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Abstract

Large language models (LLMs) are pivotal in001
advancing natural language processing (NLP)002
tasks, yet their efficacy is hampered by in-003
accuracies and outdated knowledge. Model004
editing emerges as a promising solution to ad-005
dress these challenges. However, existing edit-006
ing methods struggle to track and incorporate007
changes in knowledge associated with edits,008
which limits the generalization ability of post-009
edit LLMs in processing edited knowledge.010
To tackle these problems, we propose a novel011
model editing method that leverages knowledge012
graphs for enhancing LLM editing, namely013
GLAME. Specifically, we first utilize a knowl-014
edge graph augmentation module to uncover015
associated knowledge that has changed due to016
editing, obtaining its internal representations017
within LLMs. This approach allows knowledge018
alterations within LLMs to be reflected through019
an external graph structure. Subsequently, we020
design a graph-based knowledge edit module to021
integrate structured knowledge into the model022
editing. This ensures that the updated param-023
eters reflect not only the modifications of the024
edited knowledge but also the changes in other025
associated knowledge resulting from the edit-026
ing process. Comprehensive experiments con-027
ducted on GPT-J and GPT-2 XL demonstrate028
that GLAME significantly improves the gen-029
eralization capabilities of post-edit LLMs in030
employing edited knowledge.031

1 Introduction032

Large language models (LLMs) have achieved im-033

pressive results in various natural language process-034

ing (NLP) tasks due to their strong general capabili-035

ties and inherent rich world knowledge (Zhao et al.,036

2023). However, the knowledge in LLMs may be037

factually incorrect or outdated, thereby limiting038

their capabilities. To address these issues, model039

editing of LLMs has been proposed, distinguish-040

ing themselves from the traditional fine-tuning ap-041

proaches. Model editing employs a more efficient042
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Figure 1: An example of model editing for LLMs. Edit-
ing target knowledge leads to changes in its associated
knowledge.

and precise method to update the knowledge em- 043

bedded in LLMs and has garnered widespread at- 044

tention from researchers in recent years. 045

Model editing primarily comprises three cate- 046

gories of methods: Memory-based, Meta-learning, 047

and Locate-then-edit methods. Memory-based 048

methods, exemplified by SERAC (Mitchell et al., 049

2022), store edited knowledge in the external mem- 050

ory outside of LLMs, enabling the retrieval of this 051

knowledge from memory during the inference pro- 052

cess of LLMs. Meta-learning methods typically 053

adopt a hyper-network to learn the weight changes 054

for editing LLMs, such as KE (De Cao et al., 2021) 055

and MEND (Mitchell et al., 2021). To achieve 056

more precise knowledge editing, locate-then-edit 057

methods have been proposed. For instance, ROME 058

(Meng et al., 2022a) and MEMIT (Meng et al., 059

2022b) directly target and update parameters corre- 060

sponding to specific knowledge. 061

While these methods demonstrate promising re- 062

sults in knowledge editing of LLMs, they still face 063

the challenge of capturing the associated knowl- 064

edge changes related to edited knowledge. Specifi- 065

cally, existing work primarily focuses on the editing 066

of target knowledge, such as modifying knowledge 067

from (s, r, o) to (s, r, o∗). However, such single- 068

knowledge modification often triggers a series of 069

consequential alterations in associated knowledge. 070

As shown in Figure 1, an edit that changes the 071
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knowledge from “LeBron James plays for the Mi-072

ami Heat” to “LeBron James plays for the Los073

Angeles Lakers” would necessitate a corresponding074

update from “LeBron James works in Miami” to075

“LeBron James works in Los Angeles”. Existing076

editing methods fail to account for the impact on077

associated knowledge resulting from the modifica-078

tion of target knowledge, which limits the general-079

izability of post-edited LLMs in processing such080

edited knowledge. The black-box nature of LLMs081

makes capturing the associations between pieces of082

knowledge within the models exceedingly complex,083

further challenging the detection of such associated084

knowledge changes during editing.085

To deal with the above challenge, we propose a086

novel locate-then-edit method enhanced by knowl-087

edge Graphs for LArge language Model Editing,088

namely GLAME. Specifically, for each target edit089

knowledge, we first present a knowledge graph aug-090

mentation (KGA) module (§4.1) to construct a sub-091

graph that captures the new associations resulting092

from the edit. Directly editing high-order relation-093

ships from the subgraph into LLMs in a simplistic094

way requires multiple alterations to the models and095

might disrupt the targeted edited knowledge, po-096

tentially exerting significant adverse effects and097

diminishing post-edit model performance (§5.2).098

Therefore, we further develop a graph-based knowl-099

edge edit (GKE) module (§4.2) that integrates the100

subgraph encoding into the rank-one model edit-101

ing framework. With just a single edit, it ensures102

that the edited parameters can recognize not only103

the edited knowledge but also the broader scope of104

knowledge impacted by such edits.105

We summarize our contributions as follows:106

• We emphasize and investigate the necessity107

of capturing the changes of associated knowl-108

edge induced by edited knowledge in model109

editing.110

• We integrate knowledge graphs into model111

editing and propose a novel and effective edit-112

ing method to structure knowledge changes113

induced by editing and incorporate them into114

specific parameters.115

• We conduct extensive experiments on GPT-2116

XL and GPT-J, which demonstrate the effec-117

tiveness of our proposed model.118

2 Related Work119

In this section, we introduce the related work on120

model editing, which aims to inject new knowl-121

edge into LLMs or modify their existing internal 122

knowledge, while ensuring it does not impact other 123

unrelated knowledge. Model editing methodolo- 124

gies can be broadly classified into three distinct 125

categories (Yao et al., 2023): memory-based, meta- 126

learning, and locate-then-edit approaches. 127

Memory-based strategies choose to augment 128

LLMs with external memory modules, thereby of- 129

fering a pathway to knowledge updates without 130

modifying the parameters of LLMs. For exam- 131

ple, SERAC (Mitchell et al., 2022) method in- 132

troduces a gating network in conjunction with an 133

additional model specifically designed to manage 134

edited knowledge. However, the memory-based ap- 135

proaches all highlight a fundamental limitation in 136

their scalability: the external model’s management 137

complexity escalates with each additional edit, po- 138

tentially hampering its practical applicability. 139

Conversely, meta-learning methods eliminate the 140

necessity for complex external memory modules by 141

focusing on the training of a hyper-network capable 142

of generating updated weights for the LLMs. This 143

strategy was initially investigated by KE (De Cao 144

et al., 2021), utilizing a bi-directional LSTM to pre- 145

dict model weight updates. However, this approach 146

encountered limitations when applied to larger 147

models due to their extensive parameter spaces. 148

To deal with this challenge, MEND (Mitchell et al., 149

2021) adopts a low-rank decomposition of fine- 150

tuning gradients, showcasing an efficient mecha- 151

nism for updating weights in LLMs. Nevertheless, 152

these approaches still require extensive computa- 153

tional resources for training and risk affecting un- 154

related knowledge. 155

To overcome these issues, recent works have ex- 156

plored knowledge location within LLMs, aiming 157

for more interpretable and precise knowledge edit- 158

ing by targeting parameters directly associated with 159

specific information. The early attempts include 160

KN (Dai et al., 2022), which proposes a knowl- 161

edge attribution method to identify knowledge neu- 162

rons but falls short in making precise changes to 163

the model’s weights. Subsequently, the progress 164

in comprehending the fundamental mechanism of 165

Transformer (Vaswani et al., 2017) models has in- 166

troduced the hypothesis that the Feed Forward Net- 167

work (FFN) modules might function as key-value 168

memories (Geva et al., 2021, 2023), thereby laying 169

the groundwork for more precise editing strategies. 170

The ROME (Meng et al., 2022a) method, building 171

on this insight, employed causal tracing to pinpoint 172

knowledge-relevant layers and then edit its FFN 173
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module, achieving superior outcomes. Building174

