
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASSESS: A SEMANTIC AND STRUCTURAL EVALUA-
TION FRAMEWORK FOR STATEMENT SIMILARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Statement autoformalization, the automated translation of statements from natu-
ral language into formal languages, has seen significant advancements, yet the
development of automated evaluation metrics remains limited. Existing metrics
for formal statement similarity often fail to balance semantic and structural infor-
mation. String-based approaches capture syntactic structure but ignore semantic
meaning, whereas proof-based methods validate semantic equivalence but dis-
regard structural nuances and, critically, provide no graded similarity score in
the event of proof failure. To address these issues, we introduce ASSESS (A
Semantic and Structural Evaluation Framework for Statement Similarity), which
comprehensively integrates semantic and structural information to provide a con-
tinuous similarity score. Our framework first transforms formal statements into
Operator Trees to capture their syntactic structure and then computes a similarity
score using our novel TransTED (Transformation Tree Edit Distance) Similarity
metric, which enhances traditional Tree Edit Distance by incorporating semantic
awareness through transformations. For rigorous validation, we present EPLA
(Evaluating Provability and Likeness for Autoformalization), a new benchmark of
524 expert-annotated formal statement pairs derived from miniF2F and ProofNet,
with labels for both semantic provability and structural likeness. Experiments
on EPLA demonstrate that TransTED Similarity outperforms existing methods,
achieving state-of-the-art accuracy and the highest Kappa coefficient. The bench-
mark and experimental results are provided in the supplementary material.

1 INTRODUCTION

Formal languages such as Isabelle (Paulson, 1994), HOL Light (Harrison, 1996), Coq (Barras et al.,
1999), and Lean (De Moura et al., 2015; Moura & Ullrich, 2021) have recently gained prominence
within the mathematical community for their capacity to rigorously verify proofs. Nevertheless,
formalizing mathematical content is a labor-intensive process that demands substantial time, effort,
and a profound familiarity with these specialized languages and their corresponding mathematical
libraries, such as Mathlib (The mathlib Community, 2020). Consequently, the task of autoformal-
ization (Szegedy, 2020), defined as translating theorem statements and proofs from natural language
into their formal counterparts, has become an active area of research.

While autoformalization has rapidly advanced, the methods for evaluating its output have not kept
pace. Existing evaluation metrics can be unified under the framework of assigning a similarity
score, and they are constrained by a fundamental trade-off between capturing semantic meaning and
preserving structural information. String-based metrics such as BLEU (Papineni et al., 2002) rely
on surface-level n-gram overlap. This makes them sensitive to inconsequential lexical variations but
largely ignores underlying semantic content. Conversely, proof-based approaches (Li et al., 2024;
Liu et al., 2025a) can guarantee semantic equivalence through formal proof. However, this method
is brittle; it is fundamentally constrained by the capabilities of the underlying automated theorem
prover, leading to a high false negative rate. Furthermore, when a proof cannot be found, these
approaches fail to provide any meaningful similarity score. In addition, syntax-based metrics (Jiang
et al., 2023) operate at the shallowest level of grammatical compliance, offering no semantic or
structural insights. The LLM-as-a-Judge (Ying et al., 2024a) approach, while powerful, introduces
prohibitive costs and significant reproducibility concerns. These collective shortcomings reveal a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

critical gap in the field: the need for an automated evaluation metric that robustly combines semantic
and structural information for statement similarity in a reproducible and efficient manner.

In this work, we propose ASSESS (A Semantic and Structural Evaluation Framework for Statement
Similarity), a novel two-stage framework for evaluating formal statement pairs. The core of ASSESS
is its novel metric, TransTED (Transformation Tree Edit Distance) Similarity. It is designed to be
sensitive to both semantic and structural nuances while remaining computationally efficient, requir-
ing only CPU resources. In the first stage, ASSESS leverages the Lean Language Server to parse
each formal statement pair into its Operator Tree, a representation that captures deeper structural
information than raw text. To overcome the semantic limitations of a standard Tree Edit Distance
(TED) (Zhang & Shasha, 1989), the second stage augments the TED calculation with a curated set
of transformations. This augmentation enables TransTED Similarity to robustly measure statement
similarity where purely structural or semantic methods fail.

To enable a rigorous evaluation in the absence of a standard benchmark, we introduce EPLA
(Evaluating Provability and Likeness for Autoformalization). We constructed this benchmark by
first translating informal statements from the miniF2F-test (Zheng et al., 2022) and ProofNet-test
(Azerbayev et al., 2023) datasets using the Herald Translator (Gao et al., 2024) and Gemini 2.5
Pro (Comanici et al., 2025). Successful translations were then paired with their ground-truth coun-
terparts and subsequently annotated by human experts along two axes: semantic provability and
structural likeness. The resulting benchmark comprises 524 annotated pairs, drawn from EPLA-
miniF2F (373 pairs) and EPLA-ProofNet (151 pairs). To our knowledge, this represents the largest
and most comprehensive dataset dedicated to this evaluation task.

Experimental results demonstrate that our proposed TransTED Similarity metric consistently out-
performs a range of baselines, establishing a new state-of-the-art in both accuracy (78.82% and
70.86%) and the Cohen’s Kappa coefficient (0.46 and 0.40) across both the EPLA-miniF2F and
EPLA-ProofNet datasets. Our metric provides a more balanced assessment than brittle proof-based
methods, is more efficient and reproducible than LLM-based judges, and exhibits superior robust-
ness compared to n-gram-based metrics. Finally, a detailed ablation study confirms that our novel
transformation component is the critical factor behind these performance gains, validating its effec-
tiveness in capturing semantic equivalence. This highlights its success in providing a more balanced
and reliable measure of statement similarity.

We summarize our main contributions as follows:

1. We propose a novel method that leverages the Lean Language Server to automatically parse
formal statements into Operator Trees. This representation enables the direct application
of Tree Edit Distance (TED) similarity for evaluating statement similarity.

2. We introduce TransTED Similarity, a semantically-aware metric that extends TED simi-
larity by incorporating transformations directly into the distance calculation. TransTED
similarity provides a more holistic similarity score, establishing a new state-of-the-art.

