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ABSTRACT
Knowledge Tracing (KT) is vital for education, continuously moni-
toring students’ knowledge states (mastery of knowledge) as they
interact with online education materials. Despite significant ad-
vancements in deep learning-based KT models, existing approaches
often struggle to strike the right balance in granularity, leading to ei-
ther overly coarse or excessively fine tracing and representation of
students’ knowledge states, thereby limiting their performance. Ad-
ditionally, achieving a high-performing model while ensuring inter-
pretability presents a challenge. Therefore, in this paper, we propose
a novel approach called Multiscale-state-based Interpretable Knowl-
edge Tracing (MIKT). Specifically, MIKT traces students’ knowledge
states on two scales: a coarse-grained representation to trace stu-
dents’ domain knowledge state, and a fine-grained representation to
monitor their conceptual knowledge state. Furthermore, the classi-
cal psychological measurement model, IRT (Item Response Theory),
is introduced to explain the prediction process of MIKT, enhancing
its interpretability without sacrificing performance. Additionally,
we extended the Rasch representation method to effectively handle
scenarios where questions are associated with multiple concepts,
making it more applicable to real-world situations. We extensively
compare MIKT with 20 state-of-the-art KT models on four widely-
used public datasets. Experimental results demonstrate that MIKT
outperforms other models while maintaining its interpretability.
Moreover, experimental observations have revealed that our pro-
posed extended Rasch representation method not only benefits
MIKT but also significantly improves the performance of other KT
baseline models. The code can be found on the anonymous website
https://anonymous.4open.science/r/MIKT-BC12.

CCS CONCEPTS
• Applied computing→ Education; Distance learning.

KEYWORDS
knowledge tracing, knowledge state representation, interpretable,
educational data mining

1 INTRODUCTION
In the context of the web, where online education platforms like
Coursera, MOOC, and others have become increasingly prevalent,
Knowledge Tracing (KT) emerges as a critical topic. With the vast
array of educational resources available online, it has become a
crucial task for online learning platforms to model the learning
process of their users, and further provide their users a personalized
learning guidance.as they navigate through web-based learning
environments[44]. KT plays a pivotal role in achieving this by
continuously monitoring and assessing students’ knowledge states
based on their interactions with online educational materials[3].

In recent years, KT models based on deep learning have shown
outstanding performance[10, 18, 25, 45]. Given that KT’s central
task is to trace students’ knowledge states, designing an effective
encoding for representing knowledge states becomes of paramount
importance. Additionally, deep learning-based KTmodels often lack
interpretability, which undoubtedly impedes the further application
of KT.
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Figure 1: A simple example about knowledge tracing

We have presented a simple example of knowledge tracing in Fig-
ure 1, where each question is associated with one or more concepts.
Students practice on different questions, gradually increasing their
knowledge during the learning process. To represent the student’s
knowledge state, the graph-based KT model[21, 34] traces the stu-
dent’s knowledge states on all concepts (referred to as conceptual
knowledge state in this paper) using hidden vectors and propa-
gates these knowledge states through the specific graph structure.
On the other hand, the sequential-based KT models[11, 27] do not
trace the student’s knowledge state on each concept. Instead, they
directly model the student’s current knowledge state (referred to
as domain knowledge state in this paper) based on the student’s
historical interactions and represent this knowledge state using a
hidden vector. These two modeling approaches are vastly different
but have both achieved impressive success. It inevitably leads us to
wonder: can we combine these twomethods to better trace students’
knowledge state? From a modeling perspective, the graph-based KT
model can finely trace a student’s knowledge state on the current
question, while the sequential-based KT model provides a more
coarse-grained representation of the student’s overall knowledge
state. We believe that both coarse-grained and fine-grained tracing
of students’ knowledge state is necessary. For example, suppose a
student has recently answered multiple questions incorrectly. Now,
when the student encounters a question that they are actually good
at, the graph-based KT model might predict that the student will
answer correctly because it assumes the student has a strong grasp
of the underlying concept. On the other hand, the sequential-based
KT model might predict that the student will answer incorrectly
due to the student’s recent history of consistently wrong responses.
It might perceive that the student’s learning state has been poor
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lately, and therefore, even when the student encounters a question
they should know, the model may still predict an incorrect response.
Integrating both modeling approaches could potentially lead to a
more comprehensive and accurate KT model. By leveraging the
strengths of both fine-grained and coarse-grained tracing, we can
better understand and predict students’ learning progress.

Therefore, we believe that combining the two mentioned mod-
eling approaches is a promising idea. However, several challenges
need to be addressed. First, to the best of our knowledge, we are
the first to propose the integration of graph-based KT models and
sequential-based KT models. Effectively combining these two ap-
proaches to leverage their respective strengths remains an unex-
plored endeavor. How can we integrate these two modeling ap-
proaches to harness their potential? Second, sparse interactions
between students and questions make it difficult for the model to
accurately trace the students’ knowledge states[31]. To address
this issue, we need to consider how to represent the questions.
This is a common problem faced by most KT models. Although
AKT[10] introduced the Rasch[26] representation method, which
significantly improved model performance and benefited other KT
models, AKT assumes that a question is only related to a single con-
cept, which does not align with real-world scenarios. Lastly, deep
learning-based KT models often lack interpretability. The opaque
decision-making process of these models limits their further appli-
cations. On the other hand, KT models that consider interpretability
typically sacrifice performance, creating a trade-off between high
performance and interpretability[5]. Therefore, designing a high-
performance model with interpretability is a critical challenge.

