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Abstract

Predicting low-energy molecular conformations given a molecular graph is an
important but challenging task in computational drug discovery. Existing state-
of-the-art approaches either resort to large scale transformer-based models that
diffuse over conformer fields, or use computationally expensive methods to gen-
erate initial structures and diffuse over torsion angles. In this work, we introduce
Equivariant Transformer Flow (ET-Flow). We showcase that a well-designed
flow matching approach with equivariance and harmonic prior alleviates the need
for complex internal geometry calculations and large architectures, contrary to
the prevailing methods in the field. Our approach results in a straightforward
and scalable method that directly operates on all-atom coordinates with minimal
assumptions. With the advantages of equivariance and flow matching, ET-Flow
significantly increases the precision and physical validity of the generated con-
formers, while being a lighter model and faster at inference. Code is available
https://github.com/shenoynikhil/ETFlow.

1 Introduction

Generating low-energy 3D representations of molecules, called conformers, from the molecular graph
is a fundamental task in computational chemistry as the 3D structure of a molecule is responsible for
several biological, chemical and physical properties (Guimarães et al., 2012; Schütt et al., 2018, 2021;
Gasteiger et al., 2020; Axelrod and Gomez-Bombarelli, 2023). Conventional approaches to molecular
conformer generation consist of stochastic and systematic methods. While stochastic methods such
as Molecular Dynamics (MD) accurately generate conformations, they can be slow, cost-intensive,
and have low sample diversity (Shim and MacKerell Jr, 2011; Ballard et al., 2015; De Vivo et al.,
2016; Hawkins, 2017; Pracht et al., 2020). Systematic (rule-based) methods (Hawkins et al., 2010;
Bolton et al., 2011; Li et al., 2007; Miteva et al., 2010; Cole et al., 2018; Lagorce et al., 2009) that
rely on torsional profiles and knowledge base of fragments are much faster but become less accurate
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Figure 1: (a) Overview of ET-Flow. The model predicts a conditional vector field v⃗θ using interpolated
positions (xt), molecular structure (G), and time-step (t). Samples are drawn from the harmonic
prior (x0 ∼ p0) and then rotationally aligned with the samples from data (x1 ∼ p1). A conditional
probability path is constructed between pairs of x0 and x1, and xt is then sampled from this path
at a random time t. (b) The ET-Flow architecture consists of a representation module based on the
TorchMD-NET architecture (Thölke and De Fabritiis, 2022) and an equivariant vector output module.
For detailed architecture and input preprocessing information, see Section A.1.

with larger molecules. Therefore, there has been an increasing interest in developing scalable and
accurate generative modeling methods in molecular conformer generation.

Existing machine learning based approaches use diffusion models (Ho et al., 2020; Song and Ermon,
2019) to sample diverse and high quality samples given access to low-energy conformations. Prior
methods typically fall into two categories: diffusing the atomic coordinates in the Cartesian space (Xu
et al., 2022; Wang et al., 2024) or diffusing along the internal geometry such as pairwise distances,
bond angles, and torsion angles (Ganea et al., 2021; Jing et al., 2022).

Early approaches based on diffusion (Shi et al., 2021; Luo et al., 2021; Xu et al., 2022) faced
challenges such as lengthy inference and training times as well as having lower accuracy compared
to cheminformatics methods. Torsional Diffusion (Jing et al., 2022) was the first to outperform
cheminformatics methods by diffusing only on torsion angles after producing an initial conformer
with the chemoinformatics tool RDKiT. This reliance on RDKiT structures instead of employing an
end-to-end approach comes with several limitations, such as restricting the tool to applications where
the local structures produced by RDKiT are of sufficient accuracy. Unlike prior approaches, the
current state-of-the-art MCF (Wang et al., 2024) proposes a domain-agnostic approach by learning to
diffuse over functions by scaling transformers and learning soft inductive bias from the data (Zhuang
et al., 2022). Consequently, it comes with drawbacks such as high computational demands due to
large number of parameters, limited sample efficiency from a lack of inductive biases like euclidean
symmetries, and potential difficulties in scenarios with sparse data — a common challenge in this
field.

In this paper, we propose Equivariant Transformer Flow (ET-Flow), a simple yet powerful flow-
matching model designed to generate low-energy 3D structures of small molecules with minimal
assumptions. We utilize flow matching (Lipman et al., 2022; Albergo et al., 2023; Liu et al., 2022),
which enables the learning of arbitrary probability paths beyond diffusion paths, enhancing both
training and inference efficiency compared to conventional diffusion generative models. Departing
from traditional equivariant architectures like EGNN (Satorras et al., 2021), we adopt an Equivariant
Transformer (Thölke and De Fabritiis, 2022) to better capture geometric features. Additionally, our
method integrates a Harmonic Prior (Jing et al., 2023; Stark et al., 2023), leveraging the inductive bias
that atoms connected by a bond should be in close proximity. We further optimize our flow matching
objective by initially conducting rotational alignment on the harmonic prior, thereby constructing
shorter probability paths between source and target distributions at minimal computational cost.

2



Our contributions can be summarized as follows:

1. We obtain state-of-the-art precision for molecule conformer prediction, resulting in more
physically realistic and reliable molecules for practitioners. We improve upon the previous
methods by a large margin on ensemble property prediction.

2. We highlight the effectiveness of incorporating equivariance and more informed priors in
generating physically-grounded molecules in our simple yet well-engineered method.

3. Our parameter-efficient model requires orders of magnitude fewer sampling steps than
GeoDiff (Xu et al., 2022) and has significantly fewer parameters than MCF (Wang et al.,
2024).