3. We present EPLA, the first large-scale and most comprehensive benchmark for this evalua-
tion task, comprising 524 formal statement pairs meticulously annotated by domain experts,
to facilitate rigorous and reproducible evaluation.

2 RELATED WORK

Autoformalization. The goal of autoformalization is to translate informal mathematics into for-
mally verified code. Research in this area, particularly for theorem statements, has evolved signifi-
cantly. While early work often relied on neural machine translation (Wang et al., 2018; Cunningham
et al., 2023), the transformative impact of Large Language Models (LLMs) has given rise to three
dominant strategies. These include exploring the efficacy of few-shot prompting (Wu et al., 2022;
Agrawal et al., 2022; Zhou et al., 2024); improving capabilities by fine-tuning LLMs (Gao et al.,
2024; Lu et al., 2024b; Liu et al., 2025b; Wu et al., 2025) on relevant parallel statements; and inte-
grating retrieval-augmented generation (Zhang et al., 2024) to achieve enhanced performance.

Automated Evaluation. Automated evaluation in the context of autoformalization denotes meth-
ods and metrics that assign quantitative scores to machine-generated formal statements, with the
goal of estimating their similarity relative to a natural-language source (Weng et al., 2025). In the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

NL-FL Dataset

FL-FL Dataset

EPLA Benchmark

NL-FL translator

compilation

human evaluation

FL Pair

OPT Pair

TED

TED Similarity

construct OPTs

APTED

normalize

FL pair

Equality

transformation

Minimum TED

TransTED

TransTED Similarity

merge

compile

normalize

TED

fail

0

success

heuristic
function

1

Figure 1: Illustration of ASSESS. (a) EPLA Benchmark: The dataset is created by using translators
to generate formal pairs, which are processed through compilation and human evaluation. (b) TED
Similarity: The baseline TED Similarity is computed by converting an FL pair into Operator Trees,
calculating and normalizing the TED. (c) TransTED Similarity: The novel TransTED Similarity first
merges an FL pair into an equality. It then employs a transformation loop, guided by a search that
uses TED as heuristic function, to find and normalize the minimal achievable distance.

realm of automated evaluation, early efforts predominantly employ metrics based on grammatical
validity (Jiang et al., 2023) and string similarity (Azerbayev et al., 2023), yet these struggle with
semantic understanding. FormalAlign (Lu et al., 2024a) innovatively integrates autoformalization
with evaluation by simultaneously generating a formal statement and its corresponding evaluation
score. While this represents a significant contribution to the fields of autoformalization and auto-
mated evaluation, its scoring mechanism cannot be used as a standalone evaluation metric. Simul-
taneously, cross-provability (Murphy et al., 2024; Li et al., 2024; Liu et al., 2025a; Poiroux et al.,
2024) between formal statements emerges as a widely accepted standard for automated evaluation,
but its effectiveness is constrained by the current progress in automated theorem proving.

Operator Trees. Operator Trees (OPTs) represent mathematical expressions as syntax trees, with
operators as internal nodes and operands as leaves (Zanibbi et al., 2002). Compared with sequence-
based formula representations, OPTs explicitly capture the hierarchical structure and semantic re-
lations within expressions, preserving operator precedence and operand dependencies (Zanibbi &
Blostein, 2012; Hu et al., 2013). These properties have made OPTs foundational to applications
in mathematical information retrieval (MIR). For instance, systems extract structural features from
OPTs for similarity searching (Zhong & Zanibbi, 2019) or combine them with other representations
for formula retrieval, as in the MCAT system (Kristianto et al., 2016). The utility of OPTs also
extends to deep learning, where models like MathBERT (Peng et al., 2021) integrate OPT structures
during pretraining to enhance semantic understanding , and encoders such as FORTE (Wang et al.,
2021) learn formula representations directly from OPT-based inputs.

3 METHODOLOGY

This section details our proposed framework ASSESS, which is illustrated in Figure 1. We first
establish the theoretical foundations in Section 3.1. We then present the two core metrics: an initial
evaluation using a standard Tree Edit Distance (TED) Similarity (Section 3.2), followed by our
primary contribution, the semantically-enhanced TransTED Similarity metric (Section 3.3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 PRELIMINARIES

Our framework quantifies statement similarity by computing the distance between their structural
representations. We model these representations as vertices within a weighted, undirected graph,
where dissimilarity is captured by the shortest-path distance between them. To formalize this graph-
based approach, we begin with the definition of a pseudometric space.

A pseudometric space is a set X equipped with a function d : X × X → R≥0, called a pseudo-
metric, that satisfies the following axioms for all x, y, z ∈ X:

• Identity: d(x, x) = 0

• Symmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Crucially, a pseudometric differs from a metric in that d(x, y) = 0 does not necessarily imply
x = y. This property is essential for our application, as structurally distinct formal statements can
be semantically equivalent (e.g., a + b and b + a). For generality, we allow the codomain to be the
extended non-negative real numbers [0,∞], noting that the operation∞−∞ is undefined.
Definition 1 (Shortest-path distance). Let G = (V,E,w) be an undirected, weighted graph, where
V is the set of vertices, E is the set of edges, and w : E → [0,∞] is the edge weight function. The
shortest path distance d : V × V → [0,∞] is defined as:

d(u, v) := inf

{∑
e∈p

w(e) | p is a path from u to v with finitely many edges

}

By convention, d(v, v) = 0. If no path with finitely many edges exists between u and v, the set of
paths is empty, and the infimum over an empty set is∞, so d(u, v) = ∞. This function d satisfies
the required axioms, confirming that (V, d) constitutes a pseudometric space.

3.2 TED SIMILARITY

Our baseline metric, TED Similarity, quantifies structural correspondence between two formal state-
ments. This is achieved in three steps: (1) representing each statement as a hierarchical Operator
Tree (OPT); (2) computing the Tree Edit Distance (TED) between the two OPTs; and (3) normaliz-
ing this distance to produce a final similarity score.