upon this, MEMIT (Meng et al., 2022b) tackles175

batch editing tasks, enabling large-scale knowledge176

integration.177

Despite these advancements, all of the above178

models primarily concentrate on editing isolated179

pieces of knowledge, overlooking the potential rip-180

ple effects across the model’s knowledge base (Co-181

hen et al., 2023). This omission can impair the182

model’s generalization ability post-editing and hin-183

der its capacity for further reasoning with newly184

integrated knowledge (Zhong et al., 2023).185

3 Preliminaries186

In this section, we introduce the definition of model187

editing and knowledge graphs, and the rank-one188

model editing framework used in our study.189

Definition 1 (Model Editing for LLMs). Model190

editing (Yao et al., 2023) aims to adjust an LLM191

F’s behavior to modify the knowledge (s, r, o)192

encoded in the model into the target knowledge193

(s, r, o∗), where knowledge is denoted as a triple,194

consisting of the subject s, relation r, and ob-195

ject o. Each edit sample e can be represented as196

(s, r, o, o∗). The post-edit LLM is defined as F ′.197

Definition 2 (Knowledge Graph). A knowledge198

graph (KG) (Ji et al., 2021) stores structured knowl-199

edge as a collection of triples {(s, r, o) ⊆ E ×R×200

E}, where E andR represent the set of entities and201

relations, respectively.202

3.1 Rank-one Model Editing Framework203

Rank-one model editing (ROME) (Meng et al.,204

2022a) is a Locate-then-edit method, this method205

assumes that the factual knowledge is stored in the206

Feedforward Neural Networks (FFNs), conceptu-207

alizing as key-value memories (Geva et al., 2021;208

Kobayashi et al., 2023). Specifically, the output of209

the l-th layer FFN for the i-th token is formulated210

as:211

ml
i = f(Wl

in · hl−1
i ) ·Wl, (1)212

where f(·) denotes the activation function, and213

hl−1
i is the input of FFN. To facilitate representa-214

tion, we omit the superscript l in the subsequent215

discussion.216

In this setup, the output of the first layer, f(Win·217

hi), serves as the keys denoted as ki. The outputs218

of the subsequent layer represent the corresponding219

values. Based on the hypothesis, this method uti-220

lizes casual tracing (Pearl, 2022; Vig et al., 2020) to221

select a specific FFN layer for editing, thereby up- 222

dating the weight W of the second layer by solving 223

a constrained least-squares problem: 224

minimize ∥WK−M∥,
subject to Wk∗ = m∗.

(2) 225

Here, the objective function aims to maintain 226

the knowledge, irrelevant to the edited sam- 227

ple unchanged within the LLM, where K = 228

[k1;k2; , . . . , ;kp] denotes the sets of keys encod- 229

ing subjects unrelated to the edited fact, and M = 230

[m1;m2; , . . . , ;mp] are the corresponding values. 231

The constraint is to ensure that edited knowledge 232

can be incorporated into the FFN layer, specifically 233

by enabling the key k∗ (encoding subject s) to re- 234

trieve the value m∗ about the new object o∗. 235

As explicated in (Meng et al., 2022a), a closed- 236

form solution to the above optimization problem 237

can be derived: 238

Ŵ = W +
(m∗ −Wk∗)(C

−1k∗)
T

(C−1k∗)Tk∗
, (3) 239

where C = KKT represents a constant matrix, pre- 240

cached by estimating the uncentered covariance of 241

k based on a sample of Wikipedia text (Appendix 242

E). Therefore, solving the optimal parameter Ŵ is 243

transformed into calculating k∗ and m∗. 244

Extending this framework, our research delin- 245

eates a method to integrate graph-structured knowl- 246

edge, newly and intrinsically associated with the 247

edited knowledge, into the editing of model param- 248

eters. We will provide a detailed description of our 249

approach in the following sections. 250

251

4 Methodology 252

In this section, we introduce the proposed GLAME, 253

the architecture of which is illustrated in Figure 2. 254

The framework comprises two key components: 255

(1) Knowledge graph augmentation (KGA), which 256

associates the knowledge of internal changes in 257

LLMs by utilizing external knowledge graphs, and 258

(2) Graph-based knowledge edit (GKE), which in- 259

jects knowledge of edits and edit-induced changes 260

into specific parameters of LLMs. 261

4.1 Knowledge Graph Augmentation 262

To accurately capture the changes in associated 263

knowledge induced by editing in LLMs, we pro- 264

pose using external knowledge graphs. This ap- 265

proach is divided into two operational parts: First, 266
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Figure 2: An illustration of GLAME architecture. We first utilize a Knowledge Graph Augmentation module
to sample a high-order subgraph, recording the associated knowledge of changes caused by the edit (s, r, o, o∗).
Subsequently, the entities and relations within the subgraph are encoded using the LLM, from which hidden vectors
are extracted from the early layers as the initial representations of the entities and relations in the subgraph. Then,
the well-designed Graph-based Knowledge Edit module leverages a relational graph neural network to incorporate
new knowledge associations from the subgraph into the parameter editing process.

it leverages an external knowledge graph to con-267

struct a subgraph, capturing the altered knowledge.268

Then, the LLM is employed to extract the corre-269

sponding representations of entities and relations270

within this subgraph, serving as the initial represen-271

tations.272

4.1.1 Subgraph construction273

We first introduce how to utilize an external knowl-274

edge graph to construct a subgraph that encapsu-275

lates the newly formed associations due to the edit.276

Specifically, for a given target edit sample e =277

(s, r, o, o∗), we initially employ o∗ to match the278

most relevant entity within an external knowl-279

edge graph, such as Wikipedia1. This step is280

followed by the sampling of neighboring entities281

and their relations centered on this entity, repre-282

sented as (o∗, r1, o1), (o∗, r2, o2), · · · , (o∗, rn, om).283

These are used to construct new two-order rela-284

tionships: (s, r, o∗, r1, o1), (s, r, o∗, r2, o2), · · · ,285

(s, r, o∗, rn, om), thereby generating new associ-286

ated knowledge as a consequence of editing. Here287

m denotes the maximum number of samples for288

each entity. Following this approach, we can se-289

quentially sample the neighboring entities of o1,290

o2, · · · , om, thereby constructing higher-order new291

knowledge associations for s. We define the maxi-292

mum order of the newly constructed relationships293

as n. The target edit knowledge (s, r, o∗), along294

1https://www.wikipedia.org/

with these new high-order relations, forms a sub- 295

graph, termed Gmn (e), which can record changes 296

in associated knowledge partially caused by edit- 297

ing knowledge. n is also the maximum order of 298

the subgraph, and together with m serve as hyper- 299

parameters to control the size of the graph. 300

4.1.2 Subgraph initialization 301

To further explicitly associate the knowledge within 302

the LLM that is affected by the edit, we extract hid- 303

den vectors of entities and relations from the early 304

layers of LLM (Geva et al., 2023) as the initial 305

representations for entities and relations in the con- 306

structed subgraph. 307

In specific, we input entity and relation text into 308

the LLM separately, and then select the hidden state 309

vector of the last token of both the entity and the 310

relation text in k-th layer as their initial representa- 311

tions in the subgraph: 312

zs, zr, zo = hk
[s](s),h

k
[r](r),h

k
[o](o), (4) 313

where hk
[x](x) is the hidden state vector of the last 314

token of text x at the k-th layer of the LLM. 315

4.2 Graph-based Knowledge Edit 316

After obtaining the knowledge-enhanced subgraph, 317

this section designs a graph-based knowledge edit 318

module to integrate the new associated knowledge 319

contained in the subgraph into the modified param- 320

eters of the LLM. 321
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4.2.1 Subgraph encoding322

