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Abstract
In clinical practice, regions of interest in medical imaging (MI) often need to be identified
through a process of precise image segmentation. For MI segmentation to generalize, we
need two components: to identify local descriptions, but at the same time to develop a
holistic representation of the image that captures long-range spatial dependencies. Unfor-
tunately, we demonstrate that the start of the art does not achieve the latter. In particular,
it does not provide a modeling that yields a global, contextual model. To improve accuracy,
and enable holistic modeling, we introduce a novel deep neural network architecture en-
dowed with spatial recurrence. The implementation relies on gated recurrent units that di-
rectionally traverse the feature map, greatly increasing each layers receptive field and explic-
itly modeling non-adjacent relationships between pixels. Our method is evaluated in four
different segmentation tasks: nuclei segmentation in microscopy images, colorectal polyp
segmentation in colonoscopy videos, liver segmentation in abdominal CT scans, and aorta
artery segmentation in thoracic CT scans. Our experiments demonstrate an average im-
provement in performance of 4.72 Dice points and 0.68 Hausdorff distance units comparing
to U-Net and U-Net++, and a performance better or on par when compared to transformer-
based architectures. Code available at https://github.com/JoaoCarv/holistic-seg.
Keywords: Medical Image Segmentation, U-Net, Spatially Recurrent Modeling

1. Introduction

Imaging the internal tissues of a patient can be crucial for the diagnosis, prognosis, and treat-
ment planning (Son et al., 2021). Whether the medical imaging-driven patient assessment is
done by medical professionals or automatic methods, a typical preceding step in the clinical
pipeline is to perform image segmentation to reduce the dimensionality of the data and high-
light regions of interest (Giger, 2018). Since manual segmentation is a time-consuming and
tedious task for physicians, many algorithms have been developed to automate this process.
The most successful recent approaches are based on encoder-decoder-based convolutional
neural networks, stemming from the original U-Net architecture (Ronneberger et al., 2015).

For automatic medical image segmentation to achieve human-level performance it re-
quires holistic modeling, critically relying on the capability of the machine learning model
to both: (i) accurately identify local intensity discontinuities or edges as object boundaries
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Figure 1: Qualitative analysis of image segmentation for different competing
methods (best viewed in color). (a) original image; (b) U-Net (Ronneberger et al.,
2015); (c) U-Net++ (Zhou et al., 2019); (d) SDU-Net (ours); (e) SDNU-Net (ours); (top
row) polyp segmentation. The baseline U-Net architectures mistakenly identify a region in
the bottom left corner as relevant due to the local features. However, when observing the
image as a whole, it is clear that there is a single region of interest, as marked successfully
by our networks. (bottom row) liver segmentation. In contrast to SDN-based networks,
the baseline U-Net architectures are unable to coherently identify the well-shaped region of
interest. (red color) false positives; (blue color) false negatives; (white color) correctly
predicted pixels.

that characterize local textures; (ii) account for global contextual information when assess-
ing the relevance of different image regions, e.g. understanding image-specific semantics
and texture. For example, when segmenting a liver in a medical image, it is important
to take into account both local texture patterns that describe the organ, as well as the
contrasting characteristics of different regions, to model its consistent local description and
global anatomical position. Convolutional neural networks excel at (i), but often fail at (ii),
ultimately not achieving true holistic modeling.

We demonstrate this limitation in Figure 1 with two examples: colorectal polyp and liver
segmentation, where commonly used architectures like U-Net and U-Net++ (Zhou et al.,
2019) fail to correctly identify parts of the liver and also incorrectly believe benign tissue to
be a polyp. Our experiments in Section 3.3 further confirm such limitations.

Thus, the question we address here is how to empower existing networks to perform
holistic comparisons. To tackle this issue, we propose instead a novel approach by using
spatial recurrence and implementing it in the form of gated recurrent units that traverse
broader regions of the image in order to capture holistic features. Another advantage to
this approach is the extensive work on recurrent units that can easily leveraged for sequence
modeling. (Yu et al., 2019). In this context, we use the novel spatial dependency net-
works (SDNs) (Miladinovic et al., 2021), which have been recently used for generative image
modeling, resulting in a new state-of-the-art variational autoencoder in several settings.

We experimentally demonstrate the benefit of bringing recurrence into the convolutional
neural networks (CNNs) for medical image segmentation on four different tasks: (i) cell
structure segmentation (Caicedo et al., 2019); (ii and iii) two anatomical structure segmen-
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tation tasks (Bilic et al., 2019; Lambert et al., 2020); and (iv) abnormal tissue segmentation
(Bernal et al., 2017), comprising three distinctive medical imaging methods (respectively, mi-
croscopic imaging, colonoscopy video, abdominal and thoracic CT-scan). In all of them, we
observe an increase in performance when including spatial recurrence into the segmentation
architectures, with an average increase of 4.72 Dice points and decrease of 0.68 Hausdorff
distance units across all tasks when comparing to classical segmentation architectures. In
particular, for the liver segmentation task, we go from 86.34±1.72 Dice points to 94.72±1.71,
by solely enhancing U-Net with nested SDNs units. Additionally, our method also compares
favourably on most settings with other recently proposed state-of-the-art segmentation ar-
chitectures.

