hand, all transformations tpiq P T piq map points to other points within the same
equivalence class under „i. Now, consider the equivalence class of X after all the transformations
have been applied to X:. The equivalence class of X “ tpU1, . . . , Ui´1, ui, Ui`1, . . . , Umq ˝X

: is
the same as that of X˚ “ tpU1, . . . , Ui´1, u

id
i , Ui`1, . . . , Umq ˝X

: where Ui “ uid
i always selects

identity transformations. This is because changing ui to uid
i only impacts the transformations chosen

from T piq, and these transformations do not change the equivalence class under „i. Thus, we have
shown that we reach the same equivalence class under „i for both X and X˚.

Now let Γi be a most-expressive representation that is invariant with respect to „i. By definition, Γi
outputs the same value within an equivalence class, thus, ΓipXq “ ΓipX

˚q. But since by assumption
Ui Ñ Y does not exist, X and X˚ have the same label always. Thus, there is no loss of information
incurred by Γi in predicting Y with the additional restraint ΓipXq “ ΓipX

˚q. Since Γi is most-
expressive, we have P pY “ y|ΓipXq, UY q “ P pY “ y|X,UY q for all y P Y . This holds for all
values of ui, and hence we get the desired result for any distribution P pUiq.

Sufficiency: We wish to show that if Equation (5) holds for all P pX:q and P pU1q, . . . , P pUmq, then
there is no edge Ui Ñ Y in the causal graph. We will prove by contrapositive: Assume there is an
edge Ui Ñ Y , then we will show there exists distributions P pX:q and P pU1q, . . . , P pUmq such that
Equation (5) does not hold.

Define P pX:q “ δx: for some x: P X where δ denotes a Dirac-delta function. Define P pUi “
uid
i q “ 0.5 and P pUi “ uiq “ 0.5 for uid

i , ui P supppUiq. As usual, uid
i always selects the identity

transformation, and ui selects a single transformation tui P T piq. Similarly, for all j ‰ i, define
P pUjq “ δuid

j
for uid

j P supppUjq that only select identity transformations. Now, there are two

possible observed inputs: x “ tpuid
1 , . . . , u

id
mq ˝ x

: “ x: and x1 “ tpuid
1 , . . . , ui, . . . , u

id
mq ˝ x

: “

tui ˝ x
:. Finally, define Y :“ 1pUi “ uid

i q, thus x and x1 have different labels. But, any invariant

14



Published as a conference paper at ICLR 2022

representation Γi by definition has Γipxq “ Γipx
1q since they belong to the same equivalence class.

Thus, even if Γi is most-expressive, we have |P pY |ΓipXq, UY q ´ P pY |X,UY q|TV “ 0.5.

A.3 ADDITIONAL RELATED WORK

Counterfactual invariances. Wang & Jordan (2021) use counterfactual language to formally
define and learn non-spurious, disentangled representations from a single environment. Our work
is different in the following ways. In the structural causal model (SCM) of their work, the authors
assume that there are no confounders between the observed X and the label Y . However, in our
SCM (Figure 2a(i)), we allow unobserved confounders X: and Ui, i P D. The hidden transformation
variables Ui, i P D are confounders because they affect both the observed input X and the labels Y .
We leverage the fact that the confounders are related to symmetries (and do not affect X arbitrarily)
to resolve the issue with unobserved confounding. Wang & Jordan (2021) also require pinpointability
of the cause of the observed X . In our setting, this is typically not possible since there are multiple
paths of transformations from X: to the same observed X . Thus, all the parents of X may not be
pinpointable, specifically the transformation variables U1, . . . , Um.

Kaushik et al. (2020; 2021) propose counterfactual data augmentation for text datasets where human
annotators are asked to make minimal modifications to the input document so as to change its
label (for example, by changing a few positive words to negative words) while keeping style, etc.
fixed. This type of augmentation essentially asks the labelers to identify all the causal features in
the document and make modifications to those features alone. This can be seen as obtaining new
counterfactual examples by simulating the causal model and requires knowing the true function that
describes how the features affect the labels. We consider the more realistic setting where we do not
have access to such a collection of counterfactual examples. In this work, we consider the traditional
automated data augmentations under a mostly unknown data generation process, as opposed to the
counterfactual data augmentation (Kaushik et al., 2020) that either considers a fully-specified toy
SCM or relies on humans-in-the-loop to generate counterfactual data.

