
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND PARAMETER COUNT:
IMPLICIT BIAS IN SOFT MIXTURE OF EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The traditional viewpoint on Sparse Mixture of Experts (MoE) models is that
instead of training a single large expert, which is computationally expensive,
we can train many small experts. The hope is that if the total parameter count
of the small experts equals that of the singular large expert, then we retain the
representation power of the large expert while gaining computational tractability
and promoting expert specialization. The recently introduced Soft MoE replaces the
Sparse MoE’s discrete routing mechanism with a differentiable gating function that
smoothly mixes tokens. While this smooth gating function successfully mitigates
the various training instabilities associated with Sparse MoE, it is unclear whether
it induces implicit biases that affect Soft MoE’s representation power or potential
for expert specialization. We prove that Soft MoE with a single arbitrarily powerful
expert cannot represent simple convex functions. This justifies that Soft MoE’s
success cannot be explained by the traditional viewpoint of many small experts
collectively mimicking the representation power of a single large expert, and that
multiple experts are actually necessary to achieve good representation power (even
for a fixed total parameter count). Continuing along this line of investigation, we
introduce a notion of expert specialization for Soft MoE, and while varying the
number of experts yet fixing the total parameter count, we consider the following
(computationally intractable) task. Given any input, how can we discover the expert
subset that is specialized to predict this input’s label? We empirically show that
when there are many small experts, the architecture is implicitly biased in a fashion
that allows us to efficiently approximate the specialized expert subset. Our method
can be easily implemented to potentially reduce computation during inference. For
example, using our method on ImageNet, one can perform inference using only
1/8 of the experts and still retain 99% of the test accuracy of using all experts.

1 INTRODUCTION

It has been well established that scaling the size (i.e., parameter count) of models is necessary for
state of the art prediction power (Kaplan et al., 2020; Bahri et al., 2021), but naively scaling the
model size is infeasible due to hardware constraints and computational costs. Mixture of Experts
(MoE) layers in a model allow one to achieve this goal, while mitigating the increased computational
costs for training and inference that accompany a naively larger model. These have been successfully
deployed in practice, in a variety of contexts such as language (Fedus et al., 2022) and vision (Ruiz
et al., 2021), and MoE layers are considered critical to achieve state of the art performance in today’s
models (Jiang et al., 2024).

The archetypical MoE layer is the Sparse MoE (Shazeer et al., 2017). Here, each token is only given
to a subset of experts, and a router is trained to discretely match a token to its expert subset. Since a
single (large) expert can represent complex functions, the traditional viewpoint is that one should
partition the large expert into multiple (small) experts, so that the total parameter count of all experts
is unchanged. The hope is that the model’s representation power is similar since the total parameter
count is the same and since experts can specialize to the tokens they see (rather than all tokens) (Chen
et al., 2022). Yet, training and inference are faster, because any single token activates only a subset of
experts rather than all of them.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

While the Sparse MoE allows scaling of model size, its discrete routing causes optimization issues and
load balancing difficulties during training. To tackle these issues, many variants of Sparse MoE have
been introduced, such as routing a token to only a single expert (Fedus et al., 2022), incorporating
linear programs to ensure load balancing (Lewis et al., 2021) or having the experts select tokens
(instead of tokens selecting experts) (Zhou et al., 2022). However, all these approaches remain
discrete in nature, and thus suffer from at least some degree of training instability.

Figure 1: Our Algorithm 1 selects a special-
ized subset of the experts to utilize for inference.
Given any proportion of n (the total number of
experts) to select, its performance uniformly im-
proves with larger n.

To alleviate these issues, the recently introduced Soft
MoE (Puigcerver et al., 2024) eschews discrete match-
ing in favor of a smoother approach. It computes for
each expert a convex combination of the input tokens,
and the expert only sees this convex combination. The
final output of the model is then a convex combina-
tion of each expert’s output. This approach is fully
differentiable, and hence is more stable than the Sparse
MoE. This novel Soft MoE architecture has been shown
to outperform all other baselines on challenging large
scale vision tasks, and can scale to thousands of ex-
perts (Puigcerver et al., 2024). Moreover, recent results
show that the Soft MoE is a promising avenue towards
providing empirical scaling laws for deep reinforce-
ment learning (Obando-Ceron et al., 2024).

Thus, while the Sparse MoE constructs a discrete map-
ping between tokens and experts, the Soft MoE com-
putes convex combinations of tokens that are fed to
experts, and then computes convex combinations of
the expert outputs, which together promote stabler and
faster training.

The majority of prior work on MoE focuses on computational issues, such as efficient and stable
training. In our paper, we adopt an orthogonal perspective. In particular, it remains unclear whether
Soft MoE’s specific manner of combining tokens and experts creates any unexpected implicit
architectural biases. Indeed, it is not even clear that its soft gating mechanism preserves the traditional
MoE dogma that many small experts have similar representation power to a single large expert with
the same total parameter count. It is also unclear whether combining tokens and experts completely
destroys the possibility (or discoverability) of expert specialization, which is what one traditionally
desires from an MoE (especially in the regime of many experts) (Krishnamurthy et al., 2023; Dai
et al., 2024). Thus, we investigate for the existence of such biases, through the lens of varying the
number of experts. In this paper, we make progress along this line of investigation by making the
following contributions:

• We prove that the Soft MoE with a single neural network expert, even with arbitrarily many
parameters, cannot represent simple convex functions (while empirically we show that
multiple experts can). Thus, in contrast to the traditional viewpoint, having multiple experts
is actually necessary to have non-trivial representation power in Soft MoE.

• We introduce a notion of specialization for Soft MoE. While discovering specialized experts
generally seems intractable, we empirically demonstrate that as we increase the number of
experts, even while fixing the total parameter count, the architecture is implicitly biased in a
manner that allows us to efficiently approximate the specialized expert set (see Figure 1).

• Our method for discovering specialized experts can be easily implemented for reducing
computation at inference.

These contributions thus show there are benefits to using a large number of small experts relative to a
small number of large experts, and notably, these benefits are often non-computational.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PROBLEM FORMULATION

2.1 PRELIMINARIES

We begin by briefly discussing the Soft MoE architecture (Puigcerver et al., 2024). Throughout
our paper, we assume there is a single slot per expert, since this is the most performant setting in
practice. Let X ∈ Rm×d denote the tokenized input, so that there are m tokens each in Rd. The MoE
layer is equipped with n experts {fj : Rd → Rd}nj=1, each of which is typically implemented as a
feedforward network. The router is parameterized by Φ ∈ Rd×n. Given an input X , the parameters
Φ are used to compute matrices D(X), C(X) ∈ Rm×n which are defined elementwise as

D(X)ij =
exp

(
(XΦ)ij

)
∑m

i′=1 exp
(
(XΦ)i′j

) and C(X)ij =
exp

(
(XΦ)ij

)
∑n

j′=1 exp
(
(XΦ)ij′

) . (1)

Note that each column of D(X) and each row of C(X) sums to one. With this notation in hand, we
formally define the Soft MoE layer below.

Definition 1 The Soft MoE is a function sMoEΦ
{fj}n

j=1
: Rm×d → Rm×d defined as

sMoEΦ
{fj}n

j=1
(X) = C(X)Ỹ (X) where Ỹ (X) =

f1
(
(D(X)TX)1

)
...

fn
(
(D(X)TX)n

)
 .

The Soft MoE thus computes n different convex combinations of the tokens in X , where the weights
of the jth convex combination are given by the jth column of D(X). It then applies expert fj
to the jth convex combination, for each j = 1, 2 . . . n. Finally, it computes m different convex
combinations of these expert outputs, where the weights of the ith convex combination are given
by the ith row of C(X). Note that each expert processes a single vector in Rd, and that sMoE is
differentiable whenever the experts are. This results in more stable training relative to Sparse MoE,
where each expert is given a subset of the m tokens via a discrete matching algorithm. The Soft
MoE has shown significant empirical success in vision (Puigcerver et al., 2024) and reinforcement
learning (Obando-Ceron et al., 2024).

