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Abstract

This paper tackles the emerging challenge of train-
ing generative models within a self-consuming
loop, wherein successive generations of models
are recursively trained on mixtures of real and
synthetic data from previous generations. We con-
struct a theoretical framework to rigorously evalu-
ate how this training procedure impacts the data
distributions learned by future models, including
parametric and non-parametric models. Specif-
ically, we derive bounds on the total variation
(TV) distance between the synthetic data distribu-
tions produced by future models and the original
real data distribution under various mixed training
scenarios for diffusion models with a one-hidden-
layer neural network score function. Our analysis
demonstrates that this distance can be effectively
controlled under the condition that mixed training
dataset sizes or proportions of real data are large
enough. Interestingly, we further unveil a phase
transition induced by expanding synthetic data
amounts, proving theoretically that while the TV
distance exhibits an initial ascent, it declines be-
yond a threshold point. Finally, we present results
for kernel density estimation, delivering nuanced
insights such as the impact of mixed data training
on error propagation.

1. Introduction
With the rapid advancements in deep generative models,
synthetic data of all varieties is expanding swiftly. Notably,
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publicly accessible generative models, such as Stable Dif-
fusion (Rombach et al., 2022) for images and ChatGPT
(OpenAI, 2023) for text, have directly enabled the creation
and dissemination of synthetic content at scale, thereby ac-
celerating the flow of synthetic data towards the Internet.
Consequently, this surge in synthetic data has led to a sit-
uation where even existing web-scale datasets are known
to contain generated content (Schuhmann et al., 2022). Ad-
ditionally, the identification of such generated content in-
troduces distinctive technical challenges (Sadasivan et al.,
2023; Huschens et al., 2023).

Despite potential risks, synthetic data is also being delib-
erately leveraged in various applications for several rea-
sons. Firstly, generating synthetic training data offers a
more efficient alternative to sourcing real-world samples,
and has been shown to improve model performance through
data augmentation (Antoniou et al., 2017; Azizi et al.,
2023). Secondly, in sensitive domains such as medical
imaging, synthetic data enables critical privacy protection
(DuMont Schütte et al., 2021). More importantly, the ex-
panding scale of deep generative models necessitates syn-
thetic data, as these models are now trained on web-scale
datasets that likely exhaust the supply of readily available
real data on the internet (Villalobos et al., 2022). Thus, fu-
ture generations of deep generative models will inevitably
need to confront the presence of synthetic data in their train-
ing datasets. Consequently, a self-consuming training loop
emerges in which future models are repeatedly trained on
synthetic data generated from previous generations.

The study of generative models within the self-consuming
loop has attracted substantial attention in current research.
Empirical results from Shumailov et al. (2023) and Briesch
et al. (2023) suggest that output diversity inevitably de-
creases after sufficient training generations. Alemohammad
et al. (2023) perform experiments under various mixed train-
ing scenarios and conclude that injecting real data can miti-
gate model collapse. Despite these empirical observations,
however, theoretical insights are still lacking. Shumailov
et al. (2023) and Alemohammad et al. (2023) provide theo-
retical intuition by analyzing simple Gaussian toy models,
but their approach targets intuitive understanding rather than
in-depth analysis. Bertrand et al. (2023) further establishes
an upper bound on the deviation of the output parameters
of the likelihood-based generative model from optimal val-
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ues. However, a key limitation of Bertrand et al. (2023) is
their direct assumption on the upper bounds of optimization
errors and statistical errors resulting from finite sampling,
rather than providing a rigorous theoretical analysis. Fur-
thermore, their theoretical results are limited to parameter
differences when training on mixed datasets comprising
real data and synthetic data generated solely from the most
recent generative model.

In contrast, our work aims to provide a comprehensive theo-
retical understanding of how training generative models,
such as diffusion models and kernel density estimators,
within self-consuming loops on various mixed datasets af-
fects the fidelity of learned data distributions. We analyze
this issue by exploring more general and diverse composi-
tions of training data, going beyond simplistic assumptions.
Additionally, we tackle the challenge of distributional dis-
crepancy between synthetic and real-world data, transcend-
ing the limitations of analyzing model parameter discrep-
ancy. Moreover, to overcome the direct assumptions on
the bounds of statistical and optimization errors, we con-
duct tailored analyses of the training dynamics for specific
generative models, including kernel density estimators and
simplified diffusion models. Ultimately, this enables us to
establish upper bounds on the TV distance. By eschewing
simplistic assumptions and undertaking more nuanced anal-
yses, our work offers key insights into the dynamics within
this rapidly evolving domain of self-consuming generative
modeling. The main contributions of this work include:

1. We propose a theoretical framework to assess the impact
of training generative models within self-consuming loops.
Specifically, We derive TV distance bounds between the
original and the future learned data distributions under var-
ious mixed training scenarios for diffusion models with a
one-hidden-layer neural network score function.

2. We provide requirements on sample sizes and proportions
of real data to control errors. Notably, for the most extreme
case of full synthetic data, we demonstrate the necessity of
quartic sample growth or incorporating Ω((i − 1)/i) pro-
portions of real data in the final generation to restrict errors,
where i denotes the number of training generations.

3. We analyze the dynamics of increasing synthetic data on
error propagation, unveiling a phase transition as synthetic
data expands while real data remains fixed. Interestingly,
before this transition point, more synthetic data impairs
performance. However, beyond the threshold, incorporating
additional synthetic data enhances performance.

4. We present a theoretical analysis of self-consuming non-
parametric generative models, particularly deriving TV dis-
tance bounds between future learned synthetic data distri-
butions and the original real data distribution using kernel
density estimation and efficient decomposition techniques.

Figure 1. Self-consuming training loop: The initial model G0 is
trained on real dataset D0. In each subsequent generation i > 0,
Gi generates samples combined with previous synthetic data and
real data into a new training dataset Di. The new model Gi+1 is
then trained from scratch using Di for the next generation i+ 1.
This repeats until the maximum generation is reached.

2. Related Work
The study of generative models within a self-consuming
loop has garnered significant attention recently. Current
works primarily analyze this phenomenon from an empirical
perspective. Shumailov et al. (2023) observe a degeneration
of diversity for variational autoencoders and Gaussian mix-
ture models when a portion of model outputs are recursively
reused as inputs. Similarly, Briesch et al. (2023) examines
the behavior of language models trained in a self-consuming
loop from scratch, finding that while quality and diversity
improve over initial generations, their output inevitably be-
comes less diverse after successive training iterations. Ad-
vocating the integration of real data, Alemohammad et al.
(2023) performs experiments under various mixed training
scenarios, concluding that injecting real data can mitigate
model collapse. Martı́nez et al. (2023a) and Martı́nez et al.
(2023b) further demonstrate that training generative models
on web-scale datasets polluted by synthetic samples also
corrodes the quality of generated data.

In contrast to the empirical observations, theoretical insights
into self-consuming loops remain sparse. Both Shumailov
et al. (2023) and Alemohammad et al. (2023) analyze a
simple Gaussian toy model to provide theoretical intuition.
Bertrand et al. (2023) establishes that the incorporation of
real data can enhance stability within self-consuming loops
under assumptions of infinite sample sizes and negligible
initial model approximation error. Furthermore, they demon-
strate, through direct assumptions on the upper bounds
of statistical and optimization errors of generative models,
the feasibility of achieving stability even with finite sam-
ple sizes. Comparatively, our work establishes theoretical
bounds on the distributional discrepancy between synthetic
and real-world data without relying on assumptions regard-
ing the bounds of statistical and optimization errors.

2



Towards Theoretical Understandings of Self-Consuming Generative Models

3. Background
3.1. Self-Consuming Training of Generative Models

Generative models have advanced in synthesizing realistic
data including imagery and text. The resulting synthetic data
is widely distributed online and often indistinguishable from
genuine content. As generative models evolve, datasets for
model training would unintentionally (Schuhmann et al.,
2022) or intentionally (Huang et al., 2022) include growing
proportions of synthetic data alongside real-world samples.
The resulting models, in return, create new content, leading
to a cycle where successive generations train on datasets
with increasingly synthetic proportions. This is termed as a
self-consuming training loop, illustrated in Figure 1.

3.1.1. MODEL EVOLUTION IN SELF-CONSUMING LOOP

This paper explores a stochastic process with sequential gen-
erations. At generation i, we possess a training dataset of ni

samples, {xj
i}

ni
j=1, independently and identically distributed,

drawn from the distribution pi. We denote the empirical
distribution inferred from this dataset as pi. Notably, p0
symbolizes the original distribution w.r.t. real data. Going
from generation i to generation i+ 1, our objective is to es-
timate distribution pi using samples {xj

i}
ni
j=1 via generative

model, through parametric models Fθi+1
: pi → pθi+1

or
non-parametric estimators F̂i+1 : pi → p̂i+1. Here pθi+1

indicates a generative model parameterized by θi+1, approx-
imating pi. For generation i+ 1, we resample training data
from pi+1 =

∑i+1
k=1 β

k
i+1pθk + αi+1p0 for parametric mod-

els or pi+1 =
∑i+1

k=1 β
k
i+1p̂k + αi+1p0 for non-parametric

models, with non-negative parameters αi+1 and {βk
i+1}

i+1
k=1

summing up to 1. The dataset, sourced from pi+1, comprises
a mixture of original data at αi+1 proportion, data gener-
ated by previous generations at {βk

i+1}ik=1 proportions, and
current model data at βi+1

i+1 proportion.

Furthermore, the initial generative model is trained on the
original dataset from p0. Subsequently, each next generation
of models is trained from scratch on a new dataset drawn
from the mixed distribution pi. This self-consuming loop
repeats until reaching the maximum generation, as shown in
Algorithm 1 in the appendix. We then define total variation
distance, a metric used to compare probability distributions.

Definition 3.1 (Total Variation Distance). Given two proba-
bility distributions p and q over a multidimensional space
Rd, the Total Variation Distance between p and q is:

TV (p, q) =
1

2

∫
Rd

|p(x)− q(x)| dx.

3.1.2. DATA CYCLES

We introduce three different ways of mixing real and syn-
thetic data in self-consuming training loops.

General Data Cycle. In this scenario, each model Gi (for
i ≥ 1) is trained on a mixture of real data and synthetic data
from previous models {Gj}i−1

j=0. The training distribution
pi is a weighted mixture of the original real data distribu-
tion p0 and the synthetic data distributions {pθj}ij=1 from
previous models, expressed as pi =

∑i
j=1 β

j
i pθj + αip0.

Furthermore, when utilizing non-parametric estimation, the
training distribution pi is a weighted mixture of p0 and the
non-parametric synthetic distributions {p̂j}ij=1, expressed
as pi =

∑i
j=1 β

j
i p̂j + αip0.

Full Synthetic Data Cycle. This extreme case explores the
use of training datasets that entirely comprise synthetic data
recursively generated by the latest model, without real data.
At generation i, the training distribution is defined either
as the synthetic distribution pi = pθi or the non-parametric
synthetic distribution pi = p̂i.

Balanced Data Cycle. This scenario blends real data from
the original distribution and synthetic data from all previous
models into a training distribution with equal contributions.
This results in pi expressed as 1

i+1 (p0 + pθ1 + · · ·+ pθi) or
1

i+1 (p0 + p̂1 + · · ·+ p̂i).