2 Background

Diffusion Generative Models. Diffusion models (Song and Ermon, 2019; Song et al., 2020; Ho
et al., 2020) enables a high-quality and diverse sampling from an unknown data distribution by
approximating the Stochastic Differential Equation(SDE) that maps a simple density i.e. Gaussian
to the unknown data density. Concretely, it involves training a neural network to learn the score,
represented as∇x log pt(x) of the diffused data. During inference, the model generates sample by
iteratively solving the reverse SDE. However, diffusion models have inherent drawbacks, as they (i)
require on longer training times (ii) are restricted to specific probability paths and (iii) depend on the
use of complicated tricks to speed up sampling (Song et al., 2020; Zhang and Chen, 2022).

Flow Matching. Flow Matching (Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022)
provides a general framework to learn Continuous normalizing flows (CNFs) while improving upon
diffusion models in simplicity, generality, and inference speed in several applications. Through simple
regression against the vector field reminiscent of the score-matching objective in diffusion models,
Flow matching has enabled a fast, simulation-free training of CNFs. Several subsequent studies have
then expanded the scope of flow matching objective to manifolds (Chen and Lipman, 2024), arbitrary
sources (Pooladian et al., 2023), and conditional flow matching with arbitrary transport maps and
optimal couplings between source and target samples (Tong et al., 2023).

Molecular Conformer Generation. Various machine learning (ML) based approaches (Kingma and
Welling, 2013; Liberti et al., 2014; Dinh et al., 2016; Simm and Hernández-Lobato, 2019; Shi et al.,
2021; Luo et al., 2021; Xu et al., 2021; Ganea et al., 2021; Xu et al., 2022; Jing et al., 2022; Wang
et al., 2024) have been developed to improve upon the limitations of conventional methods, among
which the most advanced are TorsionDiff (Jing et al., 2022) and Molecular Conformer Fields (MCF)
(Wang et al., 2024). TorsionDiff designs a diffusion model on the torsion angles while incorporating
the local structure from RDKiT ETKDG (Riniker and Landrum, 2015). MCF trains a diffusion model
over functions that map elements from the molecular graph to points in 3D space.

Equivariant Architectures for Atomistic Systems. Inductive biases play an important role in
generalization and sample efficiency. In the case of 3D atomistic modelling, one example of a useful
inductive bias is the euclidean group SO(3) which represents rotation equivariance in 3D space.
Recently, various equivariant architectures (Duval et al., 2023) have been developed that act on both
Cartesian (Satorras et al., 2021; Thölke and De Fabritiis, 2022; Simeon and De Fabritiis, 2024; Du
et al., 2022; Frank et al., 2022) and spherical basis (Musaelian et al., 2023; Batatia et al., 2022;
Fuchs et al., 2020; Liao et al., 2023; Passaro and Zitnick, 2023; Anderson et al., 2019; Thomas et al.,
2018). For molecular conformer generation, initial methods like ConfGF, DGSM utilize invariant
networks as they act upon inter-atomic distances, whereas the use of equivariant GNNs have been
used in GeoDiff (Xu et al., 2022) and Torsional Diffusion (Jing et al., 2022). GeoDiff utilizes EGNN
(Satorras et al., 2021), a Cartesian basis equivariant architecture while Torsional Diffusion uses Tensor
Field Networks (Thomas et al., 2018) to output pseudoscalars.

3 Method

We design ET-Flow, a scalable equivariant model that generates energy-minimized conformers given
a molecular graph. In this section, we layout the framework to achieve this objective by detailing
the generative process in flow matching, the rotation alignment between distributions, stochastic
sampling, and finally the architecture details.
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Preliminaries We define notation that we use throughout this paper. Inputs are continuous atom
positions x ∈ RN×3 where N is the number of atoms. We use the notation vt(x) interchangeably
with v(t,x) for vector field.

3.1 Flow Matching

The aim is to learn a time-dependent vector field vt(x) : RN×3 × [0, 1]→ RN×3 associated with the
transport map Xt : RN×3 × [0, 1] → RN×3 that pushes forward samples from a base distribution
ρ0, often an easy-to-sample distribution, to samples from a more complex target distribution ρ1, the
low-energy conformations of a molecule. This can be defined as an ordinary differential equation
(ODE),

Ẋt(x) = vt(Xt(x)), Xt=0 = x0, (1)
where x0 ∼ ρ0. We can construct the vt via a time-differentiable interpolation between samples
from ρ0 and ρ1 that gives rise to a probability path ρt that we can easily sample (Lipman et al., 2022;
Liu et al., 2022; Albergo and Vanden-Eijnden, 2023; Tong et al., 2023). The general interpolation
between samples x0 ∼ ρ0 and x1 ∼ ρ1 can be defined as:

It(x0,x1) = αtx1 + βtx0. (2)

Given this interpolant that couples x0 and x1, we can define the conditional probability path
as ρt(x|x0,x1) = N (x|It(x0,x1), σ

2
t I), and the vector field can be computed as vt(x) =

∂tρt(x|x0,x1) which has the following form

vt(x) = α̇tx1 + β̇tx0 + σ̇tz z ∼ N (0, I). (3)

Here we use α̇t as a shorthand notation for ∂tαt, and similarly we apply the same notation to β and σ.
In our work, we use linear interpolation where αt = t, βt = 1− t, and σt = σ

√
t(1− t), resulting

in the vector field
vt(x) = x1 − x0 +

1− 2t

2
√

t(1− t)
z. (4)

Now, we can define the objective function for learning a vector field vθ(x) that generates a probability
path ρt between a base density ρ0 and the target density ρ1 as,

= Et∼U(0,1),x∼ρt(x0,x1)∥v(t,x)− vθ(t,x)∥2. (5)

For training, we sample (i) x0 ∼ ρ0, x1 ∼ ρ1, and t ∼ U(0, 1), (ii) interpolate according to
Equation 2, (iii) add noise from a standard Gaussian, and (iv) minimize the loss defined in Equation 5.
For sampling, we sample x0 ∼ ρ0 and integrate from t = 0 to t = 1 using the Euler’s method. At
each time-step, the Euler solver iteratively predicts the vector field for xt and updates its position
xt+∆t = xt + vθ(t,x)∆t. More details on the training and sampling algorithms are provided in
Appendix B.