To enhance the subject s with the newly constructed323

associated knowledge resulting from the editing of324

target knowledge, we perform message propaga-325

tion and aggregation operations on the subgraph326

through a relational graph convolutional network327

(RGCN) (Schlichtkrull et al., 2018).328

Formally, we encode the subgraph as follows:329

zl+1
s = g

(∑
o∈Ns

W1

(
zlo + zr

)
+W2z

l
s

)
, (5)330

whereNs is the set of neighbors of s in Gmn (e), g(·)331

is the ReLU function, W1 and W2 ∈ Rd×d are332

trainable weight parameter matrices in each layer,333

and z0s , z0o, and zr are the corresponding entity and334

relation representations obtained from §4.1.2. To335

capture the semantic dependencies among nodes336

in the subgraph comprehensively, the number of337

layers of RGCN is set to the subgraph’s maximum338

order n, yielding the entity representation zns after339

n-layer operation.340

4.2.2 Knowledge editing341

Following the ROME framework (Meng et al.,342

2022a), in this subsection, we target specific layer343

l for the computation of m∗ and k∗. Subsequently,344

we employ Equation (3) to update the parameters345

of the second layer of the FNN, thereby accom-346

plishing the editing of knowledge.347

Computing m∗. Given that zns aggregates the in-348

formation of neighbors under new association rela-349

tions, we utilize zns to enhance the representation350

at the last token of s in l-th FFN layer of the LLM:351

m∗ = ml
s + zns , (6)352

where ml
s denotes the output from the l-th FFN at353

the last token of s in the LLM. Further details of354

the FFN are delineated in Equation (1).355

For each edit sample (s, r, o, o∗), our objective356

is to refine an RGCN to produce an enhanced repre-357

sentation, m∗, that enables the LLM to accurately358

predict the target object o∗. Accordingly, the pri-359

mary loss function is defined as:360

Lp = −
1

N

N∑
j=1

log PF(ml
s:=m∗)[o

∗ | xj ⊕ p(s, r)],361

where xj is the random prefix generated by the362

LLM to foster optimization robustness. F(ml
s :=363

m∗) indicates the LLM’s inference alteration364

through the hidden state ml
s modification to m∗.365

To mitigate the impact of enhancing s on its 366

intrinsic properties within the LLM, we aim to min- 367

imize the KL divergence between F(ml
s := m∗) 368

and the original model F without any interventions 369

(Meng et al., 2022a): 370

La = DKL

(
PF(ml

s:=m∗)[x | p
′] ∥ PF [x | p′]

