

000 001 002 003 004 005 SKIPSR: FASTER SUPER RESOLUTION WITH TOKEN 006 SKIPPING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 Diffusion-based super-resolution (SR) is a key component in video generation and
025 video restoration, but is slow and expensive, limiting scalability to higher resolutions
026 and longer videos. Our key insight is that many regions in video are inherently
027 low-detail and gain little from refinement, yet current methods process all
028 pixels uniformly. To take advantage of this, we propose SkipSR, a simple frame-
029 work for accelerating video SR by identifying low-detail regions directly from
030 low-resolution input, then skipping computation on them entirely, only super-
031 resolving the areas that require refinement. This simple yet effective strategy
032 preserves perceptual quality in both standard and one-step diffusion SR mod-
033 els while significantly reducing computation. In standard SR benchmarks, our
034 method achieves up to 60% faster end-to-end latency than prior models on 720p
035 videos with no perceptible loss in quality. Video demos are available at our [project](#)
036 [page](#).
037

1 INTRODUCTION

038 Diffusion transformers are the dominant paradigm in image and video generation, but due to the
039 quadratic cost of self-attention, computational time grows steeply with resolution and sequence
040 length. Furthermore, diffusion models typically require tens of steps to produce high-quality outputs.
041 To handle this, a common design choice is *cascaded* diffusion (Ho et al., 2022; Saharia et al., 2022a;
042 Gao et al., 2025), which first generates low-resolution images or videos, then uses a conditional
043 diffusion model to upscale and refine them into high-resolution results with fewer steps. However,
044 because of the larger input size at higher resolutions, diffusion-based super-resolution (SR) steps
045 can be very slow, often dominating the computation time. Speeding these up is essential for high-
046 resolution video generation and restoration.
047

048 Most prior work on addressing this issue focuses on reducing the number of diffusion steps. While
049 successful, this leaves gains on the table since even a single diffusion step is still expensive on
050 high-resolution video. Another recent line of work experiment with alternative attention mech-
051 anisms, such as windowed, sliding tile, or spatially sparse attention. These works typically restrict
052 the attention mechanism to focus on nearby tokens, resulting in significant speedups.
053

054 A common assumption behind all these works is that they spend equal computation on every input
055 patch. However, not every patch is created equal. Our key insight is that many videos contain
056 *visually simple regions*: for example, a blue sky or a blurry background. This phenomenon is
057 particularly pronounced in super-resolution tasks, where the low-resolution conditional input often
058 includes extensive visually simple areas. These regions can be simply resized and placed directly in
059 the output, since they do not need refinement like more detailed regions of the input do.
060

061 We present Skip Super Resolution (SkipSR), a method that uses this idea to accelerate video super-
062 resolution. SkipSR uses a lightweight mask predictor to route only patches that require refinement
063 through the transformer, while the remaining patches skip the model entirely. The transformer
064 model maintain positional awareness with mask-aware rotary positional encodings, and the two
065 patch groups are composed together at the output stage, resulting in perceptually indistinguishable
066 outputs at a significantly lower computational cost.
067

068 We primarily evaluate on video SR tasks, given their considerable inference cost, and validate
069 SkipSR on top of a state-of-the-art video SR model (Wang et al., 2025b;a). Our experimental results
070 demonstrate its versatility in both multi-step and one-step diffusion paradigms. SkipSR significantly
071

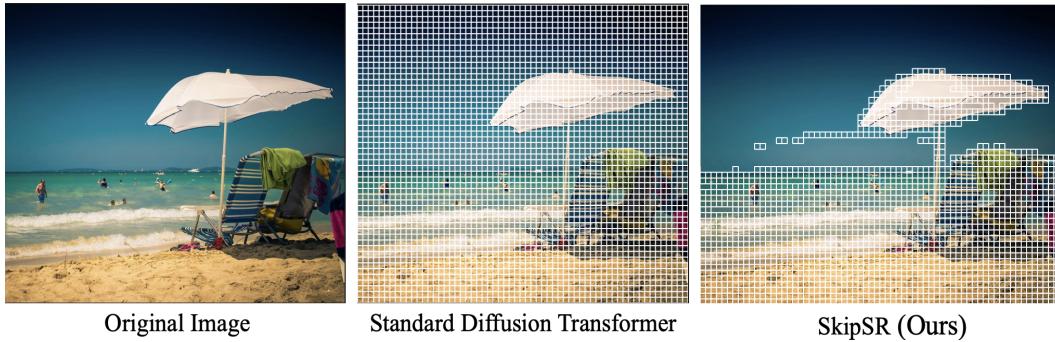


Figure 1: **Patch Skipping.** Standard diffusion SR models refine the entire input, while SkipSR identifies and upscales only the patches that need refinement. This significantly reduces computation with no loss in perceptual quality.

accelerates super-resolution, yielding outputs that are perceptually indistinguishable from dense attention equivalents. In particular, we achieve up to 60% faster super-resolution on 720p videos with no loss in quality, supported both by video-quality metrics and user studies, and reduce the diffusion time for 1080p videos by 70%.

In summary, the main contributions of our work are as follows:

- We demonstrate simple regions are common in videos, and that identifying and skipping these simple regions can match perceptual quality with a fraction of the compute.
- We propose SkipSR, consisting of a lightweight mechanism to identify complex regions and apply sparse attention only to them, leading to accurate and efficient super-resolution.
- We validate our hypotheses and design choices with extensive experiments, demonstrating a consistent speed-up while maintaining quality.

2 RELATED WORK

Efficient Video Diffusion. Video generation is prohibitively slow, with full-attention models like HunyuanVideo (Kong et al., 2024) taking tens of minutes to generate a 5-second video (Xi et al., 2025). Since most models require many steps (Song & Ermon, 2019; Ho et al., 2020; Meng et al., 2021), most work has focused on reducing the number of steps, through improving flow (Liu et al., 2022a; Geng et al., 2025), consistency losses (Song et al., 2023), or distillation (Salimans & Ho, 2022; Yin et al., 2024; Lin et al., 2025). We build upon these works by demonstrating speed-ups on both multi-step and single-step models.

Several methods have proposed speed-ups by increasing sparsity into the attention mechanism, thus reducing the number of tokens considered. Sliding window attention (Hassani et al., 2023; Liu et al., 2024; Zhang et al., 2025b) and other variants such as Radial Attention Li et al. (2025) restrict attention to focus on spatiotemporally local tokens. Other works builds on this by enforcing sparsity on attention heads in an online manner, such as SVG and Sparge (Xi et al., 2025; Zhang et al., 2025a). Our method differs from these by skipping the entire Transformer, rather than just the attention mechanism.