Related Work

Classical integration of multi-scales – To achieve holistic segmentation, several CNN-
based works have been proposed the integration of features at multi-scales (Kamnitsas et al.,
2015), with other innovations following the use of atrous convolution layers (Chen et al.,
2017), self-attention (Schlemper et al., 2019), and pyramid networks (Feng et al., 2020).
Despite their success, learning global long-range spatial dependencies as still been observed
as a persistent limitation Zhang et al. (2021).
Transformer-based architectures – More recently, motivated by their success in the com-
puter vision field several transformer-based architectures (Dosovitskiy et al., 2020; Touvron
et al., 2021) have been proposed to better integrate global context in medical image segmen-
tation. These can be subdivided into architectures that combine transformer networks and
CNNs (Chen et al., 2021; Zhang et al., 2021), and fully transformer base architectures(Cao
et al., 2021; Lin et al., 2021). Unfortunately, transformer-based architectures are heavy GPU
memory consumers and pre-training reliant on large non-medical datasets.

2. Bringing Spatial Recurrence Into Convolutional Neural Networks

Figure 2: Left: Receptive field of a convolutional layer, with kernel size k. Right: Receptive
field of N convolutional layers with kernel size k and stride 1.

We start with some auxiliary notation. Denote a 2D feature map as the tensor X ∈
Rm×n×c, where m is the feature map’s width, n is the feature map’s height, and c is the
number of channels. For i ≤ m and j ≤ n, we denote by Xi,j the vector (Xi,j,1, . . . , Xi,j,c)

⊤

that corresponds to the feature vector in position (i, j). Observe that such description
contemplates the 2D feature maps that are produced by convolutional layers and can be
easily extended to the three-dimensional setting.
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The receptive field of a convolutional layer often does not cover the entire image (Araujo
et al., 2019). Although stacking such layers leads to a larger receptive field, as depicted
Figure 2, this field may still be too small to cover the entire image (Araujo et al., 2019).
For a more detailed presentation of the receptive fields, see Appendix A. In addition, such
composition of layers only weakly models distant pixel relationships across different levels
of the architecture. For example, consider a pixel inside the two red squares in Figure 2 and
another one outside the smallest red square, but inside the largest one. The relationship
between these two pixels is only perceived after composing at least two convolutional layers.

We argue that these limitations are unnecessarily restrictive for medical image segmen-
tation. To address them, we propose to introduce recurrent sweeps across the feature map,
thus involving more entries from I through a spatially coherent modeling.

2.1. Recurrent Sweeps

Our proposal is to interleave recurrent sweeps with the convolutional layers. After computing
the output O ∈ Rm′×n′×c′ of a convolutional layer, we produce, using recurrent sweeps,
another feature map Ô of same dimensions as O, which will be the input for the next layer.

We now show an example of a recurrent sweep that uses a recurrent unit g↓ to produce Ô
from O as follows. We assume a recurrent unit to be any function g : Rc′ ×Rc′ ×Rc′ ×Rc′ →
Rc′ . The recurrent sweep works as follows. For i from 1 to m and for j from 1 to n, in that
order, we compute

Ôi,j = g↓(Oi,j , Ôi−1,j−1, Ôi−1,j , Ôi−1,j+1) (Figure 3). (1)

We call such a recurrent sweep a downward sweep. Figure 3 illustrates the features that
influence the outcome of a downward sweep for one pixel in Ôi,j . In a similar way, we define
sweeps in the other three directions: up, down, and left. A sweep can also use different
types of recurrent units. For example, one that instead of {Oi,j , Ôi−1,j−1, Ôi−1,j , Ôi−1,j+1}
uses {Oi,j} ∪ {Ôr,s : i− 2 ≤ r ≤ i, j − 1 ≤ s ≤ j + 1}.

A recurrent sweep can also be a composition of other sweeps. For example, we can first
apply a downward sweep to O. Then successively apply a leftward sweep, an upward sweep,
and a rightward to the outcome of each previous sweep. The output of this composite
sweep for a particular entry of Ô involves then all entries in O (Figure 3). We formally
demonstrate this in Appendix A. The receptive field in this case is then the entire image.
This is an advantage over convolutional layers, where the receptive field may not cover the
entire image, even after stacking several convolutional layers.

2.2. Spatial Recurrence Through Spatially Dependent Networks

In this work we make use of the recently proposed spatial dependency layers (Miladinovic
et al., 2021) to introduce spatial recurrence. They take as input a feature map O and
produce an output feature map Ô in three steps, as follows.
Project-in stage: This stage applies an affine transformation to O, yielding Ō as follows:

Ōi,j = Oi,jW + b, (2)

where W and b are a learnable weight matrix and a learnable bias vector, respectively. Ō
usually contains a larger and tunable number of channels than O.
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Figure 3: Left: Receptive field. Using recurrent sweeps it is possible to greatly extend
the receptive field of a layer, as shown with the downward sweep, g↓. In particular, the
composition of sweeps, g, covers the full input O, and, contrarily to convolutional layers, it
is able to explicitly model long-range dependencies within the same feature map. Right:
Diagram of architectures. SDNU-Net integrates a mix of convolutional and spatial
dependency layers into the deeper scales of U-Net++. In yellow we depict SDU-Net.

Correction stage: This stage performs four recurrent sweeps over Ō in different directions,
one after the other as explained in Section 2.2. They use a gating mechanism (Cho et al.,
2014), adapted to the image setting, which moderates the contributions of the updated
(proposed) value and the intermediate (prior) feature value.
Project-out stage: This stage performs an affine transformation on the output from the
correction stage, yielding Ô. The number of channels in Ô equals those in O.

Note that a more detailed description of each step of a SDN layer and the algorithmic
formalization of the correction stage can be found in Appendix B.

