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ABSTRACT

Diffusion-based super-resolution (SR) is a key component in video generation and
video restoration, but is slow and expensive, limiting scalability to higher resolu-
tions and longer videos. Our key insight is that many regions in video are inher-
ently low-detail and gain little from refinement, yet current methods process all
pixels uniformly. To take advantage of this, we propose SkipSR, a simple frame-
work for accelerating video SR by identifying low-detail regions directly from
low-resolution input, then skipping computation on them entirely, only super-
resolving the areas that require refinement. This simple yet effective strategy
preserves perceptual quality in both standard and one-step diffusion SR mod-
els while significantly reducing computation. In standard SR benchmarks, our
method achieves up to 60% faster end-to-end latency than prior models on 720p
videos with no perceptible loss in quality. Video demos are available at our project
page.

1 INTRODUCTION

Diffusion transformers are the dominant paradigm in image and video generation, but due to the
quadratic cost of self-attention, computational time grows steeply with resolution and sequence
length. Furthermore, diffusion models typically require tens of steps to produce high-quality outputs.
To handle this, a common design choice is cascaded diffusion (Ho et al., 2022; Saharia et al., 2022a;
Gao et al., 2025), which first generates low-resolution images or videos, then uses a conditional
diffusion model to upscale and refine them into high-resolution results with fewer steps. However,
because of the larger input size at higher resolutions, diffusion-based super-resolution (SR) steps
can be very slow, often dominating the computation time. Speeding these up is essential for high-
resolution video generation and restoration.

Most prior work on addressing this issue focuses on reducing the number of diffusion steps. While
successful, this leaves gains on the table since even a single diffusion step is still expensive on
high-resolution video. Another recent line of work experiment with alternative attention mecha-
nisms, such as windowed, sliding tile, or spatially sparse attention. These works typically restrict
the attention mechanism to focus on nearby tokens, resulting in significant speedups.

A common assumption behind all these works is that they spend equal computation on every input
patch. However, not every patch is created equal. Our key insight is that many videos contain
visually simple regions: for example, a blue sky or a blurry background. This phenomenon is
particularly pronounced in super-resolution tasks, where the low-resolution conditional input often
includes extensive visually simple areas. These regions can be simply resized and placed directly in
the output, since they do not need refinement like more detailed regions of the input do.

We present Skip Super Resolution (SkipSR), a method that uses this idea to accelerate video super-
resolution. SkipSR uses a lightweight mask predictor to route only patches that require refinement
through the transformer, while the remaining patches skip the model entirely. The transformer
model maintain positional awareness with mask-aware rotary positional encodings, and the two
patch groups are composed together at the output stage, resulting in perceptually indistinguishable
outputs at a significantly lower computational cost.

We primarily evaluate on video SR tasks, given their considerable inference cost, and validate
SkipSR on top of a state-of-the-art video SR model (Wang et al., 2025b;a). Our experimental results
demonstrate its versatility in both multi-step and one-step diffusion paradigms. SkipSR significantly
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Figure 1: Patch Skipping.Standard diffusion SR models refine the entire input, while SkipSR iden-
tifies and upscales only the patches that need refinement. This significantly reduces computation
with no loss in perceptual quality.

accelerates super-resolution, yielding outputs that are perceptually indistinguishable from dense at-
tention equivalents. In particular, we achieve up to 60% faster super-resolution on 720p videos with
no loss in quality, supported both by video-quality metrics and user studies, and reduce the diffusion
time for 1080p videos by 70%.

In summary, the main contributions of our work are as follows:

• We demonstrate simple regions are common in videos, and that identifying and skipping
these simple regions can match perceptual quality with a fraction of the compute.

• We propose SkipSR, consisting of a lightweight mechanism to identify complex regions
and apply sparse attention only to them, leading to accurate and efficient super-resolution.

• We validate our hypotheses and design choices with extensive experiments, demonstrating
a consistent speed-up while maintaining quality.

2 RELATED WORK

Efficient Video Diffusion. Video generation is prohibitively slow, with full-attention models like
HunyuanVideo (Kong et al., 2024) taking tens of minutes to generate a 5-second video (Xi et al.,
2025). Since most models require many steps (Song & Ermon, 2019; Ho et al., 2020; Meng et al.,
2021), most work has focused on reducing the number of steps, through improving flow (Liu et al.,
2022a; Geng et al., 2025), consistency losses (Song et al., 2023), or distillation (Salimans & Ho,
2022; Yin et al., 2024; Lin et al., 2025). We build upon these works by demonstrating speed-ups on
both multi-step and single-step models.