3.2.1 OPT CONSTRUCTION

To capture the hierarchical structure of formal statements, we represent each as a labeled, ordered
Operator Tree (OPT). We leverage the Lean Language Server to parse a statement, from which
we derive the tree’s topology based on the nested scopes of its elements: operators become parent
nodes and their arguments become ordered children. During construction, we apply two additional
transformations to standardize the tree structure:

• Placeholder Representation: We append a placeholder <SLOT> to the labels of all non-
leaf (operator) nodes. This explicitly marks the node’s functional role, disambiguating
operators from operands that might share the same name.

• Parentheses Omission: Parentheses enforce operator precedence in a linear string repre-
sentation. Since a tree’s topology inherently encodes this hierarchy, parentheses are redun-
dant structural artifacts and are omitted from the OPT.

As an example, Figure 2 demonstrates the constructed OPT for the following formal statement:
theorem eq : ((Σ x ∈ Finset.range 10, (x + 1) ˆ 2) % 10 = 5) = ((Σ
n ∈ Finset.Icc 1 9, n ˆ 2) % 10 = 5) := by sorry

3.2.2 METRIC CALCULATION

With formal statements converted to OPTs, we can instantiate the pseudometric space defined in
Section 3.1. The set of vertices X becomes the set of all possible OPTs, and the distance function d
is the Tree Edit Distance (TED).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

: <SLOT>

<SLOT> = <SLOT>

<SLOT> = <SLOT> <SLOT> = <SLOT>

<SLOT> % <SLOT> 5

∑ <SLOT> <SLOT>, <SLOT> 10

x ∈ <SLOT> <SLOT> ^ <SLOT>

Finset.range <SLOT>

10

<SLOT> + <SLOT> 2

x 1

<SLOT> % <SLOT> 5

∑ <SLOT> <SLOT>, <SLOT> 10

n ∈ <SLOT> <SLOT> ^ <SLOT>

Finset.Icc <SLOT> <SLOT>

1 9

n 2

Figure 2: The Operator Tree (OPT) of a formal statement.

Definition 2 (Tree Edit Distance). Let X be the set of all labeled, ordered Operator Trees (OPTs).
The Tree Edit Distance (TED), dTED : X×X → R≥0, between two trees T1, T2 ∈ X is the minimum
total cost of a sequence of operations that transforms T1 into T2. The standard operations and their
associated non-negative costs are:

• Delete a node, connecting its children to its parent in order. Cost: cdel.

• Insert a node, the inverse of a delete operation. Cost: cins.

• Relabel a node by changing its label. Cost: crel.

For dTED to be a valid pseudometric, the costs must satisfy cdel = cins, ensuring symmetry.

To enable meaningful comparisons across trees of varying sizes, we define TED Similarity by nor-
malizing the absolute Tree Edit Distance (TED) relative to tree size.
Definition 3 (TED Similarity). The TED Similarity between two OPTs, T1 and T2, is:

simTED(T1, T2) := 1− dTED(T1, T2)

max{|T1|, |T2|}
,

where |T | is the number of nodes in tree T .

This formulation assumes unit costs for all operations (cdel = cins = crel = 1), a standard convention
we adopt (Zhang & Shasha, 1989). The denominator max{|T1|, |T2|} serves as a normalization
factor, representing the cost of deleting all nodes in the larger tree. This ensures the similarity score
is bounded in [0, 1], where 1 indicates identical trees.

3.3 TRANSTED SIMILARITY

While TED Similarity effectively captures structural differences, it is syntactically rigid and penal-
izes semantically equivalent expressions, such as a + b and b + a. To address this, we introduce
TransTED Similarity, which augments the TED with semantic awareness through transformations.

3.3.1 THEORETICAL FRAMEWORK

In our framework, we define a concept, transformation, to integrate semantic awareness into distance
functions. We start with an example: i = j implies that f(i) = f(j). In other words, f(i) = f(j)
is no stronger than i = j, because to show f(i) = f(j) suffices to show i = j. We say that the
comparison of f(i) and f(j) can be transformed to the comparison of i and j. Generally, a weaker
comparison can be transformed to a stronger one. Therefore, we hope that the distance between
OPTs of the transformed comparison is no smaller than that between OPTs of the original one.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Formally, let X be the set of all Operator Trees (OPTs). We define a new pseudometric, d∗, on X
that is constrained by the following two properties:

• Domination by TED: For any two trees T1, T2 ∈ X , the new distance is bounded by the
original Tree Edit Distance: d∗(T1, T2) ≤ dTED(T1, T2).

• Monotonicity under Transformation: If a pair of formal expressions (ex, ey) can be trans-
formed into a logically stronger pair (eu, ev) (i.e., if eu = ev implies ex = ey), then the
metric must satisfy d∗(OPT(ex),OPT(ey)) ≤ d∗(OPT(eu),OPT(ev)).

Finding the largest pseudometric d∗ that satisfies these conditions can be formulated as a linear
programming problem. The following theorem establishes that this problem has a unique optimal
solution, which we define as TransTED. The full proof is provided in Appendix B.
Theorem 1. Let X be an arbitrary set, b : X × X → [0,∞] be a function and T is a subset of
(X ×X)2. Consider the function space

F :=

{
f

∣∣∣∣∣f is a pseudometric on X, and
{
∀x, y ∈ X, f(x, y) ≤ b(x, y),

∀((x, y), (u, v)) ∈ T, f(x, y) ≤ f(u, v).

}
.

Then there exists a unique maximum function f ∈ F such that for any (x, y) ∈ X ×X ,

f(x, y) = sup
f∈F

f(x, y).

3.3.2 IMPLEMENTATION

Since any practical implementation is limited to a finite list of transformations, our algorithm com-
putes a tractable upper bound of the TransTED, rather than its exact theoretical value. However, if
this finite sequence of transformations proves that two expressions are semantically equivalent, the
computed distance is exactly 0 - the true value, not an approximation.