2.3. Introducing Spatial Dependency Layers to U-Net and U-Net++

Our main contribution is the integration of recurrence into convolutional neural networks.
We illustrate this by introducing spatial dependency layers into U-Net and U-Net++, which
are the backbones for many of the best performant segmentation networks (Jha et al., 2021;
Srivastava et al., 2021) (see Figure 3). U-Net++, by incorporating nested dense connections
to the U-Net architecture, mainly attempts to alleviate the drawbacks of features from dif-
ferent semantic levels being combined at the decoding path. Following our ablation studies
(Figure 4), we found it sufficient to include spatial dependency layers at lower scales of the
U-Net++, retaining most of the original nested architecture, and mitigating the compu-
tational complexity inherent to SDNs. This was also verified for the vanilla U-Net. Our
implementation consecutively applies convolutional and spatial dependency layers within
the same depth level.
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3. Experiments

3.1. Datasets

As described in Table 1, four public medical image segmentation datasets were included in
our study, covering three different medical imaging modalities and four segmentation tasks.
Partitioning between train, validation, and test sets was performed at the volume/patient
level to avoid intra-sample bias and over-optimistic results. For further details on the
datasets and corresponding data pre-processing pipelines, please refer to Appendix C.

Table 1: Summary information of datasets used.
Number of

Images
Image Size

(resampled size) Modality Challenge

Nuclei 670
(2D images)

96×96
(no resampling) Microscopy 2018 Data Science Bowl

(Caicedo et al., 2019)

Polyps 612
(29 sequences)

384 × 288
(192 × 144) Colonoscopy

Endoscopic Vision
MICCAI 2015

(Bernal et al., 2017)

Liver 131
(3D volumes)

512 × 512
(128 × 128) CT

LiTS
ISBI 2016/MICCAI 2017

(Bilic et al., 2019)

Aorta 40
(3D volumes)

256 × 128
(no resampling) CT Segthor ISBI 2019

(Lambert et al., 2020)

3.2. Implementation Details

Following (Zhou et al., 2019; Isensee et al., 2021), the number of layers of the baseline network
architecture was tuned to each segmentation task. Similarly, SDN specific parameters - state
size, i.e. the number of channels in each project-in stage of spatial dependency layer, then
number of directions, and the number of layers equipped with spatial dependency were
separately optimized. Architecture details of all models, including activation functions and
kernel sizes, followed original descriptions. Final configurations and implementation details
are disclosed in Appendix D.

3.3. Results and Discussion

Table 2 benchmarks SDU-Net and SDNU-Net, as well as baselines, U-Net and U-Net++,
in terms of segmentation performance measured in Dice index and Hausdorff distance
(mean±s.d. across 5 folds). We also evaluated the performance of three other state-of-
the-art methods: two transformer-based methods, (1) the CNN-transformer hybrid method,
Trans-Unet, and (2) the fully transformer-based architecture, Swin-Unet, and (3) the nnU-
Net, a widely used framework for automating U-Net pipeline’s decisions, from which we
derived a 3D model when the task allowed. For the sake of completeness, the Jaccard index
is also included.
Comparison with baselines – Globally, the inclusion of spatial dependency layers im-
proves model performance in all evaluated segmentation tasks, with both SDU-Net and
SDNU-Net obtaining enhanced performance compared to its baselines. This coincides with
an average increase of 4.72 Dice points and a decrease of the Hausdorff distance in 0.69
across all tasks and models. A more detailed summary and analysis of the performance
improvements can be found in Appendix E.
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Table 2: 5-fold cross-validation evaluation of baseline (U-Net and U-Net++), state-of-the-art
(Trans-Unet, Swin-Unet and nnU-Net), and proposed (SDU-Net and SDNU-Net) models.

Dice index (↑) Jaccard index (↑) Hausdorff dist. (↓)
Nuclei (Caicedo et al., 2019)
U-Net (baseline) 87.20±0.89 77.30±0.79 1.89±0.43
U-Net++ (baseline) 89.67±0.62 81.27±0.58 1.39±0.34
Trans-Unet (Chen et al., 2021) 92.15±0.51 85.44±0.46 0.67±0.38
Swin-Unet (Cao et al., 2021) 92.21±0.51 85.55±0.43 0.72±0.34
nnU-Net 2D (Isensee et al., 2021) 94.20±0.40 89.04±0.30 0.50±0.31
SDU-Net (ours) 91.82±0.60 88.36±0.65 0.97±0.37
SDNU-Net (ours) 93.70±0.47 91.75±0.41 0.52±0.33
Polyps (Bernal et al., 2017)
U-Net (baseline) 76.23±1.24 61.56±1.24 3.81±0.61
U-Net++ (baseline) 78.43±1.75 64.38±1.57 2.94±0.72
Trans-Unet (Chen et al., 2021) 83.85±1.30 72.19±1.25 2.79±0.61
Swin-Unet (Cao et al., 2021) 84.21±1.71 72.73±1.56 2.65±0.53
nnU-Net 2D (Isensee et al., 2021) 81.77±1.58 69.16±1.40 2.91±0.71
SDU-Net (ours) 82.30±1.57 69.92±1.36 2.72±0.54
SDNU-Net (ours) 85.14±1.80 74.13±1.61 2.03±0.63
Liver (Bilic et al., 2019)
U-Net (baseline) 86.34±1.72 75.96±1.67 1.32±0.59
U-Net++ (baseline) 88.78±1.48 79.82±1.47 1.02±0.65
Trans-Unet (Chen et al., 2021) 94.32±1.51 89.25±1.36 0.71±0.41
Swin-Unet (Cao et al., 2021) 94.57±1.73 89.70±1.47 0.61±0.43
nnU-Net 2D (Isensee et al., 2021) 92.56±1.55 86.15±1.28 0.91±0.61
nnU-Net 3D (Isensee et al., 2021) 95.43±1.38 91.26±1.37 0.29±0.53
SDU-Net (ours) 93.21±1.44 87.28±1.37 0.83±0.51
SDNU-Net (ours) 94.72±1.71 89.97±1.43 0.67±0.42
Aorta (Lambert et al., 2020)
U-Net (baseline) 90.76±0.93 83.08±2.78 0.68±0.32
U-Net++ (baseline) 92.96±0.78 86.85±1.12 0.61±0.27
Trans-Unet (Chen et al., 2021) 93.90±0.73 88.50±0.67 0.30±0.27
Swin-Unet (Cao et al., 2021) 94.20±0.81 89.04±0.71 0.21±0.31
nnU-Net 2D (Isensee et al., 2021) 92.20±0.79 85.53±0.60 0.35±0.41
nnU-Net 3D (Isensee et al., 2021) 92.60±0.87 86.22±0.74 0.38±0.32
SDU-Net (ours) 93.13±0.89 87.14±1.31 0.31±0.29
SDNU-Net (ours) 94.13±0.84 88.91±1.26 0.23±0.19