Several methods have proposed speed-ups by increasing sparsity into the attention mechanism, thus
reducing the number of tokens considered. Sliding window attention (Hassani et al., 2023; Liu
et al., 2024; Zhang et al., 2025b) and other variants such as Radial Attention Li et al. (2025) restrict
attention to focus on spatiotemporally local tokens. Other works builds on this by enforcing sparsity
on attention heads in an online manner, such as SVG and Sparge (Xi et al., 2025; Zhang et al.,
2025a). Our method differs from these by skipping the entire Transformer, rather than just the
attention mechanism.

Diffusion Models for Video Super-Resolution. Alternatively, diffusion can be made more effi-
cient by first diffusing at low resolution, then upscaling at the end. (Ho et al., 2022). Cascaded
models like this are commonplace, such as SR3 (Saharia et al., 2022b), Stable Diffusion (Rombach
et al., 2022), and Seedance (Gao et al., 2025). Diffusion is also considered standard for stand-alone
video restoration. Recent works adapt image diffusers or condition video diffusers on LR inputs
via ControlNet (Xu et al., 2023; Zhou et al., 2024; Wang et al., 2023b). While improving fidelity,
these methods inherit the high cost of multi-step sampling and heavy conditioning. Parallel efforts
aim to accelerate diffusion through fewer or single sampling steps, using rectified flows (Liu et al.,
2022b), distillation (Zhang et al., 2023; Wang et al., 2025a; Huang et al., 2023; Chen et al., 2025),
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Figure 2: Oracle Mask Computation. We identify the low-resolution video regions by comparing
the original high-resolution input to a spatial downsampled, then upsampled version. This results in
a attention mask, shown in dark, that excludes these regions from refinement.

or deterministic one-step models (Li et al., 2023). However, these methods still process every region
of the input equally, so that simple videos take the same time as more complex ones.

Efficient Super-Resolution. Prior works have also attempted to accelerate super-resolution,
mainly on images, by identifying which regions need less refinement. Sparse Mask SR (Wang
et al., 2021) enforces sparsity to this end on CNN filters, while other works (Kong et al., 2021; Hu
et al., 2022; Fan et al., 2024) apply different sub-networks to sub-regions of an input image based
on their predicted complexity. Although these methods reduce FLOPS, they result in significantly
slower wall clock time, as stated in the papers. YODA (Moser et al., 2025) uses attention masks to
guide and improve diffusion for image SR, but does not accelerate the model. We provide a simple
solution to these issues while significantly speeding up wall-clock inference time.

3 MOTIVATION AND ANALYSIS

Selective Patch Processing. High-resolution videos often contain regions that do not contain
high-frequency details, e.g., a blue sky, a plain wall, or an out-of-focus background. We hypothesize
that these regions can skip the expensive transformer computation and be upsampled by cheaper
methods, such as bilinear interpolation, instead.

Concretely, we divide a high-resolution video I of size T ×H×W ×3 into non-overlapping patches
P of size 4×16×16×3. We define a patch as skippable if, after area downsampling D and bilinear
upsampling U , the reconstruction mean squared error (MSE) is smaller than a threshold τ :

MSE (P,U(D(P ))) ≤ τ (1)

Note that while there are many ways to classify the skippable regions, this is not the focus of our
work. Empirically, we find this straightforward measurement suffices.

To measure the commonality of such skippable regions, we measure the percentage of patches satis-
fying the criterion in Eq. (1) with τ = 0.0002 and a spatial downsampling factor of 4× on a diverse
set of videos. Furthermore, to validate skipping the patches does not degrade quality in the latent
diffusion setting, we encode the original video I through a VAE and swap the latent at the corre-
sponding skippable region with the encoding of U(D(I)) before decoding back to the pixel space.
Then, PSNR, SSIM, and LPIPS (Zhang et al., 2018) metrics are used to measure degradation against
the original video I .