Diffusion Models for Video Super-Resolution. Alternatively, diffusion can be made more efficient by first diffusing at low resolution, then upscaling at the end. (Ho et al., 2022). Cascaded models like this are commonplace, such as SR3 (Saharia et al., 2022b), Stable Diffusion (Rombach et al., 2022), and Seedance (Gao et al., 2025). Diffusion is also considered standard for stand-alone video restoration. Recent works adapt image diffusers or condition video diffusers on LR inputs via ControlNet (Xu et al., 2023; Zhou et al., 2024; Wang et al., 2023b). While improving fidelity, these methods inherit the high cost of multi-step sampling and heavy conditioning. Parallel efforts aim to accelerate diffusion through fewer or single sampling steps, using rectified flows (Liu et al., 2022b), distillation (Zhang et al., 2023; Wang et al., 2025a; Huang et al., 2023; Chen et al., 2025),

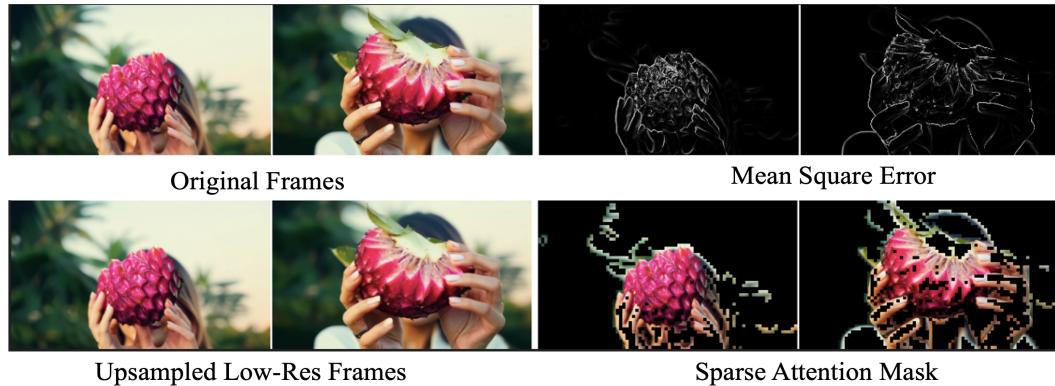


Figure 2: **Oracle Mask Computation.** We identify the low-resolution video regions by comparing the original high-resolution input to a spatial downsampled, then upsampled version. This results in a attention mask, shown in dark, that excludes these regions from refinement.

or deterministic one-step models (Li et al., 2023). However, these methods still process every region of the input equally, so that simple videos take the same time as more complex ones.

Efficient Super-Resolution. Prior works have also attempted to accelerate super-resolution, mainly on images, by identifying which regions need less refinement. Sparse Mask SR (Wang et al., 2021) enforces sparsity to this end on CNN filters, while other works (Kong et al., 2021; Hu et al., 2022; Fan et al., 2024) apply different sub-networks to sub-regions of an input image based on their predicted complexity. Although these methods reduce FLOPS, they result in significantly slower wall clock time, as stated in the papers. YODA (Moser et al., 2025) uses attention masks to guide and improve diffusion for image SR, but does not accelerate the model. We provide a simple solution to these issues while significantly speeding up wall-clock inference time.

3 MOTIVATION AND ANALYSIS

Selective Patch Processing. High-resolution videos often contain regions that do not contain high-frequency details, e.g., a blue sky, a plain wall, or an out-of-focus background. We hypothesize that these regions can skip the expensive transformer computation and be upsampled by cheaper methods, such as bilinear interpolation, instead.

Concretely, we divide a high-resolution video I of size $T \times H \times W \times 3$ into non-overlapping patches P of size $4 \times 16 \times 16 \times 3$. We define a patch as *skippable* if, after area downampling D and bilinear upsampling U , the reconstruction mean squared error (MSE) is smaller than a threshold τ :

$$\text{MSE}(P, U(D(P))) \leq \tau \quad (1)$$

Note that while there are many ways to classify the skippable regions, this is not the focus of our work. Empirically, we find this straightforward measurement suffices.

To measure the commonality of such skippable regions, we measure the percentage of patches satisfying the criterion in Eq. (1) with $\tau = 0.0002$ and a spatial downampling factor of $4 \times$ on a diverse set of videos. Furthermore, to validate skipping the patches does not degrade quality in the latent diffusion setting, we encode the original video I through a VAE and swap the latent at the corresponding skippable region with the encoding of $U(D(I))$ before decoding back to the pixel space. Then, PSNR, SSIM, and LPIPS (Zhang et al., 2018) metrics are used to measure degradation against the original video I .

Table 1 shows the results of our analysis on videos from VBench (Huang et al., 2024), AIGC-30 (Wang et al., 2025b), VideoLQ (Chan et al., 2022), and YouHQ-40 (Zhou et al., 2024). In particular, VBench and AIGC-30 are AI generated videos, which yield the highest amount of skippable patches, up to 45%. For real-world videos, VideoLQ is a common SR evaluation dataset offered in low resolution. We use the upsampled version by SeedVR (Wang et al., 2025b) and yield 30% skippable patches. YouHQ has large camera movements and yields a lower 15% skippable patches.

162 Table 1: **Oracle Mask Analysis.** Using the oracle mask, we measure the reconstruction error of
 163 upsampling and swapping simple patches, as well as the resulting expected speedup. We spatially
 164 downsample by $4\times$ in all cases.

166 Dataset	167 Resolution	168 Skippable %	169 PSNR \uparrow	170 SSIM \uparrow	171 LPIPS \downarrow	172 Speedup \uparrow
167 VBench	168 720p	169 44.8 %	170 42.24	171 0.988	172 0.0400	173 1.8 \times
168 AIGC-30	169 720p	170 41.9%	171 43.11	172 0.989	173 0.038	174 1.7 \times
169 VideoLQ	170 720p	171 31.2%	172 46.61	173 0.994	174 0.0239	1.5 \times
170 YouHQ-40	171 720p	172 14.7%	173 46.64	174 0.994	175 0.0149	1.2 \times
171 YouHQ-40 (corrupted)	172 720p	173 0.9%	174 66.33	175 0.999	176 0.0002	1.0 \times
172 AIGC-30	173 1080p	174 44.9%	175 44.39	176 0.991	177 0.031	1.8 \times
173 VideoLQ	174 1080p	175 36.7%	176 48.32	177 0.993	178 0.013	1.6 \times

175
 176 Overall, our approach can expect an average reduction of 30% tokens for regular super-resolution
 177 tasks while retaining a VAE reconstruction PSNR of 40+ and LPIPS of near 0, which are considered
 178 imperceptible to human eyes. However, as a limitation, we also show that the synthetically corrupted
 179 YouHQ contains heavy white noise everywhere. Such cases do not yield much patch savings and
 180 are less applicable to our approach.