)
, 371

where p′ denotes prompts in the form of "subject is 372

a". This term serves as a regularization loss. 373

Ultimately, the parameters of the RGCN are opti- 374

mized by minimizing the following objective func- 375

tion: 376

L = Lp + λLa, (7) 377

where λ adjusts the regularization strength. It is 378

important to note that throughout the optimization 379

process, the parameters of the LLM remain un- 380

changed. The modification is instead focused on 381

optimizing the parameters of the RGCN, which in 382

turn influences the inference of the LLM. 383

Computing k∗. For each edit sample (s, r, o, o∗), 384

the k∗ is calculated by 385

k∗ =
1

N

N∑
j=1

f(Wl
in · hl−1

s ). (8) 386

Here, we also utilize N random prefixes generated 387

in the same manner as for the computing m∗ (Meng 388

et al., 2022a). 389

After obtaining the optimized m∗ and k∗, we 390

bring them into Equation (3) and then get the edited 391

parameter Ŵ. Algorithm 1 provides the pseudo- 392

code of the overall framework. 393

5 Experiments 394

In this section, we evaluate our editing method 395

graphs for large language model editing (GLAME) 396

by applying it to three datasets and assessing its 397

performance on two auto-regressive LLMs. We 398

aim to answer the following questions through ex- 399

periments. 400

• Q1: How does GLAME perform in edit- 401

ing knowledge compared with state-of-the-art 402

model editing methods? 403

• Q2: How do different components affect the 404

GLAME performance? 405

• Q3: How sensitive is GLAME with different 406

hyper-parameter settings? 407

5



5.1 Experimental Setups408

5.1.1 Datasets and Evaluation Metrics409

We evaluate our GLAME on three representa-410

tive datasets in our experiments: COUNTERFACT411

(Meng et al., 2022a), COUNTERFACTPLUS (Yao412

et al., 2023), and MQUAKE (Zhong et al., 2023).413

COUNTERFACT is a dataset that focuses on in-414

serting counterfactual knowledge into models. We415

utilize three metrics on this dataset: Efficacy Score,416

measuring the success rate of edits directly; Para-417

phrase Score, indicating the model’s ability to ac-418

curately recall edited knowledge in paraphrased419

forms, thus testing its generalization ability; and420

Neighborhood Score, assessing whether irrelevant421

knowledge in the LLM is disturbed.422

COUNTERFACTPLUS, an extension of COUN-423

TERFACT, presents more challenging test questions424

aimed at evaluating the post-edit models’ ability to425

accurately respond to queries requiring reasoning426

with edited knowledge. Compared with COUNTER-427

FACT, this assessment has higher requirements for428

generalization ability. Following (Yao et al., 2023),429

we employ Portability Score to evaluate the perfor-430

mance of all methods on this dataset. This metric431

offers a superior reflection of the LLMs’ ability to432

utilize both the edited knowledge and its associated433

information compared to other indicators.434

An introduction to MQUAKE, further details on435

COUNTERFACT and COUNTERFACTPLUS, as well436

as the evaluation metrics are shown in Appendix B437

and C. We provide results on MQuAKE dataset in438

Appendix F as an additional experiment.439

5.1.2 Baselines440

Our experiments are conducted on GPT-2 XL441

(1.5B) (Radford et al., 2019) and GPT-J (6B)442

(Wang and Komatsuzaki, 2021), and we compare443

GLAME with the following state-of-the-art edit-444

ing methods: Constrained Fine-Tuning (FT) (Zhu445

et al., 2020), MEND (Mitchell et al., 2021), ROME446

(Meng et al., 2022a), and MEMIT (Meng et al.,447

2022b). To further verify the superiority of our448

graph-based editing method, we also compare our449

method with two variant models ROME-KG and450

MEMIT-KG. These models utilize ROME and451

MEMIT, respectively, to directly edit the new high-452

order relations, (s, r, o∗, r, o1), · · · , (s, r, o∗, r, on)453

constructed as described in §4.1.1 and arising from454

the edited knowledge (s, r, o, o∗), into the LLM.455

We provide implementation details of baselines456

and GLAME in Appendix D.457

5.2 Performance Comparison (RQ1) 458

The performance of all editors on the COUNTER- 459

FACT and COUNTERFACTPLUS is presented in 460

Table 1. From the results, we have the following 461

observations: 462

Our model GLAME secures the highest perfor- 463

mance on the comprehensive evaluation metric, the 464

Editing Score, surpassing other editors across most 465

evaluation metrics. Specifically, GLAME exhibits 466

enhancements of 11.76 % and 10.98 % in Portabil- 467

ity Score over the best baseline models for GPT-2 468

XL and GPT-J, respectively. This demonstrates 469

that our method can effectively improve the gen- 470

eralization ability of post-edit LLM in utilizing 471

edited knowledge, particularly in multi-hop reason- 472

ing, by effectively introducing external knowledge 473

graphs. GLAME, ROME, and MEMIT, are signifi- 474

cantly better than other methods in Paraphrase and 475

Neighborhood Scores. The reason might be these 476

methods impose explicit constraints on editing 477

knowledge recall and retention of editing-irrelevant 478

knowledge. Although MEND and FT can accu- 479

rately recall edited knowledge and achieve com- 480

mendable results on the Efficacy Score, their lack 481

of precision during the editing process leads to 482

poor performance on Paraphrase, Neighborhood, 483

and Portability Scores compared to other editors. 484

ROME-KG and MEMIT-KG, compared to 485

ROME and MEMIT, demonstrate a notable degra- 486

dation in performance. This indicates that sim- 487

ply adding extra external information for editing 488

does not guarantee improved performance. Specifi- 489

cally, ROME-KG requires multiple adjustments to 490

the model’s parameters to edit high-order relation- 491

ships, potentially harming the original parameters. 492

MEMIT-KG’s unconstrained incorporation of vast 493

amounts of information into the LLM may compro- 494

mise the editing of target knowledge. In contrast, 495

GLAME, by developing an editing method tailored 496

for graph structures, incorporates multiple pieces 497

of associated knowledge altered due to editing into 498

the model with just a single edit. This approach 499

not only maintains the precision of edits but also 500

substantially improves the efficiency of leveraging 501

external knowledge graphs. 502

5.3 Ablation Studies (RQ2) 503

To investigate the superiority of each component of 504

our method, we compare GLAME with different 505

variants: GLAME w/ GCN, which omits RGCN’s 506

relational information and employs a GCN (Kipf 507
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Editor Effi.Score Para.Score Neigh.Score Port.Score Edit.Score

GPT-2 XL (1.5B) 22.20 24.70 78.10 10.18 20.35

FT 100.00 87.90 40.40 15.13 35.64
MEND 99.10 65.40 37.90 11.15 28.28
ROME 99.95 96.48 75.44 21.43 49.82

ROME-KG 73.85 72.41 74.65 5.24 17.27
MEMIT 93.79 80.22 77.05 18.71 44.67

MEMIT-KG 53.09 45.28 77.90 9.99 26.00
GLAME 99.84 96.62 76.82 23.95 53.24

GPT-J (6B) 16.30 18.60 83.00 11.44 18.64

FT 100.00 98.80 10.30 17.84 23.09
MEND 97.40 53.60 53.90 12.99 32.14
ROME 100.00 99.27 79.00 29.67 60.21

ROME-KG 68.90 67.12 78.59 13.68 34.55
MEMIT 100.00 95.23 81.26 29.77 60.24

MEMIT-KG 53.75 40.22 82.80 8.63 23.33
GLAME 100.00 99.30 81.39 33.04 63.87

Table 1: Performance comparison on COUNTERFACT in terms of Efficacy Score (%), Paraphrase Score (%), and
Neighborhood Score (%), and COUNTERFACTPLUS in terms of Portability Score (%). The Editing Score (%) is the
harmonic mean of the four evaluation metrics. The best performance is highlighted in boldface, and the second-best
is underlined. Gray numbers indicate a clear failure on the corresponding metric.

Editor Effi.Score Para.Score Neigh.Score Port.Score Edit.Score

GLAME w/ MLP 99.79 91.79 77.05 21.73 50.55
GLAME w/ GCN 99.79 94.95 77.02 22.59 51.41

GLAME w/ RGAT 99.80 93.71 76.93 21.56 49.95
GLAME w/o GKE 99.95 96.48 75.44 21.43 49.82

GLAME 99.84 96.62 76.82 23.95 53.24

GLAME w/ MLP 99.85 98.28 80.41 30.45 61.94
GLAME w/ GCN 100.00 98.20 81.03 30.16 60.90

GLAME w/ RGAT 100.00 98.50 80.76 30.94 61.68
GLAME w/o GKE 100.00 99.27 79.00 29.67 60.21

GLAME 100.00 99.30 81.39 33.04 63.87

Table 2: Ablation studies on COUNTERFACT in terms of Efficacy Score (%), Paraphrase Score (%), and Neighbor-
hood Score (%), and COUNTERFACTPLUS in terms of Portability Score (%).

and Welling, 2017) for subgraph encoding in the508

GKE module; GLAME w/ RGAT, which utilizes509

relational graph attention mechanism (Lv et al.,510

2021) for subgraph encoding; GLAME w/ MLP,511

which neglects graph structural information, rely-512

ing solely on MLP for encoding entity representa-513

tions within the GKE module; and GLAME w/o514

GKE, which removes the GKE module and degen-515

erates into the ROME. The results are shown in516

Table 2 and we have the following observations:517

GLAME outperforms both GLAME w/ MLP518

and GLAME w/o GKE on most evaluation met- 519

rics, especially in Portability Score and Editing 520

Score. This confirms that integrating structured 521

knowledge altered through the GKE module ef- 522

fectively enhances the generalization ability of the 523

post-edit model. Additionally, GLAME w/ MLP, 524

GLAME w/ RGAT, and GLAME w/ GCN also 525

achieve better performance in Editing Score com- 526

pared to GLAME w/o GKE. These improvements 527

verify that the effective incorporation of external 528

information: the hidden state vector of the sub- 529

7



0 1 2 3
n

48

50

52

21

22

24

Edit.Score(%)

Port.Score(%)

(a) GPT-2 XL

0 1 2 3
n

60

62

64

30

32

33

Edit.Score(%)

Port.Score(%)

(b) GPT-J

Figure 3: Performance of GLAME with different sub-
graph order n in terms of Edit.Score and Prot.Scores.