Table 1 shows the results of our analysis on videos from VBench (Huang et al., 2024), AIGC-
30 (Wang et al., 2025b), VideoLQ (Chan et al., 2022), and YouHQ-40 (Zhou et al., 2024). In par-
ticular, VBench and AIGC-30 are AI generated videos, which yield the highest amount of skippable
patches, up to 45%. For real-world videos, VideoLQ is a common SR evaluation dataset offered
in low resolution. We use the upsampled version by SeedVR (Wang et al., 2025b) and yield 30%
skippable patches. YouHQ has large camera movements and yields a lower 15% skippable patches.
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Table 1: Oracle Mask Analysis. Using the oracle mask, we measure the reconstruction error of
upsampling and swapping simple patches, as well as the resulting expected speedup. We spatially
downsample by 4× in all cases.

Dataset Resolution Skippable % PSNR↑ SSIM↑ LPIPS↓ Speedup↑

VBench 720p 44.8 % 42.24 0.988 0.0400 1.8×
AIGC-30 720p 41.9% 43.11 0.989 0.038 1.7×
VideoLQ 720p 31.2% 46.61 0.994 0.0239 1.5×
YouHQ-40 720p 14.7% 46.64 0.994 0.0149 1.2×
YouHQ-40 (corrupted) 720p 0.9% 66.33 0.999 0.0002 1.0×
AIGC-30 1080p 44.9% 44.39 0.991 0.031 1.8×
VideoLQ 1080p 36.7% 48.32 0.993 0.013 1.6×

Overall, our approach can expect an average reduction of 30% tokens for regular super-resolution
tasks while retaining a VAE reconstruction PSNR of 40+ and LPIPS of near 0, which are considered
imperceptible to human eyes. However, as a limitation, we also show that the synthetically corrupted
YouHQ contains heavy white noise everywhere. Such cases do not yield much patch savings and
are less applicable to our approach.

Estimating the Theoretical Speedup. Next, we estimate the expected speed-up by completely
skipping the patches from the transformer and profiling the diffusion model. We use the state-
of-the-art SR method SeedVR2 (Wang et al., 2025a) as the baseline architecture, and the relative
speed-up is provided in the last column of Table 1. This preliminary experiment shows that skipping
patches can achieve 1.2× to 1.8× speed-up on the diffusion model. Inspired by these observations,
our method is designed to (1) identify the simple regions from low-resolution input as accurately as
possible and (2) produce high-quality super-resolution outputs from applying attention only on the
complex regions.

4 METHOD

This section first provides a brief review of the video super-resolution model on which our method
is built. We then introduce our approach in Section 4.2.

4.1 PRELIMINARIES

Recent diffusion-based SR methods adopt the latent diffusion paradigm (Rombach et al., 2022),
where a pre-trained variational autoencoder (VAE) (Kingma & Welling, 2013) compresses images
or videos into a latent space, and a diffusion transformer generates the high-resolution latent con-
ditioned on text and low-resolution latents. During training, low-resolution inputs are obtained by
applying synthetic degradations (e.g. blurring, downsampling, noise injection, compression) to high-
resolution data. This procedure works well for super-resolution as well as more complex restoration.
For more details, we refer the reader to Wang et al. (2025b).

We adopt the architecture used in SeedVR (Wang et al., 2025b), which combines shifted windows
(Liu et al., 2021) and the native-resolution trick of Dehghani et al. (2023) and use MMDiT (Esser
et al., 2024) for text-conditioning in the DiT. We employ a causal video VAE that compresses the
pixel-space input by 8× spatially and 4× temporally, and the DiT operates on 1× 2× 2 patches in
latent space.

4.2 SPARSE SUPER-RESOLUTION

Skip Prediction Model. Unlike our preliminary analysis in Section 3, at inference time, we do
not have a high-resolution ground-truth video to identify skippable patches. We train a lightweight
predictor network to predict skippable patches given low-resolution videos. Specifically, our pre-
dictor network operates in the VAE latent space and is composed of 4 layers of 3D convolution and
ReLU activations. The first convolution has a spatial stride of 2 to match teh patch size. The net-
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Figure 3: SkipSR Overview. We take as input low-resolution videos, project into latent space,
then compute the complexity mask. Simple patches skip computation and are routed around the
transformer, then composed with the refined output.

work takes latent of shape t× h×w× 16 as input, and outputs binary classification logits of shape
t×h/2×w/2× 1. This corresponds to a patch size of 1× 2× 2 in the latent space and 4× 16× 16
in the pixel space.