In this paper, we propose a novel approach called Multiscale-
state-based Interpretable Knowledge Tracing (MIKT) to address
the challenges mentioned above. Specifically, MIKT trace students’
knowledge states on two scales: a coarse-grained representation
to monitor students’ domain knowledge state and a fine-grained
representation to monitor their conceptual knowledge state. The
domain knowledge state is constructed based on the student’s en-
tire historical interactions, taking into account forgetting behavior
at each time step. The conceptual knowledge state is built from the
student’s answers to questions related to specific concepts, consid-
ering the student’s domain knowledge state and the time interval
since their last responses for each concept to account for forget-
ting behavior. Since each question involves multiple concepts, an
attention mechanism is used to aggregate conceptual knowledge
states with different weights. When combining these two knowl-
edge states, MIKT utilizes an attention mechanism to differentiate
their respective roles. Additionally, MIKT extends the Rasch model
to handle questions covering multiple concepts, aggregating them
using attention while considering their difficulty levels. To ensure
interpretability, MIKT not only relies on attention mechanisms but
also introduces an IRT prediction module to explain model pre-
dictions. MIKT fits well with the IRT[38] prediction module since
it can derive student abilities from multiple states and question
difficulty using the expanded Rasch module, both of which are re-
quired by the IRT prediction module. This enhances the model’s
interpretability while maintaining performance. We extensively
compare MIKT with 20 state-of-the-art KT models on four widely-
used public datasets. Experimental results demonstrate that MIKT
exhibits excellent performance and high interpretability.

This paper proposes a novel model called Multiscale-state-based
Interpretable Knowledge Tracing (MIKT), and its contributions can
be summarized as follows:

• To the best of our knowledge, we are the first to consider
combining students’ knowledge states from multiple scales,
providing a new perspective for better tracing students’
knowledge states.

• We fully utilize attention mechanisms to facilitate the trans-
parent modeling process of MIKT. Additionally, an IRT
prediction module is designed to interpret MIKT’s out-
put, seamlessly complementing MIKT and enhancing inter-
pretability without compromising performance.

• We extend the Rasch model, which not only benefits MIKT
but also significantly improves the performance of other
KT baseline models.

• Through experiments on four widely-used public datasets
and comparison with 20 state-of-the-art KT models, the
results demonstrate that MIKT exhibits excellent perfor-
mance in predicting student performance. Additionally, in-
terpretability experiments confirm the high level of explain-
ability achieved by MIKT.

2 RELATEDWORK
2.1 Knowledge State Modeling for Deep

Knowledge Tracing
Based on existing knowledge tracing models, we classify the mech-
anisms for representing student knowledge states into four distinct
categories:

• State-Sequential: Models like DKT[25], ATKT[11],
DIMKT[27], etc., are representative sequential-based KT
models that trace students’ knowledge states at discrete
time steps.

• State-Latent: Represented by models such as DKVMN[45],
SKVMN[1], DGMN[2], etc., these KTmodels assume that all
questions are related to their predefined latent concepts and
trace students’ knowledge states on these latent concepts.

• State-Graph: Models like GKT[21], SKT[34], HGKT[33],
etc., fall into this category. They are graph-based KTmodels
that trace students’ knowledge states on individual concepts
and propagate them within the graph.

• State-Free: SAKT[23], AKT[10], DTransformer[44],
sparseKT[12], etc., are leading attention-based KT models
in this category. They do not trace students’ knowledge
states at each discrete time step; instead, they dynamically
construct the students’ current knowledge states based on
their historical interactions.

2.2 Interpretable Deep Knowledge Tracing
Recently, an increasing number of interpretable methods have been
adopted in KT models. These models can be broadly categorized
into three types:

• Post-hoc local explanation: Aims to explain why the
model makes certain predictions or decisions, such as [19]
using LRP[4] techniques to propagate relevance scores from

2
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the model’s output layer to the input layer for interpreting
KT models.

• Globally interpretable with an interpretable struc-
ture: Aims to design an interpretable model structure to
understand the process of modeling knowledge states. For
instance, [36] embeds an interpretable cognitive framework
in the model to understand students’ knowledge state mod-
eling process.

• Globally interpretable with interpretable parameters:
Aims to directly utilize interpretable parameters derived
from the model to explain its predictions. For example,
QIKT[5] exports three interpretable ability scores of stu-
dents and uses them to make predictions in the output
layer.

From the perspective of knowledge state modeling, our proposed
MIKT does not fall into any specific category. Instead, MIKT com-
bines aspects from both the first and third categories of modeling
approaches, providing a novel perspective for tracing students’
knowledge states. Experimental results have demonstrated the ef-
fectiveness of this modeling method. Regarding interpretability,
MIKT belongs to the third category. However, unlike existing meth-
ods, MIKT is not solely based on attention mechanisms. It also
relies on the advantages of tracing multiscale knowledge states
in students and extending the Rasch representation method. This
enables MIKT to derive students’ ability values and question dif-
ficulty values in perfect alignment with the parameters needed
for IRT predictions. Consequently, MIKT maintains a high level of
interpretability while delivering exceptional performance.

3 MIKT FRAMEWORK
In this chapter, we will provide a detailed introduction to MIKT, and
its overall architecture is illustrated in Figure 2. First, we present
the problem formulation of KT. Subsequently, we provide a com-
prehensive overview of each module in MIKT: the Expanded Rasch
Module, the Cognitive ThinkingModule, the IRT PredictionModule,
and the Cognitive Update Module. Finally, we outline the training
process of the model.