2.2 OUR INVESTIGATION

At a high level, the Sparse MoE is designed with the following principle. Say we desire a model
with b total parameters, because we believe that b allows for sufficiently large representation power.
Instead of using a single large network (n = 1) with b parameters, we use n > 1 smaller experts
each with b/n parameters. The hope is that we have similar representation power to the n = 1 case
since the total parameter count is the same, but we have faster computation because each token only
activates a small subset of experts (Shazeer et al., 2017; Fedus et al., 2022). Moreover, one also hopes
that each expert can specialize to the specific type of tokens it sees (Chen et al., 2022; Krishnamurthy
et al., 2023; Dai et al., 2024).

The Soft MoE is motivated in a similar fashion. It also splits a single large model with b parameters
into n ≥ 1 smaller experts each with b/n parameters, hoping that representation power is unchanged.
However, Soft MoE differs significantly from Sparse MoE in how it uses these experts. While Sparse
MoE discretely assigns tokens to experts, Soft MoE computes convex combinations of tokens and
expert outputs. Due to this significant difference, it is unclear how the original motivations for Sparse
MoE apply to Soft MoE.

As one example of how Soft MoE might deviate from the original motivations for Sparse MoE,
consider the extreme case when n = 1. Here, Sparse MoE’s router trivially routes all tokens
to the expert, and so classical results show that Sparse MoE can represent arbitrary continuous
functions (Cybenko, 1989; Hornik, 1991). But in Soft MoE, the gating function is non-trivial even in
n = 1, and so it is possible that Soft MoE has poor representation power even when the expert is
very powerful. If this were true, then it would challenge the conventional wisdom that Soft MoE’s
empirical success with n > 1 smaller experts (each with b/n parameters) is simply because they

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

mimic (albeit computationally efficiently) the representation power of a single large expert (with b
parameters). Instead, it would suggest that Soft MoE has some implicit bias that enables its practical
success. To this end, we ask the following question.

Q1: Can a large single expert in Soft MoE represent simple functions?

Our motivation for this question has thus far primarily been scientific. Nevertheless, we believe
this question is also practically relevant, since there are empirical results in reinforcement learning
(RL) which show that Soft MoE with a single expert can outperform traditional neural network
architectures (Obando-Ceron et al., 2024). Indeed, a negative answer to Q1 would imply that there
are implicit biases in Soft MoE that assist in its improved empirical performance.

As a second example of how Soft MoE might deviate from the original motivations for Sparse MoE,
consider the following. Since Soft MoE combines all tokens before feeding them to an expert, and
since it combines all experts to produce its final output, it is natural to wonder whether this prohibits
expert specialization. Indeed, this limitation is acknowledged in the seminal work (Puigcerver et al.,
2024). We thus ask the following question.

Q2: Is there a notion of expert specialization in Soft MoE, and if so, can it be efficiently discovered?

The remainder of this paper is devoted to answering Q1 (in Section 3) and Q2 (in Section 4).

3 REPRESENTATION FAILURE OF A SINGLE EXPERT

In this section, we answer Q1 from Section 2.2. We first recall the definition of Lipschitz functions.

Definition 2 A function h : Rk1 → Rk2 is L-Lipschitz if ∥h(x) − h(y)∥2 ≤ L∥x − y∥2 for all
x, y ∈ Rk1 .

Recall that any neural network is Lipschitz (Virmaux & Scaman, 2018). Our main result shows that
Soft MoE with a single Lipschitz expert f is incapable of representing simple target functions. This
result holds even when this expert f is arbitrarily powerful (and possibly non-parametric). It also
holds when the output of the Soft MoE layer is passed to an arbitrarily powerful Lipschitz function g
(as would be the case in a practical implementation, since the MoE would be a layer that prepends a
powerful neural network function, rather than a standalone layer). Below we formally state our result.

Theorem 1 Fix any m ≥ 2, d ≥ 1 and n = 1. Define the target function t : Rm×d → R as
t(X) = ∥X∥2. Assume the existence of Φ ∈ Rd×1, f : Rd → Rd and g : Rm×d → R such that∣∣t(X)− g

(
sMoEΦ

f (X)
)∣∣ ≤ max {1, t(X)/20} for all X ∈ Rm×d.

Then there are no Lf , Lg ≥ 0 such that f is Lf -Lipschitz and g is Lg-Lipschitz.

The proof is deferred to Appendix A. Let us discuss this result.

Notion of Approximation. The theorem says that we cannot approximate t over X ∈ Rm×d, up
to an error that scales as max{1, t(X)/20}. While the domain is unbounded, which is slightly
non-standard, our approximation error is also unbounded since we allow it to scale with t(X) (unlike
traditional results which require approximation to within a fixed constant tolerance). Indeed, it is
trivial that the constant function zero can approximate t(X) over all of Rd up to an error of t(X).
Our notion of error is only slightly smaller than this.

Residual Connections. In a practical implementation, one would use residual connections so that the
function g would typically receive both X and sMoEΦ

f (X) as input instead of just sMoEΦ
f (X). In

such a setting, our result would of course not apply, since one could use g alone to approximate t(X),
while completely ignoring sMoEΦ

f (X). Nevertheless, we believe it is worth studying the setting
without residual connections, because if g did not leverage sMoEΦ

f (X), then there would be no point
of using a Soft MoE layer at all.

Benign Target. The target function t is extremely benign. Indeed, it is convex and 1-Lipschitz. So it
a priori seems intuitive to try and approximate it with a Lipschitz expert f and subsequent Lipschitz

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

architecture g. Yet, we cannot approximate t even when f, g have arbitrarily large Lipschitz constants.
This is in stark contrast to the classical neural network approximation literature, where relatively
simple feedforward networks can represent arbitrary continuous functions (Cybenko, 1989; Hornik,
1991).

Permutation Invariant Target. Let σ : Rm×d → Rm×d be any function that permutes the rows
of its input. It is easily shown that σ commutes with sMoEΦ

{fj}n
j=1

. This implies that one cannot
represent target functions that vary based on permutations of their input’s rows. A result which
relied on this property would not be very satisfying, since in practice this issue is handled by adding
positional encoding to the input (Vaswani et al., 2017). However, our target function t satisfies
t(σ(X)) = t(X) for any permutation function σ. Indeed, an examination of the proof in Appendix A
shows that the result hinges on the particular manner in which tokens are combined before being
passed to the expert.

Normalizing Input. In practice, one may normalize the input X before passing it to the Soft MoE,
and in this case Theorem 1 is trivially inapplicable. Nevertheless, since the performance with or
without normalization is typically very comparable (Puigcerver et al., 2024), we believe the result
remains interesting.

Multiple Experts. We are unable to prove a theorem for the ability of multiple experts to represent t.
In Appendix B, however, we show empirically that increasing the number of experts leads to mono-
tonic performance improvement for representing t, even when the total expert parameter count is fixed.

Theorem 1 (and the experiment in Appendix B) thus provides a negative answer to Q1 raised in
Section 2.2. It therefore challenges the conventional wisdom that Soft MoE’s empirical success with
n > 1 smaller experts (each with b/n parameters) is simply because they mimic the representation
power of a single large expert (with b parameters). Instead, it suggests that Soft MoE has implicit
biases that assist in its improved performance. A precise characterization of these biases and their role
in this improvement is beyond our paper’s scope. Nevertheless, we view our result as a stepping stone
towards understanding and potentially furthering the true power of Soft MoE. Indeed, recent results
show that Soft MoE with even a single expert can outperform traditional architectures (Obando-
Ceron et al., 2024). Our Theorem 1 shows that this improvement cannot be because of improved
representation power.

4 SPECIALIZATION OF EXPERTS

In this section, we tackle Q2 from Section 2.2.

4.1 WHAT DOES SPECIALIZATION MEAN?

We begin by noting that since the Soft MoE combines tokens before feeding them to experts, it seems
a priori unlikely that experts specialize, as acknowledged in the seminal work (Puigcerver et al.,
2024). Indeed, it is unclear what it even means for an expert to specialize; for instance it seems
difficult to consider specialization of an expert to a subset of tokens.