During training, given high-resolution videos I and their synthetic low-resolution pairs D(I), we
encode D(I) through VAE and provide it as input to the predictor. The predictor network is trained
using binary cross-entropy loss, where the ground-truth classification target is given by Eq. (1). Dur-
ing inference, low-resolution videos i are used instead of D(I), and the predictor network classifies
skippable patches with high accuracy.

Skip-Aware Diffusion Model. Prior works that accelerate diffusion models modify the attention
algorithm, but leave the other components, such as the FFN and LayerNorm, unchanged. Our key
finding is that the predicted skipped tokens can skip the Transformer altogether. Typically, these
skipped tokens are in the background, while the un-skipped tokens come from the more detailed
foreground. We speculate that the un-skipped tokens, along with the text conditioning, provide
enough context to produce high-quality super-resolutions.

After the mask predictor produces a mask M , we apply M to the set of input latent patches, P . P
has N patches, where N = t × h/2 × w/2, indexed as P = {p1, p2, . . . pN} We then apply M to
P , partitioning it into two sets Pskip and Punskip. Pskip receives no further computation.

Punskip is next passed through the Transformer’s patch projection layer, and proceeds through each
Transformer block. However, as shown in Figure 3, the patches in Punskip are no longer spatiotem-
porally contiguous. For example, Punskip could consist of {p3, p4, p13 . . . pN}. We thus need to
ensure that the Transformer is aware of their relative positions. We accomplish this by modifying
the rotary positional encodings (RoPE) (Su et al., 2021) in the attention operation. In RoPE, the
embeddings in each token are rotated by an angle θ that is scaled by the position index:

RoPE(pi, i) = Ri · pi (2)

where pi is the i-th patch in P , d is the feature dimension, and Rm ∈ Rd×d is a block-diagonal
rotation matrix with angles i · θk for each dimension pair k, where θk = 10000−2k/d.

Rather than use the index m of each patch in Punskip , we use each the original index from P ,
encoding the relative position of each patch. With our previous example, if the first element of
Punskip was p3, we would apply RoPE with i = 3 rather than i = 1, ensuring that patches in Punskip

are aware of their relative distances. After running the Transformer and the patch output projection

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Main Quantitative Results. We compare SkipSR’s super-resolution output against
SeedVR and SeedVR2 baselines on real-world (VideoLQ) and AI-generated (AIGC30) benchmarks.
The best value is in blue, and the second-best in red. SkipSR matches the performance of SeedVR
and SeedVR2 with significantly less compute.

Dataset Method NIQE↓ MUSIQ↑ CLIP-IQA↑ DOVER↑ BRISQUE↓ TFLOPs↓ s/step↓ Skipped%

VideoLQ

SeedVR-3B 4.069 57.41 0.318 8.009 35.45 2001 6.41 0
SeedVR-7B 4.933 48.35 0.258 7.416 28.120 3139 7.74 0
Ours (3B) 4.112 54.175 0.288 7.992 38.094 1343 4.47 (1.4×) 27.7%

SeedVR2-3B 4.687 51.09 0.295 8.176 38.1 2001 6.41 0 %

SeedVR2-7B 4.948 45.76 0.257 7.236 41.332 3139 7.74 0%
Ours (3B, one-step) 4.3449 57.783 0.324 8.199 39.220 1343 4.47 (1.4×) 27.7%

AIGC30

SeedVR-3B 3.655 64.4 0.589 12.9 25.3 2001 6.41 0%
SeedVR-7B 4.053 64.26 0.564 16.47 35.7 3139 7.74 0%
Ours (3B) 3.99 65.14 0.575 11.9 35.89 1135 3.85 (1.6×) 39.6%

SeedVR2-3B 3.801 62.99 0.561 15.77 28.021 2001 6.41 0%
SeedVR2-7B 4.138 65.09 0.574 13.4 39.14 3139 7.74 0%
Ours (3B, one-step) 3.6628 67.218 0.581 16.021 29.534 1135 3.85 (1.6×) 39.6%

layer on P, the output P ′
unskip is composed with Pskip using M , resulting in a mixed sequence of

processed and unchanged patches.

Handling Window Attention. Our DiT uses shifted window attention, which partitions the input
into non-overlapping windows at each layer. In this case, the rotary positional encodings are not
defined with respect to the entire input sequence length, but instead are based on the window size.
To handle this with the SkipSR mask, we first assign each patch in P to a window as normal, then
apply the mask, resulting in Punskip. Each patch simply P keeps its original window assignment
from P , as shown in the inset of Figure 3. Although each window now has an imbalanced number
of tokens, this is handled natively by FlashAttention and NaViT, while preserving rotary positional
embeddings dependent on a fixed window size.