Table 1: Additional Tactic Commands
Tactic command Original Goal Transformed Goal

apply congrArg f x = f y x = y

apply congrFun f x = g x f = g

apply forall_congr;

intro _
(a → b) = (a → c) (_ : a) ⊢ b = c

apply implies_congr;

all_goals (try exact?) 1 (a → c) = (b → d) a = b or c = d or None

ext
(fun (x : A) => f x) =

(fun (y : A) => g y)
(x : A) ⊢ f x = g x

rw [propext and_imp] a ∧ b → c a → b → c

norm_cast2 - -

In the context of the Lean theorem prover, transformation can be conceptualized as the set of all
tactics that adhere to our theoretical framework (see Theorem 1). For implementation, on the one
hand, we curated a subset of these tactics, selected for their practical efficacy and detailed in Table 1.
On the other hand, since these tactics operate on single equalities rather than pairs of statements, we
first construct a unified expression for comparison. Given a pair of formal statements, we achieve
this by forming an equality between their respective types. This process converts the statement pair
into a single equation, which then serves as the input for our transformation tactics. Some concrete
examples are provided in Appendix D.2.

1At least one of a = b and c = d should be proved by exact?, or otherwise the tactic command gener-
ates two new goals, which is forbidden in our heuristic search.

2norm_cast undertakes simple type coercions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To circumvent the combinatorial explosion of applying all tactics, we apply a search algorithm. The
algorithm performs a heuristic search through transformations. The guiding heuristic prioritizes tac-
tics that reduce the TED between OPTs on the left- and right-hand sides of the equation, effectively
pruning less promising branches. This approach allows our method to efficiently find short-distance
transformation paths and the complete algorithm is detailed in Appendix C. Finally, to enhance in-
terpretability, we normalize the raw TransTED distance into a TransTED Similarity score, defined
in an analogous way as Definition 3.

4 EXPERIMENTS

4.1 THE EPLA BENCHMARK

We introduce EPLA (Evaluating Provability and Likeness for Autoformalization), a new benchmark
designed to overcome the limitations of current autoformalization evaluations. Existing benchmarks
often rely on coarse binary labels (e.g., True/False), which prevent a nuanced assessment of a met-
ric’s performance. For instance, a slightly incorrect but easily fixable translation is more valuable
than one that is completely wrong, yet both would be identically classified as False. EPLA provides
a more granular, versatile, and interpretable evaluation to address this critical gap.

EPLA is built upon two established datasets: miniF2F-test (Zheng et al., 2022) and ProofNet-test
(Azerbayev et al., 2023). We utilize the specific versions of these datasets provided by Numina3 for
miniF2F-test and DeepSeek4 for ProofNet-test. To generate candidate formalizations, we translate
the natural language statements from these source datasets into Lean 4 using two distinct translators:
the Herald Translator (Gao et al., 2024) and Gemini 2.5 Pro (Comanici et al., 2025). After applying
a compilation filter to retain only syntactically valid statements, a panel of five experts with back-
grounds in mathematics annotated and cross-validate each formal statement pair. The annotation
was performed along two axes: Semantic Provability, defined as whether the ground-truth and pre-
dicted statements are mutually provable, and Structural Likeness, which measures the degree of
structural likeness between them. The final EPLA benchmark, detailed in Table 2, comprises 524
such annotated data points.

Table 2: Statistics of the EPLA benchmark
Herald Translator Gemini 2.5 Pro Total

EPLA-miniF2F 198 175 373
EPLA-ProofNet 89 62 151

Note: The intersection of these axes yields EPLA’s five-label annotation scheme: (a) Mutually
Provable & Like; (b) Mutually Provable & Unlike; (c) Mutually Unprovable & Like; (d) Mutually
Unprovable & Like* (where Like* denotes likeness after semantics-preserving transformations); and
(e) Mutually Unprovable & Unlike. This granular classification enables flexible evaluation regimes.
For instance, a strict evaluation could define success as categories (a) and (b), whereas a human-in-
the-loop scenario might accept (a) through (d) as useful outputs.

4.2 EXPERIMENT SETTING

Baselines. We benchmark TED Similarity and TransTED Similarity against several competing
baseline methods to validate the efficacy of our proposed metric. To ensure fair and consistent
evaluation across these methods, we establish specific conventions for handling theorem names.
For string-based approaches (e.g., Identity Match, BLEU), we standardize theorem names in both
ground truth and predicted formal statements to thm. For proof-based approaches (e.g., Definitional
Equality, BEq), we designate the ground truth theorem names as thm P and the predicted theorem
names as thm Q. For all other methods, theorem names remain unaltered.

• Identity Match: A predicted formal statement is considered correct if, after removing all
whitespace, it is identical to the ground truth.

3https://huggingface.co/datasets/AI-MO/minif2f test
4https://github.com/deepseek-ai/DeepSeek-Prover-V1.5/tree/main/datasets

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Overall results of the competing baselines and our metrics. The boldface refers to the
highest score and the underline indicates the next best result of the metrics. Detailed results about
the number of TP, TN, FP and FN are available in Appendix D.1.

Metric
EPLA-miniF2F EPLA-ProofNet

Precision Recall Accuracy Kappa Precision Recall Accuracy Kappa

(Baselines)

Identity Match 100.00% 9.78% 33.24% 0.05 100.00% 1.25% 47.68% 0.01

Typecheck 73.99% 100.00% 73.99% 0.00 52.98% 100.00% 52.98% 0.00

BLEU 89.69% 63.04% 67.29% 0.33 64.21% 76.25% 64.90% 0.29

Majority Voting 89.95% 61.59% 66.49% 0.33 72.86% 63.75% 68.21% 0.37

Definitional Equality 98.92% 33.33% 50.40% 0.20 80.00% 10.00% 50.99% 0.07

BEq 100.00% 48.91% 62.20% 0.33 100.00% 28.75% 62.25% 0.28

(Ours)

TED Similarity 85.83% 74.64% 72.12% 0.35 65.98% 80.00% 67.55% 0.34

TransTED Similarity 86.08% 85.14% 78.82% 0.46 67.31% 87.50% 70.86% 0.40

• Typecheck: A predicted formal statement is deemed correct if it successfully compiles.

• BLEU: We follow the implementation in ProofNet (Azerbayev et al., 2023).