Comparison with state-of-the-art methods – In all segmentation tasks assessed the
SDNU-Net architecture either outperforms or performs on par with transformer-based ar-
chitectures. The nnU-Net automating pipeline still outperforms all models in the nuclei
segmentation task, yet this is arguably a task where long-range dependencies play a dimin-
ished role. In all other segmentation tasks, the inclusion of long-range dependencies leads
to improved performance when compared to nnU-Net 2D.
Model stability – To evaluate the stability of our architectures, each model’s performance
was also assessed across different initialization seeds. This study can be found in Appendix F.
Scalability to higher dimensions – To address scalability to larger and higher dimen-
sional images the number of parameters and computational complexity was evaluated for
SDN and corresponding baseline models. We verify that SDN models are within the same
order of magnitude and scale similarly as the input size increases (Appendix G). The correc-
tion stage itself is O(N), with N being the output feature map scale, leading to higher GPU
memory requirements when training. Despite the aforementioned computational consider-
ation, when scaling to higher dimensions, and contrary to transformer-based architectures,
our method offers the flexibility of adapting the number of sweeps and directions used,
lowering its overall memory and computational overhead.
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Figure 4: Ablation studies. Fixing SDU-Net with 1 spatial dependency layer in the
encoder, direction left-to-right, and 100 output channels in the project-in stage, all hyper-
parameters were scanned, and models compared to a 4 layer U-Net.

Ablation studies – Fixing the general design of the architectures, and evaluating in the
colon polyp segmentation and liver segmentation tasks, contributions from SD specific pa-
rameters were estimated. We verify that increased number of scales equipped with spatial
dependency layers (Figure 4 a), number of directions (Figure 4 b), and number of output
channels in the project-in stage (Figure 4 c) lead to an overall improvement in performance.
The experiments additionally suggest that the choice of sweeping directions (Figure 4 d)
also impacts performance. For both segmentation tasks, performing two sweeps across two
different axes is preferential to sweeping bidirectionally across the same axis.

4. Conclusion

In this work we motivated holistic modeling for automatic segmentation of medical images
and proposed ways to bridge the gap by introducing spatial recurrence into convolutional
neural networks. In order to achieve this goal, we designed two novel SDN based architec-
tures (SDNU-Net and SDU-Net) that greatly increase the receptive field of CNNs, while
explicitly modeling long-range dependencies in the feature map. Through experiments in
four segmentation tasks (nuclei segmentation in microscopy images, colorectal polyp seg-
mentation in colonoscopy videos, liver segmentation in abdominal CT scans, and aorta
segmentation in thoracic CT scans) we have demonstrated the superior performance of both
models. Ultimately, these are broadly generalizable architectures due the their inherent
simple integration into U-Nets, and we believe can be widely adopted in this domain.
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Appendix A. Receptive field analysis

We present here how input features affect output features in convolutional layers and SDN
layers. In particular, we compute receptive fields (Araujo et al., 2019) for these layers. A
receptive field maps each feature output by a layer to a region in the input that defines
that feature. Our goal is to demonstrate that the receptive field of one SDN layer covers
the entire image (see Figure 3), whereas the receptive field of one convolutional layer may
cover only a fraction of the image (see Figure 2). As a result, SDN layers capture long-
range dependencies in the image, in comparison, to convolutional layers. We demonstrate
how enhancing convolutional layers with SDN layers leads to higher performance in our
experimental comparison in Section 3.

A.1. Setup

The notation, presentation, and results given in this appendix resemble very much those
from (Araujo et al., 2019). Assume given a convolutional network with L layers, l =
1, 2, . . . , L. Define a feature map xl ∈ Rhl×wl×dl to denote the output of the l-th layer,
where hl, wl, and dl denote the output’s height, width, and depth. We denote the input
image by x0 and the feature map output by the last layer as xl. We consider layers whose
output depends locally on input features, like convolution and pooling.

We restrict the presentation, without loss of generality, to one dimension. Each layer
l ≤ L is parameterized by 4 variables: the kernel size kl > 0, the stride sl > 0, the left
padding pl ≥ 0, and the right padding ql ≥ 0.

A.2. Receptive field size for convolutional and pooling layers

We follow closely the presentation from Araujo et al. (2019) for this part. For l ≤ L, we now
compute the receptive field size rl of xL with respect to xl. This is the number of features
in xl which contribute to generating one feature in xL. We do this inductively, from rL to
r1. For convenience, we define rL as 1.