In Figure 1(c) we show that the standard data augmentation is not sufficient for the OOD task.
However, if one had access to the fully-specified causal model, one could generate the counterfactual
data shown in Figure 1(d) and learn an OOD classifier with the counterfactually augmented data
(as done by Kaushik et al. (2020)). But our work does not assume access to these counterfactual
examples. Additionally, we prove that a counterfactual invariant classifier can be constructed from
traditional data augmentation alone if the lumpability condition (Definition 2) is satisfied. This is not
the case in Figure 1(d).

Veitch et al. (2021) define counterfactual invariant predictors fpXq when X has a single parent Z and
provide conditions such predictors must satisfy over the observed distribution (given an SCM). Note
also that Veitch et al. (2021) assume that part of the observed input X (XKZ ) is not causally influenced
by the confounder Z. In our scenarios this is not generally true. For example, under a color change,
the entire observed image X changes. Still, we show that the notion of a counterfactual invariant
predictor exists. Hence, the definition of Veitch et al. (2021, Lemma 3.1) of a counterfactually
invariant predictor that requires a segment of X to not causally depend on Z, a fundamental result of
their work, unfortunately does not apply to our setting (since X may have no such segment).

A.4 MNIST-t3, 4u EXPERIMENTS WITH FINITE TRANSFORMATION GROUPS

We test our proposed method on out-of-distribution tasks on images where the equivalence relations
(symmetries) are provided as transformation groups (e.g., 90˝ rotations). We use the MNIST-t3, 4u
(colored) dataset (Mouli & Ribeiro, 2021) that only contains digits 3 and 4, and follow their experi-
mental setup. MNIST-t3, 4u is used to avoid any confounding factors while testing if the proposed
method can learn the correct invariances, not for any practical considerations (e.g., rotated 6 is a 9
and would interfere with some experiments, etc.).

We consider equivalence relations obtained from 3 different transformation groups: rotations by 90˝

(denoted Grot), vertically flipping the image (denoted Gv-flip), and permuting the RGB color channels
of the image (denoted Gcol). The 3 corresponding equivalence relations are lumpable (Definition 2)
with respect to the transformations in the other two groups in almost all the cases. Only exception
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Table 2: Results for different function classes on the MNIST-t3, 4u classification task with sD “

trot, col, vflipu,D “ H, i.e., task is invariant to 3 groups (sD) and sensitive to none (D). RpFq, {COMPpF ,Dq
and SpF ,Dq are as discussed in Section 4.2. Bold values indicate the function class chosen by GES method
with the proposed scoring criterion. Test accuracy is computed on the extrapolated dataset after shifting the
distribution of P ptUiuiPsDq. We see that the SpF ,Dq loss selects the correct model class in training.

Model class RpFq ` {COMPpF ,Dq `NLLpF ,Dq “ SpF ,Dq Train Acc Test Acc

Ftu 7 6639.310 0.013 6646.324 100.00 ( 0.00) 48.38 ( 5.22)
Ftvflipu 3 6639.241 0.079 6642.320 100.00 ( 0.00) 47.08 ( 5.34)
Ftcolu 3 6639.241 0.029 6642.270 100.00 ( 0.00) 53.92 ( 2.47)
Ftcol,vflipu 1 6639.241 0.099 6640.340 100.00 ( 0.00) 53.15 ( 1.83)
Ftrotu 3 6639.241 0.037 6642.278 100.00 ( 0.00) 53.06 (10.00)
Ftrot,vflipu 1 6639.241 0.580 6640.821 100.00 ( 0.01) 54.86 (13.60)
Ftrot,colu 1 6639.241 0.043 6640.284 100.00 ( 0.00) 90.29 ( 6.76)
Ftrot,col,vflipu 0 6639.241 0.210 6639.451 100.00 ( 0.00) 92.02 ( 2.99)

Table 3: Results for different function classes on the MNIST-t3, 4u classification task with sD “ trot, vflipu,D “
tcolu, i.e., task is invariant to rotation and vertical flip groups (sD) but sensitive to color (D). RpFq, {COMPpF ,Dq
and SpF ,Dq are as discussed in Section 4.2. Bold values indicate the function class chosen by GES method
with the proposed scoring criterion. Test accuracy is computed on the extrapolated dataset after shifting the
distribution of P ptUiuiPsDq. We see that the SpF ,Dq loss selects the correct model class in training.