• Majority Voting: Following Lean Workbook (Ying et al., 2024a), we employ DeepSeek-
V3.1 (Liu et al., 2024) with temperature 0.7 for 16 rounds of majority voting.

• Definitional Equality (Liu et al., 2025a): A predicted formal statement is considered correct
under this metric if example: thm_P = thm_Q := by rfl succeeds.

• BEq (Liu et al., 2025a): This metric assesses the mutual provability between a ground-truth
formal statement thm P and a predicted formal statement thm Q. It employs InternLM2-
Math-Plus-20B (Ying et al., 2024b) with an expanded set of tactics to attempt proofs in
both directions. The prediction is considered correct only if both proofs are successful.

Implementation. To ensure a fair comparison against baselines that require binary labels, we es-
tablished a unified evaluation protocol. First, we map EPLA’s granular annotations to a binary
ground truth, designating categories (a) and (b) as True and all others as False. Second, for contin-
uous metrics (BLEU, TED Similarity, and TransTED Similarity), we convert their scores to binary
predictions by applying a threshold and the best results over all possible thresholds are reported.

All experiments were conducted on our EPLA benchmark using the Lean toolchain v4.9.0-rc1.
With the sole exception of the GPU-dependent BEq baseline, all evaluated metrics were executed
on CPUs. Our proposed metric is particularly lightweight, requiring only interaction with the Lean
Language Server and REPL, thus imposing lower computational overhead.

4.3 EXPERIMENT RESULTS

Overall Comparison. Table 3 presents a comprehensive overview of our proposed TransTED
Similarity compared to various baseline metrics across the EPLA-miniF2F and EPLA-ProofNet
benchmarks. Our primary evaluation focuses on accuracy and the Cohen’s Kappa, as accuracy di-
rectly reflects the overall correctness of the evaluation, and Kappa (Cohen, 1960) offers a robust
measure of agreement beyond chance. The results demonstrate that TransTED Similarity achieves
state-of-the-art performance across both datasets. On EPLA-miniF2F, it secures the highest accu-
racy (78.82%) and Kappa (0.46). It maintains this superior performance on the EPLA-ProofNet
dataset, again leading with the highest accuracy (70.86%) and Kappa (0.40). This consistent lead,
particularly in the Kappa metric, highlights our method’s robust ability to align with ground-truth
judgments, outperforming all evaluated baselines.

Comparison with Baselines. As detailed in Table 3, TransTED Similarity overcomes key lim-
itations observed across different categories of baseline methods. First, while proof-based metrics
like Definitional Equality and BEq achieve high precision, their performance is hampered by low

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ka

pp
a

Sc
or

e
EPLA-miniF2F

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

EPLA-ProofNet
BLEU TransTED Similarity

Figure 3: Comparison of BLEU and TransTED Similarity across thresholds on EPLA-miniF2F and
EPLA-ProofNet. The plots illustrate that TransTED Similarity consistently achieves a higher Kappa
score than BLEU and exhibits far greater stability across a wide range of decision thresholds.

recall. This brittleness stems from the inherent limitations of current Automated Theorem Provers
(ATPs), which often fail to prove valid equivalences and thus produce a high rate of false negatives.
Our method avoids this rigid dependency, offering a much more balanced assessment. Furthermore,
TransTED Similarity significantly outperforms the LLM-based Majority Voting baseline, achiev-
ing superior accuracy (78.82% vs. 66.49% on EPLA-miniF2F) and a substantially higher Kappa
score (0.46 vs. 0.33). Crucially, our method also sidesteps the primary drawbacks of LLM-based
metrics: it is computationally inexpensive and fully reproducible. Finally, our method addresses a
key weakness of n-gram-based metrics like BLEU: sensitivity to threshold tuning. As illustrated
in Figure 3, TransTED Similarity is remarkably robust, maintaining high and stable performance
across a wide range of decision thresholds. This stability is critical for practical application, as it
ensures reliable outcomes without the need for costly, dataset-specific threshold optimization.

Ablation Study. We conduct an ablation study comparing our TransTED Similarity metric
against its baseline, TED Similarity. The results, presented in Table 3, demonstrate that this com-
ponent provides a significant performance boost on both datasets. On EPLA-miniF2F, its inclusion
increases accuracy by +6.70 percentage points from 72.12% to 78.82% and raises the Kappa score
from 0.35 to 0.46. This trend holds on EPLA-ProofNet, where accuracy improves by +3.31 per-
centage points (67.55% → 70.86%) and Kappa increases from 0.34 to 0.40. These consistent gains
validate our central hypothesis: by integrating semantic transformations, our metric can successfully
recognize statements that are semantically equivalent despite being syntactically diverse. This capa-
bility allows TransTED Similarity to achieve a more accurate and human-aligned evaluation where
purely structural methods like the standard TED Similarity falter.

5 CONCLUSION

In this work, we addressed the critical gap in evaluating autoformalized statements, where existing
metrics fail to adequately balance semantic and structural information. We introduced ASSESS, a
novel framework whose core contribution is the TransTED Similarity metric. By augmenting the
structural comparison of Operator Trees with a set of semantic transformations, our method provides
a more holistic and robust measure of statement similarity. We also developed EPLA, the largest
expert-annotated benchmark for this task to date. Experiments conducted on EPLA demonstrate
that TransTED Similarity establishes a new state-of-the-art, outperforming existing methods in both
accuracy and agreement with human judgment (Kappa). This work provides the autoformalization
community with a reliable, efficient, and reproducible metric for automated evaluation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide compre-
hensive details of our benchmark, experimental setup, and evaluation methodology. The complete
benchmark and the detailed experimental results are available in the supplementary materials. And
the implementation code will be made public after the double-blind review is completed.

Specific details for reproducing our results can be found in the following sections of the paper:

• EPLA Benchmark: The construction methodology, data sources, generation process, and
the complete expert annotation scheme for our benchmark are detailed in Section 4.1.

• Baselines and Experiment Setting: The Lean toolchain version, implementation details and
specific configurations for all baseline methods are provided in Section 4.2 and Appendix
E.