Instead, our notion of specialization is whether there exists, for any input X ∈ Rm×d, an X-dependent
(relatively small) subset of experts that are sufficient to accurately predict the label for that input X .
Recall from Definition 1 that the output of the Soft MoE layer is C(X)Ỹ (X), where Ỹ (X) ∈ Rn×d

stores the output of expert i in row i. Hence, zeroing out a row i of Ỹ (X) means that expert i does not
contribute anything to the final prediction. If we can zero out many rows of Ỹ (X) without affecting
the final prediction, then the remaining experts can be understood to have specialized to the input
X , since this means that only these remaining experts were actually required to make an accurate
prediction, and these experts did not require contributions from the other zeroed out experts. By
contrast, if zeroing out rows of Ỹ (X) changes the prediction, then this indicates a lack of expert
specialization, since the knowledge required to predict correctly on X was non-trivially spread out
across each of the n experts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 DOES SPECIALIZATION EXIST?

To test whether specialization occurs, we consider the following small experiment. For n ∈ {4, 8, 16}
we train a simple neural network that comprises of a Soft MoE layer with n experts, followed by a
linear prediction head, on the MNIST dataset (LeCun et al., 2010). The experts in the MoE are each
(identical architecture) MLP with one hidden layer and ReLU activation, and we denote the number
of parameters in a single expert to be dE,n. As we increase n, we decrease the width of each expert
(i.e. the number of units in the hidden layer), so that the total (i.e., summed over all experts) number
of parameters ndE,n is constant for all values of n. By holding the total number of expert parameters
constant, we keep the total expressivity constant, and thus ensure that we do not bias the results for
larger numbers of experts. See Appendix D.1 for further details of this experimental setup.

We train each network, and for the sake of a fair comparison across n, we select for each n a model
that has ≈ 97.5% test accuracy. We emphasize that our aim is to investigate the impact of n on expert
specialization, thus we need to first ensure that each setting of n achieves the same test performance.
Then, for each of the n models and each test datapoint X we do the following: (a) we use an
exhaustive search to identify whether there exists an expert subset of size k = n/4 that predicts
the label for X correctly (b) we randomly zero out 3n/4 rows of Ỹ (X), so we are only predicting
using a random set of k = n/4 experts, and check whether it predicts the label for X correctly. For
both settings, we compute the average prediction accuracy over all 10, 000 test points. Note for both
settings that the number of expert parameters involved in prediction is invariant to the number of
experts n.

The first row of Table 1 shows that expert specialization occurs, especially for larger n (even though
each of the experts for larger n are smaller in parameter count). Figure 5 in Appendix D.1 shows that
the best k-subsets identified are diverse, indicating the expert subsets are indeed specialized to the
input. However, the exhaustive search used to generate this result is generally intractable for larger
models. It is also not useful for prediction in the wild, since this procedure requires knowledge of the
label of each test point X . Moreover, the second row of Table 1 shows that we cannot hope to find
the best subset simply via random selection.

n = 4 n = 8 n = 16

Best k-Subset Accuracy (%) 94.69 99.90 100.00
Random k-Subset Accuracy (%) 46.57± 0.44 51.95± 0.46 58.94± 0.34

Table 1: Results for experiment in Section 4.2, where a subset of the experts of size k = n/4 was used to predict
the labels. For the Random subset results, we report the mean and standard deviation over 10 random seeds.

4.3 AN ALGORITHM FOR BEST EXPERT SELECTION

The results of the experiment in Section 4.2 demonstrate the existence of expert specialization,
albeit in a small experiment. However, the same results show that identifying the best subset of
experts cannot be done as simply as via random selection. Since identifying the true best subset of
k experts ostensibly has Ω

((
n
k

))
computational complexity, it is of interest to discover an efficient

algorithm which can rapidly approximate the best subset, especially before moving on to larger
experiments. Beyond our current motivations of checking for the existence of expert specialization,
such an algorithm could also be useful at inference time to reduce computational expense without
loss in accuracy (see Section 4.5).

To this end, we recall from Definition 1 that given an input X , the final output of the Soft MoE is
C(X)Ỹ (X), i.e. row i of the final output is a convex combination of the rows of Ỹ (X) where the
combination weights are given by row i of C(X). So a natural attempt to identify the most important
experts are those given the most weight by C(X). Algorithm 1 formalizes this intuition.

Note that Algorithm 1 is computationally efficient, requires no separate training, and can be imple-
mented in just a few lines of code. We also note that it can be easily adapted to handle a batched
input in a vectorized fashion (see Appendix C). Its output Ŷ (X) ∈ Rn×d equals Ỹ (X) on k rows,
and is zero in the other n− k rows. Thus, Algorithm 1 can be used to identify a performant subset
of experts at inference time, and then construct the final Soft MoE output by only doing a forward

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Best Expert Subset Selection

Require: number of experts k to use for prediction, Soft MoE sMoEΦ
{fj}n

j=1
, input X ∈ Rm×d

1: Compute C(X) ∈ Rm×n as in Equation 1.
2: Define Csum ∈ Rn entrywise as Csum,j =

∑m
i=1 C(X)ij for j = 1, 2 . . . n.

3: Define Sk ⊆ {1, 2 . . . n} to be the indices corresponding to the k largest entries of Csum.
4: Define Ŷ (X) ∈ Rn×d entrywise as

Ŷ (X)ij =

{(
fi
(
(D(X)TX)i

))
j

if i ∈ Sk

0 if i /∈ Sk

,

for each i = 1, 2 . . . n and j = 1, 2 . . . d.
5: return Ŷ (X).

pass through k experts instead of all n experts. In the regime of many large experts, this can yield
computational advantages at inference time, and we explore this further in Section 4.5.

4.4 EMPIRICAL PERFORMANCE OF ALGORITHM 1

In line with the experimental setup assumed by the seminal work (Puigcerver et al., 2024), we
demonstrate the efficacy of Algorithm 1 on a suite of image classification tasks. We provide results
across a wide range of model scales and architectures, including architectures beyond the ViT model
class that was used to introduce Soft MoE.

4.4.1 EXPERIMENTAL SETUP

We experiment on 4 datasets: MNIST, CIFAR10, CIFAR100 (Krizhevsky, 2009) and ImageNet-
1k (Deng et al., 2009). For MNIST, we use the same experimental setup as in Section 4.2. Recall
that the network used is very simple, and consists entirely of a Soft MoE layer and a prediction
head. This small network has merely 318K total parameters, of which 307K are expert parameters.
As a more practical setting, we use the Astroformer-1 architecture (Dagli, 2023) for CIFAR10 and
CIFAR100. This hybrid transformer-convolutional architecture achieves excellent performance on
these datasets without leveraging extra training data. We modify Astroformer-1 by replacing the
MLPs in the transformer blocks with Soft MoE layers, analogous to the standard practice that is
followed in ViTs (Puigcerver et al., 2024). This model is larger, and has 180M total parameters,
of which 150M are expert parameters. Finally, we adopt the same Soft MoE variant of the ViT
architecture (Dosovitskiy et al., 2021) used by the seminal work (Puigcerver et al., 2024) on the
ImageNet-1k dataset. Specifically, it replaces the MLPs in the latter half of the encoder blocks of
the ViT Base model with Soft MoE layers. This is the largest architecture we consider, and it has
513M total parameters, of which 454M are expert parameters. Due to compute constraints, scaling
up our experimental protocol further (either with external pretraining data or larger model sizes) is
infeasible. Nevertheless, our setup spans a range of model architecture types and scales, as well as
several canonical datasets. We defer further details of the various architectures and their modifications
to Appendix D.2.