Model class RpFq ` {COMPpF ,Dq `NLLpF ,Dq “ SpF ,Dq Train Acc Test Acc

Ftu 7 6639.241 0.010 6646.251 100.00 ( 0.00) 54.79 ( 0.74)
Ftvflipu 3 6639.241 0.012 6642.253 100.00 ( 0.00) 55.05 ( 1.56)
Ftcolu 3 6639.240 8269.480 14911.720 41.98 ( 5.79) 18.81 ( 2.94)
Ftcol,vflipu 1 6639.241 8275.716 14915.957 42.71 ( 4.07) 18.62 ( 2.25)
Ftrotu 3 6638.946 0.132 6642.078 100.00 ( 0.00) 91.40 ( 3.19)
Ftrot,vflipu 1 6638.428 0.504 6639.932 100.00 ( 0.00) 92.32 ( 1.84)
Ftrot,colu 1 6639.241 8412.954 15053.194 37.20 ( 1.97) 29.25 ( 5.18)
Ftrot,col,vflipu 0 6639.239 8389.719 15028.958 38.01 ( 2.02) 29.98 ( 3.96)

is the equivalence relation „v-flip, which is not lumpable with respect to the transformations in Grot.
Consequently, we do not consider a task with invariance to vertical flip alone. We test our method on
the same 4 classification tasks proposed by Mouli & Ribeiro (2021) where each task represents the
case where the target Y has different invariances, i.e., invariant to all three groups, to two, to one,
invariant to none (the task is sensitive to the remaining groups).

We use the VGG architecture (Simonyan & Zisserman, 2014) for image classification and construct a
collection of function classes F :“ tFS : S Ď trot, col, v-flipuu corresponding to various invariant
representations. For example, Ftrot,colu is a space of functions (CNNs) that are G-invariant to the
rotation and color-permutation groups (Grot and Gcol), and FH is the space of functions with no
invariance (standard CNN).

Results. Our results are shown in Tables 2 to 5 for the four tasks respectively where the label is (i)
invariant to all three groups, (ii) invariant to only rotation and vertical flips, (iii) invariant to color-
permutation, and (iv) invariant to none. We show the values for RpFq, {COMPpF ,Dq and SpF ,Dq
as as discussed in Section 4.2. Bold values in the tables indicate the function class chosen by GES
method with the proposed scoring criterion (minimizing SpF ,Dq). Test accuracy is computed on the
extrapolated dataset after shifting the distribution of P ptUiuiPsDq (i.e., by applying the transformations
that the label is invariant to).

In Tables 2 and 3, we see that the proposed method selects the correct model class in training and
achieves the best OOD test accuracy. In Tables 4 and 5, the method is excessively invariant (to
vertical flip) but still achieves within 1% of the best OOD test accuracy. The OOD test accuracy of a
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Table 4: Results for different function classes on the MNIST-t3, 4u classification task with sD “ tcolu,D “
trot, vflipu, i.e., task is invariant to color (sD) but sensitive to rotation and vertical flips (D). RpFq, {COMPpF ,Dq
and SpF ,Dq are as discussed in Section 4.2. Bold values indicate the function class chosen by GES method
with the proposed scoring criterion. Test accuracy is computed on the extrapolated dataset after shifting the
distribution of P ptUiuiPsDq. We see that the SpF ,Dq loss selects a model that is excessively invariant in training,
but the test accuracy is not that much penalized by the extra invariance (vertical flips).

Model class RpFq ` {COMPpF ,Dq `NLLpF ,Dq “ SpF ,Dq Train Acc Test Acc

Ftu 7 6639.241 2.395 6648.636 100.00 ( 0.01) 16.87 ( 5.88)
Ftvflipu 3 6639.233 5.370 6647.603 99.99 ( 0.05) 15.71 ( 5.53)
Ftcolu 3 6639.196 2.315 6644.512 100.00 ( 0.00) 97.28 ( 0.28)
Ftcol,vflipu 1 6639.240 3.098 6643.337 100.00 ( 0.00) 96.82 ( 0.54)
Ftrotu 3 6639.228 5296.755 11938.984 56.17 ( 3.90) 6.20 ( 0.86)
Ftrot,vflipu 1 6639.221 5325.008 11965.228 55.96 ( 5.39) 7.24 ( 1.48)
Ftrot,colu 1 6639.218 5322.015 11962.233 56.14 ( 3.31) 47.98 ( 1.34)
Ftrot,col,vflipu 0 6639.230 5342.805 11982.035 55.32 ( 3.80) 49.25 ( 3.09)