• Detailed Results: In addition to the main results in Table 3, detailed per-metric perfor-
mance, including the number of True Positives, True Negatives, False Positives, and False
Negatives, are available in Appendix D.1.

REFERENCES

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. To-
wards a mathematics formalisation assistant using large language models. arXiv preprint
arXiv:2211.07524, 2022.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. ProofNet: Autoformalizing and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433, 2023.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq proof assistant reference manual. INRIA, version, 6(11), 1999.

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psychological mea-
surement, 20(1):37–46, 1960.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Garett Cunningham, Razvan C Bunescu, and David Juedes. Towards autoformalization of math-
ematics and code correctness: Experiments with elementary proofs. In Proceedings of the 1st
Workshop on Mathematical Natural Language Processing (MathNLP), pp. 25–32. Association
for Computational Linguistics, 2023.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In Automated Deduction-CADE-25: 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25,
pp. 378–388. Springer, 2015.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A natural language annotated Lean 4 dataset. In The Thirteenth International Conference on
Learning Representations, 2024.

John Harrison. HOL Light: A tutorial introduction. In International Conference on Formal Methods
in Computer-Aided Design, pp. 265–269. Springer, 1996.

Xuan Hu, Liangcai Gao, Xiaoyan Lin, Zhi Tang, Xiaofan Lin, and Josef B Baker. Wikimirs: a
mathematical information retrieval system for wikipedia. In Proceedings of the 13th ACM/IEEE-
CS joint conference on Digital libraries, pp. 11–20, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023.

Giovanni Yoko Kristianto, Goran Topic, and Akiko Aizawa. Mcat math retrieval system for ntcir-12
mathir task. In NTCIR, 2016.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Aut-
oformalize mathematical statements by symbolic equivalence and semantic consistency. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In The
Thirteenth International Conference on Learning Representations, 2025a.

Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and Tao
Luo. ATLAS: Autoformalizing theorems through lifting, augmentation, and synthesis of data. In
The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025b.

Jianqiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong, Zhengying Liu, and Zhijiang Guo. For-
malalign: Automated alignment evaluation for autoformalization. In The Thirteenth International
Conference on Learning Representations, 2024a.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven autoformalization in Lean 4. arXiv
preprint arXiv:2406.01940, 2024b.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings 28, pp. 625–635. Springer, 2021.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Auto-
formalizing euclidean geometry. In Forty-first International Conference on Machine Learning,
2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Lawrence C Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. Mathbert: A pre-trained model for mathematical
formula understanding. arXiv preprint arXiv:2105.00377, 2021.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
using type checking. arXiv preprint arXiv:2406.07222, 2024.

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence. In
Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy,
July 26–31, 2020, Proceedings 13, pp. 3–20. Springer, 2020.

The mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs. ACM, January 2020.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation
of informal to formal mathematics. In Intelligent Computer Mathematics: 11th International
Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceedings 11, pp. 255–270.
Springer, 2018.

Zichao Wang, Andrew S Lan, and Richard G Baraniuk. Mathematical formula representation via
tree embeddings. In iTextbooks@ AIED, pp. 121–133, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ke Weng, Lun Du, Sirui Li, Wangyue Lu, Haozhe Sun, Hengyu Liu, and Tiancheng Zhang. Aut-
oformalization in the era of large language models: A survey. arXiv preprint arXiv:2505.23486,
2025.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353–32368, 2022.

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong
Du, Jie Yan, et al. Stepfun-formalizer: Unlocking the autoformalization potential of llms through
knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

Huaiyuan Ying, Zijian Wu, Yihan Geng, JIayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A large-scale Lean problem set formalized from natural language math problems. In The Thirty-
eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024a.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024b.

Richard Zanibbi and Dorothea Blostein. Recognition and retrieval of mathematical expressions.
International Journal on Document Analysis and Recognition (IJDAR), 15(4):331–357, 2012.

Richard Zanibbi, Dorothea Blostein, and James R. Cordy. Recognizing mathematical expressions
using tree transformation. IEEE Transactions on pattern analysis and machine intelligence, 24
(11):1455–1467, 2002.

Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing, 18(6):1245–1262, 1989.

Lan Zhang, Xin Quan, and André Freitas. Consistent autoformalization for constructing mathemat-
ical libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 4020–4033. Association for Computational Linguistics, November 2024.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: a cross-system benchmark for
formal Olympiad-level mathematics. In International Conference on Learning Representations,
2022.

Wei Zhong and Richard Zanibbi. Structural similarity search for formulas using leaf-root paths
in operator subtrees. In European Conference on Information Retrieval, pp. 116–129. Springer,
2019.

Jin Peng Zhou, Charles E Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai
Wu. Don’t Trust: Verify – grounding LLM quantitative reasoning with autoformalization. In The
Twelfth International Conference on Learning Representations, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized a large language model (LLM) as a general-purpose writing assistant during the prepa-
ration of this manuscript. The primary role of the LLM was to polish the text written by the authors,
such as improving grammar. All intellectual contributions, including the research methodology, ex-
perimental results, and their interpretation, are entirely the work of the authors. The LLM’s function
was strictly that of an assistive tool for improving the quality of the written presentation.

B PROOF OF THEOREM 1

Here we provide the full proof of the Theorem 1.

Proof. 0 ∈ F so F ̸= ∅. Let f̂ : X ×X → [0,∞] be a function defined as

f̂(x, y) = sup
f∈F

f(x, y).

It suffices to show that f̂ ∈ F . By definition of f̂ , for any point pairs (x, y) ∈ X × X and any
neighbourhood N of f̂(x, y), there exists fx,y,N ∈ F such that

fx,y,N (x, y) ∈ N .

Now we check that f̂ satisfies these properties one by one.

First, we verify that f̂ is a pseudometric. Take any x, y, z ∈ X . Since for any f ∈ F , f(x, x) = 0,

f̂(x, x) = sup
f∈F

f(x, x) = sup
f∈F

0 = 0.