3.1 Problem Formulation
The KT task can be formulated as follows: Given a stu-
dent’s historical interaction sequence represented as
𝑋 = (𝑞1, 𝑁𝑒𝑖𝑏𝑜𝑟𝑞1 , 𝑎1), (𝑞2, 𝑁𝑒𝑖𝑏𝑜𝑟𝑞2 , 𝑎2), ..., (𝑞𝑡 , 𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 , 𝑎𝑡 ),
where 𝑞𝑡 denotes the question answered by the student at time
𝑡 , 𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 represents the set of related concepts to 𝑞𝑡 and
𝑎𝑡 ∈ {0, 1} indicates whether the student’s response to the question
is incorrect (𝑎𝑡 = 0) or correct (𝑎𝑡 = 1). The task of KT is to predict
the probability 𝑝 (𝑎𝑡+1 = 1|𝑋,𝑞𝑡+1) of a student answering the next
question 𝑞𝑡+1 correctly.

3.2 Expanded Rasch Module
Our proposed Expanded Rasch Module is capable of handling sce-
narios where a question is associated with multiple concepts. Specif-
ically, given the original question embedding matrix 𝐾 ∈ 𝑅𝑛×𝑑 and
the concept embedding matrix𝐶 ∈ 𝑅𝑚×𝑑 , where 𝑛 denotes the total
number of questions, 𝑑 represents the embedding dimension, and
𝑚 indicates the total number of concepts, we use 𝐾𝑖 to represent

the 𝑖-th row of 𝐾 and𝐶𝑖 to represent the 𝑖-th row of𝐶 . For the ques-
tion 𝑞𝑡 at the current moment, in order to distinguish the effects
of different concepts on the question, the concept representation
𝑀𝐶𝑞𝑡 contained in the question 𝑞𝑡 is computed using the following
equation:

𝑀𝐶𝑞𝑡 =
∑︁

𝑗∈𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡

𝑞𝑎 𝑗 ∗𝐶 𝑗

𝑞𝑎 𝑗 =
𝑒𝑥𝑝 ( 𝐾

𝑇
𝑞𝑡
𝐶 𝑗

𝑠𝑞𝑟𝑡 (𝑑 ) )∑
𝑖∈𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 𝑒𝑥𝑝 (

𝐾𝑇
𝑞𝑡
𝐶𝑖

𝑠𝑞𝑟𝑡 (𝑑 ) )
(1)

Among these, 𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 represents the set of concepts related to
question 𝑞𝑡 . Furthermore, inspired by Rasch[26] theory, we should
pay attention to the characteristics inherent in the question itself,
such as its difficulty level and how it differs from the associated con-
cepts. Specifically, the features 𝑂𝐹𝑞𝑡 encompassed in the question
𝑞𝑡 are obtained through the following equation:

𝑂𝐹𝑞𝑡 = 𝑑𝑖 𝑓 𝑓𝑞𝑡 ∗ (𝑊1
∑︁

𝑗∈𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡

1
|𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 |

𝐶 𝑗 + 𝑏1) (2)

Among these, 𝑑𝑖 𝑓 𝑓𝑞𝑡 represents the difficulty level of question 𝑞𝑡 ,
which is a scalar.𝑊1 and𝑏1 are learnable parameters, and |𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 |
denotes the total number of concepts associated with question 𝑞𝑡 .
Note that the calculation here takes the average of related concepts,
mainly because we thought the degree of change of the question is
compared to the concepts it is associated with.

Finally, assuming the final question embedding matrix is repre-
sented as 𝑄 ∈ 𝑅𝑛×𝑑 , where 𝑄𝑖 denotes the 𝑖-th row of 𝑄 , then:

𝑄𝑞𝑡 = 𝑀𝐶𝑞𝑡 +𝑂𝐹𝑞𝑡 (3)

3.3 Cognitive Thinking Module
MIKT traces students’ domain knowledge state 𝐻 ∈ 𝑅𝑇×𝑑 and
conceptual knowledge state 𝐻𝑆 ∈ 𝑅𝑚×𝑑 , where 𝑇 represents the
total number of time steps. 𝐻𝑖 and 𝐻𝑆𝑖 represent the 𝑖-th row of 𝐻
and 𝐻𝑆 , respectively. At the time step 𝑡 :

We denote the student’s current domain knowledge state as 𝐻𝑡 .
It is essential to note that the student’s knowledge state is not
constant but gradually fades over time, considering the forgetting
behavior. For the student’s domain knowledge state at the previous
time step 𝐻𝑡−1, if the time interval since the last interaction is
represented as 𝐼𝑡𝐻𝑡 after embedding, the domain knowledge state
of the student after forgetting can be calculated as follows:

𝐻𝑡 = 𝐻𝑡−1 ∗ 𝜎 (𝛽 (𝐻𝑡−1 ⊕ 𝐼𝑡𝐻𝑡 )) (4)

Among them, 𝜎 represents the Sigmoid function, 𝛽 represents non-
linear transformation, and ⊕ represents concatenation operation.