181
 182 **Estimating the Theoretical Speedup.** Next, we estimate the expected speed-up by completely
 183 skipping the patches from the transformer and profiling the diffusion model. We use the state-
 184 of-the-art SR method SeedVR2 (Wang et al., 2025a) as the baseline architecture, and the relative
 185 speed-up is provided in the last column of Table 1. This preliminary experiment shows that skipping
 186 patches can achieve 1.2 \times to 1.8 \times speed-up on the diffusion model. Inspired by these observations,
 187 our method is designed to (1) identify the simple regions from low-resolution input as accurately as
 188 possible and (2) produce high-quality super-resolution outputs from applying attention only on the
 189 complex regions.

190 4 METHOD

191 This section first provides a brief review of the video super-resolution model on which our method
 192 is built. We then introduce our approach in Section 4.2.

193 4.1 PRELIMINARIES

194 Recent diffusion-based SR methods adopt the latent diffusion paradigm (Rombach et al., 2022),
 195 where a pre-trained variational autoencoder (VAE) (Kingma & Welling, 2013) compresses images
 196 or videos into a latent space, and a diffusion transformer generates the high-resolution latent
 197 conditioned on text and low-resolution latents. During training, low-resolution inputs are obtained by
 198 applying synthetic degradations (e.g. blurring, downsampling, noise injection, compression) to high-
 199 resolution data. This procedure works well for super-resolution as well as more complex restoration.
 200 For more details, we refer the reader to Wang et al. (2025b).

201 We adopt the architecture used in SeedVR (Wang et al., 2025b), which combines shifted windows
 202 (Liu et al., 2021) and the native-resolution trick of Dehghani et al. (2023) and use MMDiT (Esser
 203 et al., 2024) for text-conditioning in the DiT. We employ a causal video VAE that compresses the
 204 pixel-space input by $8\times$ spatially and $4\times$ temporally, and the DiT operates on $1\times 2\times 2$ patches in
 205 latent space.

206 4.2 SPARSE SUPER-RESOLUTION

207 **Skip Prediction Model.** Unlike our preliminary analysis in Section 3, at inference time, we do
 208 not have a high-resolution ground-truth video to identify skippable patches. We train a lightweight
 209 predictor network to predict skippable patches given low-resolution videos. Specifically, our pre-
 210 dictor network operates in the VAE latent space and is composed of 4 layers of 3D convolution and
 211 ReLU activations. The first convolution has a spatial stride of 2 to match the patch size. The net-

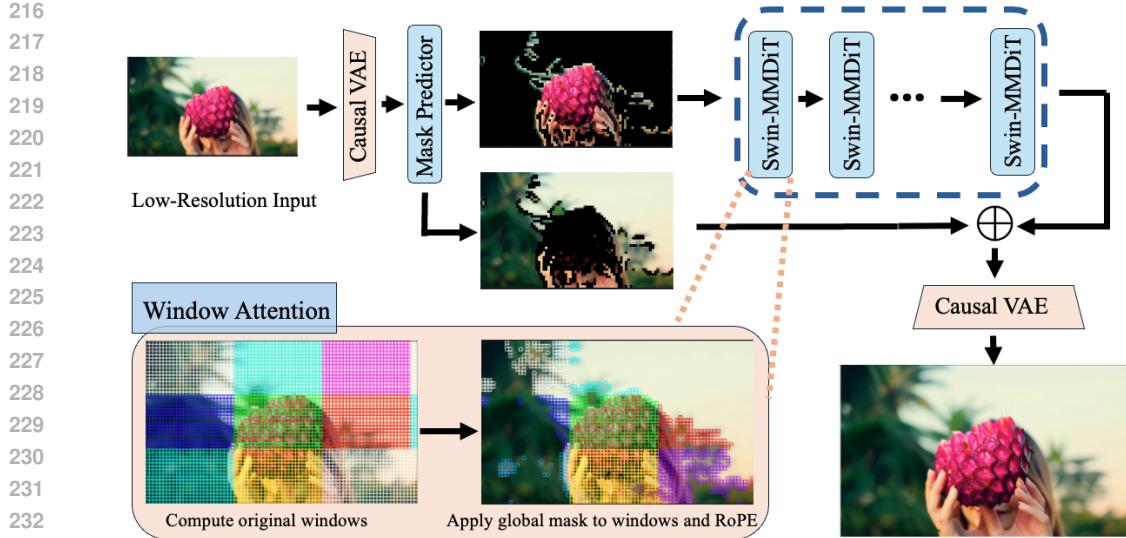


Figure 3: **SkipSR Overview.** We take as input low-resolution videos, project into latent space, then compute the complexity mask. Simple patches skip computation and are routed around the transformer, then composed with the refined output.

work takes latent of shape $t \times h \times w \times 16$ as input, and outputs binary classification logits of shape $t \times h/2 \times w/2 \times 1$. This corresponds to a patch size of $1 \times 2 \times 2$ in the latent space and $4 \times 16 \times 16$ in the pixel space.

During training, given high-resolution videos I and their synthetic low-resolution pairs $D(I)$, we encode $D(I)$ through VAE and provide it as input to the predictor. The predictor network is trained using binary cross-entropy loss, where the ground-truth classification target is given by Eq. (1). During inference, low-resolution videos i are used instead of $D(I)$, and the predictor network classifies skippable patches with high accuracy.

Skip-Aware Diffusion Model. Prior works that accelerate diffusion models modify the attention algorithm, but leave the other components, such as the FFN and LayerNorm, unchanged. Our key finding is that the predicted skipped tokens *can skip the Transformer altogether*. Typically, these skipped tokens are in the background, while the un-skipped tokens come from the more detailed foreground. We speculate that the un-skipped tokens, along with the text conditioning, provide enough context to produce high-quality super-resolutions.

After the mask predictor produces a mask M , we apply M to the set of input latent patches, P . P has N patches, where $N = t \times h/2 \times w/2$, indexed as $P = \{p_1, p_2, \dots, p_N\}$. We then apply M to P , partitioning it into two sets P_{skip} and P_{unskip} . P_{skip} receives no further computation.