Similarly, for any f ∈ F , f(x, y) = f(y, x), so

f̂(x, y) = sup
f∈F

f(x, y) = sup
f∈F

f(y, x) = f̂(y, x).

To show that the triangle inequality holds, we introduce an arbitrary neighbourhood N of f̂(x, z).
Then

N ∋ fx,z,N (x, z) ≤ fx,z,N (x, y) + fx,z,N (y, z) ≤ f̂(x, y) + f̂(y, z).

Let N is an arbitrary neighbourhood of f̂(x, z), we have f̂(x, z) ≤ f̂(x, y) + f̂(y, z).

Next, we show that f̂ satisfies the extra requirements in the definition of F . Since for any f ∈ F ,
f(x, y) ≤ b(x, y), we have

f̂(x, y) ≤ b(x, y).

Take any ((x, y), (u, v)) ∈ T . Notice that for any f ∈ F , f(x, y) ≤ f(u, v). Now for any
neighbourhood N of f̂(x, y), we have

N ∋ fx,y,N (x, y) ≤ fx,y,N (u, v) ≤ f̂(u, v),

hence f̂(x, y) ≤ f̂(u, v).

C PSEUDOCODE FOR TRANSTED

This section provides the detailed pseudocode for our TransTED algorithm. The implementation
consists of two main functions: a primary wrapper TransTED that handles initial checks, and the
core TED AFTER TRANSFORMATION function, which executes the heuristic search. The search
(line 13) is guided by using the Tree Edit Distance as its heuristic (line 18). If a proof of
equivalence is found, the distance is 0; otherwise, if the time limit is exceeded, the algorithm returns
the smallest TED found among all visited nodes (line 21).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 TransTED
1: function TRANSTED(FL1, FL2)
2: eq← (FL1 = FL2)
3: if Compile(eq) fails then
4: return TED(eq)
5: end if
6: return TEDAFTERTRANSFORMATION(eq)
7: end function

8: function TEDAFTERTRANSFORMATION(eq)
9: eq← UseTactic(eq, norm num1)

10: if Completed(eq) ∨ Completed(UseTactic(eq, rfl)) then
11: return 0
12: end if
13: HeuristicSearch(
14: start : eq,
15: stop : the goal completed ∨ time limit exceeded (TLE)
16: search method : suggestions by rw? and some given additional tactic commands
17: valid nodes: a single goal of equality, or “completed”
18: heuristic function : TED between the expressions trees of both sides of the equality
19:)
20: if TLE then
21: return smallest TED of all the visited nodes
22: else
23: return 0 ▷ The goal is completed within the time limit
24: end if
25: end function

D EXPERIMENTAL DETAILS AND CASE STUDIES

D.1 DETAILED EXPERIMENTAL RESULTS

This section provides a detailed breakdown of the experimental results on the EPLA-miniF2F and
EPLA-ProofNet datasets in Table 4 and Table 5, respectively. The tables report the number of
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) for each
evaluated metric.

Table 4: Detailed experimental results of automated evaluation metrics on EPLA-miniF2F.

Metric
EPLA-miniF2F

TP TN FP FN Precision Recall Accuracy Kappa

(Baselines)
Identity Match 27 97 0 249 100.00% 9.78% 33.24% 0.05
Typecheck 276 0 97 0 73.99% 100.00% 73.99% 0.00
BLEU 174 77 20 102 89.69% 63.04% 67.29% 0.33
Majority Voting 170 78 19 106 89.95% 61.59% 66.49% 0.33
Definitional Equality 92 96 1 184 98.92% 33.33% 50.40% 0.20
BEq 135 97 0 141 100.00% 48.91% 62.20% 0.33

(Ours)
TED Similarity 206 63 34 70 85.83% 74.64% 72.12% 0.35
TransTED Similarity 235 59 38 41 86.08% 85.14% 78.82% 0.46

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Detailed experimental results of automated evaluation metrics on EPLA-ProofNet.

Metric
EPLA-ProofNet

TP TN FP FN Precision Recall Accuracy Kappa

(Baselines)
Identity Match 1 71 0 79 100.00% 1.25% 47.68% 0.01
Typecheck 80 0 71 0 52.98% 100.00% 52.98% 0.00
BLEU 61 37 34 19 64.21% 76.25% 64.90% 0.29
Majority Voting 51 52 19 29 72.86% 63.75% 68.21% 0.37
Definitional Equality 8 69 2 72 80.00% 10.00% 50.99% 0.07
BEq 23 71 0 57 100.00% 28.75% 62.25% 0.28

(Ours)
TED Similarity 64 38 33 16 65.98% 80.00% 67.55% 0.34
TransTED Similarity 70 37 34 10 67.31% 87.50% 70.86% 0.40

D.2 ILLUSTRATIVE EXAMPLES OF TRANSTED SIMILARITY

This section provides a set of illustrative examples to offer a qualitative understanding of TransTED
Similarity’s performance, particularly in cases where TED Similarity fails. Each example is pre-
sented in a consistent format, including the original natural language statement (NL), the ground-
truth formalization (Label), and the model’s output (Prediction). We then present the scores from
both metrics, the transformation path (Proof) discovered by our method, and a brief analysis.

exercise 1 1b (from ProofNet)

NL: If r is rational (r ̸= 0) and x is irrational, prove that rx is irrational.

Label:
theorem exercise_1_1b (x : R) (y : Q) (h : y ̸= 0) : (
Irrational x) → Irrational (x * y) := by sorry

Prediction:
theorem mul_rat_tac_11959 (r : Q) (x : R) (h : Irrational x) (
hr : r ̸= 0) : Irrational (r * x) := by sorry

TED Similarity: 0.23809523809523814
TransTED Similarity: 1

Proof given by TransTED:

example :
(∀ (x : R) (y : Q), y ̸= 0 → Irrational x → Irrational (x * ↑y

)) =
∀ (r : Q) (x : R), Irrational x → r ̸= 0 → Irrational (↑r *

x) := by
rw [forall_swap]
apply forall_congr; intro _
rw [← isRegular_iff_ne_zero']
apply forall_congr; intro _
rw [forall_swap]
rw [@Rat.cast_comm] -- given by rw?