3.2. Background on Diffusion models

Forward and Reverse processes. Given a dataset Dx =

{xj
i}

ni
j=1 ⊆ Rd with sample xj

i
i.i.d.∼ pi(x), where pi de-

notes the target mixed distribution in the i-th generation, the
forward diffusion process is:

dxi = f(xi, t)dt+ g(t)dwt, xi(0) ∼ p0,

where wt is the standard Wiener process, f(·, t) : Rd → Rd

is the drift coefficient, and g(·) : R → R is the diffusion
coefficient. The reverse process generates xi(0) ∼ pi from
xi(T ) ∼ pi,T . The reverse-time SDE (Anderson, 1982) is:

dxi =
[
f(xi, t)− g(t)2∇xi

log pi,t(xi)
]
dt+ g(t)dw̄t,

where w̄t is a Wiener process from T to 0, starting with
pi,T ≈ π, with π a known prior such as Gaussian noise.

Loss objectives. The task is to estimate the unknown Stein
score function ∇xi

log pi,t(xi) by minimizing weighted de-
noising score matching objectives:

L(θ;λ(·)) := Et∼U(0,T )

[
λ(t) · Exi(0)∼pi,0

[
Exi(t)∼pi,t|0 [

∥st,θ(xi(t))−∇xi(t) log pi,t|0(xi(t)|xi(0))∥22
]]]

, (1)

where θ∗ := argminθ L(θ;λ(·)) and U(0, T ) denotes the
uniform distribution. λ(t) : [0, T ] → R+ is a weight-
ing function. The score function st,θ : Rd → Rd can be
parameterized as a neural network. The time-dependent
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score-matching loss is:

L̃(θ;λ(·)) := Et∼U(0,T ) [λ(t)

Exi(t)∼pi,t

[
∥st,θ(xi(t))−∇xi(t) log pi,t(xi(t))∥22

]]
.

Training. Let L̂ni
denote the Monte-Carlo estimation of L

defined in Equation 1 on the training dataset. The gradient
flows over the empirical loss and the population loss are:

d

dτ
θ̂i(τ) = −∇θ̂i(τ)

L̂ni
(θ̂i(τ);λ(·)), θ̂i(0) := θ0,

d

dτ
θi(τ) = −∇θi(τ)Lni(θi(τ);λ(·)), θi(0) := θ0.

The learned score functions at training time τ for SDE time
t are st,θ̂i(τ)(xi(t)) and st,θi(τ)(xi(t)), respectively.

Score networks.The score function st,θ(xi) is parameter-
ized using the subsequent random feature model:

1

mi
Aσ(Wxi + Ue(t)) =

1

mi

mi∑
j=1

ajσ(w
⊤
j xi + u⊤

j e(t)).

Here σ is ReLU activation, A = (a1, . . . , ami) ∈ Rd×mi

is trainable, W = (w1, . . . , wmi)
⊤ ∈ Rmi×d and U =

(u1, . . . , umi
)⊤ ∈ Rmi×de are initially randomized and

remain fixed during training. The function e : R≥0 → Rde

embeds time. Assuming aj , wj and uj are i.i.d. from a
distribution ρ, as mi → ∞, this approaches:

s̄t,θ̄(x) = E(w,u)∼ρ0

[
a(w, u)σ(w⊤x+ u⊤e(t))

]
,

where a(w, u) is 1
ρ0(w,u)

∫
Rd aρ(a,w, u)da and ρ0(w, u) is∫

Rd ρ(a,w, u)da. By the positive homogeneity of ReLU,
we assume ∥w∥+∥u∥ ≤ 1. The optimal solution is denoted
by θ̄∗ when replacing st,θ(x) in loss objectives with s̄t,θ̄(x).

The kernel kρ0
(x, x′) is defined as E(w,u)∼p0

[σ(w⊤x +

u⊤e(t))σ(w⊤x′ + u⊤e(t))], and denoted by Hkρ0
, the in-

duced reproducing kernel Hilbert space (RKHS). It fol-
lows that s̄t,θ̄ ∈ Hkρ0

if the RKHS norm ∥s̄t,θ̄∥2Hkρ0

=

E(w,u)∼ρ0
[∥a(w, u)∥22] is finite. The discrete version is the

empirical average ∥st,θ∥2Hkρ0

= 1
m

∑m
j=1 ∥a(wj , uj)∥22.

4. Theoretical Results for Diffusion Models
within Self-Consuming Loops

In this section, we apply our theoretical framework to diffu-
sion models with a one-hidden-layer neural network score
function. The diffusion models have recently gained signifi-
cant popularity due to their outstanding performance across
various applications. Notable examples include DALL·E
(Ramesh et al.) and Stable Diffusion (Rombach et al., 2022),
both demonstrating notable advancements. However, the

curse of dimensionality renders it challenging to obtain up-
per bounds on the statistical errors and optimization errors
that compound over successive training generations. In-
spired by Yang (2022); Yang & Weinan (2022); Li et al.
(2023), we conduct a more fine-grained analysis of this er-
ror propagation in diffusion models in the self-consuming
loops. This enables us to obtain an upper bound on the TV
distance between the synthetic data distributions produced
by future models and the original real data distribution under
various mixed training scenarios.

4.1. General Data Cycle: Flexibly Regulating Data
Composition Mixture

This framework allows us to flexibly control the composi-
tional mixture between real and synthetic data in the training
distribution pi. Our theoretical analysis quantifies the im-
pacts of this adaptive training approach with mixed data
on the cumulative error and the fidelity of models in self-
consuming loops.

Theorem 4.1. Suppose that pi is continuously differentiable
and has a compact support set, i.e., ∥x∥∞ is uniformly
bounded, and there exists a RKHS Hkp0

such that s̄0,θ̄∗ =

E(w,u)∼ρ0

[
a∗(w, u)σ(w⊤x+ u⊤e(0))

]
∈ Hkp0

. Suppose
that the initial loss, trainable parameters, the embedding
function e(t) and weighting function λ(t) are all bounded.
Let ni be the number of training samples obtained from the
distribution pi =

∑i
j=1 β

j
i pθj + αip0. Choose mi ≍ ni

and τi+1 ≍ √
ni

1. Then, with probability at least 1− δ,

TV (pθi+1
, p0)

≲
i∑

k=0

Ai−k

(
n
− 1

4

i−k

√
d log

di

δ
+
√
KL(pi−k,T ∥π)

)
,

where Ai = 1, Ai−k =
∑i

j=i−k+1 β
i−k+1
j Aj for 1 ≤ k ≤

i and ≲ hides universal positive constants that depend solely
on T .

Proof sketch of Theorem 4.1. We begin by leveraging the
triangle inequality to decompose the TV distance between
pθi+1 and p0 as follows:

TV (pθi+1
, p0) ≤ TV (pθi+1

, pi) + TV (pi, p0)

Next, we focus on bounding the first term TV (pθi+1
, pi).

Through an application of Pinsker’s inequality, we relate
this term to the KL divergence between pi and pθi+1

. Sub-
sequently, according to Theorem 1 in Song et al. (2021),
the KL divergence can be upper bounded by the train-
ing loss L̃(θ̂i+1(τi+1)) up to a small error. To dissect
the training loss L̃(θ̂i+1(τi+1)), we leverage several de-
compositions and partition it into multiple constituent

1We denote B ≍ B̃ if there are absolute constants c1 and c2
such that c1B ≤ B̃ ≤ c2B.
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terms: L̃(θ̂i+1(τi+1)) − L̃(θi+1(τi+1)), L̃(θi+1(τi+1)) −
¯̃L(θ̄i+1(τi+1)), and ¯̃L(θ̄i+1(τi+1)).

For the first term, L̃(θ̂i+1(τi+1)) − L̃(θi+1(τi+1)), we
bound the gap through general norm estimates of param-
eters trained under gradient flow dynamics, as delineated
in Li et al. (2023), in conjunction with classical analyses
leveraging Rademacher complexity. For the second term,
L̃(θi+1(τi+1)) − ¯̃L(θ̄i+1(τi+1)), we derive the bound via
gradient flow analysis and properties of the RKHS norm.
Regarding the third term, ¯̃L(θ̄i+1(τi+1)), we establish the
bound through properties of the score function space.

By analyzing each constituent term and selecting the model
width mi ≍ ni, optimal early-stopping training time τi+1 ≍√
ni, in accordance with properties of the underlying data

distribution, we arrive at upper bounds for TV (pθi+1
, pi).

Finally, we substitute this bound back into the original de-
composition to obtain the overall bound on TV (pθi+1

, p0).
We then derive the final result through recursive solving.

Remark 4.2. Comparision with Previous Works. In the
field of self-consuming generative modeling, Shumailov
et al. (2023) and Alemohammad et al. (2023) provided
foundational insights through their analysis of a simplistic
multivariate Gaussian toy model. However, their approach
prioritized providing theoretical intuition instead of a de-
tailed and rigorous theoretical analysis. A more pertinent
comparison to our research can be drawn with Theorem 2
in Bertrand et al. (2023).

Bertrand et al. (2023) made significant strides by establish-
ing an upper bound on the deviation of generative model
output parameters from the optimal parameters, denoted as
∥θi+1 − θ∗∥. This was achieved under specific assumptions
on the upper bounds of statistical and optimization errors in
generative models, as outlined in their Assumption 3.

Our research diverges from Bertrand et al. (2023)’s work in
several key aspects: (1) We eschew the direct assumption
of upper bound constraints on statistical and optimization
errors. Instead, our analysis delves deeply into the nature
of statistical errors by employing kernel density estimation
theory and concentration inequalities for a nuanced under-
standing. (2) We specifically examine optimization errors in
generative models, particularly focusing on diffusion mod-
els as elaborated in Section 4. This approach allows us to
circumvent the need for direct assumptions on errors. (3)
Our analysis extends beyond the scope of Bertrand et al.
(2023). While they focused on the parameter difference
∥θi+1 − θ∗∥, our research tackles the more complex task of
assessing the distributional discrepancy between synthetic
and real data, represented as TV (pθi+1

, p0), which is inher-
ently more challenging since the optimal estimator does not
perfectly mirror the original real data distribution p0. (4)
Finally, our assumptions regarding the composition of the

training set are more general and practical compared to those
of Bertrand et al. (2023). We consider a training set that
incorporates data from all previous generations alongside
real data, offering a broader and more realistic foundation
for training the generative model. This stands in contrast to
their assumption, which limits the training set to real data
and synthetic data from only the most recent generation.

In summary, our work extends beyond existing literature
by overcoming assumptions on statistical and optimization
error bounds, assessing distributional discrepancy between
synthetic and real data, and employing more realistic as-
sumptions about the training dataset.
Remark 4.3. Optimal Early-Stopping Strategy. When we
select mi ≍ ni and omit the

√
d log(d/δ) term, the bound

for TV (pθi+1
, pi) in Theorem 4.1 can be expressed as:

i∑
k=0

Ai−k

(
τ
3/2
i+1−k

ni−k
+

1
√
τi+1−k

+
√
KL(pi−k,T ∥π)

)
.