P_{unskip} is next passed through the Transformer’s patch projection layer, and proceeds through each Transformer block. However, as shown in Figure 3, the patches in P_{unskip} are no longer spatiotemporally contiguous. For example, P_{unskip} could consist of $\{p_3, p_4, p_1, \dots, p_N\}$. We thus need to ensure that the Transformer is aware of their relative positions. We accomplish this by modifying the rotary positional encodings (RoPE) (Su et al., 2021) in the attention operation. In RoPE, the embeddings in each token are rotated by an angle θ that is scaled by the position index:

$$\text{RoPE}(p_i, i) = \mathbf{R}_i \cdot p_i \quad (2)$$

where p_i is the i -th patch in P , d is the feature dimension, and $\mathbf{R}_m \in \mathbb{R}^{d \times d}$ is a block-diagonal rotation matrix with angles $i \cdot \theta_k$ for each dimension pair k , where $\theta_k = 10000^{-2k/d}$.

Rather than use the index m of each patch in P_{unskip} , we use each the original index from P , encoding the relative position of each patch. With our previous example, if the first element of P_{unskip} was p_3 , we would apply RoPE with $i = 3$ rather than $i = 1$, ensuring that patches in P_{unskip} are aware of their relative distances. After running the Transformer and the patch output projection

270 **Table 2: Main Quantitative Results.** We compare SkipSR’s super-resolution output against
 271 SeedVR and SeedVR2 baselines on real-world (VideoLQ) and AI-generated (AIGC30) benchmarks.
 272 The best value is in **blue**, and the second-best in **red**. SkipSR matches the performance of SeedVR
 273 and SeedVR2 with significantly less compute.

Dataset	Method	NIQE \downarrow	MUSIQ \uparrow	CLIP-IQA \uparrow	DOVER \uparrow	BRISQUE \downarrow	TFLOPs \downarrow	s/step \downarrow	Skipped%
VideoLQ	SeedVR-3B	4.069	57.41	0.318	8.009	35.45	2001	6.41	0
	SeedVR-7B	4.933	48.35	0.258	7.416	28.120	3139	7.74	0
	Ours (3B)	4.112	54.175	0.288	7.992	38.094	1343	4.47 (1.4x)	27.7%
	SeedVR2-3B	4.687	51.09	0.295	8.176	38.1	2001	6.41	0 %
	SeedVR2-7B	4.948	45.76	0.257	7.236	41.332	3139	7.74	0%
	Ours (3B, one-step)	4.3449	57.783	0.324	8.199	39.220	1343	4.47 (1.4x)	27.7%
AIGC30	SeedVR-3B	3.655	64.4	0.589	12.9	25.3	2001	6.41	0%
	SeedVR-7B	4.053	64.26	0.564	16.47	35.7	3139	7.74	0%
	Ours (3B)	3.99	65.14	0.575	11.9	35.89	1135	3.85 (1.6x)	39.6%
	SeedVR2-3B	3.801	62.99	0.561	15.77	28.021	2001	6.41	0%
	SeedVR2-7B	4.138	65.09	0.574	13.4	39.14	3139	7.74	0%
	Ours (3B, one-step)	3.6628	67.218	0.581	16.021	29.534	1135	3.85 (1.6x)	39.6%

288 layer on P , the output P'_{unskip} is composed with P_{skip} using M , resulting in a mixed sequence of
 289 processed and unchanged patches.

291 **Handling Window Attention.** Our DiT uses shifted window attention, which partitions the input
 292 into non-overlapping windows at each layer. In this case, the rotary positional encodings are not
 293 defined with respect to the entire input sequence length, but instead are based on the window size.
 294 To handle this with the SkipSR mask, we first assign each patch in P to a window as normal, then
 295 apply the mask, resulting in P_{unskip} . Each patch simply P keeps its original window assignment
 296 from P , as shown in the inset of Figure 3. Although each window now has an imbalanced number
 297 of tokens, this is handled natively by FlashAttention and NaViT, while preserving rotary positional
 298 embeddings dependent on a fixed window size.

299 **Training.** To train the mask predictor, we freeze the VAE encoder and train on high-resolution
 300 images and videos. For the main super-resolution model, we follow standard practice and train on
 301 a mixture of images and videos (Chen et al., 2025; Wang et al., 2025b), using standard diffusion
 302 training.

304 Furthermore, while standard diffusion transformers are multi-step, several works accelerate these
 305 models by reducing the number of steps required to just one step. We train a one-step version of
 306 SkipSR to measure against these approaches, based on the procedure introduced in APT (Lin et al.,
 307 2025). We apply progressive distillation (Salimans & Ho, 2022) to distill our model to reduce one-
 308 step, then adversarially post-train it using a transformer-based discriminator to restore sharpness,
 309 resulting in a one-step model that matches the quality of the original.

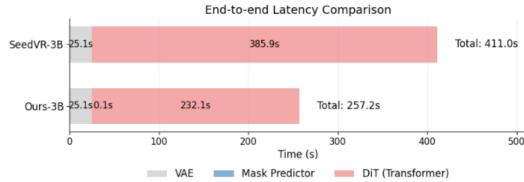
310 5 EXPERIMENTS

312 **Implementation Details.** Models are initialized from public SeedVR/SeedVR2 (3B/7B) check-
 313 points and fine-tuned jointly with the same data and objectives as the baselines. Training uses 40
 314 NVIDIA A100-80G GPUs with batches of about 100 frames at 720p, using sequence (Korthikanti
 315 et al., 2023) and data parallelism (Li et al., 2020). We use the same data for training as Wang et al.
 316 (2025b). The mask predictor is trained on the same data as the super-resolution model with 8 GPUs
 317 for 10k iterations, as the mask predictor converges significantly faster due to its smaller size.

319 **Experimental Settings.** Our goal is to simply compare the generation quality of the base model
 320 (SeedVR) on real-world videos while reducing wall-clock time. We conduct our main evaluation
 321 on the VideoLQ (Chan et al., 2022) and our AIGC30 datasets, reporting commonly used reference-
 322 free quality metrics such as NIQE (Mittal et al., 2013)c, CLIP-IQA (Wang et al., 2023a), MUSIQ
 323 (Ke et al., 2021) and DOVER (Wu et al., 2023). Efficiency is measured by runtime and skipped
 token fraction (token%). All comparisons use unmodified SeedVR / SeedVR2 with our masked

Methods-{Steps}	Speed (seconds)	Overall Quality
SeedVR-3B-50	320	+4%
DOVE-1	14.1	-18%
SeedVR2-3B-1	6.41	0%
Ours-3B-50	3.5	+7%

(a) **User Study.** Our method is preferred by users relative to SeedVR2 while also being significantly faster.



(b) **Latency.** The end-to-end generation latency for the transformer is significantly improved by SkipSR, reducing the total time by 60% while the mask predictor adds negligible overhead.