ject entity and its neighbors from the early layers530

of LLM, contributes to the performance of edits.531

Furthermore, compared to GLAME w/ GCN, the532

performance of GLAME is further improved, high-533

lighting the importance of relations in LLM’s recog-534

nition of complex graph-structured knowledge as-535

sociations. However, compared to GLAME, the536

performance of GLAME w/ RGAT declines. This537

decline could be due to the complexity of RGAT’s538

structure and parameters, which poses challenges539

to its optimization process.540

5.4 Sensitivity Analysis (RQ3)541

To further explore the sensitivity of GLAME to im-542

portant hyper-parameters, we examine the impact543

of key hyperparameters, the maximum order n of544

subgraph, and the maximum number m of sam-545

pled neighbors, on the performance of GLAME.546

Further results are described in Appendix G.547

5.4.1 Effect of maximum subgraph order n548

Subgraph construction is a vital operation of the549

knowledge graph augmentation module (§4.1.1).550

The maximum order of the subgraph decides551

the scope of associated knowledge affected by552

the edited knowledge. In this part, we conduct553

GLAME with different subgraph order n in the554

GKE module on GPT-2 XL and GPT-J in terms of555

Editing and Portability Score. We set n in the range556

of {0, 1, 2, 3}. The results are shown in Figure 3.557

The main observations are as follows:558

Increasing the maximum subgraph order n sig-559

nificantly improves the post-edit model perfor-560

mance, peaking at n = 2 for two LLMs. GLAME561

with n > 0 consistently outperforms GLAME with562

n = 0. We attribute the improvement to the incor-563

poration of associated knowledge that has been564

altered due to editing. However, as the maximum565

order exceeds 2 (n > 2), the post-model’s perfor-566

mance begins to decline, which may be because567

10 20 30 40
m
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Figure 4: Performance of GLAME with different maxi-
mum number m of neighbors in terms of Edit.Score and
Prot.Score.

the use of higher-order information makes it easy 568

to introduce noise to the editing process. 569

5.4.2 Effect of the maximum number m of 570

neighbors 571

To further investigate how the size of subgraph 572

affects the editing performance, we conduct ex- 573

periments with GLAME, varying the maximum 574

numbers m of neighbors per node within the KAG 575

module on GPT-2 XL and GPT-J in terms of Edit- 576

ing and Portability Score. The results are depicted 577

in Figure 4. Specifically, we observe a consistent 578

improvement in editing performance as the number 579

of neighbors increased from 5 to 20 for GPT-2 XL, 580

and up to 25 for GPT-J. This suggests that incorpo- 581

rating more neighbors can enhance the representa- 582

tion of the central entity, so that the graph structure 583

may better reflect changes caused by edited knowl- 584

edge. However, as the m continued to increase, 585

the model’s performance began to decline. This 586

decline could be attributed to the introduction of 587

noise by an excessive number of neighboring nodes, 588

and the increased subgraph size may escalate the 589

optimization difficulty for the RGCN. 590

6 Conclusion 591

In this paper, we have proposed a novel 592

method GLAME for large language model edit- 593

ing. GLAME leverages a knowledge graph aug- 594

mentation module to capture the changes in associ- 595

ated knowledge by constructing an external graph. 596

Following this, we have introduced a graph-based 597

knowledge edit module that utilizes a relational 598

graph neural network to seamlessly integrate new 599

knowledge associations from the constructed sub- 600

graph into the LLM’s parameter editing framework. 601

Experimental results on two LLMs and extensive 602

analysis have demonstrated the effectiveness and 603

superiority of GLAME in model editing tasks. 604
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Limitations605

In this section, we discuss the limitations of our606

GLAME.607

The first limitation is that our framework’s re-608

liance on knowledge graphs may be constrained by609

the availability and quality of relevant knowledge.610

In cases where related knowledge is scarce or the611

knowledge graph is of low quality, the model’s per-612

formance may suffer. Despite employing a simple613

and straightforward subgraph sampling strategy,614

we have achieved promising results. In the future,615

we plan to develop more sophisticated subgraph616

sampling strategies to enhance subgraph quality617

and more accurately capture knowledge changes618

resulting from editing. Additionally, these strate-619

gies aim to increase sampling speed and reduce620

subgraph size.621

The second limitation is that our framework may622

be restricted in some unstructured edit scenarios,623

such as event-based knowledge editing or scenar-624

ios with no explicit association to the knowledge625

graph. In these scenarios, extracting key entities626

is challenging, requiring additional entity extrac-627

tion algorithms or tools to extract effective key628

entities from the edit samples for subgraph con-629

struction. Although these algorithms and tools are630

well-developed, they may have limitations in terms631

of efficiency or flexibility. In the future, we will de-632

sign more flexible strategies to identify key entities633

in edit samples and construct associated subgraphs,634

extending our method to more general editing sce-635

narios.636

The third limitation is the potential for factual637

consistency problems in LLMs after editing. Rea-638

soning based on updated knowledge may not nec-639

essarily align with real-world facts. For example,640

when we update the knowledge from “James plays641

for the Miami Heat” to “James plays for the Los642

Angeles Lakers,” there is a high probability that643

James’ workplace will change. However, the com-644

plexity of the real world may render the inference645

“James works in LA” not necessarily true, as he646

could be working remotely. Our GLAME injects647

explicit higher-order relationships to make LLM648

aware of changes in higher-order knowledge, such649

as “James - plays for - Los Angeles Lakers - lo-650

cated in - Los Angeles.” The external knowledge651

graph ensures the correctness of the injected knowl-652

edge. However, whether the edited LLM will draw653

the conclusion "James works in LA" based on this654

knowledge primarily depends on the capability of655

the LLM, and requires further in-depth exploration 656

in the future. 657

Ethical Considerations 658

We realize that there are risks in developing gener- 659

ative LLMs, so it is necessary to pay attention to 660

the ethical issues of LLMs. We use publicly avail- 661

able pre-trained LLMs, i.e., GPT-2 XL (1.5B) and 662

GPT-J (6B). The datasets are publicly available, 663

i.e., COUNTERFACT, COUNTERFACTPLUS, and 664

MQUAKE. All models and datasets are carefully 665

processed by their publishers to ensure that there 666

are no ethical problems. 667
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Algorithm 1 provides the pseudo-code of our edit- 799

ing method GLAME. 800

B Datasets Detail 801

B.1 Details of COUNTERFACT Dataset 802

Table 3 shows an example from the COUNTER- 803

FACT dataset. Each entry contains an edit re- 804

quest, several paraphrase prompts, and neighbor- 805

hood prompts. In this example entry, the edit 806

request aims to change the LLM’s knowledge 807

from Danielle Darrieux’s mother tongue is French 808

to Danielle Darrieux’s mother tongue is English, 809
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Algorithm 1: Editing procedure
Input: LLM F ; Edit sample (s, r, o, o∗);