3.2 Alignment

Several previous works (Tong et al., 2023; Klein et al., 2024; Jing et al., 2024; Song et al., 2024)
demonstrate that constructing a straighter path between base distribution ρ0 and target distribution
ρ1 minimizes the transport costs and improves performance. In our work, we reduce the transport
costs between samples from the harmonic prior ρ0 and samples from the data distribution ρ1 by
rotationally aligning them using the Kabsch algorithm (Kabsch, 1976) similar to (Klein et al., 2024;
Jing et al., 2024). This approach leads to faster convergence and reduces the path length between
atoms by leveraging the similarity in "shape" of the samples as seen in Figure 1a without incurring
high computational cost.

3.3 Stochastic Sampling

We employ a variant of the stochastic sampling technique inspired by (Karras et al., 2022). Specifically,
we inject noise at each time step to construct an intermediate state, evaluate the vector field from
the intermediate state, and then perform the deterministic ODE step from the noisy state. The
original method utilizes a second-order integration, which averages the denoiser output at the noisy
intermediate state and the state at the next time step after integration.
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Figure 2: Stochastic sampling pro-
cedure used in inference. Noise is
added to the positions xt indicated
by the purple line, resulting in x̂t.
Then, the model predicts the vec-
tor field v̂t from x̂t instead of xt

indicted by the yellow line and up-
dates x̂t using v̂t to get xt+1.

In our experiment, we use the stochastic sampler without this
second-order correction term, which empirically provided a
performance boost comparable to the second-order method. We
apply stochastic sampling only during the final part of the inte-
gration steps, specifically within the range t ∈ [0.8, 1.0]. This
helps prevent drifting towards overpopulated density regions
and improves the quality of the samples (Karras et al., 2022).
Stochastic sampling has improved both diversity and accuracy
of the generated conformers, measured by Coverage and Aver-
age Minimum RMSD (AMR) respectively as shown in Table 1.
Detailed information on the stochastic sampling algorithm is
provided in algorithm B.

3.4 Chirality Correction

While generating conformations, it is necessary to take account
of the stereochemistry of atoms bonded to four distinct groups
also referred to as tetrahedral chiral centers. To generate con-
formations with the correct chirality, we propose a simple post
hoc trick as done in GeoMol (Ganea et al., 2021). We compare
the oriented volume (OV) (Equation 6) of the generated conformation and the required orientation
with the RDKit tags. In the case of a mismatch, we simply flip the conformation against the z-axis.
This correction step can be efficiently performed as a batched operation since it involves a simple
comparison with the required RDKit tags and an inversion of position if necessary.

OV(p1,p2,p3,p4) = sign


∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣
 . (6)

We also consider an alternative approach for chirality correction. Instead of using the post hoc
correction with our O(3) equivariant architecture, we slightly tweak our architecture to make it
SO(3) equivariant by introducing a cross product term in the update layers. We compare these
methods on both the GEOM-DRUGS and GEOM-QM9 dataset in Table 1 and Table 2. Our base
method (ET-Flow) corresponds to using the post hoc correction whereas the SO(3) variant is referred
by ET-Flow-SO(3). We empirically observe that using an additional chirality correction step is
not only computationally efficient, but also performs better. We provide details on the architectural
modification and proof of SO(3) equivariance in Section A.1 and Section C.1 respectively.

3.5 Architecture

ET-Flow (Figure 1b) consists of two main components: (1) a representation module based on the
equivariant transformer architecture from TorchMD-NET (Thölke and De Fabritiis, 2022) and (2)
the equivariant vector output module. In the representation module, an embedding layer encodes
the inputs (atomic positions, atomic numbers, atom features, bond features and the time-step) into a
set of invariant features. Initial equivariant features are constructed using normalized edge vectors
where the edges are constructed using a radius graph of 10 angstrom and the bonds from the 2D
molecular graph. Then, a series of equivariant attention-based layers update both the invariant and
equivariant features using a multi-head attention mechanism. Finally, the vector field is produced by
the output layer, which updates the equivariant features using gated equivariant blocks (Schütt et al.,
2018). Given that TorchMD-NET was originally designed for modeling neural network potentials,
we implement several modifications to its architecture to better suit generative modeling, as detailed
in Section A.1.

4 Experiments

We empirically evaluate ET-Flow by comparing the generated and ground-truth conformers in terms
of distance-based RMSD (Section 4.2) and chemical property based metrics (Section 4.4). We
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Table 1: Molecule conformer generation results on GEOM-DRUGS (δ = 0.75Å). ET-Flow - SS is
ET-Flow with stochastic sampling and ET-Flow - SO(3) is ET-Flow using the SO(3) architecture
for chirality correction. For ET-Flow, ET-Flow-SS and ET-Flow-SO(3), we sample conformations
over 50 time-steps.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
GeoDiff 42.10 37.80 0.835 0.809 24.90 14.50 1.136 1.090
GeoMol 44.60 41.40 0.875 0.834 43.00 36.40 0.928 0.841
Torsional Diff. 72.70 80.00 0.582 0.565 55.20 56.90 0.778 0.729
MCF - S (13M) 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF - B (62M) 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF - L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
ET-Flow (8.3M) 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470
ET-Flow - SS (8.3M) 79.62 84.63 0.439 0.406 75.19 81.66 0.517 0.442
ET-Flow - SO(3) (9.1M) 78.18 83.33 0.480 0.459 67.27 71.15 0.637 0.567

present the general experimental setups in Section 4.1. The implementation details are provided in
Appendix A.