Table 3: **Results on Synthetic VSR Benchmarks.** SkipSR matches the performance of other methods on heavily degraded benchmarks. Best numbers are **blue**; second best are **red**.

Datasets	Metrics	RealVifomer	MGLD-VSR	STAR	DOVE	SeedVR-7B	SeedVR2-3B	SeedVR2-7B	SkipSR-3B (Ours)
SPMCS	PSNR \uparrow	24.185	23.41	22.58	23.11	20.78	22.97	22.90	23.9892
	SSIM \uparrow	0.663	0.633	0.609	0.621	0.575	0.646	0.638	0.6807
	LPIPS \downarrow	0.378	0.369	0.420	0.288	0.395	0.306	0.322	0.2865
	DISTS \downarrow	0.186	0.166	0.229	0.171	0.166	0.131	0.134	0.1234
UDM10	PSNR \uparrow	26.70	26.11	24.66	26.48	24.29	25.61	26.26	26.5243
	SSIM \uparrow	0.796	0.772	0.747	0.783	0.731	0.784	0.798	0.788
	LPIPS \downarrow	0.285	0.273	0.359	0.270	0.264	0.218	0.203	0.2429
	DISTS \downarrow	0.166	0.144	0.195	0.149	0.124	0.106	0.101	0.117
REDS30	PSNR \uparrow	23.34	22.74	22.04	22.11	21.74	21.90	22.27	22.4298
	SSIM \uparrow	0.615	0.578	0.593	22.67	0.596	0.598	0.606	0.6093
	LPIPS \downarrow	0.328	0.271	0.487	0.277	0.340	0.350	0.337	0.2682
	DISTS \downarrow	0.154	0.097	0.229	0.106	0.122	0.135	0.127	0.1081
YouHQ40	PSNR \uparrow	23.26	22.62	22.15	24.3	20.60	22.10	22.46	23.1495
	SSIM \uparrow	0.606	0.576	0.575	0.674	0.546	0.595	0.600	0.6277
	LPIPS \downarrow	0.362	0.356	0.451	0.299	0.323	0.284	0.274	0.2361
	DISTS \downarrow	0.193	0.166	0.213	0.148	0.134	0.122	0.110	0.1007

variants initialized from the same checkpoints and trained using the same procedure. Though not the main focus of our work, we also measure restoration ability on heavily degraded synthetic benchmarks, namely SPMCS (Yi et al., 2019), UDM10 (Yi et al., 2020), REDS30 (Nah et al., 2019), and YouHQ40, where we compute PSNR, SSIM, LPIPS and DISTS.

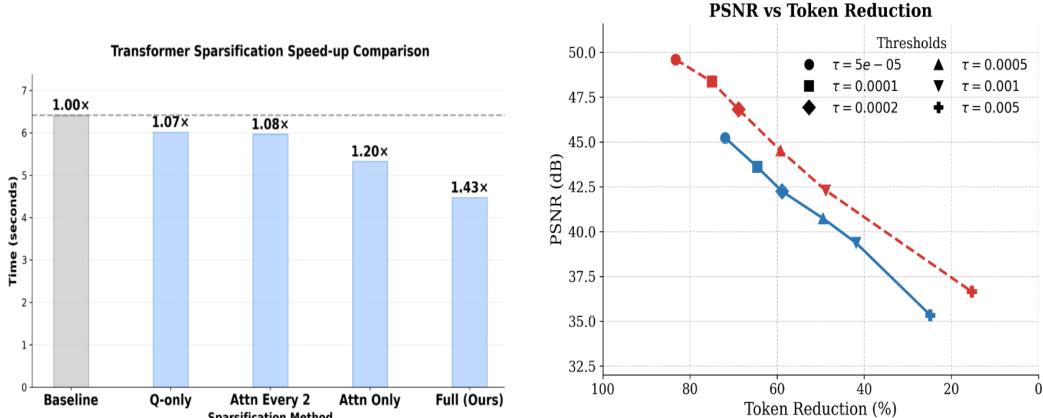
5.1 MAIN RESULTS

Since SkipSR is a general way to accelerate video SR, our goal is to match the performance of existing diffusion-based methods with minimal loss in quality while achieving a significant speed-up. We compare against the state-of-the-art diffusion methods, including other prior methods for completeness. Our main results on super-resolution benchmarks are in Table 2, where we evaluated SkipSR on real-world and AI-generated video SR test sets. In general, SkipSR matches or exceeds SeedVR’s performance in video quality metrics, while significantly reducing the total time required, reducing it by 40% in VideoLQ and 60% on AIGC-30. We also match the performance of SeedVR2 in one-step generation, demonstrating the versatility of our framework and its potential applicability to cascaded diffusion. We also measure the end-to-end latency of the system in Figure 4b. The computation time is dominated by the diffusion transformer, with the VAE taking around 30s total and the mask predictor adding 60ms of overhead. The mask predictor also adds 23M parameters and 22MB of memory to the base model’s 3B parameters and 13GB memory, incurring little cost overall. We find that on average, SkipSR reduces the overall end-to-end generation time by 60%, more than 2 minutes, strongly supporting its general applicability.

User Study. User studies are crucial for evaluating generative outputs. We conducted a GSB study with three domain experts, asking each to decide whether the samples are better, same, or worse. The preference score is calculated as $\frac{G-B}{G+S+B}$, which ranges from -100% to 100%. We randomly select 25 samples from VideoLQ and AIGC-30 and ask subjects to evaluate the overall quality of

378 **Table 4: Predicted Mask Analysis.** We repeat the analysis in Table 4 with the learned predictor and
 379 find that we generally maintain PSNR, but retain slightly more tokens.
 380

381 Dataset	382 Resolution	383 PSNR↑	384 SSIM↑	385 Skipped (%)↓
383 VBench	384 720p	385 43.67(+1.4)	386 0.980(-0.008)	387 58.1(-2.9)
384 VideoLQ	385 720p	386 43.87(-2.7)	387 0.991(-0.001)	388 27.7(-3.5)
385 YouHQ-40 (clean)	386 720p	387 44.52(-2.1)	388 0.988(-0.006)	389 8.6(-6.1)
386 AIGC-30	387 720p	388 42.03(-1.1)	389 0.991(-0.003)	390 39.6(-2.3)
387 VideoLQ	388 1080p	389 43.87(-2.7)	390 0.991(-0.001)	391 33.4(-3.3)
388 AIGC-30	389 1080p	390 43.24(-1.2)	391 0.993(+0.002)	392 42.9(-2.0)



403 **(a) Sparsity mechanism.** We measure the speed
 404 of routing around the model entirely compared to
 405 other design choices, such as only masking the at-
 406 tention, using interspersed global layers, or only
 407 masking the attention queries. Ours is signifi-
 408 cantly faster, while maintaining quality.