Training. To train the mask predictor, we freeze the VAE encoder and train on high-resolution
images and videos. For the main super-resolution model, we follow standard practice and train on
a mixture of images and videos (Chen et al., 2025; Wang et al., 2025b), using standard diffusion
training.

Furthermore, while standard diffusion transformers are multi-step, several works accelerate these
models by reducing the number of steps required to just one step. We train a one-step version of
SkipSR to measure against these approaches, based on the procedure introduced in APT (Lin et al.,
2025). We apply progressive distillation (Salimans & Ho, 2022) to distill our model to reduce one-
step, then adversarially post-train it using a transformer-based discriminator to restore sharpness,
resulting in a one-step model that matches the quality of the original.

5 EXPERIMENTS

Implementation Details. Models are initialized from public SeedVR/SeedVR2 (3B/7B) check-
points and fine-tuned jointly with the same data and objectives as the baselines. Training uses 40
NVIDIA A100-80G GPUs with batches of about 100 frames at 720p, using sequence (Korthikanti
et al., 2023) and data parallelism (Li et al., 2020). We use the same data for training as Wang et al.
(2025b). The mask predictor is trained on the same data as the super-resolution model with 8 GPUs
for 10k iterations, as the mask predictor converges significantly faster due to its smaller size.

Experimental Settings. Our goal is to simply compare the generation quality of the base model
(SeedVR) on real-world videos while reducing wall-clock time. We conduct our main evaluation
on the VideoLQ (Chan et al., 2022) and our AIGC30 datasets, reporting commonly used reference-
free quality metrics such as NIQE (Mittal et al., 2013)c, CLIP-IQA (Wang et al., 2023a), MUSIQ
(Ke et al., 2021) and DOVER (Wu et al., 2023). Efficiency is measured by runtime and skipped
token fraction (token%). All comparisons use unmodified SeedVR / SeedVR2 with our masked
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Methods-{Steps} Speed
(seconds) Overall Quality

SeedVR-3B-50 320 +4%
DOVE-1 14.1 -18%
SeedVR2-3B-1 6.41 0%
Ours-3B-50 3.5 +7%

(a) User Study. Our method is preferred by users
relative to SeedVR2 while also being significantly
faster.

(b) Latency. The end-to-end generation latency for the
transformer is significantly improved by SkipSR, reduc-
ing the total time by 60% while the mask predictor adds
negligible overhead.

Table 3: Results on Synthetic VSR Benchmarks. SkipSR matches the performance of other meth-
ods on heavily degraded benchmarks. Best numbers are blue; second best are red.

Datasets Metrics RealViformer MGLD-VSR STAR DOVE SeedVR-7B SeedVR2-3B SeedVR2-7B SkipSR-3B
(Ours)

SPMCS

PSNR ↑ 24.185 23.41 22.58 23.11 20.78 22.97 22.90 23.9892
SSIM ↑ 0.663 0.633 0.609 0.621 0.575 0.646 0.638 0.6807
LPIPS ↓ 0.378 0.369 0.420 0.288 0.395 0.306 0.322 0.2865
DISTS ↓ 0.186 0.166 0.229 0.171 0.166 0.131 0.134 0.1234

UDM10

PSNR ↑ 26.70 26.11 24.66 26.48 24.29 25.61 26.26 26.5243
SSIM ↑ 0.796 0.772 0.747 0.783 0.731 0.784 0.798 0.788
LPIPS ↓ 0.285 0.273 0.359 0.270 0.264 0.218 0.203 0.2429
DISTS ↓ 0.166 0.144 0.195 0.149 0.124 0.106 0.101 0.117

REDS30

PSNR ↑ 23.34 22.74 22.04 22.11 21.74 21.90 22.27 22.4298
SSIM ↑ 0.615 0.578 0.593 22.67 0.596 0.598 0.606 0.6093
LPIPS ↓ 0.328 0.271 0.487 0.277 0.340 0.350 0.337 0.2682
DISTS ↓ 0.154 0.097 0.229 0.106 0.122 0.135 0.127 0.1081