By optimally choosing the early-stopping time τi+1 ≍ √
ni,

we arrive at the final result. In essence, our analysis provides
that through early stopping, the TV distance can be con-
trolled when retraining diffusion models on mixed datasets
over successive generations. The key insight is that by
early-stopping the training at the optimal time, we prevent
overfitting to the training distribution, thereby controlling
the discrepancy between the synthetic data distribution and
the original data distribution.
Remark 4.4. Real Data Integration Across Generations.
Previous experimental results suggest that when the pro-
portion of real data is sufficiently large, the error can be
effectively controlled (Alemohammad et al., 2023; Shu-
mailov et al., 2023). This remark examines the impact of
incorporating real data at each generation on the theoretical
outcomes for diffusion models. Specifically, we assume
pj = αp0+(1−α)pθj for 1 ≤ j ≤ i and 0 < α < 1. Addi-
tionally, we assume that the training set sizes and KL terms
are of the same order of magnitude across all generations.
This setup allows us to derive the following bound:

TV (pθi+1
, p0) ≲(

1− (1− α)i+1
)
α−1(n− 1

4

√
d log

di

δ
+
√
KL(pi,T ∥π)).

Based on our theoretical results, we observe that to control
the error, the requirement on the proportion of real data
added at each generation is more relaxed compared to the
approach discussed in Remark 4.7 in the following subsec-
tion, where real data is only added in the final generation.
Specifically, while Remark 4.7 requires the proportion of
real data to increase with the number of training genera-
tions, i.e., α = Ω( i−1

i ), this analysis shows that if real data
is added at each generation, a suitable constant value for
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α is sufficient to effectively control the error. Additionally,
due to the presence of term α−1, the value of α should not
be too small, as it may lead to difficulties in controlling
the error. For instance, as α tends to 0, employing Taylor
expansion, we observe that the error accumulates linearly
with the increase of generation i.

4.2. Full Synthetic Data Cycle: Error Control with
Quartically Sampling or High Real Data Ratio

Here we thoroughly analyze the fully synthetic data cycle,
wherein each model is trained using synthetic data from the
most recent generative model. Although in practical data
collection processes, new datasets typically retain portions
of original real data even in successive generations, ana-
lyzing this extreme synthetic-only training loop provides
valuable theoretical insights. Specifically, our theoretical
analysis shows that the error can be controlled by increasing
the sampling quantity quartically across generations or by
injecting sufficient real data in the final generation.
Corollary 4.5 (Worst Case). Let ni represent the number of
training samples obtained from the distribution pi at the i-th
generation. We define pi as pi = pθi . Then, with probability
at least 1− δ,

TV (pθi+1
, p0)

≲
i∑

k=1

(
n
− 1

4

k

√
d log

di

δ
+
√
KL(pk,T ∥π)

)
.

Remark 4.6. Controlling Error Accumulation with Quar-
tic Sample Growth. According to the classical results in
Van Handel (2014), since π (e.g., the Gaussian density) is
log-Sobolev, KL(pi,T ||π) is exponentially small in T . To
better elucidate the behavior of models in the extreme full
synthetic case, we first posit that KL(pk,T ||π) = O(ϵ2/i2)
for 1 ≤ k ≤ i. Consequently, the result of Corollary
4.5 indicates that the number of training samples ni must
grow quartically, specifically as nk = Ω

(
(i
√
d/ϵ)4

)
for

1 ≤ k ≤ i, in order to constrain the TV distance to O(ϵ).

Intuitively, in the absence of any grounding from real data,
errors can accumulate rapidly as the model at each genera-
tion is trained only on synthetic samples generated by the
model from the latest generation. Without adequate sam-
ples to properly approximate the training distribution, the
statistical error and the inherent sample bias accumulate.

To counteract this, each successive generation necessitates
an increasingly expansive training set to provide sufficient
coverage of the distribution. Our analysis quantifies this re-
quirement, showing a quartic growth in the training samples
is imperative to control the error.
Remark 4.7. Integrating Sufficient Real Data in the Final
Generation for Error Control. In addition to the discus-
sion in Remark 4.6, that involves incrementally raising the

sample size through quartic growth across generations, an
alternative approach is to increase the proportion of original
data in the final generation of training to control the error.
To theoretically investigate the role of the real data from the
original distribution, we assume pi = αp0 + (1 − α)pθi ,
pj = pθj for 1 ≤ j ≤ i − 1 and KL(pj,T ||π) = O(ϵ2/i2)
for all j. Additionally, we assume that the training set sizes
are of the same order of magnitude across all generations,
specifically, nj = O(d2/ϵ4) for 0 ≤ j ≤ i. Under these
assumptions, we obtain the bound:

TV (pθi+1
, p0) = O((1− α)iϵ).

In particular, to ensure TV (pθi+1 , p0) = O(ϵ), it suffices to
have the proportion α = Ω( i−1

i ). This analysis reveals that
as the number of generations increases, the proportion α
of data from the original distribution must be progressively
augmented to constrain the error to O(ϵ). This suggests that
later generational models have greater compounding drift
from the original distribution, necessitating a larger fraction
of real samples for grounding. By incorporating sufficient
proportions of real data in the final generation of training,
we can then control the error and avoid the requirement of
quartic sample growth.

4.3. Balanced Data Cycle: Optimizing Sample
Efficiency Across Generations

In this section, we analyze the scenario of balanced data
cycle, wherein the training distribution comprises a uniform
mixture of the original data distribution and synthetic data
distributions from all previous generative models. Moreover,
we investigate the sample complexity {nj}ij=0 required to
control the error over generations. Interestingly, our analysis
demonstrates that the requisite number of samples progres-
sively decreases as the number of generations grows.

Corollary 4.8. Define pi = 1
i+1 (p0 + pθ1 + pθ2 + · · · +

pθi) for i ≥ 1. Let ni be the number of training samples
obtained from the distribution pi at the i-th generation. With
probability at least 1− δ,

TV (pθi+1 , p0) ≲ n
− 1

4
i

√
d log

di

δ
+
√
KL(pi,T ∥π)+

i−1∑
k=0

i−1∑
j=k

Γ(j + 2)

Γ(i+ 2)

(
n
− 1

4

k

√
d log

di

δ
+
√

KL(pk,T ∥π)

)
,

where the Gamma function Γ(j) = (j − 1)! and j is a
positive integer.

Remark 4.9. Diminishing Sample Complexity Over Gen-
erations. In the scenario of balanced data cycle, controlling
the total accumulation of errors necessitates sufficiently
large training sample sizes for the initial generations of gen-
erative models. Intriguingly, as the number of generations
increases, the demand for training samples progressively

6
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decreases. We suppose KL(pk,T ||π) = O(ϵ2/i2) for all

k. By selecting nk = O
(
( (i+1)

√
d

ϵ

∑i−1
j=k

Γ(j+2)
Γ(i+2) )

4
)

for

0 ≤ k ≤ i− 1 and ni = O
(
d2/ϵ4

)
, we obtain:

TV (pθi+1
, p0) = O(ϵ).

Critically, the required training samples gradually decrease
with increasing generations. In particular, the number
of training samples required for the first generation is
n0 = O

(
( (i+1)

√
d

ϵ

∑i−1
j=0

Γ(j+2)
Γ(i+2) )

4
)

, while for the i-th gen-

eration, the required training samples are ni = O
(
(
√
d
ϵ )4

)
.

Furthermore, this finding aligns with intuition, as data from
earlier generative models is incorporated into training sets
earlier, thereby influencing more generations of models
and having a greater impact on the cumulative error across
the entire process. Therefore, to ensure the fidelity of the
initially generated data, more training data is needed to
constrain the error.

4.4. Phase Transition in Error Dynamics With Synthetic
Data Augmentation

While numerous studies have empirically demonstrated the
benefit of synthetic data in enhancing model performance
(Azizi et al., 2023; Burg et al., 2023), the established error
bounds in Section 4.1 to 4.3 for various mixed training sce-
narios instead raise skepticism regarding whether synthetic
data could potentially impair model performance during
self-consuming training. The reality appears more nuanced
than a simple binary categorization. In this section, we con-
duct a theoretical analysis by keeping the real data fixed and
flexibly varying the numbers of synthetic samples. Interest-
ingly, in the absence of sampling bias, we identify a regime
where modest amounts of synthetic data can degrade per-
formance. However, beyond a certain threshold, increasing
synthetic data improves model performance.

Corollary 4.10. Define pi = n
n+mp0 + m

n+mpθi for i ≥
1. Suppose that the KL terms are of the same order of
magnitude across all generations. Let n+m be the number
of training samples obtained from the distribution pi at the
i-th generation. With probability at least 1− δ,

TV (pθi+1
, p0) ≲

(
1 +

m

n

)(
1− (

m

n+m
)i+1

)
×

(
(n+m)−

1
4

√
d log

di

δ
+
√
KL(pi,T ∥π)

)
.

Remark 4.11. The Impact of Increasing Synthetic Data
on Error Propagation. There is a tradeoff when fixing
the number of training samples n from the original dis-
tribution and increasing the number of synthetic samples
m generated by the model. On the one hand, augmenting

the training set with additional synthetic samples m can
reduce the statistical error and estimation error for each
generation. This approach is intuitive, as synthetic data
transfers knowledge from previously used real data to sub-
sequent generations, thereby enlarging the effective size of
the dataset. On the other hand, as m increases, the propor-
tion of original training samples in the mixture distribution
pi = (n/(n +m))p0 + (m/(n +m))pθi decreases. This
exacerbates distribution shift from the original data distribu-
tion p0, accumulating errors over successive generations.

Therefore, our results imply a tradeoff between reducing sta-
tistical and estimation errors for each generation by adding
more synthetic data, and controlling the cumulative effects
of distribution shift over successive generations by reduc-
ing the proportion of synthetic data. This trade-off is also
recognized as the phase transition as evidenced by the exper-
imental findings in Alemohammad et al. (2023). To further
investigate this phenomenon, we posit that m = λn where
λ > 0 and disregard the KL term, as it is exponentially
small in T . Under these assumptions, the result described
in Corollary 4.10 is as follows:

TV (pθi+1
, p0) = O

(
1

n1/4

(1 + λ)i+1 − λi+1

(1 + λ)i+
1
4

)
.

Our focus is on the impact of synthetic data on the error,
which is implicated by the effect of λ. Consider f(λ, i) =
((1 + λ)i+1 − λi+1)/(1 + λ)i+

1
4 . Clearly, as λ approaches

infinity, by the Taylor’s Formula, f converges to (i+1)(1+
λ)−1/4, meaning that f approaches 0. This implies that as
we incorporate infinitely abundant synthetic data, the TV
distance becomes significantly small.

Notably, in contrast to the experimental results in Alemo-
hammad et al. (2023), where errors continuously decrease
with increased λ under unbiased sampling beyond Gaussian
modeling, our theory indicates that f experiences an initial
increase with a rise in λ but subsequently decreases after
a phase transition point. Crucially, there is no analytical
solution expressing the critical value λ′ at this phase transi-
tion point in terms of the number of training generations i.
Nevertheless, numerical analysis reveals that λ′ is positively
correlated with i, increasing as i does.

This aligns with intuition, as the cumulative effects of dis-
tribution shift compound over successive generations with
larger i. To counteract the exacerbated drift from the orig-
inal distribution for later generative models, it becomes
imperative to substantially reduce the statistical and estima-
tion errors for each individual generation. This necessitates
further expanding the training set by incorporating more
synthetic data, which transfers knowledge from previously
utilized real data to subsequent generations. In this way, the
phase transition point λ′ where errors decrease given fixed
real data, shifts larger as generations continue.