409 **(b) Threshold effect.** As we increase the threshold τ ,
 410 the reduction increases at the cost of maximum PSNR.
 411 $\tau = 0.0002$ is a reasonable choice for token reduction
 412 while maintaining perceptual quality.

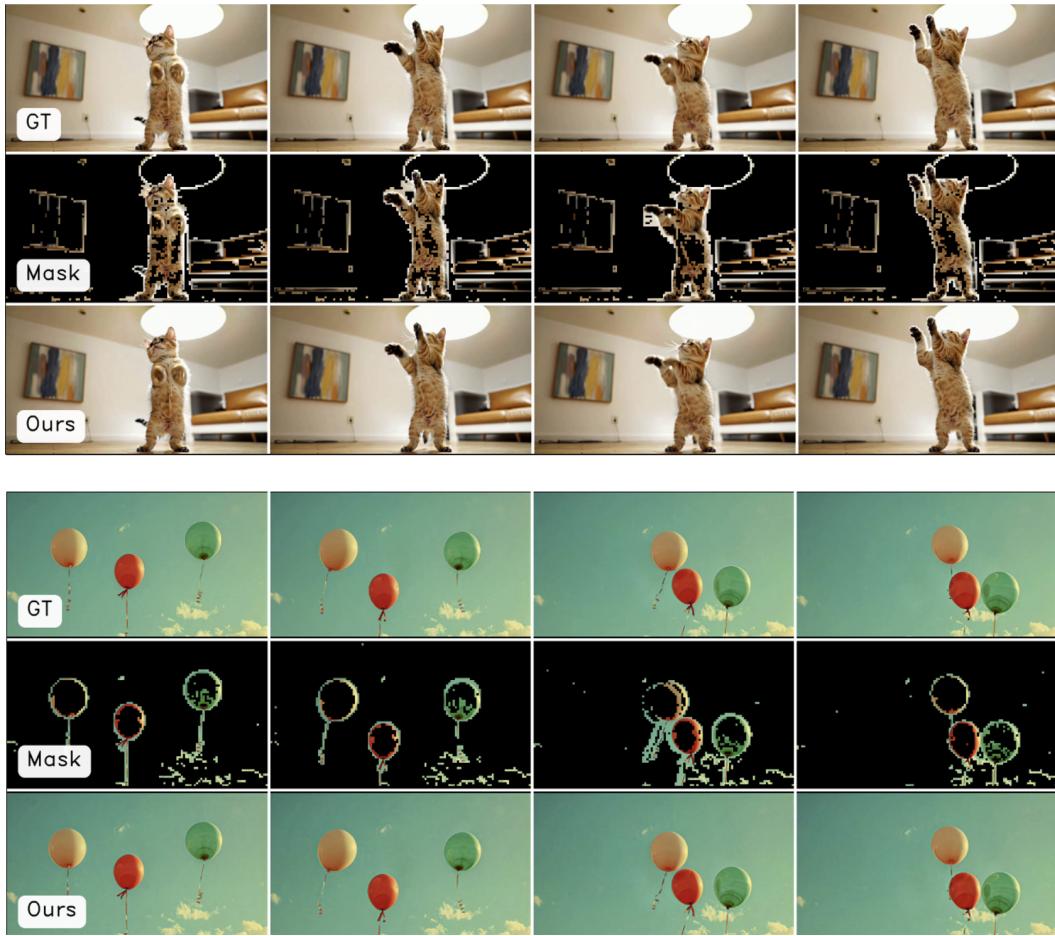
413 our generations compared to the baseline, SeedVR2. As shown in Table 4a, we match SeedVR-3B
 414 and SeedVR2, and significantly outperform DOVE, supporting our claim that we can accelerate the
 415 model without losing visual quality as perceived by users.

416 **Synthetic Benchmarks.** Synthetic video restoration benchmarks are created by applying small
 417 degradations to the entire frame, making them unsuitable for our core hypothesis, that upsampled
 418 regions from low-resolution videos map well onto their high-resolution outputs. Achieving state-
 419 of-the-art performance on these is not the main focus of this work; we are emphatically focused on
 420 general acceleration without significant loss of quality. However, we include the results of these
 421 benchmarks in Table 3 for completeness. Our model performs surprisingly well, matching the per-
 422 formance of comparable models, such as SeedVR, DOVE, and SeedVR2.

423 5.2 ANALYSIS

424 **Mask Predictor.** We repeat the analysis of the oracle experiment in Section 3 using our learned
 425 mask predictor, comparing the theoretical maximum performance using our predicted mask in ab-
 426 sence of the ground-truth high-resolution video with that of the oracle using the ground-truth. The
 427 results in Table 4 demonstrate that our mask performs well: it does not quite reach the theoretical
 428 optimum but still skips a significant proportion of patches while maintaining visual fidelity. Notably,
 429 the difference between swapping with our predicted mask and the ground-truth high-resolution is
 430 still consistently above 40 PSNR, which is an essentially imperceptible difference.

431 **Profiling and Speed Design Choices.** We measure the efficiency of other potential sparsity mech-
 432 anisms in Figure 5a. Most works address the attention layer; we demonstrate that this loses 23%



462 **Figure 6: Visual Comparison.** In the above two examples, the ground truth is on top, followed by
 463 the predicted mask, and our output. We produce perceptually indistinguishable results while only
 464 refining a small subset of the input video. Additional results are on our [project page](#).

467 speed. Similarly, strategies like only masking out the attention queries or interspersing sparse and
 468 dense layers are not much faster than the baseline. On the other hand, our method achieves the
 469 largest speed-up while maintaining quality.

470 **Threshold Effect.** Finally, we analyze the effect of varying the threshold τ that defines the boundary
 471 between simple and complex patches in Figure 5b. We measure the PSNR compared to the
 472 original image for both AIGC and VideoLQ using the oracle mask, as well as the fraction of tokens
 473 removed by this procedure. Since the mask is dependent on the input data, the curves are offset from
 474 each other, but follow the same general trend: as we increase the threshold, the PSNR consistently
 475 decreases as more and more complex patches are skipped rather than refined. From the plot, we can
 476 see that $\tau = 0.0002$ represents a reasonable balance between fidelity and token reduction, as it is
 477 paramount that any acceleration does not come at a cost to visual quality.