For each dataset and associated network architecture, we do the following. We train a suite of models
where each model has a different n (total number of experts) in each Soft MoE layer. Each model
is trained from scratch without utilizing any external data. As discussed in Section 4.2, when we
increase n we correspondingly decrease the number of parameters in each expert, to ensure the
total expert expressivity is (roughly) constant. After training each network, we select for each n a
model that has the same test accuracy (as discussed in Section 4.2, this is important because we are
investigating the impact of varying n on Algorithm 1’s test performance, and so we must ensure the
original networks have similar test performance). For each of these trained networks and various
values of k, we then evaluate Algorithm 1’s performance on the test set. Concretely, we compute
the test accuracy of using the k experts found by Algorithm 1 for each datapoint in the test set, and
compare this to the test accuracy of randomly selecting k experts for each datapoint in the test set.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) MNIST (b) CIFAR10 (c) ImageNet-1k

Figure 2: Results for MNIST, CIFAR10 and ImageNet-1k experiments in Section 4.4. We depict the test
accuracy as a function of n, for Algorithm 1 and Random selection, and for various choices of k. For the
Random selection results, we report the mean over 10 random seeds. For CIFAR10, we only reported results
with k = 1 and k = 2. This is because k > 2 had accuracies that were nearly identical to using all experts. We
hypothesize this is because CIFAR10 is relatively easy for the powerful Astroformer architecture.

4.4.2 EXPERIMENTAL RESULTS

In Figures 2 and 3 we depict, for each dataset and various choices of k, the performance of Algorithm 1
relative to the random selection scheme. We make two main observations.

The first observation is that Algorithm 1’s accuracy may deteriorate (relative to using all experts)
when k < n and n is small. But if n is big, then Algorithm 1’s accuracy is often very close to
that of using all the experts, even when k ≪ n. For instance, on MNIST, using the k = n/2
experts selected by Algorithm 1 gives nearly the same performance as using all experts when
n ≥ 64, but has poor performance when n ≤ 8. This result consistently holds across the various
datasets/architectures/model scales considered: e.g. Table 13b shows that on ImageNet-1k, when n is
high enough, Algorithm 1 can use just 1/8 of the experts while retaining over 99% of the original
accuracy of using all the experts. This shows that as n increases, Algorithm 1 is better poised to
discover specialized experts, even though the number of expert parameters is invariant to n.

We believe this is an instance of the implicit bias that exists in Soft MoE. Concretely, the experts
identified by Algorithm 1 for an input X are those highest weighted by Csum, which is derived from
C(X). Our result thus shows that as n increases, the Soft MoE trains in a manner such that the C(X)
matrix is more informative for which experts are useful in correctly predicting the label of X , even
though such a property is not explicitly enforced during training! In Appendix D.4, we show that the
skewness of Csum does not change significantly as n increases, which suggests that the specialization
identified by Algorithm 1 is not trivial by simply dropping marginally weighted experts. While we
do not have a formal explanation for why this phenomenon occurs, we conjecture that this is an
implicit bias that allows the specialized subsets to be more easily identified by Csum as n increases. A
different view of the same results in Figure 2a is provided in Figure 1.

The second observation is that Algorithm 1’s test performance dominates that of random selection.
And often, Algorithm 1 is far better than random selection, as is particularly evident in CIFAR10 and
ImageNet-1k, where random selection is very poor (see Figure 2). There are instances where random
selection has decent accuracy, such as in CIFAR100 (see Figure 3). So to further validate our result,
we use the following statistic to measure how much better Algorithm 1 is relative to random selection.
We first compute the standard deviation of the random selection test accuracies (which were obtained
by averaging over 10 random seeds). Our statistic is then the number of standard deviations by which
Algorithm 1 exceeds the mean random selection accuracy. When this statistic is large, it means that
Algorithm 1 found an expert subset whose performance is statistically significantly larger than that
of the typical random expert subset. The results are shown in Table 2 where we observe very large
values for this statistic. This shows that our Algorithm 1 significantly outperforms random selection
for CIFAR100, even though random selection has decent performance on this dataset. Analogous
tables for the other datasets are provided in Appendix D.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Results for CIFAR100 ex-
periments from Section 4.4.

n

2 8 16 64 128

k = n/2 6.23 6.73 1.89 3.47 2.49
k = n/4 - 7.31 6.34 4.56 4.50
k = n/8 - 21.22 28.20 13.96 5.74

Table 2: Each cell is the number of standard deviations that the test
accuracy of Algorithm 1 is above the mean test accuracy of Random
selection, on the CIFAR100 dataset. For the Random selection, we
used 10 random seeds to obtain its mean and standard deviation.

4.5 FASTER INFERENCE VIA ALGORITHM 1

In practice, one typically trains a very large model (with many Soft MoE layers, each with many
experts) a single time, then the model is deployed and repeatedly utilized for inference. It is thus of
great interest to speed up computation through Soft MoE modules, since this leads to faster inference.
Algorithm 1 is well suited for this purpose. The preceding sections show that when the number of
experts n is large, then Algorithm 1 can rapidly and cheaply find a small subset of experts that can
predict any datapoint with minimal expected accuracy loss. So it can potentially be used for faster
inference through the Soft MoE.

A full examination of the usefulness of Algorithm 1 for faster inference is beyond the scope of
our paper. A proper analysis would require massive industry-scale models, and would also be very
application specific because it would depend on the type and number of devices used for inference,
as well as the extent of distributed computing and per-device parallelization. We lack the compute
capacity to do such a thorough study. Nevertheless, it is immediate that in the regime of many
large experts, where a forward pass through an expert has non-trivial cost, Algorithm 1 should save
computation since its overhead is relatively negligible. As a simple example to show the potential of
Algorithm 1 for faster inference, we consider the same ViT architecture from Section 4.4 with 8 total
experts, but with each expert being much larger, such that the whole model has 2.32B parameters, of
which 2.27B parameters are in the experts. We measure the total wall clock time elapsed during a
forward pass through the 6 Soft MoE layers, where each layer will only utilize k experts as prescribed
by Algorithm 1. The results are presented in Table 3, and show that smaller values of k yield
significant speedups. See Appendix D.5 for further details on this experiment.

k = n k = 3n/4 k = n/2 k = n/4

batch = 1 21.50± 0.20 19.46± 0.23 14.75± 0.35 9.96± 0.19
batch = 100 99.03± 0.28 78.26± 0.51 78.86± 0.36 51.69± 0.79

Table 3: Wall clock time of performing a single forward pass (of random data) through the 6 Soft MoE layers
using Algorithm 1, with either a single datapoint or a batch of 100 datapoints. The unit of all values are
milliseconds. For each batch size, we report the mean and standard deviation over 100 trials.

5 RELATED WORK

Mixture of Experts. Our work falls squarely in the literature on MoEs, which originated several
decades ago (Jacobs et al., 1991; Jordan & Jacobs, 1993) and has been revived as the Sparse
MoE (Shazeer et al., 2017). Nevertheless, there is a significant difference between our investigation
and the majority of past work. The majority of past work in MoE focuses primarily on computational
considerations, such as (in the context of Sparse MoE) routing a token to only a single expert for
efficiency (Fedus et al., 2022), and ensuring load balancing by incorporating linear programs (Lewis
et al., 2021) or having the experts select tokens (Zhou et al., 2022) or re-routing dropped tokens (Zeng
et al., 2024). Indeed, the Soft MoE (Puigcerver et al., 2024) was recently introduced to address the
various training instabilities suffered by Sparse MoE, and performs very well in applications like
vision (Puigcerver et al., 2024), RL (Obando-Ceron et al., 2024) and audio processing (Cappellazzo
et al., 2024). By contrast, our investigation begins with a more fundamental question – what are the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

implicit biases that occur as a result of Soft MoE’s particular manner of combining tokens and expert
outputs? While analogous fundamental investigations of the gating function do exist in the context of
Sparse MoEs (Chen et al., 2022; Dikkala et al., 2023) and some of its variants (Nguyen et al., 2023;
2024), to the best of our knowledge this line of investigation is novel in Soft MoE.

Expert Specialization. The use of MoE layers in a network is often motivated by the desire for
expert specialization, since this implies a more efficient use of the network parameters. To our
knowledge, all prior work on expert specialization has been conducted in the context of Sparse MoE.
While some studies demonstrate that expert specialization may occur for Sparse MoE (Chen et al.,
2022; Dikkala et al., 2023), others show that specialization is often limited and requires architectural
innovations (Krishnamurthy et al., 2023; Dai et al., 2024; Oldfield et al., 2024). These innovations are
different than Soft MoE, where it is not even a priori clear what expert specialization means. Indeed,
the seminal work acknowledges this limitation (Puigcerver et al., 2024). In our paper, we offer a
notion of expert specialization in Soft MoE, and show not only that it occurs but can be efficiently
detected.