4.1 Experimental Setup

Dataset: We conduct our experiments on the GEOM dataset (Axelrod and Gomez-Bombarelli, 2022),
which offers curated conformer ensembles produced through meta-dynamics in CREST (Pracht
et al., 2024). Our primary focus is on GEOM-DRUGS, the most extensive and pharmacologically
relevant subset comprising 304k drug-like molecules, each with an average of 44 atoms. We use a
train/validation/test (243473/30433/1000) split as provided in (Ganea et al., 2021) Additionally, we
train and test model on GEOM-QM9, a subset of smaller molecules with an average of 11 atoms.
Finally, in order to assess the model’s ability to generalize to larger molecules, we evaluate the model
trained on GEOM-DRUGS on a GEOM-XL dataset, a subset of large molecules with more than 100
atoms. The results for GEOM-QM9 and GEOM-XL can be found in the Appendix D.

Evaluation: Our evaluation methodology is similar to that of (Jing et al., 2022). First, we look at
RMSD based metrics like Coverage and Average Minimum RMSD (AMR) between generated and
ground truth conformer ensembles. For this, we generate 2K conformers for a molecule with K
ground truth conformers. Second, we look at chemical similarity using properties like Energy (E),
dipole moment (µ), HOMO-LUMO gap (∆ϵ) and the minimum energy (Emin) calculated using xTB
(Bannwarth et al., 2019).

Baselines: We benchmark ET-Flow against leading approaches outlined in Section 2. Specifically,
we assess the performance of GeoMol (Ganea et al., 2021), GeoDiff (Xu et al., 2022), Torsional
Diffusion (Jing et al., 2022), and MCF (Wang et al., 2024). Notably, the most recent among these,
MCF, has demonstrated superior performance across evaluation metrics compared to its predecessors.
It’s worth mentioning that GeoDiff initially utilized a limited subset of the GEOM-DRUGS dataset;
thus, for a fair comparison, we consider its re-evaluated performance as presented in (Jing et al.,
2022).

4.2 Ensemble RMSD

As shown in Table 1 and Table 2, ET-Flow outperforms all preceding methodologies and demonstrates
competitive performance with the previous state-of-the-art, MCF (Wang et al., 2024). Despite being
significantly smaller with only 8.3M parameters, ET-Flow shows a substantial improvement in the
quality of generated conformers, as evidenced by superior Precision metrics across all MCF models,
including the largest MCF-L. When compared to MCF-S, which is closer in size, ET-Flow achieves
markedly better Precision while the impact on Recall is less significant and limited to Recall Coverage.
Notably, our Recall AMR remains competitive with much bigger MCF-B, underscoring the inherent
advantage of our method in accurately predicting overall structures.

6



Table 2: Molecule conformer generation results on GEOM-QM9 (δ = 0.5Å). ET-Flow - SO(3) is ET-
Flow using the SO(3) architecture for chirality correction. For both ET-Flow and ET-Flow-SO(3),
we sample conformations over 50 time-steps.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
CGCF 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff 76.50 100.00 0.297 0.229 50.00 33.50 1.524 0.510
GeoMol 91.50 100.00 0.225 0.193 87.60 100.00 0.270 0.241
Torsional Diff. 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MCF 95.0 100.00 0.103 0.044 93.7 100.00 0.119 0.055
ET-Flow 96.47 100.00 0.073 0.047 94.05 100.00 0.098 0.039
ET-Flow - SO(3) 95.98 100.00 0.076 0.030 92.10 100.00 0.110 0.047

4.3 Coverage Threshold Plots

We compare the coverage metrics of ET-Flow against Torsional diffusion (Jing et al., 2022) and
MCF (Wang et al., 2024) against a wide range of thresholds on the GEOM DRUGS dataset in
Figure 3. ET-Flow consistently outperforms previous methods in precision-based metrics. In terms of
recall, our approach demonstrates better performance than Torsional Diffusion across all thresholds.
Despite MCF performing better at higher thresholds, ET-Flow outperforms in the lower thresholds,
underscoring its proficiency in generating accurate conformer predictions.

Figure 3: Recall and Precision Coverage result on GEOM-DRUGS as a function of the threshold
distance. ET-Flow outperforms TorsionDiff by a large margin especially in a lower threshold region.
We emphasize the better performance of ET-Flow at lower thresholds in both Recall and Precision
metrics.

4.4 Ensemble Properties

RMSD provides a geometric measure for assessing ensemble quality, but it is also essential to consider
the chemical similarity between generated and ground truth ensembles. For a random 100-molecule
subset of the test set of GEOM-DRUGS, if a molecule has K ground truth conformers, we generate
a minimum of 2K and a maximum of 32 conformers per molecule. These conformers are then
relaxed using GFN2-xTB (Bannwarth et al., 2019), and the Boltzmann-weighted properties of the
generated and ground truth ensembles are compared. Specifically, using xTB (Bannwarth et al.,
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2019), we compute properties such as energy (E), dipole moment (µ), HOMO-LUMO gap (∆ϵ), and
the minimum energy (Emin). Table 3 illustrates the median errors for ET-Flow and the baselines,
highlighting our method’s capability to produce chemically accurate ensembles. Notably, we achieve
significant improvements over both TorsionDiff and MCF across all evaluated properties.

Table 3: Median averaged errors of ensemble properties between sampled and generated conformers
(E, ∆ε, Emin in kcal/mol, and µ in debye).

E µ ∆ϵ Emin

OMEGA 0.68 0.66 0.68 0.69
GeoDiff 0.31 0.35 0.89 0.39
GeoMol 0.42 0.34 0.59 0.40
Torsional Diff. 0.22 0.35 0.54 0.13
MCF 0.68±0.06 0.28± 0.05 0.63±0.05 0.04±0.00

ET-Flow 0.18±0.01 0.18±0.01 0.35±0.06 0.02±0.00

4.5 Inference Steps Ablation

In Table 1, our sampling process with ET-Flow utilizes 50 inference steps. To evaluate the method’s
performance under constrained computational resources, we conducted an ablation study by progres-
sively reducing the number of inference steps. Specifically, we sample for 5, 10 and 20 time-steps.
The results on GEOM-DRUGS are presented in Table 4. We observed minimal performance degra-
dation with a decrease in the number of steps. Notably, ET-Flow demonstrates high efficiency,
maintaining performance across all precision and recall metrics even with as few as 5 inference steps.
Interestingly, ET-Flow with 5 steps still achieves superior precision metrics compared to all existing
methods. This underscores ET-Flow’s ability to generate high-quality conformations while operating
within limited computational budgets.