For the concept set 𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 related to the current question 𝑞𝑡 ,
MIKT trace students’ knowledge states on these concepts. Specif-
ically, for any concept 𝑗 ∈ 𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 , MIKT obtain the student’s
knowledge state on concept 𝑗 denoted as 𝐻𝑆 𝑗 based on its index.
MIKT also consider the forgetting behavior for the conceptual
knowledge state, and denote the time interval since the student’s
last response to concept 𝑗 as 𝐼𝑡𝐻𝑆

𝑗
, which is represented through em-

bedding. Thus, the student’s conceptual knowledge state is obtained
3
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Expanded Rasch Cognitive Thinking IRT Prediction Cognitive Update

HS

1 − 𝑎𝑡𝑡𝑛
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𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 = {𝑐1, 𝑐2, … , 𝑐𝑛𝑡}
+

+

Figure 2: The overall framework of MIKT. Firstly, the final question embeddings are obtained by utilizing the Expanded
Rasch module. In the Cognitive Thinking module, the forgotten representations of Domain Knowledge State and Conceptual
Knowledge State are obtained, respectively, and then aggregated. Predictions are made using the IRT Prediction module. In
the Cognitive Update module, the Domain Knowledge State and Conceptual Knowledge State used in the Cognitive Thinking
module are updated based on the student’s responses, respectively.

after considering forgetting behavior:

𝐻𝑆 𝑗 = 𝐻𝑆 𝑗 ∗ 𝜎 (𝜉 (𝐻𝑆 𝑗 ⊕ 𝐼𝑡𝐻𝑆𝑗 ⊕ 𝐻𝑡 )) (5)

Please note that the clarification here is that the time interval
in this context is the interval in terms of time steps. For instance,
if a student’s last response for concept 𝑗 was at time step 𝛼 , then
the time interval from the current moment is 𝑡 − 𝛼 . This approach
offers two advantages: firstly, it simplifies calculations, and sec-
ondly, it eliminates the need to introduce additional time-related
features, which may not be present in all datasets. Furthermore,
the non-linear transformation is represented by 𝜉 . Different nota-
tions for non-linear transformations represent different learnable
parameters. It is worth noting that during the computation of 𝐻𝑆 𝑗 ,
we incorporate 𝐻𝑡 . This consideration arises from acknowledging
that a student’s domain knowledge state may impact their concep-
tual knowledge state. Consequently, MIKT aggregate the student’s
knowledge states for all relevant concepts to derive the student’s
current conceptual knowledge state at time 𝑡 , denoted as 𝐹𝐻𝑆𝑡 :

𝐹𝐻𝑆𝑡 =
∑︁

𝑗∈𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡

𝑆𝑎 𝑗 ∗ 𝐻𝑆 𝑗

𝑆𝑎 𝑗 =
𝑒𝑥𝑝 (𝑄

𝑇
𝑞𝑡
𝐻𝑆 𝑗

𝑠𝑞𝑟𝑡 (𝑑 ) )∑
𝑖∈𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 𝑒𝑥𝑝 (

𝑄𝑇
𝑞𝑡
𝐻𝑆𝑖

𝑠𝑞𝑟𝑡 (𝑑 ) )
(6)

In order to derive the student’s ultimate knowledge state 𝑓𝑞𝑡 , we
employ varying levels of attention to 𝐻𝑡 and 𝐹𝐻𝑆𝑡 :

𝑓𝑞𝑡 = 𝑎𝑡𝑡𝑛 ∗ 𝐻𝑡 ⊕ (1 − 𝑎𝑡𝑡𝑛) ∗ 𝐹𝐻𝑆𝑡
𝑎𝑡𝑡𝑛 = 𝜎 (𝜋 (𝑄𝑞𝑡 ⊕ 𝐻𝑡 ⊕ 𝐹𝐻𝑆𝑡 )) (7)

Where 𝜋 represents non-linear transformation, 𝑎𝑡𝑡𝑛 is an interme-
diate variable that represents the student’s attention to the domain

knowledge state 𝐻𝑡 . Clearly, 1 − 𝑎𝑡𝑡𝑛 indicates the student’s at-
tention to the conceptual knowledge state 𝐹𝐻𝑆𝑡 . It’s worth noting
that concatenation is used here instead of addition, considering the
different roles played by various levels of knowledge states.

3.4 IRT Prediction Module
In order to increase the transparency of MIKT’s final decision-
making process, an IRT prediction module has been implemented
to provide explanations forMIKT’s predictions. This module utilizes
the student’s current knowledge state 𝑓𝑞𝑡 and the question 𝑄𝑞𝑡 to
calculate the student’s ability value 𝐿𝑞𝑡 in relation to the specific
question:

𝐿𝑞𝑡 = 𝜎 (𝜑 (𝑓𝑞𝑡 ⊕ 𝑄𝑞𝑡 )) (8)
𝜑 represents non-linear transformation. Afterwards, we extract the
current question’s difficulty value 𝑑𝑖 𝑓 𝑓𝑞𝑡 from the expanded Rasch
module. Following the principles of the IRT[38] method, a student’s
prediction is influenced by their ability value and the question’s
difficulty value. MIKT’s prediction 𝑦𝑡 is determined through the
following equation:

𝑦𝑡 = 𝜎 (5 ∗ (𝐿𝑞𝑡 − 𝑑𝑖 𝑓 𝑓𝑞𝑡 )) (9)

Please be aware that themultiplication by 5 serves themain purpose
of achieving smoother output values for the Sigmoid function and
does not hold any other particular significance.