Sparse Activation & Pruning. Our work is also related to the literature on sparsely activating or
pruning a network, since our Algorithm 1 can be viewed as a form of pruning at inference. For instance,
there is work on using RL to conditionally activate only certain units in a generic network for faster
training and inference (Bengio et al., 2016), pruning CNN kernels for efficient inference (Molchanov
et al., 2017), and developing adaptive computation modules for transformers (Wójcik et al., 2023).
While a complete survey of this vast area is beyond the current scope (Blalock et al., 2020), we
emphasize that our form of pruning is entirely specific to Soft MoE, since it relies on the C(X)
matrix. It can be used with or without many other types of pruning.

6 DISCUSSION

Limitations. Our work has a number of limitations. While our Theorem 1 is a negative result for
a single expert’s representation power, we are unable to prove a corresponding positive result for
multiple experts (although in Appendix B we provide empirical evidence for increased representation
power as the number of experts increases). A different limitation is that we are unable to provide a
thorough analysis of the extent to which Algorithm 1 can reduce computation at inference (due to a
lack of compute capacity). We believe both limitations provide exciting directions for future work.

Conclusion. In this paper, we studied the Soft Mixture of Experts architecture. We eschewed the
traditional viewpoint of scaling expert parameter count in a manner that allows efficient training and
inference. Instead, we adopted an orthogonal perspective, and studied implicit biases that arise from
Soft MoE’s particular manner of combining token and expert outputs. We showed that even with an
arbitrarily powerful single expert, Soft MoE cannot represent simple convex functions, thus showing
that good representation power is predicated on having multiple experts. We also introduced a notion
of expert specialization for Soft MoE, and provided an algorithm that efficiently discovers specialized
experts when the number of experts is large. Overall, our analysis (both theoretical and empirical)
highlights non-traditional reasons for why using many smaller experts is preferable to using fewer
larger experts, even when the total expert parameter count remains fixed.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael

10

https://www.tensorflow.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil
Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24), 2024. URL https://pytorch.org/assets/
pytorch2-2.pdf.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws, 2021.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in
neural networks for faster models, 2016.

Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. What is the
state of neural network pruning? In MLSys, 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Umberto Cappellazzo, Daniele Falavigna, and Alessio Brutti. Efficient fine-tuning of audio spectro-
gram transformers via soft mixture of adapters, 2024.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
mixture-of-experts layer in deep learning. In Advances in Neural Information Processing Systems,
2022.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems (MCSS), 2(4):303–314, 1989.

Rishit Dagli. Astroformer: More data might not be all you need, learning to predict galaxy morpholo-
gies with limited data, 2023.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina Panigrahy, Nikhil Vyas, and Xin Wang. On the
benefits of learning to route in mixture-of-experts models. In Conference on Empirical Methods in
Natural Language Processing, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825), 2020.

11

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):
251–257, 1991.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In International
Conference on Neural Networks, volume 2, pp. 1339–1344, 1993.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Yamuna Krishnamurthy, Chris Watkins, and Thomas Gaertner. Improving expert specialization in
mixture of experts, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. BASE layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017.

Huy Nguyen, TrungTin Nguyen, and Nhat Ho. Demystifying softmax gating function in gaussian
mixture of experts. In Advances in Neural Information Processing Systems, 2023.

Huy Nguyen, Nhat Ho, and Alessandro Rinaldo. On least squares estimation in softmax gating
mixture of experts, 2024.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
parameter scaling for deep RL, 2024.

James Oldfield, Markos Georgopoulos, Grigorios G. Chrysos, Christos Tzelepis, Yannis Panagakis,
Mihalis A. Nicolaou, Jiankang Deng, and Ioannis Patras. Multilinear mixture of experts: Scalable
expert specialization through factorization, 2024.

Joan Puigcerver, Carlos Riquelme Ruiz, Basil Mustafa, and Neil Houlsby. From sparse to soft
mixtures of experts. In International Conference on Learning Representations, 2024.

Carlos Riquelme Ruiz, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton,
André Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of
experts. In Advances in Neural Information Processing Systems, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, 2021.

Hugo Touvron, Matthieu Cord, and Herve Jegou. Deit iii: Revenge of the vit. arXiv preprint
arXiv:2204.07118, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Advances in Neural Information Processing Systems, 2018.

Bartosz Wójcik, Alessio Devoto, Karol Pustelnik, Pasquale Minervini, and Simone Scardapane.
Adaptive computation modules: Granular conditional computation for efficient inference, 2023.

Zhiyuan Zeng, Qipeng Guo, Zhaoye Fei, Zhangyue Yin, Yunhua Zhou, Linyang Li, Tianxiang Sun,
Hang Yan, Dahua Lin, and Xipeng Qiu. Turn waste into worth: Rectifying top-k router of moe,
2024.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y Zhao, Andrew M. Dai,
Zhifeng Chen, Quoc V Le, and James Laudon. Mixture-of-experts with expert choice routing. In
Advances in Neural Information Processing Systems, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Here, we formally prove Theorem 1. Assume for the sake of contradiction that there exist Φ ∈ Rd×1,
f : Rd → Rd and g : Rm×d → R such that∣∣t(X)− g

(
sMoEΦ

f (X)
)∣∣ ≤ max {1, t(X)/20} for all X ∈ Rm×d, (2)

where f is Lf -Lipschitz and g is Lg-Lipschitz. Via the Lg-Lipschitz property and via Definition 1,
we know for any A,B ∈ Rm×d that∣∣g (sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)∣∣ ≤ Lg

∣∣sMoEΦ
f (B)− sMoEΦ

f (A)
∣∣

= Lg

∥∥∥C(B)Ỹ (B)− C(A)Ỹ (A)
∥∥∥
2

= Lg

∥∥∥∥∥∥∥∥

1
1
...
1

(
Ỹ (B)− Ỹ (A)

)∥∥∥∥∥∥∥∥
2

= Lg

√
m

∥∥∥Ỹ (B)− Ỹ (A)
∥∥∥
2
.

Now again using Definition 1 and applying the Lf -Lipschitz property, we obtain from the above
inequality that∣∣g (sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)∣∣ ≤ Lg

√
m

∥∥∥Ỹ (B)− Ỹ (A)
∥∥∥
2

= Lg

√
m

∥∥f (
D(B)TB

)
− f

(
D(A)TA

)∥∥
2

≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
.

(3)

We now breakup the remainder of the proof into disjoint and exhaustive cases based on the sign of
the first entry of Φ, and in each case we show a contradiction.

We begin with the case where Φ1 > 0. Define A ∈ Rm×d to be the matrix which is all zeros, except
A11 = a and A21 = −a for a value of a > 0 that is yet to be specified. Then AΦ ∈ Rm×1 is a vector
of all zeros except that its first entry is aΦ1 > 0 and its second entry is −aΦ1 < 0. By the definition
of the matrix D in Section 2.1, this implies for large a > 0 that

D(A)i =

{
1− Ω (m exp(−a)) if i = 1

O (exp(−a)) if i > 1
.

Now define B ∈ Rm×d to be the matrix which is all zeros, except B11 = a for the aforementioned
value of a > 0 that is yet to be specified. Then BΦ ∈ Rm×1 is a vector of all zeros except that its
first entry is aΦ1 > 0. By the definition of the matrix D in Section 2.1, this implies for large a > 0
that

D(B)i =

{
1− Ω (m exp(−a)) if i = 1

O (exp(−a)) if i > 1
.

Let A1, B1 denote the first column of A,B. Leveraging continuity of the absolute value, we thus
obtain that

lim
a→∞

∥∥D(B)TB −D(A)TA
∥∥
2
= lim

a→∞

∣∣D(B)TB1 −D(A)TA1

∣∣
=

∣∣∣ lim
a→∞

(
D(B)TB1 −D(A)TA1

)∣∣∣
= 0.