Assume then that rl has been computed. We now compute rl−1 for the case where
pl = ql = 0 and kl = 1. Here, the rl features in fl will cover rl−1 = slrl − (sl − 1) features
in fl−1. More generally, when kl > 1,

rl−1 = slrl + (kl − sl), for l ≤ L. (3)

Solving this recurrence equation for r0 yields (Araujo et al., 2019)

r0 = 1 +
L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
. (4)

As Araujo et al. (2019) remark, this equation makes intuitive sense for some special cases.
If kl = 1, for all l, then r0 = 1. If sl = 1, for all l, then r0 = 1 +

∑L
l=1(kl − 1).

We define the receptive field of a feature of xL, with respect to xl as the region in xl
that generated that feature (Araujo et al., 2019). This field can be defined as all features in
xl between a particular left-most feature ul and a particular right-most feature vl. Araujo
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et al. (2019) demonstrate that

ul−1 = −pl + ul sl for l ≤ L and (5)
vl−1 = −pl + vl sl + kl − 1 for l ≤ L. (6)

Solving these recurrence equations for u0 and v0 yields (Araujo et al., 2019)

u0 = uL

L∏
i=1

si −
L∑
l=1

pl

l−1∏
i=1

si (7)

v0 = vL

L∏
i=1

si −
L∑
l=1

(1 + pl − kl)

l−1∏
i=1

si. (8)

The set of features between u0 and v0 is exactly all the features that influence the
outcome of one feature in fL. Observe that by increasing L, u0 moves to the left whereas
v0 moves to the right.

A.3. Receptive field for SDN layers

For this part, we use the notation from Section 2.2. Recall that O and Ô, both in Rm′×n′×c′ ,
are the input and output of an SDN layer.

We argue here that the receptive field of Ôh,k with respect to O is the entire O, for
h ≤ m′ and k ≤ n′. We formalize this in the theorem below.

Theorem 1 For any i ≤ m′ and j ≤ n′, Oi,j influences the outcome of Ôh,k.

For the proof, we need the following three lemmas.

Lemma 2 For the project-in stage, the receptive field of Ōh,k with respect to O is Oh,k, for
h ≤ m′ and k ≤ n′.

Lemma 3 For the correction stage, the receptive field of Õh,k with respect to Ō is the entire
feature map Ō, for h ≤ m′ and k ≤ n′.

Lemma 4 For the project-out stage, the receptive field of Ôh,k with respect to Õ is Õh,k, for
h ≤ m′ and k ≤ n′.

The proofs of Lemmas 2 and 4 follows from the fact that each stages applies an affine
transformation to each entry of their corresponding input.

The proof of Lemma 3 consists of showing that for any i, h ≤ m′ and j, k ≤ n′, Ōi,j must
be in one of the four triangles depicted in Figure 3 and that, for each of these four triangles,
any entry in that triangle influences Õh,k.

Lemma 5 For i, h ≤ m′ and j, k ≤ n′. if i ≤ h and |j − k| ≤ h − i, then Ōi,j and Õ↓i,j
influence the outcome of Õh,k.
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Proof The proof is by induction on h− i. For the base case when it is zero, observe that
Ōi,j influences Õ↓i,j in the first loop of Algorithm 1. Õ↓i,j influences Õ←i,j in the second loop
of Algorithm 1. Õ←i,j influences Õ↑i,j in the third loop of Algorithm 1. Õ↑i,j influences Õ→i,j in
the last loop. But Õ→i,j = Õi,j = Õh,k, by the last line of Algorithm 1.

For the inductive case, suppose that h−i > 0. Suppose that j > k; the proof when j < k
or j = k is analogous. We can instantiate the induction hypothesis with i+1, h, j−1, and k.
Indeed, h ≥ i+1 and h−(i+1) = h−i−1 ≥ |j − k|−1 = j−k−1 = (j−1)−k = |(j−1)−k|.
So, by the induction hypothesis, Ōi+1,j−1 and Õ↓i+1,j−1 influence the outcome of Õh,k. In
addition, Ōi,j influences the outcome of Õi,j and Õi,j influences the outcome of Õi+1,j−1, by
the first loop of Algorithm 1. We conclude then that Ōi,j and Õi,j influences the outcome
of Õh,k, which is what we wanted to prove.

The remaining lemmas have similar proofs.

Lemma 6 For i, h ≤ m′ and j, k ≤ n′, if k ≤ j and |h− i| ≤ k − j, then Ōi,j and Õ←i,j
influence the outcome of Õh,k.

Lemma 7 For i, h ≤ m′ and j, k ≤ n′, if h ≤ i and |j − k| ≤ i − h, then Ōi,j and Õ↑i,j
influence the outcome of Õh,k.

Lemma 8 For i, h ≤ m′ and j, k ≤ n′, if j ≤ k and |h− i| ≤ k − j, then Ōi,j and Õ→i,j
influence the outcome of Õh,k.

We now prove Lemma 3. That is, for i, h ≤ m′ and j, k ≤ n′, Ōi,j influences the outcome
of Õh,k. Observe that at least one of the following four conditions holds:

• i ≤ h and |j − k| ≤ h− i.

• k ≤ j and |h− i| ≤ k − j.

• h ≤ i and |j − k| ≤ i− h.

• j ≤ k and |h− i| ≤ k − j.

Each of these conditions implies, by the four lemmas above, that Ōi,j influences the
outcome of Õh,k.