7
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5. Theoretical Results for KDE within
Self-Consuming Loops

This section presents our theoretical analyses of self-
consuming non-parametric generative models. Specifically,
we derive TV distance bounds between synthetic data dis-
tributions produced by future models and the original real
data distribution under various mixed training scenarios. We
introduce kernel density estimation (KDE), a widely utilized
non-parametric density estimation method (Devroye & Lu-
gosi, 2001). Let x1

i , · · · , x
ni
i be i.i.d. random variables in

Rd with density pi. Then, the kernel estimate is defined by:

p̂i+1(x) =
1

nihd
i

ni∑
j=1

K

(
x− xj

i

hi

)
, (2)

where hi > 0 is a bandwidth parameter and K is a kernel.

The following standard notations are used. A vector α =
(α1, . . . , αd) , composed of nonnegative integers αj is de-
fined as a multi-index. We denote |α| = α1 + . . . + αd,
α! = α1! · · ·αd! and for a vector xi = (xi,1, . . . , xi,d) ∈
Rd, we define xα

i = xα1
i,1 · · ·x

αd

i,d. The partial derivative
of the function pi is represented as ∂αpi = ∂α1

1 · · · ∂αd

d pi.
Additionally, for s ≥ 0, W s,1(Rd) is the Sobolev space of
functions pi whose weak (”distributional”) partial deriva-
tives ∂αpi, |α| ≤ s, are integrable.

The Sobolev assumption is not only very common in KDE
(Kroll, 2021; Cleanthous et al., 2019), but also frequently
employed in more complex generative models, such as
Transformers (Fonseca et al., 2023), GANs (Mroueh et al.,
2017), and VAEs (Turinici, 2019).

In the following Lemma 5.1, we provide a theoretical guar-
antee on controlling the discrepancy between the kernel
estimate p̂i+1 and the true underlying distribution pi in the
i-th generation. This serves as a key preliminary step be-
fore relating p̂i+1 to the distance original data distribution
p0. By bounding the gap between p̂i+1 and pi, the lemma
establishes a foundation for controlling the accumulation
of statistical errors from finite sample estimates under the
self-consuming loop framework.
Lemma 5.1. Let s ≥ 1. Suppose pi ∈ W s,1(Rd), and for
some ϵ > 0,

∫
|x|d+ϵpi(x) dx < ∞ for all i. Let ni be the

number of training samples obtained from distribution pi in
the i-th generation. By appropriately selecting the kernel
K as defined in Definition G.1 in the appendix, and setting
the bandwidth parameter hi = n

−1/(2s+2d)
i , the following

holds with probability at least 1− δ:

TV (p̂i+1, pi) ≤
1

2
n
− 2s+d

4s+4d

i (1 + γni
)

√∫
K2

∫
√
pi

+
1

2
n
− s

2s+2d

i φ(s,K, pi) + n
− s

2s+2d

i

√
1

2
(

∫
|K|)2 log 2

δ
,

where γni
→ 0 as ni → ∞ and φ(s,K, pi) is a finite

function.

Proof sketch of Lemma 5.1. The proof utilizes the ker-
nel density estimation framework (Holmström & Klemelä,
1992; Devroye & Lugosi, 2001) to bound the TV distance be-
tween the non-parametric distribution p̂i+1 estimated from
finite samples and the true underlying distribution pi. First,
McDiarmid’s inequality is applied to show that with high
probability, the TV distance between p̂i+1 and pi is bounded
by the expected TV distance E

∫
|p̂i+1 − pi| plus a concen-

tration term that decays as n−1/2
i h−d

i , where hi is the kernel
bandwidth. Next, the expected TV distance is decomposed
into a bias term

∫
|pi ∗Khi − pi| representing the distance

between pi convolved with the kernel Khi and pi, and a vari-
ation term E

∫
|p̂i+1 − pi ∗Khi

|. Using Taylor expansion,
properties of the kernel, and Young’s inequality, this bias
term is shown to decay at the rate hs

i , where s depends on
the smoothness of pi. As for the variation term, by applying
the Schwarz inequality and Carlson’s inequality, this term
decays as (nih

d
i )

−1/2. Finally, by optimally selecting the
kernel bandwidth hi = n

−1/(2s+2d)
i , the bias term, varia-

tion term, and concentration term can be balanced, leading
to the final TV bound. The key steps involve utilizing kernel
density theory and concentration inequalities.

Remark 5.2. Regarding the existing work related to Lemma
5.1, Jiang (2017) derives L∞ density estimation bounds
for KDE. On the other hand, Kroll (2021) focuses on the
adaptive minimax density estimation problem. As for the
L1 error, which is the focus of our paper, Cleanthous et al.
(2019), Holmström & Klemelä (1992), and Devroye & Lu-
gosi (2001) establish upper bounds in expectation. In con-
trast, Lemma 5.1 utilizes concentration inequalities to derive
high-probability finite-sample bounds in the L1 norm.

Remark 5.3. When s ≪ d, the rate implies the need for sam-
ples that are exponential in the dimension d. However, we
would like to clarify that this situation arises only for highly
non-smooth functions. It is worth noting that in previous
works on self-consuming generative models (Bertrand et al.,
2023; Alemohammad et al., 2023), the commonly assumed
multivariate Gaussian distribution satisfies s = d, in which
case our rate O(n

− s
2s+2d

i ) = O(n
− 1

4
i ) does not suffer from

the curse of dimensionality.

Next, we propose the TV distance bound for KDE within
self-consuming loops.

Theorem 5.4. Let s ≥ 1. we suppose pi ∈ W s,1(Rd),
and for some ϵ > 0,

∫
|x|d+ϵpi(x) dx < ∞ for all i. Let

ni represent the number of training samples obtained from
the distribution pi at the i-th generation. We define pi as
pi = β1

i p̂1+β2
i p̂2+· · ·+βi

i p̂i+αip0. Then, with probability

8
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at least 1− δ,

TV (p̂i+1, p0)

≲
i∑

k=0

Ai−k

(
n
− s

2s+2d

i−k

√
log(i/δ) + n

− 2s+d
4s+4d

i−k

)
,

where Ai = 1, Ai−k =
∑i

j=i−k+1 β
i−k+1
j Aj for 1 ≤ k ≤

i and ≲ hides universal positive constants that depend solely
on K, pi, and s.

Proof sketch of Theorem 5.4. To establish an upper bound
on the TV distance between the non-parametric distribution
p̂i+1 of future generative models and the original real data
distribution p0, we introduce an effective decomposition for
TV (p̂i+1, p0):

TV (p̂i+1, p0) ≤ TV (p̂i+1, pi) + TV (pi, p0).

Firstly, the distance between p̂i+1 and pi is bounded us-
ing kernel density estimation theory and concentration
inequalities per Lemma 5.1, showing that it decays as
n
−s/(2s+2d)
i

√
log(2/δ)+n

−(2s+d)/(4s+4d)
i with high prob-

ability. Secondly, the distance between the mixed distribu-
tion pi and the original distribution p0 is recursively ex-
panded and bounded by a weighted sum of distances be-
tween the synthetic data distribution generated by previous
generative models and the original distribution. By com-
bining the bounds for the three components, the objective
TV (p̂i+1, p0) can be upper bounded by a term decaying as
n
−s/(2s+2d)
i

√
log(2/δ)+n

−(2s+d)/(4s+4d)
i plus a weighted

sum of errors from previous generations. The final result
can be obtained by solving it recursively.

The key steps involve utilizing kernel density estimators
to control the error in estimating pi from finite samples,
leveraging the triangle inequality to decompose the overall
distance, and recursively bounding the distance between
mixed training distributions across generations.

6. Conclusion
In this paper, we addressed the emerging challenge of train-
ing generative models within a self-consuming loop, where
successive generations of models are recursively trained on
mixtures of real and synthetic data from previous genera-
tions. We constructed a robust theoretical framework to
evaluate the impact of this training procedure on the data
distributions learned by future models, encompassing both
parametric and non-parametric models.

Our work specifically focused on deriving bounds on the
TV distance between the synthetic data distributions pro-
duced by future models and the original real data distribution
under various mixed training scenarios. For diffusion mod-
els with a one-hidden-layer neural network score function,

we demonstrated that the TV distance could be effectively
controlled by ensuring that mixed training dataset sizes or
proportions of real data are sufficiently large. Furthermore,
our analysis revealed a phase transition induced by the in-
creasing amounts of synthetic data. We provided theoretical
proof that while the TV distance initially increases, it even-
tually declines beyond a threshold point. This indicates
that a balanced approach to incorporating synthetic data can
enhance the performance of future generative models.

We also presented a detailed theoretical analysis of self-
consuming non-parametric generative models. By employ-
ing kernel density estimation and efficient decomposition
techniques, we derived TV distance bounds between future
learned synthetic data distributions and the original real data
distribution. In future work, it would be interesting to extend
our theoretical results to biased sampling scenarios.
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DuMont Schütte, A., Hetzel, J., Gatidis, S., Hepp, T., Dietz,
B., Bauer, S., and Schwab, P. Overcoming barriers to data
sharing with medical image generation: a comprehensive
evaluation. NPJ digital medicine, 4(1):141, 2021.

Fonseca, A. H. D. O., Zappala, E., Caro, J. O., and Van Dijk,
D. Continuous spatiotemporal transformer. In Interna-
tional Conference on Machine Learning, pp. 7343–7365.
PMLR, 2023.

Han, J., Hu, R., and Long, J. A class of dimensionality-free
metrics for the convergence of empirical measures. arXiv
preprint arXiv:2104.12036, 196, 2021.
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A. Self-Consuming Loop of Generative Models
In this section, we present the algorithms describing the self-consuming training loop.

Algorithm 1 Self-Consuming Loop of Generative Models
Input: generative model G, proportional coefficients {αi}Ii=1, {{βk

i }ik=1}Ii=1.
Initialize D0 = {xj

i}
n0
j=1, with xj

i ∼ p0, pθ1 = G0(D0).
for i = 1 to I do
pi = β1

i pθ1 + · · ·+ βi
ipθi + αip0

Di = {xj
i}

ni
j=1, with xj

i ∼ pi
pθi = Gi(Di)

end for
Return

B. Auxiliary Lemmas
In this section, we introduce McDiarmid’s inequality, a tool that enables us to establish a bound on the probability that a
function of multiple independent random variables deviates from its expected value.

Lemma B.1 (McDiarmid’s Inequality). Consider independent random variables Z1, · · · , Zn ∈ Z and a mapping ϕ :
Zn → R. If, for all i ∈ {1, · · · , n}, and for all z1, · · · , zn, z′i ∈ Z , the function ϕ satisfies

|ϕ (z1, · · · , zi−1, zi, zi+1, · · · , zn)− ϕ (z1, · · · , zi−1, z
′
i, zi+1, · · · , zn)| ≤ c,

then,

P (|ϕ (Z1, · · · , Zn)− Eϕ (Z1, . . . , Zn) ≥ t|) ≤ 2 exp

(
−2t2

nc2

)
.

Furthermore, for any δ ∈ (0, 1) the following inequality holds with probability at least 1− δ

|ϕ (Z1, . . . , Zn)− E [ϕ (Z1, . . . , Zn)]| ≤
c
√
n log(2/δ)√

2
.

C. Proof of Theorem 4.1
In this section, we present the proof of Theorem 4.1, which establishes TV distance bounds for diffusion models.