(4)

Note via definition of t that t(A)− t(B) = (
√
2− 1)a. Now recalling Eq. equation 2 and Eq. equa-

tion 3, we know for large a > 0 that

(
√
2− 1)a = t(A)− t(B)

≤
∣∣g (sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)∣∣+max {1, t(B)/20}+max {1, t(A)/20}

≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
+ a/5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

This implies that
a/10 ≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
.

Taking the limit as a → ∞ on either side of the above equation, and using Eq. equation 4, yields a
contradiction.

We now consider the case where Φ1 < 0. The proof for this case is completely symmetric to the
proof for the case of Φ1 > 0, and so it is omitted.

We now consider the final case of Φ1 = 0. Define B ∈ Rm×d to be the matrix of all zeros, except
B11 = a for a value of a > 0 that is yet to be specified. Define A ∈ Rm×d to be the matrix of all
zeros, except A11 = A21 = a/2 for the aforementioned value of a > 0. Then since AΦ = BΦ = 0,
we have

D(A) = D(B) =


1/m
1/m

...
1/m

 .

Let A1, B1 denote the first column of A,B. The above equality implies that∥∥D(B)TB −D(A)TA
∥∥
2
=

∣∣D(B)TB1 −D(A)TA1

∣∣ = a

m
−

(a

2m
+

a

2m

)
= 0.

Note via definition of t that t(B) − t(A) = (1 − 1/
√
2)a. Now recalling Eq. equation 2 and

Eq. equation 3, we know for large a > 0 that

(1− 1/
√
2)a = t(B)− t(A)

≤ g
(
sMoEΦ

f (B)
)
− g

(
sMoEΦ

f (A)
)
+max {1, t(B)/20}+max {1, t(A)/20}

≤ LgLf

√
m

∥∥D(B)TB −D(A)TA
∥∥
2
+ a/10

= a/10.

Thus we have arrived at a contradiction in each of the three cases. This completes the proof. ■

B CAN SOFT MOE WITH MULTIPLE EXPERTS REPRESENT ∥ · ∥2?

Our Theorem 1 shows that Soft MoE with a single expert cannot represent the function t defined as
t(X) = ∥X∥2, even when the expert is arbitrarily powerful. However, it leaves open the possibility
that Soft MoE with multiple experts could represent this function t. In this section, we provide a
simple experiment to empirically check this. We consider the same problem of learning the function
t, and we train a suite of Soft MoE models, each with a different number of experts, n, where
n ∈ {1, 2, 5, 10}. As always (and as subsequently discussed), we fix the total expert parameter count.

We consider the input X ∈ R10, where X ∼ N (0, 5I). For an input vector X , the label y was set to
∥X∥2. Each batch of data is newly generated from this data distribution. We do two experiments with
two different tokenization strategies. Concretely, the input was tokenized into either X ∈ R5×2 or
X ∈ R2×5, i.e. 5 tokens each with dimension 2, or 2 tokens each with dimension 5, by partitioning
the 10 elements of an input vector in order of their dimension index.

In the spirit of Theorem 1, the Soft MoE models considered consisted only of a Soft MoE layer, and
a non-trainable summation prediction head. Therefore, given an input matrix X ∈ Rm×d (i.e., m
tokens each with dimension d), it is passed directly to the Soft MoE layer. Each expert was a two
layer MLP that had input and output of dimension d and a single hidden layer with dimension 10d/n.
Thus, the number of expert parameters in each model was always constant at 20d2, regardless of the
number of experts n in the model. The output from the Soft MoE layer was then summed to produce
the final scalar prediction from the model. Each model was trained with a batch size of 10, 000, with
the Adam optimizer using default hyperparameters and learning rate of 1e-3 over 500 epochs.

Figure 4 shows the loss curves from the 2 settings of token dimensions considered. We note that
because each training batch is newly generated from the data distribution, the loss curves represent

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 4: Loss curves in training Soft MoE models to learn the L2 norm function

both the train and test loss. The blue curve with n = 1 shows that having 1 large expert is unable to
lower the loss and learn the L2 norm function, and thus provides empirical support for Theorem 1.

Notably, however, using more than one expert significantly reduces the loss, even though the number
of expert parameters in each model was held constant. Indeed, we see in Figure 4 that increasing the
number of experts seems to monotonically improve performance, even though the expert parameter
count is fixed. This result therefore challenges the conventional wisdom that Soft MoE’s empirical
success with n > 1 smaller experts (each with b/n parameters) is simply because they mimic the
representation power of a single large expert (with b parameters). Instead, it suggests that the Soft
MoE has implicit biases, that assist in its improved performance.

C ADDITIONAL ALGORITHM DETAILS

We provide an example implementation of a batched version of Algorithm 1 where we assume we
are given an input batch of size b. In describing each step, we will use PyTorch(Ansel et al., 2024)
APIs, but we note that analogous functionalities to efficiently handle batch computation are readily
available in other packages, such as NumPy(Harris et al., 2020), TensorFlow(Abadi et al., 2015),
or JAXBradbury et al. (2018).

Algorithm 2 Best Expert Subset Selection for Batch of Inputs

Require: number of experts k to use for prediction, Soft MoE sMoEΦ
{fj}n

j=1
, input X ∈ Rb×m×d

1: Compute batched C(X) ∈ Rb×m×n.
C X = torch.softmax(torch.matmul(X, Phi), dim=2)

2: Compute batched Csum ∈ Rb×n.
C sum = torch.sum(C X, dim=1)

3: Compute batched Sk ∈ [n]b×k.
S k = torch.argsort(C sum, dim=1)[:, :k]

4: Define a placeholder for batched Ŷ (X) ∈ Rb×n×d.
hat Y X = torch.zeros(b, n, d)

5: For each expert j ∈ [n], process the subbatch of X that had selected expert j according to Csum.
for j in range(n):

subbatch idxs = (S k == j).any(dim=1)
subbatch = D X[subbatch idxs].transpose(1, 2) @

X[subbatch idxs]
expert output = f i(subbatch)
hat Y X[subbatch idxs] = expert output

6: return Ŷ (X).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D DETAILS OF EMPIRICAL EXPERIMENTS

D.1 DETAILS OF EXPERIMENTS IN SECTION 4.2

For this experiment on MNIST, the models used consisted of a single Soft MoE layer followed by a
linear prediction head. Tables 4 and 5 provide a summary of the model and training procedure. To
elaborate further, each model is trained with the Adam optimizer (Kingma & Ba, 2015) using default
optimizer parameters for 15 epochs. We trained with the standard train set of 60, 000 datapoints and
used the test set of 10, 000 datapoints for evaluation. Each setting of n (number of experts) reached
≈ 97.5% test accuracy after 15 epochs. During a forward pass of the model, each input image is
tokenized into 4 patches, each of dimension 1×14×14. Thus the input is X ∈ R4×196, i.e. 4 tokens,
each of dimension 196. For a network with n experts, a single expert is an MLP with one hidden layer
and ReLU activation, where the input and output are each 196 dimensional, and the number of hidden
units is 196× 4/n. While we trained a suite of 9 models with n ∈ {21, 22, 23, 24, 25, 26, 27, 28, 29},
the experiment in Section 4.2 uses 3 of these models with n ∈ {22, 23, 24}.

Note that the results in Table 1 show that for n = 8 and n = 16 the best n/4 expert subset actually
predicts slightly better than just using the original network, i.e. utilizing all the experts. This
is not too surprising, given that MNIST is relatively simple and our Soft MoE network is very
overparameterized, and so exhaustively searching over many subnetworks can easily yield improved
performance.

Model Feature Used Value

Raw Input Size 1× 28× 28
Input Resizing None

Soft MoE Input Size 1× 28× 28
Patch Size 1× 14× 14

Total Model Parameters 318K
Total Expert Parameters 307K

Number of Soft MoE Layers 1
Parameters per Expert 307K /n

Models Trained n ∈ {21, 22, 23, 24, 25, 26, 27, 28, 29}

Table 4: Model details for MNIST experiments in Sections 4.2 and 4.4.