Table 5: Results for different function classes on the MNIST-t3, 4u classification task with sD “ H,D “

trot, col, vflipu, i.e., task is sensitive to all three groups (D) and insensitive to none (sD). RpFq, {COMPpF ,Dq
and SpF ,Dq are as discussed in Section 4.2. Bold values indicate the function class chosen by GES method
with the proposed scoring criterion. Test accuracy is computed on the extrapolated dataset after shifting the
distribution of P ptUiuiPsDq. We see that the SpF ,Dq loss selects a model that is excessively invariant in training,
but the test accuracy is not that much penalized by the extra invariance (vertical flip).

Model class RpFq ` {COMPpF ,Dq `NLLpF ,Dq “ SpF ,Dq Train Acc Test Acc

Ftu 7 6639.165 1.195 6647.360 100.00 ( 0.00) 96.00 ( 0.60)
Ftvflipu 3 6639.117 3.548 6645.665 100.00 ( 0.00) 95.18 ( 0.45)
Ftcolu 3 6639.192 7536.167 14178.359 58.77 ( 3.34) 32.45 ( 2.18)
Ftcol,vflipu 1 6639.184 7902.462 14542.645 52.50 ( 7.64) 31.21 ( 2.48)
Ftrot,colu 1 6639.088 13628.356 20268.443 23.78 ( 2.25) 15.93 ( 0.71)
Ftrotu 3 6639.153 5259.957 11902.110 58.12 ( 4.05) 47.23 ( 1.89)
Ftrot,vflipu 1 6639.827 5267.771 11908.598 57.13 ( 1.38) 47.57 ( 2.15)
Ftrot,col,vflipu 0 6639.055 13705.123 20344.178 22.97 ( 3.32) 16.13 ( 2.22)

standard CNN with no invariance (FH) is typically very low except in Table 5 where sensitivity to all
groups is required. We can also see the importance of RpFq for tie-breaking in these experiments.
As discussed in Section 4.2, {COMPpF ,Dq is unable to distinguish between the different function
classes because the training data contains a single example per equivalence class (see Figure 2c).

A.5 CIFAR10 EXPERIMENTS WITH INFINITE/NONGROUP TRANSFORMATION SETS

In this section, we test our proposed method on out-of-distribution tasks on CIFAR10 im-
ages (Krizhevsky et al., 2009) where the equivalence relations are provided as infinite sets of
transformations that may not form a group. We used (a) arbitrary rotation transformations over an
image (denoted Trot), and (b) shifting the hue of an image (denoted Tcol). Note that for a bounded
image, arbitrary rotation is not a group due to cropping. Further, transformations from the respective
sets commute with each other, and hence, the lumpability condition is satisfied (Definition 2) for the
corresponding equivalence relations.

We tested our method on 2 classification tasks: (i) invariant to both sets of transformations (arbitrary
rotations and hue shifts), and (ii) invariant to arbitrary rotations, but sensitive to hue shifts. As before,
we use the VGG architecture (Simonyan & Zisserman, 2014) for image classification and construct a
collection of function classes F :“ tFS : S Ď trot, coluu corresponding to the various invariant
representations. We use data augmentation to construct these invariant representations (this is possible
since the lumpability condition holds). For example, Ftrot,colu refers to CNNs that were trained by
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Table 6: Results for different function classes on the CIFAR10 classification task with two sets of transformations
(transformations that do not form groups) on images: arbitrary rotations (with cropping due to rotation) and
arbitrary hue shifts. The task is invariant to both sets of transformations (sD) and sensitive to none (D). RpFq,
{COMPpF ,Dq and SpF ,Dq are as discussed in Section 4.2. Bold values indicate the function class chosen by
GES method with the proposed scoring criterion. Test accuracy is computed on the extrapolated dataset after
shifting the distribution of P ptUiuiPsDq. We see that the SpF ,Dq loss selects the correct model class in training.