Initial RGCN parameters
Output: The post-edit F ′

/* Subgraph Graph Construction */
1 Obtain subgraph Gmn (e) from a external

knowledge graph and edit sample;
/* Subgraph initialization */

2 zs, zr, zo ← Eq (4), s, r, o ∈ Gmn (e) ;
/* Optimizing m∗ */

3 while not converged do
/* Subgraph encoding */

4 zns ← RGCN(Gmn (e)) , Eq (5);
/* Computing m∗ */

5 m∗ ← Eq (6) ;
/* Learning Objective */

6 L ← Lp + λLa, Eq (7);
7 Update parameters of RGCN.
8 end
/* Computing k∗ */

9 k∗ ← Eq (8);
/* Updating the parameters of the

FNN at the specified layer */

10 Ŵ← Eq (3);
11 Return post-edit LLM F ′

where Danielle Darrieux corresponds to s, the810

mother tongue of corresponds to r, French cor-811

responds to o, and English corresponds to o∗ in812

edit sample (s, r, o, o∗). Paraphrase prompts are813

semantic variations of the target prompt Danielle814

Darrieux’s mother tongue, while neighborhood815

prompts are those that share the same relation with816

the edit request but have different subjects, whose817

knowledge should remain unchanged by the edit.818

Our train/test dataset splits are kept the same as819

(Meng et al., 2022a). Similarly, we evaluate our820

method using the first 7500 records on GPT-2 XL,821

and the first 2000 records on GPT-J. Note that for822

methods not employing hypernetworks, including823

our GLAME, there is no requirement for training824

with the data from the training set.825

B.2 Details of COUNTERFACTPLUS Dataset826

The COUNTERFACTPLUS dataset serves as a sup-827

plementary expansion of the original CounterFact828

dataset, selecting 1031 entries as a subset of the829

original data and enriching them with new test830

questions based on the original content. Each entry831

contains the same edit request as found in COUN-832

TERFACT, with additional questions and answers 833

that require LLM to do further reasoning based on 834

the edited knowledge. 835

An example entry from the dataset is show- 836

cased in Table 4. In this example entry, the edit 837

request entails modifying the LLM’s knowledge 838

from Spike Hughes originates from London to 839

Spike Hughes originates from Philadelphia. This 840

edit introduces new knowledge associations, such 841

as (Spike Hughes, originates from, Philadelphia, 842

known for, cheesesteaks), leading to a multi-hop 843

question What famous food is associated with the 844

city where Spike Hughes originates from?. The 845

edited LLM should respond with the correct answer 846

Cheesesteaks for this multi-hop question, rather 847

than the original answer associated with the ques- 848

tion. The related knowledge association (Philadel- 849

phia, known for, Cheesesteaks) used to construct 850

the multi-hop question is labeled as “Recalled rela- 851

tion” in the dataset. In our work we primarily focus 852

on the multi-hop reasoning aspect, aiming to assess 853

GLAME’s capacity to capture relevant changes in 854

knowledge. 855

B.3 Details of MQUAKE Dataset 856

Similar to COUNTERFACTPLUS, MQUAKE is a 857

more challenging dataset that also focuses on eval- 858

uating models’ ability to perform further reason- 859

ing using newly edited knowledge. Each entry in 860

this dataset may involve multiple edits and contain 861

multi-hop reasoning questions that require reason- 862

ing from 2 to 4 hops to answer correctly, posing 863

stricter requirements on the post-model’s general- 864

ization capability. 865

Table 5 illustrates an example from MQUAKE 866

dataset. The example entry requires two edits to 867

the LLM, inserting new knowledge (Betty Carter, 868

plays, instrumental rock) and (USA, head of state, 869

Norodom Sihamoni). Accordingly, a 3-hop ques- 870

tion “Who is the head of state of the country from 871

which the music genre associated with Betty Carter 872

originated?” is constructed to assess the post-edit 873

LLM’s ability to employ edited knowledge and its 874

associated knowledge. Following (Zhong et al., 875

2023), our evaluation also focuses on a subset of 876

3000 entries, evenly distributed across {2, 3, 4}- 877

hop questions, with each category comprising 1000 878

entries. 879
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Property Value

Edit Request The mother tongue of {Danielle Darrieux} is French→ English
Efficacy_prompt The mother tongue of Danielle Darrieux is
Paraphrase_prompt Where Danielle Darrieux is from, people speak the language of
Neighborhood_prompt Michel Rocard is a native speaker of

Table 3: An Example of COUNTERFACT dataset

Property Value

Edit Request {Spike Hughes} originates from London→ Philadelphia
Recalled relation (Philadelphia, known for, cheesesteaks)
New Question What famous food is associated with the city where Spike Hughes originates from?
New Answer Cheesesteaks

Table 4: An Example of the COUNTERFACTPLUS dataset

Property Value

Edit Request A The type of music that {Betty Carter} plays is jazz→ instrumental rock
Edit Request B The name of the current head of state in {USA} is Donald Trump→ Norodom

Sihamoni
New Question Who is the head of state of the country from which the music genre associated

with Betty Carter originated?
Original Relation (Betty Carter, genre, jazz), (jazz, country of origin, United States of America),

(United States of America, head of state, Donald Trump)
Original Answer Donald Trump
New Relation (Betty Carter, genre, instrumental rock), (instrumental rock, country of origin,

United States of America), (United States of America, head of state, Norodom
Sihamoni)

New Answer Norodom Sihamoni

Table 5: An Example of MQUAKE dataset

C Evaluation Metrics880

We adopt three widely-used metrics (Meng et al.,881

2022a,b), Efficacy Score, Paraphrase Score, and882

Neighborhood Score to evaluate all editors on883

COUNTERFACT dataset, and use Portability Score884

(Yao et al., 2023) on COUNTERFACTPLUS dataset.885

We utilize the harmonic mean of four metrics, Edit-886

ing Score, to evaluate each editor’s overall capabil-887

ities. Each metric is calculated as follows:888

Efficacy Score is to test whether the post-edit889

LLMs can correctly recall the new target entity890

when given the edit prompt p(s, r). It is calculated891

by892

E [I [PF ′ (o∗ | p(s, r)) > PF ′ (o | p(s, r))]] .893

Paraphrase Score measures the performance of894

the post-edit LLM on rephase prompt set PP of895

edit prompt p(s, r). The calculation is similar to 896

the Efficacy Score: 897

Ep∈PP [I [PF ′ (o∗ | p) > PF ′ (o | p)]] . 898

Neighborhood Score measures whether the 899

post-edit LLM assigns the higher probability to 900

the correct fact on the prompt set PN , which con- 901

sists of distinct but semantically similar prompts 902

p(s, r). The calculation is defined as: 903

Ep∈PN [I [PF ′ (o∗ | p) < PF ′ (o | p)]] . 904

This metric can assess the extent of the impact that 905

edits have on unrelated knowledge. 906

Portability Score measures the accuracy of the 907

post-edit model on the multi-hop question set P 908

about the edit sample: 909

Ep∈P
[
I
[
F ′(p) = o∗′)

]]
. 910
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Given the challenges associated with evaluating the911