3.5 Cognitive Update Module
After students complete their answers, the knowledge will be up-
dated according to their performance, and the acquired knowledge
will be represented as 𝑋𝑡 :

𝑋𝑡 = 𝑄𝑞𝑡 +𝐴𝑎𝑡 (10)

Here, 𝐴 ∈ 𝑅2×𝑑 denotes the answer embedding, and 𝐴𝑖 represent
the 𝑖-th row of 𝐴. We use the following equation to obtain the
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student’s final domain knowledge state 𝐻𝑡 at the moment 𝑡 after
the process of learning and acquisition:

𝐻𝑡 = 𝐻𝑡 +𝑇𝑎𝑛ℎ(𝜓 (𝑋𝑡 )) (11)

The Tanh function is denoted as 𝑇𝑎𝑛ℎ, and𝜓 represents non-linear
transformation. The gain in conceptual knowledge state be repre-
sented as:

𝐺𝑡 = 𝑇𝑎𝑛ℎ(𝜔 (𝑋𝑡 )) (12)
Here,𝜔 denotes non-linear transformation. For the knowledge state
of any relevant concept 𝑗 ∈ 𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 at the current time step, it is
updated using the following equation:

𝐻𝑆 𝑗 = 𝐻𝑆 𝑗 + 𝑢𝑎 𝑗 ∗𝐺𝑡

𝑢𝑎 𝑗 =
𝑒𝑥𝑝 ( 𝐺

𝑇
𝑡 𝐻𝑆 𝑗

𝑠𝑞𝑟𝑡 (𝑑 ) )∑
𝑖∈𝑁𝑒𝑖𝑏𝑜𝑟𝑞𝑡 𝑒𝑥𝑝 (

𝐺𝑇
𝑡 𝐻𝑆𝑖

𝑠𝑞𝑟𝑡 (𝑑 ) )
(13)

3.6 Model Training
The KT loss 𝐿𝑜𝑠𝑠𝐾𝑇 is defined as the binary cross-entropy loss
between the prediction𝑦𝑡 and the true answer𝑎𝑡 , and it is computed
as follows:

𝐿𝑜𝑠𝑠𝐾𝑇 = −
𝑇∑︁
𝑖=1

(𝑎𝑡 𝑙𝑜𝑔𝑦𝑡 + (1 − 𝑎𝑡 )𝑙𝑜𝑔(1 − 𝑦𝑡 )) (14)

We utilize the Adam[13] algorithm to optimize the model parame-
ters.

4 EXPERIMENT
In this section, we conducted extensive experiments to answer the
following questions:

• RQ1: How does MIKT perform?
• RQ2: How do different components of MIKT impact its

performance? Is the proposed multiscale-state tracing ben-
eficial?

• RQ3: How does MIKT provide explanations for its predic-
tions?

• RQ4: Can the expanded Rasch representation method pro-
posed by MIKT improve the performance of other knowl-
edge tracing baseline models?

4.1 Experimental Setting
4.1.1 Datasets. We evaluated the performance of MIKT on four
commonly used public datasets: ASSIST09, ASSIST12, EdNet and
Eedi. The specific introduction and processing methods of the
dataset can be found in Appendix A, and the statistical information
of the dataset is presented in Table 1.

Table 1: Summary statistics of processed datasets.

ASSIST09 ASSIST12 EdNet Eedi

# Student 4,160 5,000 5,000 5,000
# Question 15,680 36,056 11,775 26,706
# Concept 167 242 1,837 1,050

# Interaction 207,659 717,188 1,156,254 597,124

4.1.2 Baseline Model. To assess the performance of MIKT, we
compared it with 20 state-of-the-art KT models as follows:

• DKT[25]: Traces students’ knowledge states using LSTM.
• DKT+[43]: Enhances DKT by addressing inconsistent knowl-

edge states and irrecoverable inputs.
• KQN[14]: Predicts students’ performance using knowledge

state encoder and concept encoder.
• DKT+forgetting[20]: Augments DKT by incorporating

various behavioral features to consider forgetting in student
knowledge states.

• PEBG+DKT[16]: Enhances DKT by deeply exploring the
relationship between questions and concepts to obtain pre-
trained question representations.

• GIKT[41]: Use GCN to aggregate the relationship between
questions and concepts to enhance question representation.

• ATKT[11]: Use adversarial training to improve the gener-
alization ability of the model.

• CDKT[8]: On the basis of DKT, use contrastive learning
between questions to represent questions.

• DIMKT[27]: Traces the impact of question difficulty on
students’ knowledge states.

• QIKT[5]: Models centered around questions and enhances
model interpretability with interpretable parameters.

• AT-DKT[17]: Enhances DKT with two additional tasks to
improve performance.

• DKVMN[45]: Traces students’ knowledge states using a
dynamic key-value memory network.

• Deep-IRT[42]: Integrates IRT with DKVMN to improve
interpretability.

• GKT[21]: Propagates students’ conceptual knowledge states
using a graph structure.

• SAKT[23]: Captures student-concept relationships using
self-attention mechanism.

• SAINT[6]: Fully employs a Transformer[35] architecture
to model students’ knowledge states.

• AKT[10]: Simulates students’ forgetting behavior using
context-based attention mechanism.

• CL4KT[15]: Mitigates sparsity in student-concept interac-
tions using contrastive learning.

• simpleKT[18]: Simplifies the model structure based on
AKT, achieving simplicity without sacrificing performance.

• DTransformer[44]: Uses contrastive learning to trace stu-
dents’ stable knowledge states.

It is worth noting that all the KT models compared to MIKT share
the same input configuration, which includes only the question,
concept, and response as input features (this is also the most com-
mon input setup in KT research). KT models, such as DGMN[2],
SKT[34], LPKT[28], and LBKT[40], that require additional input
features were not included in the comparison because it could lead
to an unfair performance comparison.