479 6 CONCLUSION

482 This paper tackles the acceleration of video super-resolution by focusing refinement only on
 483 complex regions that actually require it, rather than uniformly upscaling the entire input. We find that
 484 such regions make up a substantial fraction of video, and that using a cheap upsampling operation on
 485 them rather than expensive super-resolution can maintain quality. We propose SkipSR, which
 identifies these regions from the low-resolution input and routes them entirely around the transformer,

486 composing them with the upscaled output afterward. Implementing our simple strategy enables sig-
 487 nificant acceleration, reducing the diffusion time by $1.8\times$ without visible loss in quality and the
 488 end-to-end generation time by $1.6\times$.
 489

490 **Limitations.** A limitation of SkipSR is its lack of acceleration on video restoration tasks with
 491 severe degradations, where we are unable to skip patches due to widespread corruptions. In general,
 492 SkipSR does not provide significant speed-ups on videos with extremely crowded scenes or camera
 493 jitter, but we believe its strong performance on more typical videos is well worth the tradeoff.
 494

495 REFERENCES

- 496 Kelvin C.K. Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, Chao Dong, and Chen Change Loy.
 497 Realbasicvsr: Investigating tradeoffs between realism and fidelity in video super-resolution. In
 498 *CVPR*, 2022.
- 500 Zheng Chen, Zichen Zou, Kewei Zhang, Xiongfei Su, Xin Yuan, Yong Guo, and Yulun Zhang.
 501 Dove: Efficient one-step diffusion model for real-world video super-resolution. *arXiv preprint*
 502 *arXiv:2505.16239*, 2025.
- 503 Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
 504 Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch
 505 n’ pack: Navit, a vision transformer for any aspect ratio and resolution. *Advances in Neural*
 506 *Information Processing Systems*, 36:2252–2274, 2023.
- 507 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 508 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 509 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 510 2024.
- 512 Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li,
 513 Liang Li, Xiaojie Li, et al. Seedance 1.0: Exploring the boundaries of video generation models.
 514 *arXiv preprint arXiv:2506.09113*, 2025.
- 519 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 520 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.
- 521 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
 522 former. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 523 pp. 6185–6194, 2023.
- 525 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 526 *neural information processing systems*, 33:6840–6851, 2020.
- 531 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salis-
 532 mans. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning*
 533 *Research*, 23(47):1–33, 2022.
- 531 Xiaotao Hu, Jun Xu, Shuhang Gu, Ming-Ming Cheng, and Li Liu. Restore globally, refine locally:
 532 A mask-guided scheme to accelerate super-resolution networks. In *European Conference on*
 533 *Computer Vision*, pp. 74–91. Springer, 2022.
- 534 Yan Huang, Tao Zhang, Qian Wu, and Bin Li. Tsd-sr: Target score distillation for one-step super-
 535 resolution. *arXiv preprint arXiv:2308.04521*, 2023.
- 537 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 538 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 539 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
Pattern Recognition, pp. 21807–21818, 2024.

- 540 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale im-
 541 age quality transformer. In *Proceedings of the IEEE/CVF international conference on computer*
 542 *vision*, pp. 5148–5157, 2021.
- 543 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 544 *arXiv:1312.6114*, 2013.
- 545 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 546 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 547 models. *arXiv preprint arXiv:2412.03603*, 2024.
- 548 Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao Dong. Classsr: A general framework to
 549 accelerate super-resolution networks by data characteristic. In *Proceedings of the IEEE/CVF*
 550 *conference on computer vision and pattern recognition*, pp. 12016–12025, 2021.
- 551 Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mo-
 552 hammad Shoeibi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
 553 models. *Proceedings of Machine Learning and Systems*, 5:341–353, 2023.
- 554 Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
 555 Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
 556 data parallel training. *arXiv preprint arXiv:2006.15704*, 2020.
- 557 Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin
 558 Yang, Jinbo Hu, Kelly Peng, et al. Radial attention: O (nlog n)sparse attention with energy decay
 559 for long video generation. *arXiv preprint arXiv:2506.19852*, 2025.
- 560 Zhe Li, Liang Chen, Jie Zhou, and Xunying Wang. Sinsr: Single-step diffusion for super-resolution.
 561 *arXiv preprint arXiv:2307.12321*, 2023.
- 562 Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversar-
 563 ial post-training for one-step video generation. *arXiv preprint arXiv:2501.08316*, 2025.
- 564 Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Clear: Conv-like linearization revs pre-trained
 565 diffusion transformers up. *arXiv preprint arXiv:2412.16112*, 2024.
- 566 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 567 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022a.
- 568 Yang Liu, Jian Liu, Hang Xu, Jianfei Peng, Jie Zhou, and Xunying Wang. Rectified flow: Simplify-
 569 ing score-based generative modeling with normalizing flows. In *NeurIPS*, 2022b.
- 570 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 571 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 572 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
- 573 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 574 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint*
 575 *arXiv:2108.01073*, 2021.
- 576 Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. Making a “completely blind” image qual-
 577 ity analyzer. *IEEE Signal Processing Letters*, 20(3):209–212, 2013. doi: 10.1109/LSP.2012.
 578 2227726.
- 579 Brian B Moser, Stanislav Frolov, Federico Raue, Sebastian Palacio, and Andreas Dengel. Dynamic
 580 attention-guided diffusion for image super-resolution. In *2025 IEEE/CVF Winter Conference on*
 581 *Applications of Computer Vision (WACV)*, pp. 451–460. IEEE, 2025.
- 582 Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son, Radu Timofte, and
 583 Kyoung Mu Lee. Ntire 2019 challenge on video deblurring and super-resolution: Dataset and
 584 study. In *CVPR Workshops*, June 2019.
- 585 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 586 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