Appendix B. Formalization of the SDN layer

In this section we formalize how a spatial dependency layer works.
Let O ∈ Rm′×n′×c′ be a feature map, where m′, n′, and c′ represent the width, height,

and number of channels. An SDN produces a new output feature map Ô ∈ Rm′×n′×c′ in
three stages.

Project-in stage: This stage applies an affine transformation to O, yielding Ō as follows:

Ōi,j = Oi,jW + b, (9)
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where W ∈ Rc′×c̄ and b ∈ Rc̄ are a learnable weight matrix and a learnable bias vector,
respectively. Usually, c̄ > c′. That is, Ō usually contains a larger and tunable number of
channels than O, usually larger than the number of channels in O.

Correction stage: This stage performs four recurrent sweeps over Ō in different directions,
as described in Section 2.1. Each sweep uses a gating mechanism (Cho et al., 2014), adapted
to the image setting, which moderates the contributions of the updated (proposed) value and
the intermediate (prior) feature value. A gating mechanism can be modeled as a function
g : Rc̄ × Rc̄ × Rc̄ × Rc̄ → Rc̄. The four sweeps use four gating mechanisms g←, g↑, g→, and
g↓. Algorithm 1 explains in detail how these four sweeps work and how they are combined
to produce a feature map Õ.

Project-out stage: This stage performs an affine transformation on Õ, yielding Ô ∈ Rm′×n′×c′ .
The number of channels in Ô equals those in O.

Algorithm 1: Correction stage
Initialize a feature map Õ↓ ∈ Rm′×n′×c̄.
for i = 1, . . . ,m′ do

for j = 1, . . . , n′ do
Õ↓i,j = g↓(Ōi,j , Õ

↓
i−1,j−1, Õ

↓
i−1,j , Õ

↓
i−1,j+1)

end
end
Initialize a feature map Õ← ∈ Rm′×n′×c̄.
for j = 1, . . . , n′ do

for i = m′, . . . , 1 do
Õ←i,j = g←(Õ↓i,j , Õ

←
i−1,j+1, Õ

←
i,j+1, Õ

←
i+1,j+1)

end
end
Initialize a feature map Õ↑ ∈ Rm′×n′×c̄.
for i = m′, . . . , 1 do

for j = n′, . . . , 1 do
Õ↑i,j = g↑(Õ

←
i,j , Õ

↑
i+1,j+1, Õ

↑
i+1,j , Õ

↑
i+1,j−1)

end
end
Initialize a feature map Õ→ ∈ Rm′×n′×c̄.
for j = 1, . . . ,m′ do

for i = 1, . . . , n′ do
Õ→i,j = g→(Õ↑i,j , Õ

→
i−1,j−1, Õ

→
i,j−1, Õ

→
i+1,j−1)

end
end
Define Õ as Õ→.
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Appendix C. Dataset details

Table 3: Relevant dataset statistics and main pre-processing steps.

Segmentation Task Nuclei Polyps Liver Aorta

Dataset name DSB2018 CVC-ClinicDB LiTS SegTHOR

Image type brightfield and
fluorescent microscopy

colonoscopy
video

abdominal
CT scan

chest
CT scan

Dataset size 670 images 29 sequences
(612 frames)

131 volumes 40 volumes

Original size 96 x 96 304 x 288 512 x 512 256 x 128

Resampled size - 192 x 144 128 x 128 not resampled

Data split for
stability analysis

2
80/10/10

(%)
23/3/3

(sequences)
82/21/28 3

(volumes)
32/4/4

(volumes)

Intensity clipping - - [-1000; 1000] HU [-1000; 1000] HU

Rescale to [0,1] Yes Yes Yes Yes
1 Partition at sequence level for CVC-ClinicDB and at the volume/patient level otherwise
2 From the two original available training batches, one (103 volumes) was split 80/20 into train-

ing/validation, and the other (28 volumes) was used for testing

Information regarding image type, size of the dataset, original and resampled image sizes,
proportions used in the data splitting, and image pre-processing steps is described below
and summarized in Table 3.
Nuclei – The dataset was made available for Kaggle’s Data Science Bowl 2018 and consisted
of 2D images concerning brightfield and fluorescence microscopy. From the full dataset only
670 images had disclosed annotation ground-truth. Image intensities were rescaled to be in
the range of [0-1].
Colorectal Polyps – The CVC-ClinicDB dataset was made available as part of the Auto-
matic Polyp Detection in Colonoscopy Videos - Endoscopic Vision Challenge from MICCAI
2015. The dataset, comprised of 612 frames from 29 video sequences, was partitioned at
the sequence level to obtain an unbiased estimate of performance. Image intensities were
rescaled to be in the range of [0-1] and images were resampled to 192×144.
Liver – The dataset was made available for Liver Tumor Segmentation Benchmark (LITS),
organized by ISBI 2016 and MICCAI 2017. The public part of the whole dataset with dis-
closed liver masks, comprised of 131 CT volumes, was used. Although the segmentation is
performed at a 2D level, the partitioning was done at the volume/patient level to avoid bias
and over-optimistic results. All slices from each 3D CT volume were used. The ground truth
labels were comprised of a liver and a tumor segmentation, with only the liver segmentation
being used. Before image consumption, images were resampled to 128×128 and intensities
were rescaled to the [0-1] range. Intensity clipping was also applied to the interval [-1000;
1000] HU to ensure that the rescaling of intensities was not affected by different bone den-
sities or artifacts from implants.
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Aorta –The dataset was made available for the Segmentation of THoracic Organs at Risk
in CT images (SegTHOR) competition, hosted by ISBI 2019. The public part of the dataset
is comprised of 40 CT volumes, with the labelling including heart, aorta, trachea, and esoph-
agus, and only the aorta being considered for our task. Similarly to the liver segmentation
task, an intensity clipping was also applied to the interval [-1000; 1000] HU, with the final
images being rescaled to the [0-1] range.