4.6 Sampling Efficiency

Figure 4: Sampling efficiency as a measure of the quality of Inference time with respect to the number
of time steps on GEOM-DRUGS.

We demonstrate the ability of ET-Flow to generate samples efficiently. We evaluate the inference
time per molecule over varying number of time steps and report the average time across 1000 random
samples from the test set of GEOM-DRUGS. Figure 4 shows that ET-Flow outperforms Torsional
diffusion (Jing et al., 2022) in inference across all time steps. While ET-Flow may not achieve
the fastest raw inference times (potentially due to MCF variants benefiting from optimized CUDA
kernels for attention), it maintains competitive speeds while ensuring higher precision. We suspect
that concurrent work on improving equivariant operations with optimized CUDA kernels (Lee et al.,
2024) should lead to similar efficiency gains as seen in transformer-based architectures.
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Table 4: Ablation over number of inference steps on GEOM-DRUGS (δ = 0.75Å). Performance of
ET-Flow at 5 steps is competent across all metrics while also retaining state-of-the-art performance
on precision metrics when compared with previous methods.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

ET-Flow (5 Steps) 77.84 82.21 0.476 0.443 74.03 80.8 0.55 0.474
ET-Flow (10 Steps) 79.05 84.00 0.451 0.415 74.64 81.38 0.533 0.457
ET-Flow (20 Steps) 79.29 84.04 0.449 0.413 74.89 81.32 0.531 0.454
ET-Flow (50 Steps) 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470

ET-Flow effectively balances performance and speed, making it ideal for tasks that require high
sample quality with efficient computation. With the ability to generate high-quality samples in fewer
time steps, e.g., 5 time steps, as indicated in Table 4, ET-Flow is well-suited for scenarios demanding
a large number of samples, as fewer steps lead to lower inference time per molecule. Additionally,
we encountered difficulties running MCF-L for 20 and 50 steps, so those results have not been
included. In summary, ET-Flow demonstrates efficient sampling, balancing precision and speed,
making it highly effective for generating high-quality molecular samples while remaining competitive
in inference time.

5 Conclusion

In this paper, we present our simple and scalable method ET-Flow, which utilizes an equivariant trans-
former with flow matching to achieve state-of-the-art performance on multiple molecular conformer
generation benchmarks. By incorporating inductive biases, such as equivariance, and enhancing
probability paths with a harmonic prior and RMSD alignment, we significantly improve the precision
of the generated molecules, and consequently generate more physically plausible molecules. Impor-
tantly, our approach maintains parameter and speed efficiency, making it not only effective but also
accessible for practical high-throughput applications.

6 Limitations And Future Works

While ET-Flow demonstrates competitive performance in molecular conformer generation, there are
areas where it can be enhanced. One such area is the recall metrics, which capture the diversity of
generated conformations. Another area is the use of an additional chirality correction step that is
used to predict conformations with the desired chirality. Moreover, although our performance on the
GEOM-XL dataset is comparable to MCF-S and TorsionDiff, there is still room for improvement.

We propose three future directions here. First, we observe during experiments that a well-designed
sampling process incorporating stochasticity can enhance the quality and diversity of generated
samples. An extension of our current approach could involve using Stochastic Differential Equations
(SDEs), which utilize both vector field and score in the integration process, potentially improving the
diversity of samples. Second, we propose to scale the number of parameters of ET-Flow, which has
not only been shown to be useful across different domains of deep learning, but has also shown to be
useful in molecular conformer generation for MCF (Wang et al., 2024). Third, to better handle the
chirality problem, we aim to explore alternatives for incorporating SO(3)-equivariance into the model
in the future.
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A Implementation Details

Figure 5: (a) Overall Architecture of ET-Flow consisting of 2 components, (1) Representation Layer
based on TorchMD-NET Thölke and De Fabritiis (2022) and (2) Equivariant Output Layer from
(Schütt et al., 2018). (b) Equivariant Attention Layer with all the operations involved, (c) Multi-Head
Attention block modified with the LayerNorm.

A.1 Architecture

The ET-Flow architecture (Figure 5) consists of 2 major components, a representation layer and an output layer.
For the representation layer, we use a modified version of the embedding and equivariant attention-based update
layers from the equivariant transformer architecture of TorchMD-NET (Thölke and De Fabritiis, 2022). The
output layer utilizes the gated equivariant blocks from (Schütt et al., 2018). We highlight our modifications over
the original TorchMD-NET architecture with this color. These modifications enable stabilized training since
we use a larger network than the one proposed in the TorchMD-NET (Thölke and De Fabritiis, 2022) paper.
Additionally, since our input structures are interpolations between structures sampled from a prior and actual
conformations, it is important to ensure our network is numerically stable when the interpolations contain two
atoms very close to each other.

Embedding Layer: The embedding layer maps each atom’s physical and chemical properties into a learned
representation space, capturing both local atomic features and geometric neighborhood information. For the i-th
atom in a molecule with N atoms, we compute an invariant embedding xi through the following process:

zi = embedint(zi) (7)
hi = MLP(hi) (8)

where zi is the atomic number and hi represents atomic attributes (detailed in Appendix A). The MLP projects
atomic attributes into a feature vector of dimension dh.