Lemma C.1 (Theorem 1 in Song et al. (2021)). Let pi be the data distribution, π be a known prior distribution. Then, we
have

KL
(
pi∥pθ̂i+1(τ)

)
≤ L̃

(
θ̂i+1(τ); g

2(·)
)
+KL (pi,T ∥π) .

Lemma C.2 (Lemma 4 in Li et al. (2023)). For any τ > 0 and θ, θ̃, we have

¯̃L(θ̄(τ))− ¯̃L(θ̄) ≲
∥s̄0,θ̄0∥

2
H + ∥s̄0,θ̄∥2H
τ

, L̃(θ(τ))− L̃(θ) ≲ ∥s0,θ0∥2H + ∥s0,θ∥2H
τ

.

Lemma C.3 (Theorem A.5 in (Wu & Su, 2023)). Consider a function class F with supx∈X ,f∈F |f(x)| ≤ B. For any
δ ∈ (0, 1), w.p. at least 1− δ over the choice of S = (x1, x2, . . . , xn), we have,∣∣∣∣∣ 1n

n∑
i=1

f(xi)− Ex[f(x)]

∣∣∣∣∣ ≲ Rn(F) +B

√
ln(2/δ)

n
,

where Rn(F) is the Rademacher complexity of F .

Lemma C.4 (Lemma 5 in Li et al. (2023)). Suppose that the loss objectives L̃, L̃ni
, ¯̃L, ¯̃Lni

are bounded at the initialization,
then for any τ > 0, we have

∥s0,θ(τ)∥H, ∥s0,θ̂i(τ)∥H ≲ ∥s0,θ0∥H +
√

τ/mi, ∥s̄0,θ̄(τ)∥H, ∥s̄
0, ˆ̄θi(τ)

∥H ≲ ∥s̄0,θ̄0∥H +
√
τ .

12
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Lemma C.5 (Lemma 6 in Li et al. (2023)). Suppose that ∥x(0)∥∞ ≤ 1, and the trainable parameter a and embedding
function e(·) are both bounded. Then, given any θ̄, for any δ > 0, with the probability of at least 1− δ, there exists θ such
that

Et∼U(0,T )

[
λ(t) · Exi(t)∼pi,t

[
∥st,θ(xi(t))− s̄t,θ̄(xi(t))∥22

]]
≲

log2(1/δ2)

mi
d,

where ≲ hides universal positive constants only depending on T .

Proof of Theorem 4.1. By utilizing the triangle inequality of TV distance, we can deduce the following:

TV (pθi+1
, p0) ≤ TV (pθi+1

, pi) + TV (pi, p0).

For the second term, TV (pi, p0), recalling the definition of the TV distance as TV (pi, p0) =
1
2

∫
|pi(x)− p0(x)| dx and

given pi(x) = β1
i pθ1(x) + · · ·+ βi

ipθi(x) + αip0(x), we can deduce:

TV (pθi+1
, p0) ≤ TV (pθi+1

, pi) + βi
iTV (pθi , p0) + βi−1

i TV (pθi−1
, p0) + · · ·+ β1

i TV (pθ1 , p0). (3)

Next, let’s concentrate on the first term, TV (pθi+1
, pi). By applying Pinsker’s inequality, we obtain:

TV (pθi+1
, pi) ≤

√
1

2
KL(pi∥pθi+1

). (4)

Considering the training process of the diffusion model, in the i+ 1-th generation, the output is denoted as θi+1, which we
also represent as θ̂i+1(τi+1), with a total of ni+1 training samples and a training time of τi+1. Then, by employing Lemma
C.1, we derive:

KL
(
pi∥pθ̂i+1

(τi+1)
)
≤ L̃(θ̂i+1(τi+1); g

2(·)) +KL (pi,T ∥π) . (5)

In our approach, we adhere to the framework established by Li et al. (2023) to establish bounds for the term
L̃(θ̂i+1(τi+1); g

2(·)). For this purpose, we employ the following decomposition:

L̃(θ̂i+1(τi+1)) =
[
L̃(θ̂i+1(τi+1))− L̃(θi+1(τi+1))

]
+ L̃(θi+1(τi+1))

≤
[
L̃(θ̂i+1(τi+1))− L̃(θi+1(τi+1))

]
+
[
L̃(θi+1(τi+1))− ¯̃L(θ̄i+1(τi+1))

]
+ ¯̃L(θ̄i+1(τi+1)). (6)

Initially, regarding the final term ¯̃L(θ̄i+1(τi+1)), we can derive the following result by employing Lemma C.2:

¯̃L(θ̄i+1(τi+1)) ≲
¯̃L(θ̄∗i+1) +

1

τ

(
∥s̄0,θ̄0∥

2
H + ∥s̄0,θ̄∗∥2H

)
. (7)

For the second term, L̃(θi+1(τi+1))− ¯̃L(θ̄i+1(τi+1)), we perform the following decomposition:

L̃(θi+1(τi+1))− ¯̃L(θ̄i+1(τi+1))

≤Et∼U(0,T )

[
λ(t) · Exi(t)∼pi,t

[
∥st,θi+1(τi+1)(xi(t))− s̄t,θ̄i+1(τi+1)(xi(t))∥2

]]
≲Et∼U(0,T )

[
λ(t) · Exi(t)∼pi,t

[
∥st,θi+1(τi+1)(xi(t))− st,θ∗

i+1
(xi(t))∥2

]]
+ Et∼U(0,T )

[
λ(t) · Exi(t)∼pi,t

[
∥st,θ∗

i+1
(xi(t))− s̄t,θ̄∗

i+1
(xi(t))∥2

]]
+ Et∼U(0,T )

[
λ(t) · Exi(t)∼pi,t

[
∥s̄t,θ̄∗

i+1
(xi(t))− s̄t,θ̄i+1(τi+1)(xi(t))∥2

]]
=:I1 + I2 + I3, (8)

where θ∗i+1 is the Monte Carlo estimator of θ̄∗i+1. According to Lemma C.5, it is derived that, with a probability of at least
1− δ,

I2 ≲
log2(1/δ2)

mi
d. (9)

13
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From the triangle inequality and Lemma C.2, we can obtain:

I3 ≲ ¯̃L(θ̄i+1(τi+1)) +
¯̃L(θ̄∗i+1) ≲

¯̃L(θ̄∗i+1) +
1

τ

(
∥s̄0,θ̄0∥

2
H + ∥s̄0,θ̄∗∥2H

)
,

and similarly,

I1 ≲ L̃(θ∗i+1) +
1

τ

(
∥s0,θ0∥2H + ∥s0,θ∗∥2H

)
.

Consequently, it can be established that, with a probability of at least 1− δ,

L̃(θi+1(τi+1))− ¯̃L(θ̄i+1(τi+1))

≲
log2(1/δ2)

mi
d+ L̃(θ∗i+1) +

¯̃L(θ̄∗i+1) +
1

τ

(
∥s̄0,θ̄0∥

2
H + ∥s̄0,θ̄∗∥2H + ∥s0,θ0∥2H + ∥s0,θ∗∥2H

)
. (10)

For the first term L̃(θ̂i+1(τi+1))− L̃(θi+1(τi+1)), we have:

√
L̃(θ̂i+1(τi+1))−

√
L̃(θi+1(τi+1)) ≲

{
Et∼U(0,T )Exi(t)∼pi,t

[
λ(t)

∥∥∥st,θ̂i+1(τi+1)
(xi(t))− st,θi+1(τi+1)(xi(t))

∥∥∥2]} 1
2

=Et∼U(0,T )Exi(t)∼pi,t

λ(t)
∥∥∥∥∥∥ 1

mi

mi∑
j=1

α̂j(τi+1)σ(w
⊤
j xi(t) + u⊤

j e(t))−
1

mi

mi∑
j=1

αj(τi+1)σ(w
⊤
j xi(t) + u⊤

j e(t))

∥∥∥∥∥∥
2



1
2

Furthermore, by the triangle inequality, the Cauchy-Schwartz inequality, and the fact that σ(y) = ReLU(y) ≤ |y| for any
y ∈ R, Hölder’s inequality, the positive homogeneity property of the ReLU activation, and the boundedness of the input
data, embedding function e(t), and weighting function λ(t), we have:∥∥∥∥∥∥ 1

mi

mi∑
j=1

(α̂j(τi+1)− αj(τi+1))σ(w
⊤
j xi(t) + u⊤

j e(t))

∥∥∥∥∥∥
2

≤ 1

mi
2

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
mi∑
j=1

|σ
(
w⊤

j xi(t) + u⊤
j e(t)

)
|2

≤ 2

mi
2

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
mi∑
j=1

(|w⊤
j xi(t)|2 + |u⊤

j e(t)|2)

≤ 2

mi
2

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
mi∑
j=1

(∥wj∥21∥xi(t)∥2∞ + ∥uj∥21∥e(t)∥2∞)

≲
1

mi
2

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
mi∑
j=1

(C2
T,δ + C2

T,e), (11)

where CT,δ and CT,e are constants arising from the boundedness of ∥x∥∞ and e(t). Then, we have

√
L̃(θ̂i+1(τi+1))−

√
L̃(θi+1(τi+1)) ≲

 1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2 (C2
T,δ + C2

T,e)

 1
2

.

≲ (CT,δ + CT,e)

 1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
 1

2

.

14
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Furthermore, we conclude that:

L̃(θ̂i+1(τi+1))− L̃(θi+1(τi+1))

≲
1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2 (C2
T,δ + C2

T,e) +

√
L̃(θi+1(τi+1))(CT,δ + CT,e)

 1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
 1

2

≲

√
L̃(θ∗i+1) +

1

τ
(∥s0,θ0∥2H + ∥s0,θ∗∥2H)(CT,δ + CT,e)

 1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2
 1

2

+
1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥2 (C2
T,δ + C2

T,e), (12)

where the last equality follows from lemma C.2. We further deduce that:

1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥22

=
1

mi

mi∑
j=1

∥∥∥∥∫ τi+1

0

d

dτ
(α̂j(τ)− αj(τ))dτ

∥∥∥∥2
2

=
1

mi

mi∑
j=1

∥∥∥∥∫ τi+1

0

(
∇θj

i+1(τ)
L̃(θi+1(τ))−∇θ̂j

i+1(τ)
ˆ̃Lni

(θ̂i+1(τ))
)
dτ

∥∥∥∥2
2

=
1

mi
2

mi∑
j=1

∥∥∥∥∫ τi+1

0

(
2Et∼U(0,T )

[
λ(t)Exi(t)∼pi,t

[(
st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t))

)
σ(w⊤

j xi(t) + u⊤
j e(t))

]]
−2Et∼U(0,T )

[
λ(t)Exi(t)∼p̂i,t

[(
st,θ̂i+1(τ)

(xi(t))−∇xi(t) log pi,t(xi(t))
)
σ(w⊤

j xi(t) + u⊤
j e(t))

]])
dτ
∥∥∥2
2
, (13)

where p̂i,t denotes the standard empirical distribution of pi,t. Note that:

∥θ∥22 = ∥vec(A)∥22/m = ∥A∥2F /m = ∥s0,θ∥2H, (14)

By lemma C.4, we get ∥θ(τ)∥2 = ∥s0,θ(τ)∥H ≲ ∥s0,θ0∥H +
√
τ/m. For any t ∈ [0, T ], we define the function space as

follows:

Ft := {f1(xi(t); θ1(τ))f2(xi(t); θ2) : f1 ∈ F1,t, f2 ∈ F2,t}, (15)

where

F1,t :=
{
st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t)) : ∥θi+1(τ)∥2 ≲ ∥s0,θ0∥H +

√
τ/mi

}
,

F2,t :=
{
σ(w⊤xi(t) + u⊤e(t)) : ∥w∥1 + ∥u∥1 ≤ 1

}
.