Appendix D. Experimental Configuration

During our experiments, several architectures and sets of hyperparameters were used for
both the baselines and the SDN-based models. These are listed in Table 4 and Table 5
respectively. All models were implemented in Pytorch Lightning (Falcon, 2019) and trained
through the minimization of a combination of dice and cross-entropy as the loss function
(Isensee et al., 2018). The Dice score was monitored during training, with the final model
being selected through early-stopping on the validation set. The optimization of the loss
function was stabilized through learning rate annealing, and in order to avoid vanishing and
exploding gradients for larger models, gradient clipping and residual connections were used.
All other methods followed original descriptions and implementations by the authors of each
work, with minor changes being made to Swin-Unet’s patch splitting to fit the input size by
changing the window size from 7 to 8.

Table 4: Experimental configurations of U-Net and U-Net++.
U-Net

Segmentation task Nuclei Polyps Liver Aorta
Optimizer Adam Adam Adam Adam
Learning rate 1.00E-03 1.00E-04 1.00E-04 1.00E-04
Weight decay 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Convolutional kernel size 3x3 3x3 3x3 3x3
Activation function ReLU ReLU ReLU ReLU
# layers per scale 2 2 2 2
Batch normalization Yes Yes Yes Yes
Residual connections No Yes Yes Yes
Batch size per GPU 20 20 16 16
GPU Model RTX 2080 Ti RTX 2080 Ti RTX 2080 Ti RTX 2080 Ti
Number of GPUs 4 4 4 4
GPU VRAM 11 GB 11 GB 11 GB 11 GB
Allocated GPU VRAM 0.7 GB 7 2.17 GB 1.32 GB 2.56 GB

U-Ne++
Segmentation task Nuclei Polyp Liver Aorta
Optimizer Adam Adam Adam Adam
Learning rate 1.00E-03 1.00E-04 1.00E-04 1.00E-04
Weight decay 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Convolutional kernel size 3x3 3x3 3x3 3x3
Activation function ReLU ReLU ReLU ReLU
# layers per scale 2 2 2 2
Batch normalization Yes Yes Yes Yes
Residual connections No Yes Yes Yes
Batch size per GPU 20 20 16 16
GPU Model RTX 2080 Ti RTX 2080 Ti RTX 2080 Ti RTX 2080 Ti
Number of GPUs 4 4 4 1
GPU VRAM 11 GB 11 GB 11 GB 32 GB
Allocated GPU VRAM 1.92 GB 6.53 GB 3.58 GB 7.08 GB
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Table 5: Experimental configurations of SDU-Net and SDNU-Net.
SDU-Net

Segmentation task Nuclei Polyps Liver Aorta
Optimizer Adam Adam Adam Adam
Learning rate 1.00E-03 1.00E-04 1.00E-04 1.00E-04
Weight decay 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Convolutional kernel size 3x3 3x3 3x3 3x3
Activation function ReLU ReLU ReLU ReLU
# layers per scale 2 2 2 2
Batch normalization Yes Yes Yes Yes
Residual connections No Yes Yes Yes
SDN kernel size 3×3 3×3 3×3 3×3
SDN # channels per scale 100 150 150 150
SDN layers per encoder/decoder 2 1 1 2
# directions per SDN layer 2 2 2 2
Directions used ↓,→ ↓,→ ↓,→ ↑, ↓
Batch size per GPU 20 20 16 16
GPU Model RTX 2080 Ti RTX 2080 Ti RTX 2080 Ti V100-SXM2
Number of GPUs 4 4 4 1
GPU VRAM 11 GB 11 GB 11 GB 32 GB
Allocated GPU VRAM 1.91 GB 6.21 GB 3.30 GB 6.45 GB

SDNU-Net
Segmentation task Nuclei Polyp Liver Aorta
Optimizer Adam Adam Adam Adam
Learning rate 1.00E-03 1.00E-04 1.00E-04 1.00E-04
Weight decay 1.00E-05 1.00E-05 1.00E-05 1.00E-05
Convolutional kernel size 3x3 3x3 3x3 3x3
Activation function ReLU ReLU ReLU ReLU
# layers per scale 2 2 2 2
Batch normalization Yes Yes Yes Yes
Residual connections No Yes Yes Yes
SDN kernel size 3×3 3×3 3×3 3×3
SDN # channels per scale 100 150 150 150
SDN layers per encoder/decoder 2 1 1 2
# directions per SDN layer 2 2 2 2
Directions used ↓,→ ↓,→ ↓,→ ↑, ↓
Batch size per GPU 20 20 16 16
GPU Model RTX 2080 Ti RTX 2080 Ti RTX 2080 Ti V100-SXM2
Number of GPUs 4 4 4 1
GPU VRAM 11 GB 11 GB 11 GB 32 GB
Allocated GPU VRAM 4.63 GB 10.31 GB 7.30 GB 13.21 GB

Appendix E. Improvement Summary

In Table 6 we describe the performance gains for SDU-Net and SDNU-Net with respect
to each of its baseline models. Positive values in the Dice index indicated a gain in per-
formance, whereas the same is shown through negative values in the Hausdorff distance.
All values express a performance gain above the average standard deviation for the con-
sidered experiments. The last two columns showcase the average performance gain across
both architectures, whereas the last row displays the performance gains averaged across all
segmentation tasks. From the summary table we can gather that all the experiments demon-
strate an increase in performance when spatial recurrence is included in the segmentation
architectures.