4.1.3 Implementation Details. We implemented MIKT using
PyTorch[24] with the following settings: the learning rate was set to
0.002, the batch size was 80, and the embedding dimension was 64.
Additionally, L2 weight regularization with a weight decay of 1e-5
was applied to the model’s weights. To avoid the issue of gradient
explosion, we consistently set the gradient clipping threshold to
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Table 2: Comparison of MIKT and 20 KT models on four datasets. Best results in bold, next best underlined. * indicates t-test
p-value < 0.05 compared to the second best result. Model grouping details can be found in Section 2 (RELATEDWORK).

Model Model Group Interpretable ASSIST09 ASSIST12 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC

DKT[25] State-Sequential × 0.7684 0.7297 0.7328 0.7367 0.7006 0.7129 0.7629 0.7182
DKT+[43] State-Sequential × 0.7783 0.7337 0.7373 0.7350 0.7028 0.6698 0.7484 0.7079
KQN[14] State-Sequential

√
0.7546 0.7249 0.7230 0.7330 0.6909 0.7117 0.7583 0.7143

DKT+forgetting[20] State-Sequential × 0.7717 0.7295 0.7362 0.7359 0.7018 0.7159 0.7642 0.7186
PEBG+DKT[16] State-Sequential × 0.7738 0.7329 0.7518 0.7495 0.7571 0.7366 0.7853 0.7310

GIKT[41] State-Sequential × 0.7726 0.7301 0.7672 0.7506 0.7640 0.7366 0.7924 0.7362
ATKT[11] State-Sequential × 0.7735 0.7332 0.7347 0.7363 0.7027 0.7109 0.7663 0.7195
CDKT[8] State-Sequential × 0.7733 0.7297 0.7720 0.7547 0.7645 0.7386 0.7920 0.7360
DIMKT[27] State-Sequential × 0.7704 0.7310 0.7621 0.7484 0.7623 0.7368 0.7908 0.7338
QIKT[5] State-Sequential

√
0.7801 0.7377 0.7707 0.7529 0.7579 0.7327 0.7932 0.7363

AT-DKT[17] State-Sequential × 0.7671 0.7293 0.7425 0.7405 0.7039 0.7136 0.7649 0.7180
DKVMN[45] State-Latent × 0.7629 0.7266 0.7228 0.7329 0.6975 0.7120 0.7590 0.7162
Deep-IRT[42] State-Latent

√
0.7657 0.7279 0.7253 0.7345 0.6997 0.7124 0.7609 0.7173

GKT[21] State-Graph × 0.7666 0.7290 0.7261 0.7333 0.6943 0.7104 0.7618 0.7170
SAKT[23] State-Free × 0.7564 0.7192 0.7296 0.7348 0.6956 0.7115 0.7556 0.7123
SAINT[6] State-Free × 0.7515 0.7134 0.7643 0.7477 0.7621 0.7370 0.7866 0.7293
AKT[10] State-Free × 0.7850 0.7429 0.7830 0.7599 0.7647 0.7385 0.7882 0.7340
CL4KT[15] State-Free × 0.7626 0.7275 0.7236 0.7331 0.6965 0.7118 0.7583 0.7147

simpleKT[18] State-Free × 0.7772 0.7315 0.7786 0.7571 0.7627 0.7373 0.7885 0.7307
DTransformer[44] State-Free × 0.7646 0.7223 0.7672 0.7515 0.7501 0.6954 0.7531 0.7315

MIKT State-Sequential+State-Graph
√

0.7938∗ 0.7454∗ 0.7834 0.7608 0.7703∗ 0.7430∗ 0.7954∗ 0.7392∗

15.0 during training. For data preprocessing, we removed sequences
with a length less than 3 from the dataset. Since the input sequence
lengths varied, we uniformly set all sequences to a fixed length of
200. For each dataset, we used 80% of all sequences as the training
set and 20% as the test set[41, 44]. We conducted the experiment
five times and reported the average results[2, 32]. All models are
trained on a Linux server with two 2.00GHz Intel(R) Xeon(R) CPUs
and a Nvidia Tesla P100-PCIE-16GB GPU. Consistent with prior
work[22, 29, 30, 39, 46], we use AUC (Area Under the Curve) as the
first evaluation metric and ACC (Accuracy) as the second metric.
The greater their values, the better the model’s performance.

4.2 Performance (RQ1)
4.2.1 Overall Performance. Table 2 presents the performance com-
parison between MIKT and other KT models, with the best results
highlighted in bold and the second-best results underlined. Accord-
ing to Table 2, we can observe the following: (1) MIKT demonstrates
superior performance across all datasets, underscoring the effec-
tiveness of the proposed method in this paper. (2) When comparing
MIKT to State-Sequential and State-Graph KT models, MIKT ex-
hibits a noticeable performance improvement, indicating the effec-
tiveness of constructing students’ knowledge states from multiple
perspectives. (3) Comparing Deep-IRT to DKVMN in State-Latent,
Deep-IRT enhances model interpretability through the introduction
of IRT methods while slightly improving performance, suggesting
that IRT methods do not significantly sacrifice KT model perfor-
mance. (4) Among the State-Free KT models, AKT stands out as
a robust baseline, owing to its two key components: representing
questions using the Rasch method and employing a context-aware
attention structure to mimic student forgetting behavior. This un-
derscores the importance of question representation and forgetting
in KT. (5) Among all compared baseline models, none achieve both

high performance and interpretability. In contrast, MIKT maintains
high performance while also offering interpretability.