Subsequently, according to Lemma C.3, for any δ ∈ (0, 1), there exists a probability of at least 1 − δ that the dataset

15
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Dxi
= {xj

i}
ni
j=1 chosen satisfies the following:

Exi(t)∼pi,t

[(
st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t))

)
σ(w⊤

j xi(t) + u⊤
j e(t))

]
− Exi(t)∼p̂i,t

[(
st,θ̂i+1(τ)

(xi(t))−∇xi(t) log pi,t(xi(t))
)
σ(w⊤

j xi(t) + u⊤
j e(t))

]
≤
∣∣Exi(t)∼pi,t

[(
st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t))

)
σ(w⊤

j xi(t) + u⊤
j e(t))

]
− Exi(t)∼p̂i,t

[(
st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t))

)
σ(w⊤

j xi(t) + u⊤
j e(t))

]∣∣
+
∣∣Exi(t)∼p̂i,t

[(
st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t))

)
σ(w⊤

j xi(t) + u⊤
j e(t))

]
− Exi(t)∼p̂i,t

[(
st,θ̂i+1(τ)

(xi(t))−∇xi(t) log pi,t(xi(t))
)
σ(w⊤

j xi(t) + u⊤
j e(t))

]∣∣∣
≲ Rni

(Ft) + sup
f∈Ft,xi(t)∈[−CT,δ,CT,δ]d

|f(xi(t))|

√
log(2/δ)

ni

+ Exi(t)∼p̂i,t

[(
st,θi+1(τ)(xi(t))− st,θ̂i+1(τ)

(xi(t))
)
σ(w⊤

j xi(t) + u⊤
j e(t))

]
:= J1 + J2 + J3, (16)

where Rni(Ft) represents the empirical Rademacher complexity of the function space Ft on the dataset Dxi = {xj
i}

ni
j=1.

For the J1 component, as per Lemma A.6 in Wu & Su (2023), we obtain:

Rni(Ft) ≤

(
sup

f1∈F1,t,xi(t)∈[−CT,δ,CT,δ]d
|f1(xi(t))|+ sup

f2∈F2,t,xi(t)∈[−CT,δ,CT,δ]d
|f2(xi(t))|

)
(Rni(F1,t) +Rni(F2,t)) .

(17)

Note that

|σ(w⊤xi(t) + u⊤e(t))| ≲ ∥w∥1∥xi(t)∥∞ + ∥u∥1∥e(t)∥∞ ≲ CT,δ + CT,e. (18)

Then we obtain:

∣∣st,θi+1(τ)(xi(t))
∣∣ =

∣∣∣∣∣∣ 1
√
mi

mi∑
j=1

θji+1(τ)σ(w
⊤
j xi(t) + u⊤

j e(t))

∣∣∣∣∣∣
≲ (CT,δ + CT,e) ∥θi+1(τ)∥2
≲ (CT,δ + CT,e)

(
∥s0,θ0∥H +

√
τ/mi

)
, (19)

Subsequently, we define C ′
T,δ := maxxi(t)∈[−CT,δ,CT,δ]d

∣∣∇xi(t) log pi,t(xi(t))
∣∣ . Then, we can deduce that:

|f1(xi(t))| = |st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t))| ≲ (CT,δ + CT,e)
(
∥s0,θ0∥H +

√
τ/mi

)
+ C ′

T,δ,

|f2(xi(t))| = σ(w⊤xi(t) + u⊤e(t)) ≲ CT,δ + CT,e.

By substituting the above two equations into inequality 17, we can obtain

Rni
(Ft) ≲ (CT,δ + CT,e)

(
∥s0,θ0∥H +

√
τ/mi + 1

)
(Rni

(F1,t) +Rni
(F2,t)) . (20)

Define F ′
1,t :=

{
st,θi+1(τ)(xi(t)) : ∥θi+1(τ)∥2 ≲ ∥s0,θ0∥H +

√
τ/mi

}
. According to Lemma 26.6 in (Shalev-Shwartz &

Ben-David, 2014), we get Rni
(F1,t) ≤ Rni

(F ′
1,t). Then, by the definition of Rademacher complexity, we obtain:

Rni(F ′
1,t) =

1

ni
Eξ

 sup
∥θi+1(τ)∥2≲∥s0,θ0∥H+

√
τ/mi

∣∣∣∣∣∣
ni∑
j=1

ξjst,θi+1(τ)(x
j
i (t))

∣∣∣∣∣∣


≲
1

ni

(
∥s0,θ0∥H +

√
τ/mi

)
Eξ

 sup
∥w∥1+∥u∥1≤1

∣∣∣∣∣∣
ni∑
j=1

ξjσ(w
⊤xj

i (t) + u⊤e(t))

∣∣∣∣∣∣
 .

16
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where the {ξj}ni
j=1 are independent random variables with the distribution P(ξj = 1) = P(ξj = −1) = 1

2 . Furthermore,
leveraging the principle of symmetry, we derive:

Eξ

 1

ni
sup

∥w∥1+∥u∥1≤1

∣∣∣∣∣∣
ni∑
j=1

ξjσ(w
⊤xj

i (t) + u⊤e(t))

∣∣∣∣∣∣
 ≤ 2Eξ

 1

ni
sup

∥w∥1+∥u∥1≤1

ni∑
j=1

ξjσ(w
⊤xj

i (t) + u⊤e(t))


= 2Rni(F2,t).

Then, we can get Rni
(F1,t) ≤ Rni

(F ′
1,t) ≲ (∥s0,θ0∥H +

√
τ/mi)Rni

(F2,t). According to Lemma 26.9 (Contraction
lemma) and Lemma 26.11 in Shalev-Shwartz & Ben-David (2014), we have

Rni
(F2,t)) ≤ (∥xi(t)∥∞ + ∥e(t)∥∞)

√
2 log(4d)

ni
≲ (CT,δ + CT,e)

√
log d

ni
.

Combining the aforementioned results with Equation 20, we subsequently obtain:

J1 = Rni
(Ft)) ≲ (CT,δ + CT,e)

2(∥s0,θ0∥H +
√
τ/mi + 1)2

√
(log d)/ni. (21)

For J2, by equation 18 and 19, we have:

|f(xi(t))| = |(st,θi+1(τ)(xi(t))−∇xi(t) log pi,t(xi(t)))||σ(w⊤
j xi(t) + u⊤

j e(t))|

≲ (CT,δ + CT,e)
2(∥s0,θ0∥H +

√
τ/mi) + C ′

T,δ(CT,δ + CT,e).

Thus, we derive:

J2 = sup
f∈Ft,xi(t)∈[−CT,δ,CT,δ]d

|f(xi(t))|

√
log(2/δ)

ni
≲ (CT,δ + CT,e)

2(∥s0,θ0∥H +
√
τ/mi + 1)

√
log(1/δ)

ni
. (22)

Similarly, in the case of J3, we have:

J3 = Exi(t)∼p̂i,t

[(
st,θi+1(τ)(xi(t))− st,θ̂i+1(τ)

(xi(t))
)
σ(w⊤

j xi(t) + u⊤
j e(t))

]
≲ (CT,δ + CT,e)

2(∥s0,θ0∥H +
√

τ/mi). (23)

By integrating Equation 13 with Equation 16, we derive the following result:

1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥22 ≲
1

mi
2

mi∑
i=1

∥∥∥∥∫ τi+1

0

Et∼u(0,T )[λ(t)(J1 + J2 + J3)1d]dτ

∥∥∥∥2
2

≲ (J1 + J2 + J3)
2τ2i+1

d

mi
.

Upon substituting Equations 21, 22, and 23 into the aforementioned equation, we subsequently obtain:

1

mi

mi∑
j=1

∥α̂j(τi+1)− αj(τi+1)∥22 ≲ τ2i+1

d

mi
(CT,δ + CT,e)

4

(
(∥s0,θ0∥4H +

τ2i+1

mi
2
+ 1)

log(d/δ)

ni
+ ∥s0,θ0∥2H +

τi+1

mi

)
.

17
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By inserting the previously discussed equation into Equation 12, we then obtain:

L̃(θ̂i+1(τi+1))− L̃(θi+1(τi+1))

≲ τi+1

√
d

mi

(√
L̃(θ∗i+1) +

1√
τ
(∥s0,θ0∥H + ∥s0,θ∗∥H)

)(∥s0,θ0∥2H +
τi+1

mi
+ 1)

√
log(d/δ)

ni
+ ∥s0,θ0∥H +

√
τi+1

mi


+ τ2i+1

d

mi

(
(∥s0,θ0∥4H +

τ2i+1

mi
2
+ 1)

log(d/δ)

ni
+ ∥s0,θ0∥2H +

τi+1

mi

)

≲ τi+1

√
d

mi

(
∥A0∥2F
mi

+
τi+1

mi
+ 1)

√
log(d/δ)

ni
+

∥A0∥F√
mi

+

√
τi+1

mi

(√L̃(θ∗i+1) +
∥A0∥F + ∥A∗∥F√

mi

+τi+1

√
d

mi

(
∥A0∥2F
mi

+
τi+1

mi
+ 1)

√
log(d/δ)

ni
+

∥A0∥F√
mi

+

√
τi+1

mi


≲ τi+1

√
d

mi

√
L̃(θ∗i+1) +

τ2i+1d log(d/δ)

mini
+

τ4i+1d log(d/δ)

mi
3ni

+
τ3i+1d

mi
2
. (24)

By incorporating the above equation along with Equations 7 and 10 into Equation 6, we consequently obtain:

L̃(θ̂i+1(τi+1)) ≲
τ2i+1d log(d/δ)

mni
+

τ4i+1d log(d/δ)

m3ni
+

τ3i+1d

mi
2

+
log2(1/δ2)

mi
d+ L̃(θ∗i+1) +

¯̃L(θ̄∗i+1) +
1

τi+1
. (25)

Through the integration of the aforementioned equation with Equations 5 and 4, we consequently arrive at the following
result:

TV (pθi+1
, pi)

≲

√
τ2i+1d log(d/δ)

mini
+

√
τ4i+1d log(d/δ)

mi
3ni

+

√
τ3i+1d

mi
2

+

√
1

τi+1
+

√
L̃(θ∗i+1) +

√
¯̃L(θ̄∗i+1) +

√
KL(pi,T ∥π).

Let mi ≍ ni. Upon choosing τi+1 ≍ n
1/2
i , we omit terms

√
L̃(θ∗i+1) and

√
¯̃L(θ̄∗i+1). Consequently, we obtain the

following result:

TV (pθi+1
, pi) ≲

(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π). (26)

Upon substituting the above equation into Equation 3, we obtain:

TV (pθi+1
, p0) ≲ (d log(d/δ)

1
2 )/n

1
4
i +

√
KL(pi,T ∥π) + βi

iTV (pθi , p0) + · · ·+ β1
i TV (pθ1 , p0). (27)

Analogous to the proof analysis process of Theorem 5.4, we can derive the following through recursive methods, with
probability at least 1− δ:

TV (pθi+1
, p0) ≲

i∑
k=0

Ai−k

(
n
− 1

4

i−k

√
d log

di

δ
+
√

KL(pi−k,T ∥π)

)
,

where Ai = 1, Ai−k =
∑i

j=i−k+1 β
i−k+1
j Aj for 1 ≤ k ≤ i. The proof is completed.