Next, we compute a neighborhood embedding ni that captures local atomic environment:

ni =

N∑
j=1

embednbh(zj) · g(dij , lij). (9)

Here, embednbh(zj) provides a separate embedding for neighboring atomic numbers, dij is the distance between
atoms i and j, and lij encodes edge features (either from a radius-based graph or molecular bonds). The
interaction function g(dij , lij) combines distance and edge information:

g(dij , lij) = WF [
ϕ(dij)e

RBF
1 (dij), . . . , ϕ(dij)e

RBF
K (dij), lij

]
(10)

where eRBF
k are K exponential radial basis functions following (Unke and Meuwly, 2019), and ϕ(dij) is a smooth

cutoff function:

ϕ(dij) =

{
1
2

(
cos(

πdij
dcutoff

+ 1)
)
, if dij ≤ dcutoff

0, otherwise
(11)
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Finally, we combine all features into the atom’s embedding through a linear projection:

xi = WC
[
embedint(zi), hi, t, ni

]
(12)

where t represents the time-step, and [·, ·] denotes concatenation. The resulting embedding xi ∈ Rd serves as
input to subsequent layers of the network.

Attention Mechanism: The multi-head dot-product attention operation uses atom features xi, atom attributes
hi, time-step t and inter-atomic distances dij to compute attention weights. The input atom-level features xi are
mixed with the atom attributes hi and the time-step t using an MLP and then normalized using a LayerNorm (Ba
et al., 2016). To compute the attention matrix, the inter-atomic distances dij are projected into two dimensional
filters DK and DV as:

DK = σ
(
WDK

eRBF (dij) + bD
K
)

DV = σ
(
WDV

eRBF (dij) + bD
V
)

(13)

The atom level features are then linearly projected along with a LayerNorm operation to derive the query Q and
key K vectors. The value vector V is computed with only the linear projection of atom-level features. Applying
LayerNorm on Q, K vectors (also referred to as QK-Norm) has proven to stabilize un-normalized values in the
attention matrix (Dehghani et al., 2023; Esser et al., 2024) when scaling networks to large number of parameters.
The Q and K vectors are then used along with the distance filter DK for a dot-product operation over the feature
dimension:

Q = LayerNorm(WQxi), K = LayerNorm(WKxi), V = WV xi (14)

dot(Q,K,DK) =

F∑
k

Qk ·Kk ·DK
k . (15)

The attention matrix is derived by passing the above dot-product operation matrix through a non-linearity and
weighting it using a cosine cutoff ϕ(dij) (similar to the embedding layer) which ensures the attention weights
are non-zero only when two atoms are within a specified cutoff:

A = SiLU(dot(Q,K,DK)) · ϕ(dij). (16)

Using the value vector V and the distance filter DV , we derive 3 equally sized filters by splitting along the
feature dimension,

s1ij , s
2
ij , s

3
ij = split(Vj ·DV

ij). (17)

A linear projection is then applied to combine the attention matrix and the vectors s3ij to derive an atom level

feature yi = WO
(∑N

j Aij · s3ij
)

. The output of the attention operation are yi (an atom level feature) and two

scalar filters s1ij and s2ij (edge-level features).

Update Layer: The update layer computes interactions between atoms in the attention block and uses the
outputs to update the scalar feature xi and the vector feature v⃗i. First, the scalar feature output yi from the
attention mechanism is split into three features (q1i , q

2
i , q

3
i ), out of which q1i and q2i are used for the scalar feature

update as,
∆xi = q1i + q2i · ⟨U1v⃗i · U2v⃗i⟩, (18)

where ⟨U1v⃗i · U2v⃗i⟩ is the inner product between linear projections of vector features v⃗i with matrices U1, U2.

The edge vector update consists of two components. First, we compute a vector w⃗i, which for each atom is
computed as a weighted sum of vector features and a clamped-norm of the edge vectors over all neighbors:

w⃗i =

N∑
j

s1ij · v⃗j + s2ij ·
r⃗i − r⃗j

max(∥r⃗i − r⃗j∥, ϵ)
, (19)

∆v⃗i = w⃗i + q3i · U3v⃗i (20)
where U1 and U3 are projection matrices over the feature dimension of the vector feature v⃗i. In this layer, we
clamp the minimum value of the norm (to ϵ = 0.01) to prevent numerically large values in cases where positions
of two atoms are sampled too close from the prior.

SO(3) Update Layer: We also design an SO(3) equivariant architecture by adding an additional cross product
term in Equation 19 as follows,

w⃗i =

N∑
j

s1ij · v⃗j + s2ij ·
r⃗i − r⃗j

max(∥r⃗i − r⃗j∥, ϵ)
+ s4ij ·

(
v⃗j ×

r⃗i − r⃗j
max(∥r⃗i − r⃗j∥, ϵ

)
, (21)
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where sij4 is derived by modifying the split operation Equation 17 in the attention layer where the value vector
V and distance filter DV is projected into 4 equally sized filters instead of 3.

Output Layer: The output layer consists of Gated Equivariant Blocks from (Schütt et al., 2018). Given atom
scalar xi and vector features v⃗i, the updates in each block is defined as,

xi,updated, w⃗i = split(MLP([xi, U1v⃗i)])) (22)
v⃗i,updated = (U2v⃗i) · w⃗i (23)

Here, U1 and U2 are linear projection matrices that act along feature dimension. Our modification is to use
LayerNorm in the MLP to improve training stability.

A.2 Input Featurization

Atomic features (or Node Features) are computed using RDKit (Landrum et al., 2013) features as described in
Table 5. For computing edge features and edge index, we use a combination of global (radius based edges) and
local (molecular graph edges) similar to (Jing et al., 2022).