The largest increase in performance was observed for the colorectal polyps and liver
segmentation tasks, with an average 6.39 and 6.41 Dice increase, and a 1.0 and 0.57 Hausdorff
distance decrease, respectively. Arguably this may be due to the variable scales at which
polyps and liver cross-sections appear, with large texture changes between both polyps and
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Table 6: Performance gain of SDU-Net against U-Net and SDNU-Net against U-Net++,
across all segmentation tasks. Highlighted with a underline are values higher than the
average standard deviation of the specific group of experiments.

SDU-Net SDNU-Net Dataset
Average

Dice
index (↑)

Hausdorff
dist. (↓)

Dice
index (↑)

Hausdorff
dist. (↓)

Dice
index (↑)

Hausdorff
dist. (↓)

Nuclei (Caicedo et al., 2019) 4.62 -0.92 4.03 -0.87 4.33 -0.90
Polyps (Bernal et al., 2017) 6.07 -1.09 6.71 -0.91 6.39 -1.00
Liver (Bilic et al., 2019) 6.87 -0.49 5.94 -0.35 6.41 -0.42
Aorta (Lambert et al., 2020) 2.37 -0.37 1.17 -0.38 1.77 -0.38
Model Average 4.98 -0.72 4.46 -0.63 4.72 -0.68

’normal tissue’, i.e. non-tumoral, and liver and non-liver tissue. In particular, for the liver
segmentation task, it is plausible to claim that spatial positioning plays a larger role, as the
organ due to its nature is consistently located adjacent to the same tissues across different
patients. Qualitative comparison in Figure 1 also corroborates this assertion. The same
argument can be made for the aorta artery segmentation, and improvements were also seen
with respect to this task (1.77 Dice increase and 0.61 Hausdorff distance decrease).

Appendix F. Stability Analysis

The stability of the model’s performance was also assessed through averaging results over
multiple runs, keeping model selection through early-stopping, and evaluating in a hold-
out test set. Each architecture was trained 5 times across different seeds for the batch
sampling and weight’s initialization, with results summarized in Table 7. The performance
was demonstrated to remain consistent across seeds, and only small absolute deviations in
the evaluation metrics with respect to the cross-validation study were seen. Overall, the
consistent improvement in performance of SDN based architectures can still be observed.

Table 7: Segmentation results averaged across 5 runs with different seeds, for baseline models
(U-Net and U-Net++) and SDN models (SDU-Net and SDNU-Net).

Dice
index (↑)

Hausdorff
distance (↓)

Dice
index (↑)

Hausdorff
distance (↓)

Nuclei (Caicedo et al., 2019) Liver (Bilic et al., 2019)
U-Net 87.14±0.77 2.08±0.37 85.66±1.31 1.82±0.45
U-Net++ 89.40±0.67 1.35±0.33 88.09±1.13 1.00±0.34
SDU-Net 91.64±0.55 1.01±0.30 93.89±1.67 0.82±0.41
SDNU-Net 93.47±0.33 0.58±0.22 94.78±2.12 0.80±0.24

Polyps (Bernal et al., 2017) Aorta (Lambert et al., 2020)
U-Net 76.60±1.21 3.69±0.64 90.68±0.53 0.75±0.28
U-Net++ 78.01±1.33 2.57±0.58 93.12±0.90 0.58±0.40
SDU-Net 82.76±1.29 2.86±0.45 93.63±0.66 0.50±0.34
SDNU-Net 86.14±1.48 2.33±0.49 93.89±0.92 0.17±0.13
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Appendix G. Model size and computation cost

We also assessed the number of parameters and the computational requirements of our
models and their respective baselines, summarized in Table 8. All learnable paramateres
included in the computational graph were taken into consideration. The computation of the
number of operations in the inference stage was evaluated in multiply-accumulate-operations
(MACs) using ptflops available at: github.com/sovrasov/flops-counter.pytorch. The scala-
bility of the computational cost with respect to image size was also assessed and is displayed
in Table 9. In this setting, both SDU-Net and SDNU-Net architectures were equipped with
two SDN layers in both the encoder and decoder, each with 150 channels and sweeps in two
directions.

Table 8: Comparison of model size in number of parameters, and inference computation cost
in multiply-accumulate-operation (MAC), for SDN-bsed models and respective baselines.

U-Net U-Net++ SDU-Net SDNU-Net
Number of parameters (M)
Nuclei 1,8 2,24 5,42 6,16
Polyps 7,24 9,76 10,36 11
Liver 7,24 9,76 10,36 11
Aorta 7,24 9,76 10,36 11
Number of operations (GMACs)
Nuclei 1,31 2,87 2,59 4,7
Polyps 2,28 6,5 3,01 8,15
Liver 1,71 4,87 2,36 6,09
Aorta 6.08 17.33 8.03 21.67

Table 9: Computational cost estimation in multiply-accumulate-operation (MAC) with re-
spect to input size and comparison with baseline methods.

U-Net U-Net++ SDU-Net SDNU-Net
Number of operations (GMACs)
3× 64× 64 0.86 2.17 1.24 2.98
3× 96× 96 1.93 4.87 2.79 6.70
3× 128× 128 3.44 8.86 4.96 11.92
3× 192× 192 7.74 19.49 11.15 26.82
3× 256× 256 13.75 34.65 19.82 47.67
3× 384× 384 30.95 77.96 44.60 107.27
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