D. Proof of Corollary 4.5
In this section, we present the proof of Corollary 4.5, which considers the most extreme case of full synthetic data.
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Proof of Corollary 4.5. Similar to the proof process of Theorem 4.1, we first decompose using the triangle inequality:

TV (pθi+1
, p0) ≤ TV (pθi+1

, pi) + TV (pi, p0). (28)

Utilizing inequality 26, we can establish the following with a probability of at least 1− δ:

TV (pθi+1
, pi) ≲

(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π),

Given that the definition of pi in the full synthetic data cycle is pi = pθi , we can deduce the following with a probability of
at least 1− δ:

TV (pθi+1
, p0) ≲

(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π) + TV (pi, p0).

=
(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π) + TV (pθi , p0)

Since the initial term TV (pθ1 , p0) can be expressed as follows:

TV (pθ1 , p0) ≲
(d log(d/δ))1/2

n
1/4
0

+
√
KL(p0,T ∥π).

Consequently, by solving recursively, we can obtain the following result, with probability at least 1− δ:

TV (pθi+1 , p0) ≲
i∑

k=1

(
(d log(di/δ))1/2

n
1/4
k

+
√
KL(pk,T ∥π)

)
.

The proof is completed.

E. Proof of Corollary 4.8
In this section, we present the proof of Corollary 4.8, which examines the scenario of balanced data cycle.

Proof of Corollary 4.8. Utilizing the triangle inequality of the TV distance, we can deduce the following:

TV (pθi+1
, p0) ≤ TV (pθi+1

, pi) + TV (pi, p0). (29)

By employing inequality 26, we can establish the following with a probability of at least 1− δ:

TV (pθi+1 , p0) ≲
(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π) + TV (pi, p0). (30)

Recalling the definition of TV distance, we initially expound on the term TV (pi, p0) as follows:

TV (pi, p0) =
1

2

∫
|pi(x)− p0(x)| dx.

≤ 1

2

∫
| 1

i+ 1
(p0(x) + pθ1(x) + pθ2(x) + · · ·+ pθi(x))− p0(x)| dx

≤ 1

2

1

i+ 1

∫
|pθ1(x)− p0(x)|+ |pθ2(x)− p0(x)|+ · · ·+ |pθi(x)− p0(x)| dx

≤ 1

i+ 1

i∑
j=1

TV (pθj , p0). (31)
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Substituting the aforementioned inequality into Inequality 30, we obtain:

TV (pθi+1 , p0) ≲
(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π) +

1

i+ 1

i∑
j=1

TV (pθj , p0).

Specify the function f(ni) in the following manner: f(ni) =
(d log(d/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π). As a result, we derive the

subsequent outcome:

TV (pθi+1
, p0) ≲ f(ni) +

1

i+ 1
TV (pθi , p0) +

1

i+ 1
TV (pθi−1

, p0) + · · ·+ 1

i+ 1
TV (pθ1 , p0). (32)

From the aforementioned expression, we can additionally infer:

TV (pθi , p0) ≲ f(ni−1) +
1

i
TV (pθi−1 , p0) +

1

i
TV (pθi−2 , p0) + · · ·+ 1

i
TV (pθ1 , p0).

By multiplying both sides of the above equation by 1
i+1 , we obtain the following result:

1

i+ 1
TV (pθi , p0) ≲

1

i+ 1
f(ni−1) +

1

i+ 1

1

i
TV (pθi−1

, p0) + · · ·+ 1

i+ 1

1

i
TV (pθ1 , p0).

Plugging the above inequality into inequality 32, we obtain:

TV (pθi+1
, p0)

≲ f(ni) +
1

i+ 1
f(ni−1) + (

1

i+ 1
+

1

i+ 1

1

i
)TV (pθi−1

, p0) + · · ·+ (
1

i+ 1
+

1

i+ 1

1

i
)TV (pθ1 , p0). (33)

Note that TV (pθ1 , p0) ≲
(d log(d/δ))1/2

n
1/4
0

+
√
KL(p0,T ∥π), By solving recursively,

TV (pθi+1 , p0) ≲f(ni) +
1

i+ 1
f(ni−1) + (

1

i+ 1
+

1

i+ 1

1

i
)f(ni−2) + · · ·+

(
1

i+ 1
+

1

i+ 1

1

i
+ · · ·+ 1

i+ 1

1

i
· · · 1

2
)f(n0). (34)

Thus, we have, with probability at least 1− δ,

TV (pθi+1
, p0)

≲
(d log(di/δ))1/2

n
1/4
i

+
√
KL(pi,T ∥π) +

i−1∑
k=0

i−1∑
j=k

Γ(j + 2)

Γ(i+ 2)

(
(d log(di/δ))1/2

n
1/4
k

+
√
KL(pk,T ∥π)

)
,

where the Gamma function Γ(j) = (j − 1)! and j is a positive integer. The proof is complete.

F. Proof of Corollary 4.10
In this section, we present the proof of Corollary 4.10, which analyzes the phase transition phenomena in error dynamics
when increasing synthetic data while keeping real data fixed.

Proof of Corollary 5. By utilizing the triangle inequality of the TV distance, we can derive the following:

TV (pθi+1 , p0) ≤ TV (pθi+1 , pi) + TV (pi, p0). (35)

By employing inequality 26, we can establish the subsequent statement with a probability of at least 1− δ:

TV (pθi+1 , p0) ≲
(d log(d/δ))1/2

(n+m)1/4
+
√
KL(pi,T ∥π) + TV (pi, p0). (36)
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Recalling the definition of the total variation distance, let’s first elaborate on the expression TV (pi, p0) as follows:

TV (pi, p0) =
1

2

∫
|pi(x)− p0(x)| dx.

≤ 1

2

∫
| n

n+m
p0(x) +

m

n+m
pθi(x)− p0(x)| dx

≤ 1

2

m

n+m

∫
|pθi(x)− p0(x)| dx

≤ m

n+m
TV (pθi , p0). (37)

Substituting the aforementioned inequality into Inequality 36, we obtain:

TV (pθi+1
, p0) ≲

(d log(d/δ))1/2

(n+m)1/4
+
√
KL(pi,T ∥π) +

m

n+m
TV (pθi , p0).

Note that TV (pθ1 , p0) ≲
(d log(d/δ))1/2

(n+m)1/4
+
√
KL(pi,T ∥π). Similar to the proof of Corollary 4.8, we can solve recursively,

with probability at least 1− δ,

TV (pθi+1
, p0) ≤

(
1 +

m

n

)(
1− (

m

n+m
)i+1

)(
(d log(di/δ))1/2

(n+m)1/4
+
√
KL(pi,T ∥π)

)
.

The proof is completed.

G. Proof of Lemma 5.1
In this section, we present the proof of Lemma 5.1. The proof utilizes the kernel density estimation framework along with
McDiarmid’s inequality. We first define the class s kernel as follows:
Definition G.1. Let s ≥ 1. A class s kernel is a Borel measurable function K which satisfies

• K is symmetric, i.e., K(−x) = K(x), x ∈ Rd.

•
∫
K = 1.

•
∫
xαK(x) dx = 0 for 1 ≤ |α| ≤ s− 1.

•
∫
|xα||K(x)| dx < ∞ for |α| = s.

•
∫
(1 + ∥x∥d+ϵ)K(x)2 dx < ∞ for some ϵ > 0

Proof of lemma 5.1. Revisiting the definition of the kernel density estimation p̂i, we derive the following:

p̂i+1(x) =
1

nihd
i

ni∑
j=1

K

(
x− xj

hi

)
,

where K belongs to the class s. Define Khi
(u) = (1/hd

i )K(u/hi). Our objective is to establish a bound for TV (p̂i+1, pi) =
1
2

∫
|p̂i+1(x) − pi(x)| dx. Consider two sets: {x1, · · · , xni

} and {x′
1, · · · , x′

ni
}, where x′

j = xj for all j except when
j = t. As a result, we derive:∣∣∣∣12

∫
|p̂i+1(x;x1, . . . , xn)− pi(x)| dx− 1

2

∫
|p̂i+1(x;x

′
1, . . . , x

′
n)− pi(x)| dx

∣∣∣∣
≤ 1

2

∫
|p̂i+1(x;x1, . . . , xn)− p̂i+1(x;x

′
1, . . . , x

′
n)| dx

≤ 1

2ni

∫
|Khi(x− xt)−Khi(x− x′

t)| dx

≤ 1

nihd
i

∫
|K|. (38)
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Since 1
2

∫
|p̂i+1(x)− pi(x)| dx is

∫
|K|

nihd
i

-Lipschitz under the Hamming metric, the application of McDiarmid’s Inequality
(lemma B.1) yields the ensuing result with a probability of at least 1− δ:∣∣∣∣12

∫
|p̂i+1(x)− pi(x)| dx− E

1

2

∫
|p̂i+1(x)− pi(x)| dx

∣∣∣∣ ≤
√

(
∫
|K|)2

2nih2d
i

log
2

δ
.

Then, we obtain:

TV (p̂i, pi) =
1

2

∫
|p̂i+1(x)− pi(x)| dx ≤ 1

2
E
∫

|p̂i+1(x)− pi(x)| dx+

√
(
∫
|K|)2

2nih2d
i

log
2

δ
. (39)

Next, our objective is to establish a bound for E
∫
|p̂i+1(x) − pi(x)| dx. For simplicity, we omit the (·) and dx in our

notation. Through decomposition, we can derive the following results:

E
∫

|p̂i+1 − pi| ≤
∫

|pi ∗Khi
− pi|+ E

∫
|p̂i+1 − pi ∗Khi

|, (40)

where pi ∗Khi
(x) =

∫
pi(y)Khi

(x− y) dy. The terms on the right-hand side will be called the bias and variation terms
of the error. Assume first that pi∈ C∞

0 (Rd), where C∞
0 (Rd) denotes the space of infinitely differentiable functions with

compact support. By Taylor’s theorem,

pi(x+ y)− pi(x) =

s−1∑
j=1

∑
|α|=j

1

α!
yα∂αpi(x) +

∑
|α|=s

s!

α!

∫ 1

0

(1− t)s−1

(s− 1)!
yα∂αpi(x+ ty)dt. (41)

Since K is a symmetric kernel, we have
∫
K(z) dz = 1 and

∫
zK(z) dz = 0. Thus, for x ∈ Rd, we derive:

pi ∗K(x)− pi(x) =

∫
(pi(y)− pi(x))K(x− y) dy

=

∫
(pi(x− y)− pi(x))K(y) dy

=

∫
(pi(x+ y)− pi(x))K(y) dy. (42)

Substituting Equation 41 into Equation 42 and taking into account that
∫
xαK(x) dx = 0 for 1 ≤ |α| ≤ s− 1, we derive:

pi ∗K(x)− pi(x) =
∑
|α|=s

s!

α!