Name Description Range

chirality Chirality Tag {unspecified, tetrahedral CW & CCW, other}
degree Number of bonded neighbors {x : 0 ≤ x ≤ 10, x ∈ Z}
charge Formal charge of atom {x : −5 ≤ x ≤ 5, x ∈ Z}
num_H Total Number of Hydrogens {x : 0 ≤ x ≤ 8, x ∈ Z}
number_radical_e Number of Radical Electrons {x : 0 ≤ x ≤ 4, x ∈ Z}
hybrization Hybrization type {sp, sp2, sp3, sp3d, sp3d2, other}
aromatic Whether on a aromatic ring {True, False}
in_ring Whether in a ring {True, False}

Table 5: Atomic features included in ET-Flow.

A.3 Evaluation Metrics

Following the approaches of (Ganea et al., 2021; Xu et al., 2022; Jing et al., 2022), we utilize Average Minimum
RMSD (AMR) and Coverage (COV) to assess the performance of molecular conformer generation. Here,
Cg denotes the set of generated conformations, and Cr denotes the set of reference conformations. For both
AMR and COV, we calculate and report Recall (R) and Precision (P). Recall measures the extent to which the
generated conformers capture the ground-truth conformers, while Precision indicates the proportion of generated
conformers that are accurate. The specific formulations for these metrics are detailed in the following equations:

AMR-R(Cg, Cr) =
1

|Cr|
∑

R∈Cr

min
R̂∈Cg

RMSD(R, R̂)

COV-R(Cg, Cr) =
1

|Cr|
|{R ∈ Cr|RMSD(R, R̂) < δ, R̂ ∈ Cg}|

AMR-P(Cr, Cg) =
1

|Cg|
∑

R̂∈Cg

min
R∈Cr

RMSD(R̂,R)

COV-P(Cr, Cg) =
1

|Cg|
|{R̂ ∈ Cg|RMSD(R̂,R) < δ,R ∈ Cr}|

A lower AMR score signifies improved accuracy, while a higher COV score reflects greater diversity in the
generative model. Following (Jing et al., 2022), the threshold δ is set to 0.5Å for GEOM-QM9 and 0.75Å for
GEOM-DRUGS.

A.4 Training Details and Hyperparameters

For GEOM-DRUGS, we train ET-Flow for a fixed 250 epochs with a batch size of 64 and 5000 training batches
per epoch per GPU on 8 A100 GPUs. For the learning rate, we use the Adam Optimizer with a cosine annealing
learning rate which goes from a maximum of 10−3 to a minimum 10−7 over 250 epochs with a weight decay of
10−10. For GEOM-QM9, we train ET-Flow for 200 epochs with a batch size of 128, and use all of the training
dataset per epoch on 4 A100 GPUs. We use the cosine annealing learning rate schedule with maximum of
8 · 10−4 to minimum of 10−7 over 100 epochs, post which the maximum is reduced by a factor of 0.05. We
select checkpoints based on the lowest validation error.
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Hyper-parameter ET-Flow

num_layers 20
hidden_channels 160
num_heads 8
neighbor_embedding True
cutoff_lower 0.0
cutoff_higher 10.0
node_attr_dim 8
edge_attr_dim 1
reduce_op True
activation SiLU
attn_activation SiLU

# param 8.3M

Table 6: Hyperparameters for ET-Flow

B Training and Sampling Algorithm

The following algorithms go over the pseudo-code for the training and sampling procedure. For each molecule,
we use up to 30 conformations with the highest boltzmann weights as provided by CREST (Pracht et al., 2024)
similar to that of (Jing et al., 2022)

Algorithm 1: Training procedure
Input: molecules [G0, ..., GN ] each with true conformers [CG,1, ...CG,KG

], the harmonic prior
ρ0, learning rate α, number of epochs Ne, initialized vector field vθ

Output: trained flow matching model vθ
for i← 1 to Ne do

for G in [G0, ..., GN ] do
Sample t ∼ U [0, 1] and C1 ∈ [CG,1, ...CG,KG

];
Sample prior C0 ∼ ρ0(G);
Align C0 ← RMSDAlign(C0, C1);
Sample Ct = tC1 + (1− t)C0 + σ2t(1− t)z, z ∼ N (0, I);
Construct vector field ut ← x1 − x0 +

1−2t

2
√

t(1−t)
z;

Compute loss ← ∥vθ(t, Ct)− ut∥2;
Take gradient step θ ← θ − α∇θ;

Algorithm 2: Inference procedure
Input: molecular graph G, number conformers K, number of sampling steps N
Output: predicted conformers [C1, ...CK ]
for C in [C1, ...CK ] do

sample prior Ĉ ∼ ρ0(G);
for n← 0 to N − 1 do

Set t← n
N ;

Set ∆t← 1
N ;

Predict v̂ = vθ(t, Ĉ);
Update Ĉ = Ĉ + v̂∆t
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Algorithm 3: Stochastic Sampler
Input: molecular graph G, number conformers K, number of sampling steps N , stochasticity

level churn, stochastic sampling range [tmin, tmax]
Output: predicted conformers [C1, ...CK ]
for C in [C1, ...CK ] do

sample prior Ĉ ∼ ρ0(G);
for n← 0 to N − 1 do

Set t← n
N ;

Set ∆t← 1
N ;

Set γ ← churn
N ;

if t ∈ [tmin, tmax] then
Sample ϵ ∼ N(0, I);
∆t̂← γ(1− t);
t̂← max(t−∆t̂, 0);

Ĉ ← Ĉ +∆t̂
√

t2 − t̂2ϵ;
Predict v̂ = vθ(t̂, Ĉ);
Set ∆t← ∆t+∆t̂;

else
Predict v̂ = vθ(t, Ĉ);

Update Ĉ = Ĉ + v̂∆t

C Proofs

C.1 Designing SO(3) Equivariance

We show that we can modify the architecture in Section A.1 (Equation 18) to produce a final vector output that
satisfies rotation equivariance and reflection asymmetry. Let v⃗1 and v⃗2 be linearly independent non-zero vectors
∥v⃗1∥ > 0, ∥v⃗2∥ > 0, and s be a scalar. We implement SO(3) equivariance by adding a vector with a cross
product. We show that vector v⃗ = v⃗1 + s(v⃗1 × v⃗2), where v⃗1 × v⃗2 denotes cross product of v⃗1 and v⃗2, satisfies
anti-symmetry while maintaining rotation equivariance as follows,

Rv⃗1 + s(Rv⃗1 ×Rv⃗2) = R(v⃗1) + sR(v⃗1 × v⃗2) (24)
= R(v⃗1 + s(v⃗1 × v⃗2)) (25)

−v⃗1 + s(−v⃗1 ×−v⃗2) = −v⃗1 + s(v⃗1 × v⃗2) (26)
̸= −(v⃗1 + s(v⃗1 × v⃗2)) (27)

This concludes the proof for rotation equivariance and reflection anti-symmetry.