Comparing the label and prediction, human evaluator can easily match related variables and as-
sumptions and give a correct judgment that they are semantically almost identical. However, TED
Similarity soon gets into trouble dealing with lots of variable renaming and structure adjustment
and gives out a really low similarity score. Fortunately, suggestions provided by rw? together with
additional tactics, such as apply forall_congr; intro _ , make it possible to complete
the natural matching step by step, leading to a more accurate estimation on semantic similarity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

mathd algebra 142 (from miniF2F)

NL: A line ℓ passes through the points B(7,−1) and C(−1, 7). The equation of this line can
be written in the form y = mx+ b; compute m+ b. Show that it is 5.

Label:
theorem mathd_algebra_142 (m b : R) (h0 : m * 7 + b = -1) (h1 :
m * -1 + b = 7) : m + b = 5 := by sorry

Prediction:
theorem my_favorite_theorem : let B : R × R := (7, -1); let C
: R × R := (-1, 7); ∀ m b : R, (B.2 = m * B.1 + b ∧ C.2 = m *
C.1 + b) → m + b = 5 := by sorry

TED Similarity: −0.03333333333333344
TransTED Similarity: 1

Proof given by TransTED:

example :
(∀ (m b : R), m * 7 + b = -1 → m * -1 + b = 7 → m + b = 5) =
(let B := (7, -1);
let C := (-1, 7);
∀ (m b : R), B.2 = m * B.1 + b ∧ C.2 = m * C.1 + b → m + b = 5)

:= by
apply forall_congr; intro _
rw [mul_neg_one] -- given by rw?
apply forall_congr; intro _
rw [and_symm_left] -- given by rw?
rw [and_symm_right] -- given by rw?
rw [propext and_imp]

In this example, TransTED algorithm successfully matches corresponding variables and hypotheses
by applying proper tactics and theorems, and gives a reliable evaluation result beyond structural
likeness.

D.3 FALSE POSITIVES IN DEFINITIONAL EQUALITY

This case study investigates the root cause of the false positives recorded by the Definitional Equality
metric—notably, one on the EPLA-miniF2F and two on EPLA-ProofNet.

mathd algebra 176

NL: Expand the product (x+ 1)2 · x. Show that it is x3 + 2x2 + x.

Label:
theorem thm_P (x : R) : (x + 1) ˆ 2 * x = x ˆ 3 + 2 * x ˆ 2 + x
:= by sorry

Prediction:
theorem thm_Q {R : Type*} [CommRing R] (x : R) : (x + 1) ˆ 2 *
x = x ˆ 3 + 2 * x ˆ 2 + x := by sorry

Definitional Equality
example : thm_P = thm_Q := by rfl

In the Prediction, the statement was generalized by introducing an implicit type variable {R:
Type*} with a typeclass assumption [CommRing R] instead of the concrete type R, resulting
in a semantic difference; however, Lean will automatically instantiate R := R and resolve the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

CommRing instance, so in Definitional Equality the compiler infers these instantiations and the two
declarations become definitionally equal, thus passing the verifier and producing a false positive.

exercise 1 3 8

NL: Prove that if Ω = {1, 2, 3, . . .} then SΩ is an infinite group.

Label:
theorem thm_P : Infinite (Equiv.Perm N) := by sorry

Prediction:
theorem thm_Q {Ω : Type u_1} [Infinite Ω] : Infinite (
Equiv.Perm Ω) := by sorry

Definitional Equality
example : thm_P = thm_Q := by rfl

In the Prediction, the model introduced an implicit type variable {Ω : Type u 1} with a type-
class assumption [Infinite Ω] instead of the concrete type N; however, Lean can instantiate
Ω := N and use the existing Infinite N instance, so in Definitional Equality the compiler infers
these instantiations and the two declarations become definitionally equal, thus passing the verifier
and producing a false positive.

exercise 9 4 2c

NL: Prove that x4 + 4x3 + 6x2 + 2x+ 1 is irreducible in Z[x].

Label:
theorem thm_P : Irreducible (Xˆ4 + 4*Xˆ3 + 6*Xˆ2 + 2*X + 1 :
Polynomial Z) := by sorry

Prediction:
theorem thm_Q : Irreducible (wilsons_poly : Z[X]) := by sorry

Definitional Equality
example : thm_P = thm_Q := by rfl

In the Prediction, an undefined variable wilsons poly appeared instead of the polynomial given in the
problem, resulting in a semantic difference. However, Lean will automatically interpret wilsons poly
as an implicit variable. Therefore, in Definitional Equality, the Lean compiler will automatically
infer wilsons poly as the polynomial X4 +4X3 +6X2 +2X +1, thus passing the verification and
leading to a false positive.

E PROMPT TEMPLATES

This section presents the prompts for the majority voting phase, which uses InternLM2-Math-Plus-
7B (Ying et al., 2024b) for back-translation and DeepSeek-V3.1 (Liu et al., 2024) for NLI Check.

Prompt Template for Back-Translation

[UNUSED TOKEN 146]user\nConvert the formal statement into natural language:\n“‘
lean\nformal statement\n”’[UNUSED TOKEN 145]\n[UNUSED TOKEN 146]assistant\n

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt Template for NLI Check

Please check following two math problems is same or different? Please consider each state-
ment in two problems, they are different if any statement is different. Please point out any
differences you found. Please reply **same** or **different** in the final sentence with
bold format.
Problem 1: {THM 1}
Problem 2: {THM 2}

18

	Introduction
	Related Work
	Methodology
	Preliminaries
	TED Similarity
	OPT Construction
	Metric Calculation

	TransTED Similarity
	Theoretical Framework
	Implementation

	Experiments
	The EPLA Benchmark
	Experiment Setting
	Experiment Results

	Conclusion
	The Use of Large Language Models (LLMs)
	Proof of Theorem 1
	Pseudocode for TransTED
	Experimental Details and Case Studies
	Detailed Experimental Results
	Illustrative Examples of TransTED Similarity
	False Positives in Definitional Equality

	Prompt Templates