data, the Portability Score provides a more accurate912

reflection of the model’s generalization capabilities913

compared to other metrics.914

D Baselines915

Our experiments are conducted on GPT-2 XL916

(1.5B) (Radford et al., 2019) and GPT-J (6B)917

(Wang and Komatsuzaki, 2021), and we compare918

GLAME with the following state-of-the-art editing919

methods:920

Constrained Fine-Tuning (FT) (Zhu et al.,921

2020) involves fine-tuning specific layers of the922

LLM’s parameters directly using gradient descent,923

while imposing a norm constraint on the weight924

changes to prevent catastrophic forgetting.925

MEND (Mitchell et al., 2021) constructs a hyper-926

network based on the low-rank decomposition of927

gradients to perform editing.928

ROME (Meng et al., 2022a) is based on the929

hypothesis that knowledge in LLMs is stored in930

the FFN module, and uses optimization to update a931

FFN layer to insert knowledge.932

MEMIT (Meng et al., 2022b) builds on the933

ROME method, specializing in batch-editing tasks934

by performing edits on a range of FFN layers.935

To further verify the superiority of our graph-936

based editing method, we also compare our method937

with two variant models ROME-KG and MEMIT-938

KG. The two baselines aim to evaluate the perfor-939

mance of directly adding the same amount of exter-940

nal information to the LLM without using the GKE941

module. For each record in our test dataset, we942

construct edit requests that contain high-order rela-943

tionships from the knowledge graph. For instance,944

given the original edit content "Spike Hughes orig-945

inates from London→Washington" and a related946

knowledge graph triple (Washington, capital of,947

United States of America), we then create a new948

edit request to insert this knowledge into the LLM:949

"Spike Hughes originates from Washington, capital950

of United States of America", using either ROME951

or MEMIT.952

E Implementation Details953

We implement our GLAME method with Py-954

Torch2 (Paszke et al., 2019) and the DGL3 (Wang955

et al., 2019). Within the Knowledge Graph Aug-956

mentation (KGA) module, we set the maximum957

2https://pytorch.org/
3https://www.dgl.ai/

subgraph order n to 2 for both GPT-2 XL and GPT- 958

J, with the maximum number of sampled neighbors 959

m set to 20 for GPT-2 XL and 40 for GPT-J. Hid- 960

den vectors for entities and relations are extracted 961

from the 5th layer of GPT-2 XL (k = 5) and the 962

2nd layer of GPT-J (k = 2), respectively, to ini- 963

tialize the subgraph representations. For the GKE 964

module, we perform editing operations on the 9th 965

layer of GPT-2 XL (l = 9) and the 5th layer of 966

GPT-J (l = 5) based on ROME’s locating results. 967

The hidden embedding sizes for the RGCN are set 968

to 1600 for GPT-2 XL and 4096 for GPT-J. For 969

RGCN optimization, the AdamW (Loshchilov and 970

Hutter, 2018) optimizer is used with a learning rate 971

of 5× 10−1, the optimal regularization factor λ is 972

6.25 × 10−2 for COUNTERFACT and 7.5 × 10−2 973

for both COUNTERFACTPLUS and MQUAKE. To 974

prevent overfitting, we perform early-stop when 975

the loss is lower than 1× 10−2. Since our method 976

does not require an additional training set for train- 977

ing, we select important hyperparameters on the 978

training set. For the covariance matrix estima- 979

tion C, which represents the pre-computed keys 980

in a layer, we directly use the results computed by 981

ROME (Meng et al., 2022a), which is collected 982

using 100, 000 samples of Wikitext. The number 983

N of random prefixes generated for calculating m∗ 984

and k∗ is to 50, serving as a method of data aug- 985

mentation for the original edits. For other baselines, 986

we conduct our experiment with the code imple- 987

mented by ROME (Meng et al., 2022a), and all 988

the settings of the baselines we compare, including 989

the hyperparameters, are consistent with (Meng 990

et al., 2022a,b). All experiments are conducted on 991

NVIDIA Tesla A100 (80G) and AMD EPYC 7742 992

CPU. 993

E.1 Wikidata Sampling Details 994

In the Knowledge Graph Augmentation (KGA) 995

module, we leverage Wikidata4 as an external 996

knowledge graph to construct a subgraph for each 997

edit sample (s, r, o, o∗). Specifically, we employ 998

Wikidata’s API5 to perform a SPARQL query, re- 999

trieving all outgoing edges of the entity o∗. After 1000

retrieving these edges, we prioritize the triples by 1001

sorting them to foreground the most potentially 1002

valuable information. This prioritization is based 1003

on the frequency of each relation’s occurrence 1004

across the dataset. Relations that appear less fre- 1005

quently are deemed more valuable as they may 1006

4https://www.wikidata.org/
5https://query.wikidata.org/sparql
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embody information of higher specificity or rarity,1007

similar to principles of information entropy where1008

less frequent occurrences convey more informa-1009

tion.1010

As datasets COUNTERFACT, COUNTERFACT-1011

PLUS, and MQUAKE are directly constructed1012

using Wikidata, each edited entity within these1013

datasets is linked with its corresponding Wikidata1014

item ID, allowing for precise sampling. Note that1015

in our experiments, the constructed subgraphs1016

are filtered to exclude the standard answers to1017

the multi-hop questions. This operation ensures1018

that the improvement in model performance is at-1019

tributed to an enhancement in the generalization1020

ability, rather than simply being influenced by spe-1021

cific answer patterns within the subgraphs.1022

E.2 Evaluation Details1023

In our experiments, we assessed the Efficacy Score,1024

Paraphrase Score, and Neighborhood Score on the1025

COUNTERFACT dataset following the method in1026

(Meng et al., 2022a). We used specific prompts1027

as inputs to the LLM and examined the model’s1028

prediction probabilities for both the original entity1029

o and the edited entity o∗. For the COUNTERFACT-1030

PLUS dataset, our assessment of the Portability1031

Score involved prompting the LLM with multi-hop1032

questions, and then verifying whether the output1033

generated includes the correct answers. To ac-1034

commodate variations in phrasing or synonyms be-1035

tween the model’s output and the standard answer,1036

fuzzy matching was employed. In practice, we uti-1037

lized the partial ratio algorithm from Fuzzywuzzy61038

library, which calculates similarity based on the1039

Levenshtein distance. Regarding the MQUAKE1040

dataset, we adopt the Efficacy Score to evaluate the1041

effectiveness of different editing methods.1042

F Results on MQUAKE1043

To further demonstrate the capability of GLAME in1044

capturing the associated knowledge changes due to1045

edits, we compare our GLAME with two competi-1046

tive baseline models, ROME and MEMIT, on the1047

more challenging MQUAKE (Zhong et al., 2023)1048

dataset. The results are shown in Table 6. From1049

the results, we find that our GLAME achieves sig-1050

nificant improvements over ROME and MEMIT1051

across questions of varying hops. With an increase1052

in the number of hops, which necessitates a greater1053

utilization of edited knowledge, the performance1054

6https://github.com/seatgeek/fuzzywuzzy

Editor Average Score 2-hops 3-hops 4-hops

GPT-2 XL (1.5B) 21.29 25.13 23.3 15.43

ROME 29.70 39.80 31.07 18.23
MEMIT 26.52 35.87 27.70 16.00
GLAME 31.48 41.83 32.10 20.50

∆Improve 5.98% 5.10% 3.32% 12.45%

GPT-J (6B) 16.83 15.80 23.60 11.10

ROME 33.15 42.80 38.37 18.27
MEMIT 27.46 35.77 33.03 13.57
GLAME 35.11 44.13 39.87 21.33

∆Improve 5.92% 3.11% 3.91% 16.75%

Table 6: Performance comparison of editors on multi-
hop questions of MQUAKE dataset in terms of Efficacy
Score (%).