Hyperparameter Used Value

Batch Size 256
Epochs 15

Optimizer Adam
LR 1e-3

LR Scheduling None: Constant LR
Epochs 15

Table 5: Key hyperparameter settings for MNIST experiments in Sections 4.2 and 4.4.

In Figure 5, we display the number of unique subsets of the experts that were used to produce the
best k-subset accuracies in Table 1. Since there are 10, 000 datapoints in the test set and

(
n
k

)
total

number of unique subsets, each bar is capped at min{10, 000,
(
n
k

)
}.

As there are few combinations of expert subsets of size k = n/4 with low n, all subset combinations
are required to produce the best accruacies when n is low, but they still do not achieve perfect
accuracies, as indicated in the first row of Table 1. The number of unique subsets grows with n,
which indicates an increase in the diversity of experts used per datapoint, and thus more degree of
specialization of the experts to each input X (following our notion of specialization from Section 4.1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 5: Each bar presents the number of unique subsets of experts of size k = n/4 that were used to produce
the highest accuracy, for each setting of the total number of experts n.

D.2 DETAILS OF EXPERIMENTS IN SECTION 4.4

The MNIST experiment in this section re-used the models that were trained from Section 4.2. In this
set of experiments, we used all 9 models, each with a different number of experts.

For the CIFAR10 experiment, we trained a suite of Soft MoE models with different numbers of
experts n by taking the Astroformer-1 model as backbone and replacing the MLPs of the transformer
blocks with a Soft MoE layer. The Astroformer model assumes the “C-C-C-T” architecture, where “C”
stands for convolution and “T” stands for transformer. The transformer stage consists of 2 transformer
blocks, each of which has a feedforward network. We replace this feedforward network with a Soft
MoE layer. An input image of size 3 × 96 × 96 (channel × height × width) is processed by the
“C” stages into a tensor of size 768× 3× 3 when it reaches the first “T” stage. Following standard
practice in tokenizing images via patches, we treat each height-width location as a token, and thus
create 9 total tokens (or patches), each with dimension 768. Each expert is a 2-layer MLP with inputs
and outputs that are both 768 dimensional, and the number of hidden units is 768 ∗ 64/n. A summary
of the model features are provided in Table 6.

Model Feature Used Value

Raw Input Size 3× 32× 32
Resized Input Size 3× 96× 96

Soft MoE Input Size 768× 3× 3
Patch Size 768× 1× 1

Base Model Architecture Astroformer-1
Total Model Parameters 180M
Total Expert Parameters 150M

Number of Soft MoE Layers 2
Parameters per Expert 150M/2n

Models Trained CIFAR10: n ∈ {21, 22, 23, 24, 25, 26, 27}
CIFAR100: n ∈ {21, 23, 24, 26, 27}

Table 6: Model details for CIFAR10 and CIFAR100 experiments in Section 4.4.

One additional modification we had to make to this architecture was that there are no residual
connections from directly before Soft MoE to directly after Soft MoE. All of the other residuals
connections between other blocks were retained. We made this design choice because we found that
our Soft MoE variant of Astroformer trains in a manner that essentially ignores expert outputs and
only relies on the residual connections (i.e., the expert outputs are negligible compared to the residual
portion). Such a scenario biases the results, since the remainder of the network makes predictions
without relying on the Soft MoE layer at all, and we thus cannot assess Algorithm 1. While this may

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hyperparameter Used Value

Batch Size 800
Gradient Accumulation Steps 1

Epochs 500
Optimizer AdamW

LR Scheduler Cosine
Base LR 3e-4

LR Cycle Decay 1e-2
LR K Decay 1
Warmup LR 1e-5

Epochs 500
Warmup Epochs 5

Mixup 0.8
Label Smoothing 0.1

Dropout Rate 0.1

Table 7: Key hyperparameters used for CIFAR10 and CIFAR100 experiments in Section 4.4.

be an artifact of hyperparameter settings that are not optimized for our Soft MoE variant models, we
did not have the compute surplus to perform an exhaustive search over hyperparameters and utilized
those that were provided with the model implementation and code.

To train our Soft MoE variant of the Astroformer-1 models, we followed the exact same training
procedure as that provided in the Astroformer paper (Dagli, 2023) and their public codebase1, with
the exception of the input resizing and base learning rate. While there are many hyperparameter
settings that were set by default when we used their codebase and commands, we provide a summary
of a few key settings in Table 7. We trained with the standard train set of 50, 000 datapoints and used
the test set of 10, 000 datapoints for evaluation. Training was halted as soon as the model crossed
95% test accuracy, which was typically well before the total number of epochs.

For the CIFAR100 experiment, we used the exact same model and training code as that of CIFAR100.
In our trials of training the base Astroformer-1 model (i.e. without any MoE layers or modifications),
the model converges to ≈ 80% test accuracy over 500 epochs of training, and our Soft MoE variants
of Astroformer-1 also converged to ≈ 80% test accuracy using the same training procedure and code.

For the ImageNet-1k experiment, we used the same model architecture as that used by the seminal
paper that proposed Soft MoE (Puigcerver et al., 2024). Specifically, we used the Soft MoE adaptation
of the ViT Base model, with the only difference being that the expert MLPs are of different sizes,
depending on the number of experts, n. We defer exact details of the architecture by referring the
reader to the Soft MoE paper (Puigcerver et al., 2024) and previous works on ViTs (Dosovitskiy
et al., 2021), but we re-iterate a few key features of the architecture here in text and in Table 8. Our
model is based on the ViT Base model with patch size 16× 16. This model consists of 12 encoder
blocks in total, where each encoder block consists of an attention layer followed by an MLP. The
MLP of the last 6 out of 12 encoder blocks have been replaced with a Soft MoE layer, where each
expert is a 2-layer MLP. The input and output of each expert MLP is 768-dimensional, and there is
one hidden layer of dimension 768 ∗ 64/n. In implementing these models, we relied on a publicly
available PyTorch implementation of Soft MoE variant of ViT2.

Since there are no publicly available pretrained weights for the Soft MoE variant of ViT models,
we had to train each model from scratch. We relied on the DeiT (Data-efficient Image Transform-
ers) (Touvron et al., 2021; 2022) training procedure and code, since our compute constraints made
pretraining on a large corpus of data infeasible. Specifically, we used the “‘DeiT-III”’ training
procedure, which is publicly available 3. We used the same command that was used to train the
“deit base patch16 LS” model on ImageNet-1k with just one change: we trained without resizing the
inputs from 224 to 192. A few key hyperparameter settings used are listed in Table 9.

1https://github.com/Rishit-dagli/Astroformer
2https://github.com/bwconrad/soft-moe
3https://github.com/facebookresearch/deit/blob/main/README_revenge.md

19

https://github.com/Rishit-dagli/Astroformer
https://github.com/bwconrad/soft-moe
https://github.com/facebookresearch/deit/blob/main/README_revenge.md

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Model Feature Used Value

Raw Input Size 3× 224× 224
Input Resizing None

Patch Size 3× 16× 16
Soft MoE Input Size 197× 768

Base Model Architecture ViT Base
Total Model Parameters 513M
Total Expert Parameters 454M

Number of Soft MoE Layers 6
Parameters per Expert 454M/6n

Models Trained n ∈ {21, 23, 24, 26, 27}

Table 8: Model details for ImageNet-1k experiments in Section 4.4.

Hyperparameter Used Value

Batch Size 512
Gradient Accumulation Steps 1

Epochs 800
Optimizer FusedLAMB

LR Scheduler Cosine
Base LR 3e-3

Warmup LR 1e-6
Epochs 500

Warmup Epochs 5
Random Erase Prob 0.0

Mixup 0.8
Cutmix 1.0

Label Smoothing 0.0
Dropout Rate 0.0
Weight Decay 0.05

Table 9: Key hyperparameters settings for ImageNet-1k experiments in Section 4.4.

We trained with the standard train set of 1.3M datapoints and used the validation set of 50, 000
datapoints for evaluation. The DeiT-III code and provided command can train the original ViT Base
model (i.e. without any MoE layers or modifications) to ≈ 81% validation accuracy over 800 training
epochs. Our Soft MoE ViT models are able to reach ≈ 79% validation accuracy within 800 epochs.
We note that this code and the hyperparameters set are highly optimized for training original ViT
models, thus it is not surprising that our models are not able to reach or exceed the validation accuracy
of the original ViT model.