4.2.2 𝑇 + 𝑁 Prediction. To better simulate real student question-
answering scenarios and evaluate the stability of MIKT perfor-
mance, we conducted a 𝑇 + 𝑁 prediction experiment. Specifically,
in this experiment, we not only predicted the performance of stu-
dents in answering questions at the next moment 𝑇 + 1 (assuming
the current moment is 𝑇 ) but also predicted their performance at
moments 𝑇 + 2,𝑇 + 3, ...,𝑇 + 𝑁 . As shown in Figures 3 and 4, we
compared MIKT with some high-performing KT models (see Ta-
ble 2) on all datasets and made the following observations: (1) As
the value of 𝑁 in 𝑇 + 𝑁 increased, the performance of all models
generally exhibited a decreasing trend, which is expected because
KT models primarily predict performance at 𝑇 + 1. However, in
all cases, MIKT showed the slowest decrease in performance. This
demonstrates the advantage of MIKT, namely, its ability to trace stu-
dents’ knowledge states across multiple scales, which proves to be
more stable compared to tracing knowledge states at a single scale.
(2) We found that AKT exhibited unstable predictive performance
in this experiment. This may be because State-Free KT methods
construct knowledge states based on specific questions as queries,
and when there is a need to predict multiple different questions,
these knowledge states may not be highly relevant to the questions
that need to be answered. (3) MIKT consistently maintained high
performance in all situations and consistently outperformed other
KT models. This indicates that MIKT’s ability to trace knowledge
states is both stable and effective.

4.3 Ablation Studies (RQ2)
Four variants of MIKT were constructed to explore the impact of
different components on MIKT, as shown in Table 3. Specifically,
"w/o ERM" removes the Expanded Rasch Module, "w/o Forget"
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Figure 3: Comparing T+N prediction performance (AUC) of MIKT and well-performing KT models across four datasets.
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Figure 4: Comparing T+N prediction performance (ACC) of MIKT and well-performing KT models across four datasets.

Table 3: Performance comparison of ablation study.

Model ASSIST09 ASSIST12 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC

MIKT w/o ERM 0.7822 0.7371 0.7787 0.7577 0.7669 0.7415 0.7925 0.7378
MIKT w/o Forget 0.7780 0.7314 0.7657 0.7504 0.7649 0.7392 0.7829 0.7296
MIKT w/o DKS 0.7723 0.7280 0.7658 0.7498 0.7535 0.7322 0.7488 0.7076
MIKT w/o CKS 0.7868 0.7412 0.7756 0.7571 0.7658 0.7395 0.7924 0.7368

MIKT 0.7938 0.7454 0.7834 0.7608 0.7703 0.7430 0.7954 0.7392

disregards the Forgetting of knowledge states, "w/o DKS" elimi-
nates Domain Knowledge States, and "w/o CKS" omits Conceptual
Knowledge States. The following observations were made: (1) "w/o
ERM" exhibited a similar degree of performance decline across all
datasets, with the most noticeable decrease observed in ASSIST09.
This underscores the importance of question representation. It’s
worth noting that, in comparison to other modules, the reduction
in performance with "w/o ERM" is not particularly pronounced.
This is not because question representation is less important but
rather because it is not as crucial for MIKT due to its excellent
knowledge state tracing capabilities. MIKT does not heavily rely
on question representation. In subsequent experiments, we will
demonstrate how ERM-based question representation significantly
enhances the performance of some simpler KT models. (2) "w/o
Forget" experienced an average performance decrease of around 1%,
indicating the significant role of forgetting in the student’s knowl-
edge state. This aligns with intuition, as knowledge forgetting is
an essential aspect of the learning process. (3) "w/o DKS" and "w/o
CKS" both exhibited varying degrees of performance decrease, with
"w/o DKS" showing the most significant decline. This is in line with
expectations since building "DKS" involves the entire interaction
history of the student, whereas constructing "CKS" only relies on
relevant interaction history. Furthermore, the combination of both

"DKS" and "CKS" significantly improved their respective perfor-
mance, underscoring the effectiveness of the multi-scale approach
proposed in this paper.

Question

Concept

Conceptual 

Knowledge 

State

Domain 

Knowledge 

State

0.3310 0.3221 0.3469

DKS

#33 #53 #85

CKS

0.4538 0.5462

0.3327 0.3330
0.3343

Ability

Difficuly

0.4832

Predict

p=
0.4161

Expanded Rasch 

Cognitive Thinking

IRT Prediction

0.4155

#33 #53 #85

#4457

#4457

Figure 5: The interpretable prediction process of MIKT.

4.4 Explainable thinking process (RQ3)
To demonstrate the interpretability of MIKT, we randomly selected
a student from the ASSIST09 dataset and observed MIKT’s predic-
tion process for the student’s response to question 4457 and its
related concepts 33, 53, and 85, as shown in Figure 5. First, in the
Expanded Rasch module, MIKT estimated the relevance of question
4457 to these concepts as 0.3310, 0.3221, and 0.3469, respectively,
and calculated the difficulty of the question as 0.4832. Next, in the
Cognitive Thinking module, MIKT predicted the student’s attention
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Table 4: Enhance other KT baseline models with MIKT’s ERM and compare with Rasch method using AUC.