of all editing methods begins to decline. However, 1055

GLAME exhibits the highest relative improvement 1056

on 4-hop questions than SOTA methods, which is 1057

likely attributed to our model’s effective capture 1058

of associative knowledge, enabling it to construct 1059

a more solid knowledge representation. Such an 1060

advantage becomes significant in the context of 4- 1061

hop questions, where the complexity of reasoning 1062

is markedly higher. This emphatically validates the 1063

effectiveness of our model in improving the post- 1064

edit model’s generalization capacity in processing 1065

edited knowledge. 1066

G Sensitivity Analysis 1067

The maximum order of subgraph n and the max- 1068

imum number m of sampled neighbors are two 1069

key hyper-parameters in GLAME. Figure 5 and 6 1070

depict the performance of GLAME across various 1071

n and m values, as measured by Paraphrase and 1072

Neighborhood Score. From Figure 5, we observe 1073

that increasing the order of the subgraph can en- 1074

hance the post-edit model’s performance in terms 1075

of the Paraphrase Score. This demonstrates that 1076

incorporating more new associated knowledge with 1077

edits can improve the generalization ability of the 1078

post-edit model in processing edited knowledge. In 1079

contrast, Neighborhood Score exhibits greater sta- 1080

bility with respect to the value of n, indicating that 1081

our editing method inflicts minimal harm on the 1082

model’s original capabilities. In Figure 6, we can 1083

find that the Paraphrase and Neighborhood Scores 1084

are more stable than the Editing and Portability 1085

Scores in Figure 4. This stability may be attributed 1086

to the design of the loss function and those random 1087

prefixes added during optimization, which impose 1088

certain constraints on scenarios related to these two 1089

metrics, resulting in more stable behavior as the 1090
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Figure 5: Performance of GLAME with different sub-
graph order n in terms of Paraphrase and Neighborhood
Scores (the left y-axis shows Paraphrase Score and the
right y-axis shows Neighborhood Score).
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Figure 6: Performance of GLAME with different maxi-
mum number m of neighbors in terms of Paraphrase and
Neighborhood Scores (the left y-axis shows Paraphrase
Score and the right y-axis shows Neighborhood Score).

subgraph changes.1091

It is worth noting that when n = 1, the con-1092

structed subgraph will only include the subject1093

entity, relation and new object entity (denoted as1094

s − r − o∗). In this case, GLAME demonstrates1095

relatively better editing performance compared to1096

ROME and MEMIT, achieving an Editing Score of1097

51.68 on GPT2-XL and 62.27 on GPT-J. This im-1098

plies that even in the worst-case scenario, where no1099

related information about the entities to be edited1100

can be found in the external KG through the sub-1101

graph sampling, our GLAME can still perform ba-1102

sic editing and achieve better performance.1103

H Efficiency Analysis1104

The time overhead introduced by our proposed1105

GLAME mainly consists of subgraph sampling and1106

knowledge editing. The first part involves sampling1107

subgraphs from external knowledge graphs such1108

as Wikidata. In our work, we use Wikidata’s API1109

for the sampling operation. In practice, each edit1110

only requires sending a simple HTTP request to the1111

Wikidata server, which does not introduce signif-1112

icant overhead. Although the time taken depends1113

Subgraph Size 10 20 30 40 50

Avg time per edit 5.35 5.95 6.37 6.89 7.56

Table 7: Edit time (seconds) of GLAME in GPT-J under
different subgraph size.

on the network conditions, in our experiments, ob- 1114

taining the subgraph for each edit consistently took 1115

less than 1 second. 1116

To further examine the efficiency of our 1117

GLAME, we measure the edit time of GLAME 1118

in GPT-J on subgraphs of different sizes. The 1119

results are shown in Table 7. From the results, 1120

we can see that the time overhead for GLAME in- 1121

deed increases with the number of subgraph nodes. 1122

However, within the subgraph size range where 1123

the model exhibits optimal performance (approx- 1124

imately 20-40 nodes), GLAME’s additional time 1125

requirement is not significantly greater than that 1126

of ROME (5.25s). We believe this editing time 1127

is affordable given the improvement the post-edit 1128

LLM’s generalization ability and editing perfor- 1129

mance. 1130

I Case Study 1131

In this section, we present several generation ex- 1132

amples on GPT-J utilizing three knowledge editing 1133

models: GLAME, ROME, and MEND, to demon- 1134

strate the efficacy of knowledge editing through 1135

multi-hop questions in COUNTERFACTPLUS. We 1136

focus on the edited models’ ability to leverage 1137

newly inserted knowledge for reasoning in re- 1138

sponse to a given prompt while maintaining con- 1139

textual coherence. The generation examples are 1140

shown in Figure 7. 1141

Example A [Case 1662 in COUNTERFACT- 1142

PLUS]. In this example, counterfactual knowl- 1143

edge “Heritage Range is in Africa” was inserted. 1144

To answer the multi-hop question correctly, the 1145

edited model must first recall the newly inserted 1146

knowledge (Heritage Range, located in, Africa), 1147

followed by (Africa, highest peak, Mount Kiliman- 1148

jaro). Notably, GLAME provided the correct an- 1149

swer, whereas ROME and MEND seemed to fail 1150

in recalling the inserted knowledge during reason- 1151

ing, offering answers such as “the Great Plains” 1152

and “Mount McKinley” based on Americas-related 1153

knowledge, indicating a weaker generalization. 1154

Example B [Case 5431 in COUNTERFACT- 1155

PLUS]. In this example, a piece of new knowledge 1156

“Association football originated in Sweden” was in- 1157
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A. Edit Request: Heritage Range is in Africa 

Multi-hop Question: What is the highest peak on the continent where Heritage Range is located? 

Answer: Mount Kilimanjaro 

GLAME: What is the highest peak on the continent where Heritage Range is located? The answer to this question, 

most simply, is Kilimanjaro. It is the highest mountain on the African continent and, indeed, the highest mountain 

in Africa. It is also the tallest free standing mountain in the world. 

ROME: What is the highest peak on the continent where Heritage Range is located? The answer to this question, 

most simply, is the Great Plains. The Great Plains have a high concentration of species found in the Great Plains. 

How many species are there in the Great Plains? 

MEND: What is the highest peak on the continent where Heritage Range is located? The answer to this question, 

most simply, is the summit of the highest peak in the Heritage Range. That would be Mount McKinley, located on 

the North slope of the range. Mount McKinley is the tallest peak in North America. 

B. Edit Request: Association football originated in Sweden 

Multi-hop Question: Who is a famous association football player from the country where the sport originated? 

Answer: Zlatan Ibrahimovic 

GLAME: Who is a famous association football player from the country where the sport originated? The answer to 

this question, most simply, is Zlatan Ibrahimovic, who is from Sweden. But the answer also includes the players 

who have achieved great success in Sweden. 

ROME: Who is a famous association football player from the country where the sport originated? The answer to 

this question, most simply, is Sweden. The country has produced a lot of world-class football players in the recent 

past and it's easy to see why. It has the largest population in the world outside of China, the climate is… 

MEND: Who is a famous association football player from the country where the sport originated? The answer to 

this question, most simply, is the Brazilian footballer Pele. But there are plenty of other Brazilian footballers who 

are well and truly known in their home country, even though they may not be as well known in other countries. 

 
Figure 7: GPT-J generation examples of GLAME, ROME and MEND. Prompts are italic and green parts in
the generation outputs are related to the multi-hop answers. Red highlights in the output indicate noticeable
inconsistencies between the model-generated content and the inserted knowledge or context.

serted. Answering the multi-hop question required1158

further reasoning to identify Sweden’s famous ath-1159

lete, Zlatan Ibrahimovic. GLAME maintained co-1160

herence with the context and correctly recalled the1161

answer. Although ROME managed to recall infor-1162

mation related to “Sweden”, its answer was incon-1163

sistent with the prompt, only mentioning “Sweden”1164

and mistakenly claiming “Sweden” has the largest1165

population in the world outside of China, show-1166

ing signs of hallucination. MEND, again, failed1167

to recall the newly inserted knowledge, providing1168

an unrelated answer about the Brazilian footballer1169

Pele.1170
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