We had access to 8 NVIDIA A6000 GPUs to train all of our models.

D.3 ADDITIONAL RESULTS FOR SECTION 4.4.2

This section provides additional results for the experiments discussed in Section 4.4.2. Specifically,
we provide two additional sets of tables for each of the datasets: 1) the number of standard deviations
by which the test accuracy of Algorithm 1 exceeds the mean test accuracy of random expert subset
selection, and 2) the test accuracy of Algorithm 1 as a percentage of the original accuracy when
using all of the experts without any expert dropping. While Section 4.4.2 provides partial results for
CIFAR100, we repeat the result here for completeness, and provide the full set of results for MNIST
(Table 10), CIFAR10 (Table 11), CIFAR100 (Table 12), and ImageNet-1k (Table 13).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

n

21 22 23 24 25 26 27 28 29

k = n/2 25.79 33.61 22.95 25.39 23.33 26.47 22.98 10.19 18.70
k = n/4 - 0.00 16.33 45.83 38.89 49.00 37.15 31.33 29.44
k = n/8 - - 11.81 28.24 46.78 38.78 50.46 42.34 66.90

(a) Number of standard deviations that the performance of Algorithm 1 is above the mean performance of
Random expert set selection. For the Random selection, we used 10 random seeds to obtain its mean and
standard deviation.

n

21 22 23 24 25 26 27 28 29

k = n/2 78.1% 80.3% 88.5% 94.2% 96.6% 97.0% 97.3% 98.2% 99.1%
k = n/4 - 47.7% 60.8% 76.2% 86.4% 88.4% 90.2% 93.2% 96.0%
k = n/8 - - 40.3% 51.9% 71.6% 76.2% 80.4% 85.9% 90.6%

(b) Test accuracy of Algorithm 1 as a percentage of the test accuracy of using all experts.

Table 10: Additional results for MNIST experiments.

n

21 22 23 24 25 26 27

k = 5 - - 1.73 0.95 3.88 7.25 25.90
k = 4 - - 1.99 2.51 4.74 15.12 46.92
k = 3 - 0.53 3.47 7.81 12.28 21.53 88.96
k = 2 - 4.05 12.26 15.17 24.26 42.77 176.57
k = 1 3.22 20.40 33.14 35.48 70.75 83.71 234.04

(a) Number of standard deviations that the performance of Algorithm 1 is above the mean performance of
Random expert set selection. For the Random selection, we used 10 random seeds to obtain its mean and
standard deviation.

n

21 22 23 24 25 26 27

k = 5 - - 100% 99.9% 100% 100% 99.9%
k = 4 - - 100% 100% 99.9% 99.9% 99.9%
k = 3 - 99.9% 99.9% 99.9% 99.9% 100% 99.8%
k = 2 - 99.9% 99.9% 99.9% 99.8% 99.9% 99.7%
k = 1 100% 99.9% 99.7% 99.8% 99.9% 99.5% 96.0%

(b) Test accuracy of Algorithm 1 as a percentage of the test accuracy of using all experts.

Table 11: Additional results for CIFAR10 experiments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

n

21 23 24 26 27

k = n/2 6.23 6.73 1.89 3.47 2.49
k = n/4 - 7.31 6.34 4.56 4.50
k = n/8 - 21.22 28.20 13.96 5.74

(a) Number of standard deviations that the performance of Algorithm 1 is above the mean performance of
Random expert set selection. For the Random selection, we used 10 random seeds to obtain its mean and
standard deviation.

n

21 23 24 26 27

k = n/2 99.6% 99.9% 99.8% 99.8% 99.8%
k = n/4 - 95.8% 98.9% 99.1% 99.2%
k = n/8 - 85.0% 94.2% 94.4% 95.6%

(b) Test accuracy of Algorithm 1 as a percentage of the test accuracy of using all experts.

Table 12: Additional results for CIFAR100 experiments.

n

21 23 24 26 27

k = n/2 2.23 6.72 1.63 24.54 35.50
k = n/4 - 20.71 14.06 38.89 32.11
k = n/8 - 31.88 20.21 35.04 60.38

(a) Number of standard deviations that the performance of Algorithm 1 is above the mean performance of
Random expert set selection. For the Random selection, we used 10 random seeds to obtain its mean and
standard deviation.

n

21 23 24 26 27

k = n/2 98.6% 99.2% 99.1% 99.9% 99.9%
k = n/4 - 99.1% 98.7% 99.8% 99.8%
k = n/8 - 98.9% 98.2% 99.5% 99.8%

(b) Test accuracy of Algorithm 1 as a percentage of the test accuracy of using all experts.

Table 13: Additional results for ImageNet-1k experiments.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.4 ADDITIONAL ANALYSIS FOR SECTION 4.4.2

Figure 6: Sum of the Csum weight allocated to the highest weighted experts tends to increase with the total
number of experts n. However, the increase in the allocated weight is not significant, even across very different
values of n. For example, when n = 8, the top 50% of the highest weighted experts by Csum were allocated
about 0.55 weight on average. That figure increased to about 0.57 for n = 128, which indicates that the naive
argument that the effectiveness of Algorithm 1 is simply due to dropping marginally weighted expert outputs is
unlikely.

In Section 4.4.2, we showed that Csum (which is derived from C(X)) becomes more informative
in identifying the specialized subset of experts as the total number of experts n increases. If the
skewness of Csum increased with n such that the weights of Csum became highly concentrated on
a select few experts with large n, this would provide a trivial explanation for the performance of
Algorithm 1: increasingly marginally weighted experts are dropped. We show that this is not the case.

In Figure 6, we provide a visualization of the sum of the weight of Csum allocated to the highest
weighted experts. This figure was produced by using the same set of models that were used to produce
Figures 1 and 2a, and the sum of the Csum weights were averaged across the test dataset. While the C
weight tends to increase with n, the increase is marginal, even across very different values of n. The
minor differences across the drastically different values of n indicate that the specialization identified
via Algorithm 1 is not trivial, and that the specialization identified is not merely through each experts’
linear weight in the contribution to the output.

D.5 DETAILS OF EXPERIMENTS IN SECTION 4.5

For this experiment, we consider the same Soft MoE variant of the ViT Base architecture as those
used in Section 4.4, but with larger experts to make the total parameter count larger. Specifically,
each of the Soft MoE layers has 8 experts, each of which are 2 layer MLP with input and output
dimensions of 768 and a hidden layer with 768 ∗ 40 units. The whole model has 2.32B parameters,
of which 2.27B parameters are in the experts.

The data used for the forward pass was generated from a standard normal distribution. The experiment
was done on a single NVIDIA GeForce RTX 2080 Ti GPU. Latency was measured by first performing
100 warmup forward passes, then synchronizing CUDA, then measuring the elapsed wall clock time
during the next 100 forward passes plus the end of another synchronization of CUDA. The reported
figures in Table 3 are based on these latter 100 forward passes. While this experiment is simple and
relatively small-scale, a proper analysis would require industry-scale models, and would be dependent
on the hardware and the extent of distributed computing and per-device parallelization, as discussed
in Section 4.5. We lack the compute capacity to perform such a thorough study.

23

	Introduction
	Problem Formulation
	Preliminaries
	Our Investigation

	Representation Failure of a Single Expert
	Specialization of Experts
	What Does Specialization Mean?
	Does Specialization Exist?
	An Algorithm For Best Expert Selection
	Empirical Performance of Algorithm 1
	Experimental Setup
	Experimental Results

	Faster Inference via Algorithm 1

	Related Work
	Discussion
	Proof of Theorem 1
	Can Soft MoE with Multiple Experts Represent 2?
	Additional Algorithm Details
	Details of Empirical Experiments
	Details of Experiments in Section 4.2
	Details of Experiments in Section 4.4
	Additional Results for Section 4.4.2
	Additional Analysis for Section 4.4.2
	Details of Experiments in Section 4.5