- 594 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 595 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 596 text-to-image diffusion models with deep language understanding. *Advances in neural informa-*
 597 *tion processing systems*, 35:36479–36494, 2022a.
- 598 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad
 599 Norouzi. Image super-resolution via iterative refinement. In *TPAMI*, 2022b.
- 600 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 601 *preprint arXiv:2202.00512*, 2022.
- 602 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 603 *Advances in neural information processing systems*, 32, 2019.
- 604 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *Proceedings*
 605 *of the 40th International Conference on Machine Learning (ICML)*, 2023.
- 606 Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
 607 with rotary position embedding, 2021.
- 608 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 609 of images. In *AAAI*, 2023a.
- 610 Jianyi Wang, Shanchuan Lin, Zhijie Lin, Yuxi Ren, Meng Wei, Zongsheng Yue, Shangchen Zhou,
 611 Hao Chen, Yang Zhao, Ceyuan Yang, et al. Seedvr2: One-step video restoration via diffusion
 612 adversarial post-training. *arXiv preprint arXiv:2506.05301*, 2025a.
- 613 Jianyi Wang, Zhijie Lin, Meng Wei, Yang Zhao, Ceyuan Yang, Chen Change Loy, and Lu Jiang.
 614 Seedvr: Seeding infinity in diffusion transformer towards generic video restoration. In *Proceed-
 615 ings of the Computer Vision and Pattern Recognition Conference*, pp. 2161–2172, 2025b.
- 616 Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan
 617 Guo. Exploring sparsity in image super-resolution for efficient inference. In *Proceedings of the
 618 IEEE/CVF conference on computer vision and pattern recognition*, pp. 4917–4926, 2021.
- 619 Yue Wang, Kai Chen, Yulun Zhang, and Xiaoyong Yang. Mgld-vsr: Motion-guided latent diffusion
 620 for video super-resolution. *arXiv preprint arXiv:2307.05457*, 2023b.
- 621 Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou Hou, Annan Wang, Wenxiu Sun
 622 Sun, Qiong Yan, and Weisi Lin. Exploring video quality assessment on user generated con-
 623 tents from aesthetic and technical perspectives. In *International Conference on Computer Vision
 (ICCV)*, 2023.
- 624 Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
 625 Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
 626 spatial-temporal sparsity. *arXiv preprint arXiv:2502.01776*, 2025.
- 627 Jiahui Xu, Jingyun Liang, Kai Zhang, and Luc Van Gool. Star: Structure-aware diffusion for video
 628 super-resolution. *arXiv preprint arXiv:2310.07894*, 2023.
- 629 Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. Progressive fusion video super-
 630 resolution network via exploiting non-local spatio-temporal correlations. In *Proceedings of the
 631 IEEE/CVF international conference on computer vision*, pp. 3106–3115, 2019.
- 632 Peng Yi, Zhongyuan Wang, Kui Jiang, Zhenfeng Shao, and Jiayi Ma. Multi-temporal ultra dense
 633 memory network for video super-resolution. *IEEE Transactions on Circuits and Systems for Video
 634 Technology*, 30(8):2503–2516, 2020. doi: 10.1109/TCSVT.2019.2925844.
- 635 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
 636 Bill Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in
 637 neural information processing systems*, 37:47455–47487, 2024.
- 638 Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
 639 SpARGEATN: Accurate sparse attention accelerating any model inference. In *International Confer-
 640 ence on Machine Learning (ICML)*, 2025a.

648 Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, and Hao
649 Zhang. Fast video generation with sliding tile attention. *arXiv preprint arXiv:2502.04507*, 2025b.
650

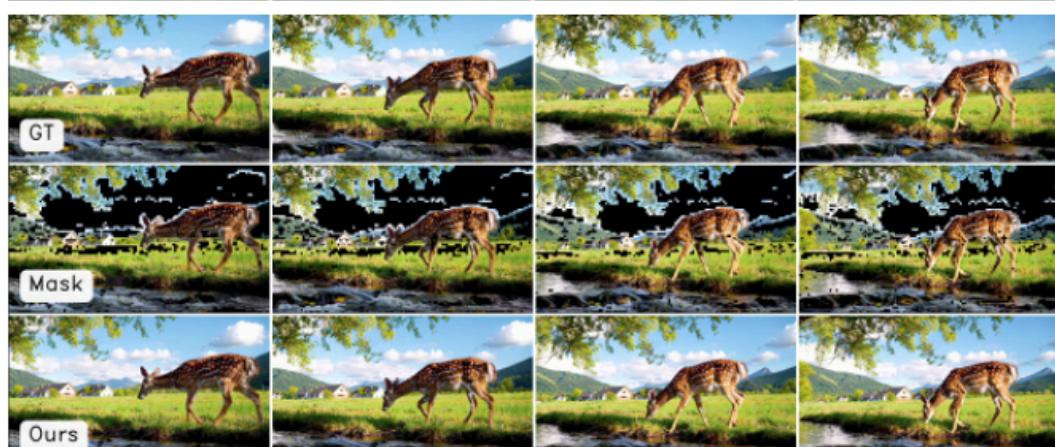
651 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
652 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
653 *computer vision and pattern recognition*, pp. 586–595, 2018.

654 Wei Zhang, Peng Li, Qian Huang, and Yong Xu. Osediff: One-step diffusion for image super-
655 resolution. *arXiv preprint arXiv:2303.09875*, 2023.
656

657 Shangchen Zhou, Peiqing Yang, Jianyi Wang, Yihang Luo, and Chen Change Loy. Upscale-a-video:
658 Temporal-consistent diffusion model for real-world video super-resolution. In *Proceedings of the*
659 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2535–2545, 2024.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A IMPLEMENTATION DETAILS**
703704 In this section, we provide more details on the preliminaries and implementation details for SkipSR.
705 These are based on prior works, **note about referring to other works**
706707 **Diffusion-Based Super-Resolution.**
708709 **Causal VAE.** As described in the main text, SkipSR follows the standard latent-diffusion
710 paradigm, where we encode pixel inputs using a variational autoencoder (VAE) into a compressed
711 latent space, perform diffusion, then decode back into pixel space. Prior works **CITE** of ten use an
712 inflated image-based VAE: **explain**.
713714 However, we employ the causal VAE introduced in SeedVR. The key difference is that rather than
715 ...
716717 **B ADDITIONAL EXPERIMENTS**
718719 **Mask Predictor Analysis** We include additional analysis on the performance of our learned mask
720 predictor in Table **add Ref**. We measure the precision, recall, mAP, and F1 score across different
721 datasets, and visualize the performance of the predictor **add some more**
722723 **Image Super-Resolution Results** The main focus of SkipSR is optimizing video super-resolution,
724 since videos are much larger than images and thus are more computationally challenging. However,
725 since SkipSR is trained on a mixture of images and videos, it is capable of performing image super-
726 resolution as well. We include results of SkipSR on DIV2K in Table , comparing with SeedVR,
727 SeedVR2, and other notable upscaling methods. Similar to the video domain, SkipSR matches the
728 performance of current methods while skipping a significant fraction of the tokens, **add mo analysis**
729730 **C ADDITIONAL VISUALIZATIONS**
731732 We encourage readers interested in video examples of our work to visit our our [project
733 page](<https://clamsoup97.github.io/anonymous-projects/skipsr/>), where several demos are shown.
734 We also include some more examples here. Our visualizations show that the mask predictor consis-
735 tently identifies simple patches, and that SkipSR produces excellent super-resolution quality despite
736 skipping on average 40% of the input tokens.
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756
757
758
759
760
761



810
811
812
813
814
815