YouHQ40

PSNR ↑ 23.26 22.62 22.15 24.3 20.60 22.10 22.46 23.1495
SSIM ↑ 0.606 0.576 0.575 0.674 0.546 0.595 0.600 0.6277
LPIPS ↓ 0.362 0.356 0.451 0.299 0.323 0.284 0.274 0.2361
DISTS ↓ 0.193 0.166 0.213 0.148 0.134 0.122 0.110 0.1007

variants initialized from the same checkpoints and trained using the same procedure. Though not
the main focus of our work, we also measure restoration ability on heavily degraded synthetic bench-
marks, namely SPMCS (Yi et al., 2019), UDM10 (Yi et al., 2020), REDS30 (Nah et al., 2019), and
YouHQ40, where we compute PSNR, SSIM, LPIPS and DISTS.

5.1 MAIN RESULTS

Since SkipSR is a general way to accelerate video SR, our goal is to match the performance of
existing diffusion-based methods with minimal loss in quality while achieving a significant speed-
up. We compare against the state-of-the-art diffusion methods, including other prior methods for
completeness. Our main results on super-resolution benchmarks are in Table 2, where we evaluated
SkipSR on real-world and AI-generated video SR test sets. In general, SkipSR matches or exceeds
SeedVR’s performance in video quality metrics, while significantly reducing the total time required,
reducing it by 40% in VideoLQ and 60% on AIGC-30. We also match the performance of SeedVR2
in one-step generation, demonstrating the versatility of our framework and its potential applicability
to cascaded diffusion. We also measure the end-to-end latency of the system in Figure 4b. The
computation time is dominated by the diffusion transformer, with the VAE taking around 30s total
and the mask predictor adding 60ms of overhead. The mask predictor also adds 23M parameters
and 22MB of memory to the base model’s 3B parameters and 13GB memory, incurring little cost
overall. We find that on average, SkipSR reduces the overall end-to-end generation time by 60%,
more than 2 minutes, strongly supporting its general applicability.

User Study. User studies are crucial for evaluating generative outputs. We conducted a GSB study
with three domain experts, asking each to decide whether the samples are better, same, or worse.
The preference score is calculated as G−B

G+S+B , which ranges from −100% to 100%. We randomly
select 25 samples from VideoLQ and AIGC-30 and ask subjects to evaluate the overall quality of
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Table 4: Predicted Mask Analysis. We repeat the analysis in Table 4 with the learned predictor and
find that we generally maintain PSNR, but retain slightly more tokens.

Dataset Resolution PSNR↑ SSIM↑ Skipped (%)↓

VBench 720p 43.67 (+1.4) 0.980 (–0.008) 58.1 (-2.9)
VideoLQ 720p 43.87 (–2.7) 0.991 (–0.001) 27.7 (-3.5)
YouHQ-40 (clean) 720p 44.52 (-2.1) 0.988 (-0.006) 8.6 (-6.1)
AIGC-30 720p 42.03 (–1.1) 0.991 (-0.003) 39.6 (-2.3)

VideoLQ 1080p 43.87 (–2.7) 0.991 (–0.001) 33.4 (-3.3)
AIGC-30 1080p 43.24 (–1.2) 0.993 (+0.002) 42.9 (-2.0)

(a) Sparsity mechanism. We measure the speed
of routing around the model entirely compared to
other design choices, such as only masking the at-
tention, using interspersed global layers, or only
masking the attention queries. Ours is signifi-
cantly faster, while maintainng quality.

(b) Threshold effect. As we increase the threshold τ ,
the reduction increases at the cost of maximum PSNR.
τ = 0.0002 is a reasonable choice for token reduction
while maintaining perceptual quality.

our generations compared to the baseline, SeedVR2. As shown in Table 4a, we match SeedVR-3B
and SeedVR2, and significantly outperform DOVE, supporting our claim that we can accelerate the
model without losing visual quality as perceived by users.

Synthetic Benchmarks. Synthetic video restoration benchmarks are created by applying small
degradations to the entire frame, making them unsuitable for our core hypothesis, that upsampled
regions from low-resolution videos map well onto their high-resolution outputs. Achieving state-
of-the-art performance on these is not the main focus of this work; we are emphatically focused on
general acceleration without significant loss of quality. However, we include the results of these
benchmarks in Table 3 for completeness. Our model performs surprisingly well, matching the per-
formance of comparable models, such as SeedVR, DOVE, and SeedVR2.