Model class RpFq ` {COMPpF ,Dq `NLLpF ,Dq “ SpF ,Dq Train Acc Test Acc

Ftu 3 27725.875 17496.615 45225.490 85.60 21.48
Ftcolu 1 27716.947 22715.956 50433.903 81.28 21.85
Ftrotu 1 -60894.145 20365.793 -40527.352 82.65 45.12
Ftrot,colu 0 -66262.157 23538.768 -42723.390 79.99 69.35

Table 7: Results for different function classes on the CIFAR10 classification task with two sets of transformations
(transformations that do not form groups) on images: arbitrary angle rotations (with cropping due to rotation)
and arbitrary hue shifts. The task is invariant to arbitrary rotations of the image (sD) but sensitive to color (D).
RpFq, {COMPpF ,Dq and SpF ,Dq are as discussed in Section 4.2. Bold values indicate the function class
chosen by GES method with the proposed scoring criterion. Test accuracy is computed on the extrapolated
dataset after shifting the distribution of P ptUiuiPsDq. We see that the SpF ,Dq loss selects the correct model
class in training.

Model class RpFq ` {COMPpF ,Dq `NLLpF ,Dq “ SpF ,Dq Train Acc Test Acc

Ftu 3 27724.256 42166.993 69894.250 64.37 17.16
Ftcolu 1 27715.023 49744.680 77460.703 42.69 10.91
Ftrotu 1 -91370.533 46218.086 -45151.447 61.77 52.60
Ftrot,colu 0 -92009.184 50246.908 -41762.276 41.45 35.56

augmenting both arbitrarily rotated images and hue-shifted images. Once again, FH is the space of
functions with no invariance (standard CNN with no data augmentations).

Results. We show in Tables 6 and 7 that our method is able to find the correct invariance and
achieves the best OOD test accuracy whereas the standard CNN with no invariance has poor OOD
performance.

A.6 MORE ON LUMPABILITY (DEFINITION 2)

We show that the lumpability condition of Definition 2 is equivalent to the normal subgroup condition
of Mouli & Ribeiro (2021, Theorem 2) when the given equivalence relations are obtained from trans-
formation groups. However, unlike the normal subgroup condition, the lumpability condition applies
in the general case when the equivalence relations are not necessarily obtained via transformation
groups.

Proposition 1. Let „G1 and „G2 be two equivalence relations on the input space X obtained as
orbits under transformation groups G1 and G2 respectively, i.e., for i “ 1, 2, x „Gi x1 iff there
exists tpiq P Gi with x1 “ tpiq ˝ x. Then, „G1

is lumpable with respect to the transformations G2

(Definition 2) if and only if G1 is a normal subgroup of G1 _G2, where _ is the join operator.

Proof. First, given „G1
is lumpable with respect to G2, we wish to prove that G1 is a normal

subgroup of G1 _G2. By definition of the join operator on transformation groups, G1 is a subgroup
of G1 _G2.

Next, consider an equivalence class rxsG1 P X { „G1 . Then, by the lumpability of „G1 with respect
to G2, we have that for all tp2q P G2, there exists rx1sG1

with x˚ P rxsG1
ùñ tp2q ˝ x˚ P rx1sG1

.
In other words, each tp2q maps all points in one equivalence class rxsG1 to another equivalence class
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rx1sG1
. Specifically, tp2q maps x P rxsG1

to tp2q ˝x P rx1sG1
. Thus, we can set x1 “ tp2q ˝x without

loss of generality.

Then, for all tp2q P G2, we have from the lumpability condition that

x˚ P rxsG1
ùñ tp2q ˝ x˚ P rtp2q ˝ xsG1

. (9)

Recall from the definition of the equivalence class derived from a transformation group (i.e., the
orbit) that x˚ P rxsG1 means that there exists a transformation tp1q P G1 that maps x to x˚, i.e.,
x˚ “ tp1q ˝ x. Similarly, tp2q ˝ x˚ P rtp2q ˝ xsG1

means that there exists another transformation t̃p1q

such that tp2q ˝ x˚ “ t̃p1q ˝ tp2q ˝ x.

Equation (9) then becomes

Dtp1q P G1 s.t. x˚ “ tp1q ˝ x ùñ Dt̃p1q P G1 s.t. tp2q ˝ x˚ “ t̃p1q ˝ tp2q ˝ x , (10)

for all tp2q P G2.

Since Equation (10) holds for all x˚ P rxsG1
and for all x P X , we have @tp2q P G2,@t

p1q P

G1, Dt̃
p1q P G1 such that,

tp2q ˝ tp1q “ t̃p1q ˝ tp2q ,

which implies that G1 is a normal subgroup of G1 _G2. The converse can be proved trivially by
reversing the steps of the above proof.
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