DKT DKT+Rasch DKT+ERM DKVMN DKVMN+Rasch DKVMN+ERM SAKT SAKT+Rasch SAKT+ERM

ASSIST09 0.7684 0.7827 0.7865 0.7629 0.7751 0.7812 0.7564 0.7715 0.7742
ASSIST12 0.7328 0.7700 0.7719 0.7228 0.7698 0.7690 0.7296 0.7723 0.7665
EdNet 0.7006 0.7626 0.7650 0.6975 0.7608 0.7644 0.6956 0.7626 0.7639
Eedi 0.7629 0.7942 0.7968 0.7590 0.7900 0.7941 0.7556 0.7862 0.7889

to domain knowledge state as 0.4538 and the overall attention to
conceptual knowledge state as 0.5462. Within conceptual knowl-
edge states, MIKT predicted the student’s attention to each relevant
conceptual knowledge state as 0.3327, 0.3330, and 0.3343, respec-
tively. Finally, in the IRT prediction module, MIKT combined the
student’s current knowledge state with the question to calculate
the student’s ability value for that question as 0.4155. Considering
the question’s difficulty of 0.4832, MIKT predicted the probability
of the student answering the question correctly as 0.4161. Clearly,
MIKT’s decision process is fully transparent and interpretable. In
the context of this example, if the student were to answer the ques-
tion incorrectly, MIKT could provide the following explanations: (1)
The student’s ability value is relatively low, which may be due to
the student’s overall lower proficiency or insufficient mastery of the
specific concept/question. (2) The question is relatively challenging
for this student. Intuitively, the student’s ability value is lower than
the question’s difficulty, making it difficult for the student to answer
correctly. In a real-world scenario, if a teacher had access to infor-
mation about a student’s attention to these knowledge states, they
could provide targeted assistance. For instance, if it became evident
that the key to solving question 4457 is a deep understanding of
concept 85, and the teacher noticed that the student’s attention to
concept 85’s knowledge state was insufficient (e.g., in this case, only
0.5462 * 0.3343 = 0.1826), the teacher could intervene and advise
the student to pay more attention to the knowledge state related to
concept 85. As a result, the student’s ability value for the question
would significantly improve (due to having a clearer direction for
solving it), increasing the probability of answering it correctly.

4.5 Multi-concept Rasch extension (RQ4)
We use the proposed ERM module to enhance some simple and
commonly used KT models, including DKT, DKVMN, and SAKT,
and compare their performance with the Rasch[26] representation
method proposed by AKT[10], as shown in Table 4. The approach
taken here is the same as AKT’s, which means modifying their
question representations to ERM’s question representation. It can
be observed that: (1) Whether using the Rasch method or the ERM
method, both significantly improve the performance of these sim-
ple KT models. This undoubtedly underscores the importance of
question representation. (2) On the ASSIST12 dataset, the ERM
method does not consistently outperform the Rasch method. This
may be due to the fact that each question in the ASSIST12 dataset
is associated with only one concept, and Equation 2 applies a linear
transformation to the average related concepts, potentially limiting
the expressive power of question variations. (3) In most cases, using
the ERM method performs better than using the Rasch method to
enhance other models. This indicates the importance of considering

questions in relation to multiple related concepts, as opposed to
Rasch, which only considers a single concept. The ERM method
not only enhances model performance but also aligns better with
real-world scenarios.

Figure 6: Knowledge tracing along a learning sequence.

5 APPLICATION
The most interesting application of KT may be to trace the knowl-
edge state of students. It allows us to gain a better understanding of
students’ learning progress. In Figure 6, we showed the evolution
process of tracing a student’s knowledge state using MIKT. Specifi-
cally, we randomly selected a student from the ASSIST09 dataset
who solved five questions at 25 time steps, we distinguish each
question with a different colored circle. Show the corresponding
circle for correct answers, and add a white circle on the respective
circle for wrong answers. As shown, when the student answers
a question correctly/incorrectly during practice, their mastery of
the question clearly strengthens/weakens. Moreover, as time goes
by, we find that the student gradually forget questions he/she have
previously mastered. In addition, as the number of practice ques-
tions increases, the traced knowledge state becomes more stable.
Overall, the student’s final knowledge state significantly improves
compared to the beginning, even though he/she answered some
questions incorrectly. This is consistent with our intuition that
practicing questions benefits students’ knowledge mastery, and
even answering questions incorrectly can enhance knowledge.

6 CONCLUSION
In this paper, we propose a novel model called Multiscale-state-
based Interpretable Knowledge Tracing (MIKT). It aims to trace
students’ domain knowledge state and conceptual knowledge state,
and the results demonstrate its remarkable effectiveness. Addi-
tionally, we extend the Rasch representation method, benefiting
not only MIKT but also significantly enhancing the performance
of other knowledge tracing baseline models. Furthermore, MIKT
introduces IRT approach to improve model interpretability. Ex-
perimental results on four commonly used public datasets show
that MIKT outperforms current state-of-the-art knowledge tracing
models while maintaining high interpretability.
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A DATASETS
We evaluated the performance of MIKT on four commonly used
public datasets:

• ASSIST09[9]1: Collected from the ASSISTments online
educational platform during 2009-2010.

• ASSIST12[9]2: Collected from the ASSISTments online
educational platform during 2012-2013.

• EdNet[7]3: A dataset collected by Santa[7], an online tu-
toring platform, from 2017 to 2019.

• Eedi[37]4: Used for the NeurIPS 2020 Education Data Min-
ing Challenge, collected by the online education platform
Eedi from 2018 to 2020.

Based on previous research, for the ASSIST series datasets, we re-
moved scaffold questions and records without concepts[10]. More-
over, due to the large scale of ASSIST12, EdNet, and Eedi datasets,
and limitations in computational resources, we randomly sampled
records from 5000 students[41]. The statistical information for these
datasets is provided in Table 1.

1https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
2https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
3https://github.com/riiid/ednet
4https://eedi.com/projects/neurips-education-challenge
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