5.2 ANALYSIS

Mask Predictor. We repeat the analysis of the oracle experiment in Section 3 using our learned
mask predictor, comparing the theoretical maximum performance using our predicted mask in ab-
sence of the ground-truth high-resolution video with that of the oracle using the ground-truth. The
results in Table 4 demonstrate that our mask performs well: it does not quite reach the theoretical
optimum but still skips a significant proportion of patches while maintaining visual fidelity. Notably,
the difference between swapping with our predicted mask and the ground-truth high-resolution is
still consistently above 40 PSNR, which is an essentially imperceptible difference.

Profiling and Speed Design Choices. We measure the efficiency of other potential sparsity mech-
anisms in Figure 5a. Most works address the attention layer; we demonstrate that this loses 23%

8
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Figure 6: Visual Comparison. In the above two examples, the ground truth is on top, followed by
the predicted mask, and our output. We produce perceptually indistinguishable results while only
refining a small subset of the input video. Additional results are on our project page.

speed. Similarly, strategies like only masking out the attention queries or interspersing sparse and
dense layers are not much faster than the baseline. On the other hand, our method achieves the
largest speed-up while maintaining quality.

Threshold Effect. Finally, we analyze the effect of varying the threshold τ that defines the bound-
ary between simple and complex patches in Figure 5b. We measure the PSNR compared to the
original image for both AIGC and VideoLQ using the oracle mask, as well as the fraction of tokens
removed by this procedure. Since the mask is dependent on the input data, the curves are offset from
each other, but follow the same general trend: as we increase the threshold, the PSNR consistently
decreases as more and more complex patches are skipped rather than refined. From the plot, we can
see that τ = 0.0002 represents a reasonable balance between fidelity and token reduction, as it is
paramount that any acceleration does not come at a cost to visual quality.

6 CONCLUSION

This paper tackles the acceleration of video super-resolution by focusing refinement only on com-
plex regions that actually require it, rather than uniformly upscaling the entire input. We find that
such regions make up a substantial fraction of video, and that using a cheap upsampling operation on
them rather than expensive super-resolution can maintain quality. We propose SkipSR, which iden-
tifies these regions from the low-resolution input and routes them entirely around the transformer,

9
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composing them with the upscaled output afterward. Implementing our simple strategy enables sig-
nificant acceleration, reducing the diffusion time by 1.8× without visible loss in quality and the
end-to-end generation time by 1.6×.

Limitations. A limitation of SkipSR is its lack of acceleration on video restoration tasks with
severe degradations, where we are unable to skip patches due to widespread corruptions. In general,
SkipSR does not provide significant speed-ups on videos with extremely crowded scenes or camera
jitter, but we believe its strong performance on more typical videos is well worth the tradeoff.
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A IMPLEMENTATION DETAILS

In this section, we provide more details on the preliminiaries and implementation details for SkipSR.
These are based on prior works, note about referring to other works

Diffusion-Based Super-Resolution.

Causal VAE. As described in the main text, SkipSR follows the standard latent-diffusion
paradigm, where we encode pixel inputs using a variational autoencoder (VAE) into a compressed
latent space, perform diffusion, then decode back into pixel space. Prior works CITE of ten use an
inflated image-based VAE: explain.

However, we employ the causal VAE introduced in SeedVR. The key difference is that rather than
...

B ADDITIONAL EXPERIMENTS

Mask Predictor Analysis We include additional analysis on the performance of our learned mask
predictor in Table add Ref. We measure the precision, recall, mAP, and F1 score across different
datasets, and visualize the performance of the predictor add some more

Image Super-Resolution Results The main focus of SkipSR is optimizing video super-resolution,
since videos are much larger than images and thus are more computationally challenging. However,
since SkipSR is trained on a mixture of images and videos, it is capable of performing image super-
resolution as well. We include results of SkipSR on DIV2K in Table , comparing with SeedVR,
SeedVR2, and other notable upscaling methods. Similar to the video domain, SkipSR matches the
performance of current methods while skipping a significant fraction of the tokens, add mo analysis

C ADDITIONAL VISUALIZATIONS

We encourage readers interested in video examples of our work to visit our our [project
page](https://clamsoup97.github.io/anonymous-projects/skipsr/), where several demos are shown.
We also include some more examples here. Our visualizations show that the mask predictor consis-
tently identifies simple patches, and that SkipSR produces excellent super-resolution quality despite
skipping on average 40% of the input tokens.
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