D Additional Results

D.1 Design Choice Ablations

We conduct a series of ablation studies to assess the influence of each component in the ET-Flow. Particularly,
we re-run the experiments with (1) O(3) equivariance without chirality correction, (2) Absence of Alignment,
(3) Gaussian Prior as a base distribution. We demonstrate that improving probability paths and utilizing an
expressive equivariant architecture with correct symmetries are key components for ET-Flow to achieve state
of the art performance. The ablations were ran with reduced settings (50 epochs; lr = 1e− 4; 4 A100 gpus).
Results are shown in Table D.1.

D.2 Results on GEOM-XL

We now assess how well a model trained on GEOM-DRUGS generalises to unseen molecules with large
numbers of atoms, using the GEOM-XL dataset containing a total of 102 molecules. This provides insights into
the model’s capacity to tackle larger molecules and out-of-distribution tasks. Upon executing the checkpoint
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Table 7: Ablation results on GEOM-DRUGS.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
ET-Flow 75.37 82.35 0.557 0.529 58.90 60.87 0.742 0.690
ET-Flow (O(3)) 72.74 79.21 0.576 0.556 54.84 54.11 0.794 0.739
ET-Flow (w/o Alignment) 68.67 74.71 0.622 0.611 47.09 44.25 0.870 0.832
ET-Flow (Gaussian Prior) 66.53 73.01 0.640 0.625 44.41 40.88 0.903 0.864

Table 8: Generalization results on GEOM-XL.
AMR-P ↓ AMR-R ↓ # mols

mean median mean median

GeoDiff 2.92 2.62 3.35 3.15 -
GeoMol 2.47 2.39 3.30 3.14 -
Tor. Diff. 2.05 1.86 2.94 2.78 -
MCF - S 2.22 1.97 3.17 2.81 102
MCF - B 2.01 1.70 3.03 2.64 102
MCF - L 1.97 1.60 2.94 2.43 102
ET-Flow (ours) 2.31 1.93 3.31 2.84 102

Tor. Diff. 1.93 1.86 2.84 2.71 77
MCF - S 2.02 1.87 2.9 2.69 77
MCF - B 1.71 1.61 2.69 2.44 77
MCF - L 1.64 1.51 2.57 2.26 77
ET-Flow (ours) 2.00 1.80 2.96 2.63 75

provided by Torsional Diffusion, we encountered 27 failed cases for generation likely due to RDKit failures,
similar to the observations in MCF albeit with slightly different exact numbers. In both experiments involving all
102 molecules and a subset of 75 molecules, ET-Flow achieves performance comparable to Torsional Diffusion
and MCF-S, but falls short of matching the performance of MCF-B and MCF-L. It’s worth noting that MCF-B
and MCF-L are significantly larger models, potentially affording them an advantage in generalization tasks. As
part of our future work, we plan to scale up our model and conduct further tests to explore its performance in
this regard.

D.3 Additional Out-of-Distribution Results

Table 9: Additional OOD results. We use RS and SS to indicate Random Split and Scaffold Split
respectively.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
ET-Flow (QM9 RS) 96.47 100.00 0.073 0.047 94.05 100.00 0.098 0.039
ET-Flow (QM9 SS) 95.00 100.00 0.083 0.029 90.25 100.00 0.124 0.053
ET-Flow (DRUGS→ QM9) 86.68 100.00 0.218 0.160 68.69 75.30 0.369 0.317

ET-Flow (DRUGS RS) 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470
ET-Flow (DRUGS SS) 76.06 80.65 0.644 0.545 67.83 74.19 0.511 0.473

To further evaluate the generalization performance of ET-Flow, we conduct two more out-of-distribution
experiments in addition to GEOM-XL. First, we test the model on scaffold-based splits of the GEOM-QM9 and
GEOM-DRUGS dataset, which offers a more challenging alternative to the standard random split. We split the
datasets based on Murcko scaffolds of the molecules into an 80:10:10 ratio for train, validation, and test sets. We
evaluate our method on 1000 randomly sampled molecules from the resulting test set. The second experiment
involves training the model on GEOM-DRUGS and assessing its performance on GEOM-QM9, a dataset with
significantly smaller molecules. This experiment complements the generalization task to larger molecules in
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GEOM-XL by assessing ability for ET-Flow to generalize to smaller molecules. The results, presented in Table 9,
indicate that the model’s performance degrades only marginally on the scaffold-based split. Furthermore, the
model demonstrates robust performance on GEOM-QM9 even when trained on GEOM-DRUGS.

E Visualizations

Figure 6 shows randomly selected examples of sampled conformers from ET-Flow for GEOM-DRUGS. The left
column is the reference molecule from the ground truth, and the remaining columns are samples generated with
50 sampling steps. Figure 7 showcases the ability for ET-Flow to generate quality samples with fewer sampling
steps.

Figure 6: Examples of conformers of ground truth and ET-Flow for GEOM-DRUGS.
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Figure 7: Examples of conformers of ground truth and ET-Flow for different number of sampling
steps.
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• The answer NA means that the paper does not include theoretical results.
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• If error bars are reported in tables or plots, The authors should explain in the text how they were
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
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