∫ ∫ 1

0

(1− t)s−1

(s− 1)!
yα∂αpi(x+ ty)K(y) dt dy. (43)

The integrals with respect to y exist due to the application of Fubini’s theorem and the introduction of new variables η = −ty
and τ = t−1. This holds true for |α| = s,∫ ∫ 1

0

(1− t)s−1

(s− 1)!
|yα| |∂αpi(x+ ty)| |K(y)| dt dy

=

∫ 1

0

∫
(1− t)s−1

(s− 1)!
|yα| |∂αpi(x+ ty)| |K(y)| dy dt

=

∫ 1

0

∫
(1− t)s−1

(s− 1)!
t−s−d|ηα| |∂αpi(x− η)| |K(

η

t
)| dη dt

=

∫
|∂αpi(x− η)|

∫ ∞

1

(τ − 1)s−1

(s− 1)!
τd−1|ηα| |K(τη)| dτ dη.

Since the integral
∫
|xαK(x)|dx is finite for |α| = s, the last integral is also finite. By repeating the same steps, we can

conclude:∫ ∫ 1

0

(1− t)s−1

(s− 1)!
yα∂αpi(x+ ty)K(y) dt dy =

∫
∂αpi(x− η) (−1)s

∫ ∞

1

(τ − 1)s−1

(s− 1)!
τd−1ηα K(τη) dτ dη.
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By defining the associated kernel Lα(x) as (−1)|α|
∫∞
1

(t−1)|α|−1

(|α|−1)! td−1xα K(tx) dt, we can then obtain:∫ ∫ 1

0

(1− t)s−1

(s− 1)!
yα∂αpi(x+ ty)K(y) dt dy = ∂αpi ∗ Lα(x). (44)

Plugging Equation 44 into the Equation 43, then, we obtain:

pi ∗K(x)− pi(x) =
∑
|α|=s

s!

α!
∂αpi ∗ Lα(x). (45)

When pi ∈ W s,1(Rd), there are functions pi,n ∈ C∞
0 (Rd), n = 0, 1, . . ., such that ∂αpi,n → ∂αpi in L1(Rd) for |α| ≤ s

(Adams & Fournier, 2003). Since Equation 45 holds for each pi,n, it also holds for pi a.e. on Rd. Furthermore, for the
kernel Khi , applying Young’s inequality, we obtain:∫

|pi ∗Khi
− pi| ≤ hs

i

∑
|α|=s

s!

α!

∫
|∂αpi|

∫
|Lα| = hs

iφ(s,K, pi). (46)

Given that pi ∈ W s,1(Rd) and
∫
|xα||K(x)| dx < ∞ for |α| = s, it follows that φ(s,K, pi) =

∑
|α|=s

s!
α!

∫
|∂αpi|

∫
|Lα|

is finite. Thus, the bias tends to zero at least at the rate hs
i . Next, we address the variation term E

∫
|p̂i+1 − pi ∗Khi

|. By
the Schwarz inequality, we obtain:

E
∫

|p̂i+1 − pi ∗Khi
| ≤ (nih

d
i )

− 1
2

∫ √
pi ∗ (K2)hi

.

Let Q = K2/
∫
K2, and by utilizing the inequality

√
pi ∗Qhi ≤

√
pi +

√
|pi − pi ∗Qhi |, we obtain:

E
∫

|p̂i+1 − pi ∗Khi
| ≤ (nih

d
i )

− 1
2 (1 +

∫ √
|pi − pi ∗Qhi

|∫ √
pi

)

√∫
K2

∫
√
pi.

Let γ(hi) =
∫ √

|pi − pi ∗Qhi
|/
∫ √

pi. Then, our objective is to show γ(hi) → 0 as hi → 0+. First, we apply Carlson’s
inequality to get∫ √

|pi − pi ∗Qhi
| ≤ C

(∫
|pi − pi ∗Qhi

|
)ϵ/2(ϵ+d)

×
(∫

∥x∥d+ϵ|pi(x)− pi ∗Qhi
(x)| dx

)d/2(ϵ+d)

,

where C is a constant. Since
∫
|pi−pi ∗Qhi | tends to zero as hi → 0+ [(Stein, 1970), Chapt. III], our task is to demonstrate

that the second integral remains bounded. Thus, we have∫
∥x∥d+ϵ|pi(x)− pi ∗Qhi(x)| dx ≤

∫
∥x∥d+ϵpi(x) dx+

∫
∥x∥d+ϵpi ∗Qhi(x) dx.

According to the assumption, we have
∫
∥x∥d+ϵpi(x) dx is finite. For the second integral, we utilize ξ = x − y,

∥ξ + y∥d+ϵ ≤ 2d+ϵ−1(∥ξ∥d+ϵ + ∥y∥d+ϵ), and the fact that
∫
pi =

∫
Qhi = 1, which implies that:∫

∥x∥d+ϵpi ∗Qhi
(x) dx =

∫ (∫
∥x∥d+ϵpi(x− y) dx

)
Qhi

(y) dy

≤ 2d+ϵ−1

∫
Rd

∥ξ∥d+ϵpi(ξ) dξ + 2d+ϵ−1

∫
∥y∥d+ϵQhi

(y) dy.

Since
∫
(1 + ∥x∥d+ϵ)K(x)2 dx < ∞ , the above integral is finite. Thus, we have

E
∫

|p̂i+1 − pi ∗Khi
| ≤ (nih

d
i )

− 1
2 (1 + γ(hi))

√∫
K2

∫
√
pi, (47)
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where γ(hi) → 0 as hi → 0+. Combining the inequality 46 for the bias term and inequality 47 for the variation term into
the inequality 40, we obtain:

E
∫

|p̂i+1 − pi| ≤ hs
iφ(s,K, pi) + (nih

d
i )

− 1
2 (1 + γ(hi))

√∫
K2

∫
√
pi. (48)

Plugging the above inequality into the inequality 39, then, we obtain:

TV (p̂i+1, pi) ≤ (nih
2d
i )−

1
2

√
1

2
(

∫
|K|)2 log 2

δ
+

1

2
hs
iφ(s,K, pi) +

1

2
(nih

d
i )

− 1
2 (1 + γ(hi))

√∫
K2

∫
√
pi.

By the choice of hi = n
− 1

2s+2d

i , then, we obtain:

TV (p̂i+1, pi) ≤ n
− s

2s+2d

i

√
1

2
(

∫
|K|)2 log 2

δ
+

1

2
n
− s

2s+2d

i φ(s,K, pi) +
1

2
n
− 2s+d

4s+4d

i (1 + γni)

√∫
K2

∫
√
pi. (49)

Where γni
→ 0 as ni → ∞ and φ(s,K, pi) is a finite function. The proof is completed.

H. Proof of Theorem 5.4
In this section, we present the proof of Theorem 5.4, which targets the scenario of the general data cycle.

Proof of Theorem 5.4. By leveraging the triangle inequality of TV distance, we can deduce the following:

TV (p̂i+1, p0) ≤ TV (p̂i+1, pi) + TV (pi, p0). (50)

Revisiting the definition of TV distance, we initially elucidate the term TV (pi, p0) as follows:

TV (pi, p0) =
1

2

∫
|pi(x)− p0(x)|dx

≤ 1

2

∫
|β1

i p̂1(x) + β2
i p̂2(x) + · · ·+ βi

i p̂i(x) + αip0(x)− p0(x)| dx.

Given that β1
i + β2

i + · · ·+ βi
i + αi = 1, we can deduce the following:

TV (pi, p0) ≤
1

2

∫
|β1

i p̂1(x) + β2
i p̂2(x) + · · ·+ βi

i p̂i(x)− (β1
i + β2

i + · · ·+ βi
i)p0(x)| dx

≤ 1

2

∫
β1
i |p̂1(x)− p0(x)|+ β2

i |p̂2(x)− p0(x)|+ · · ·+ βi
i |p̂i(x)− p0(x)| dx

= β1
i TV (p̂1, p0) + β2

i TV (p̂2, p0) + · · ·+ βi
iTV (p̂i, p0). (51)

By employing Lemma 5.1, and considering that γni
→ 0 as ni → ∞, along with φ(s,K, pi) being a finite function, we can

derive the following with a probability of at least 1− δ:

TV (p̂i+1, pi) ≤ n
− s

2s+2d

i

√
1

2
(

∫
|K|)2 log 2

δ
+

1

2
n
− s

2s+2d

i φ(s,K, pi) +
1

2
n
− 2s+d

4s+4d

i (1 + γni)

√∫
K2

∫
√
pi

≲ n
− s

2s+2d

i

√
log(2/δ) + n

− 2s+d
4s+4d

i , (52)

where ≲ conceals universal positive constants that depend solely on K, pi and s. By incorporating Inequality 51 and 52 into
the Inequality 50, we can consequently derive the following with a probability of at least 1− δ:

TV (p̂i+1, p0) ≲ n
− s

2s+2d

i

√
log(2/δ) + n

− 2s+d
4s+4d

i + βi
iTV (p̂i, p0) + βi−1

i TV (p̂i−1, p0) + · · ·+ β1
i TV (p̂1, p0).
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Define the function f(ni) as follows: f(ni) = n
− s

2s+2d

i

√
log(2/δ) + n

− 2s+d
4s+4d

i . Consequently, we obtain the ensuing result:

TV (p̂i+1, p0) ≲ f(ni) + βi
iTV (p̂i, p0) + βi−1

i TV (p̂i−1, p0) + · · ·+ β1
i TV (p̂1, p0). (53)

From the above expression, we can further deduce:

TV (p̂i, p0) ≲ f(ni−1) + βi−1
i−1TV (p̂i−1, p0) + βi−2

i−1TV (p̂i−2, p0) + · · ·+ β1
i−1TV (p̂1, p0).

By multiplying both sides of the above equation by βi
i , we obtain the following result:

βi
iTV (p̂i, p0) ≲ βi

if(ni−1) + βi
iβ

i−1
i−1TV (p̂i−1, p0) + βi

iβ
i−2
i−1TV (p̂i−2, p0) + · · ·+ βi

iβ
1
i−1TV (p̂1, p0).

Plugging the above inequality into inequality 53, we obtain:

TV (p̂i+1, p0) ≲ f(ni) + βi
if(ni−1) + (βi−1

i + βi
iβ

i−1
i−1)TV (p̂i−1, p0) + · · ·+ (β1

i + βi
iβ

1
i−1)TV (p̂1, p0).

Define the coefficient preceding the term f(ni) as Ai. Consequently, we have Ai = 1 and Ai−1 = βi
i . By adopting a

procedure analogous to the one described above, we can derive the following result:

Ai−2 = βi−1
i + βi

iβ
i−1
i−1 = βi−1

i Ai + βi−1
i−1Ai−1,

Ai−3 = βi−2
i + βi

iβ
i−2
i−1 + (βi−1

i + βi
iβ

i−1
i−1)β

i−2
i−2 = βi−2

i Ai + βi−2
i−1Ai−1 + βi−2

i−2Ai−2.

Based on the aforementioned discussion, we can draw the following conclusion:

Ai−t = βi−t+1
i Ai + βi−t+1

i−1 Ai−1 + · · ·+ βi−t+1
i−t+1Ai−t+1 =

i∑
j=i−t+1

βi−t+1
j Aj , 1 ≤ t ≤ i. (54)

Furthermore, for the initial term TV (p̂1, p0), we have:

TV (p̂1, p0) ≲ n
− s

2s+2d

0

√
log(2/δ) + n

− 2s+d
4s+4d

0

= f(n0). (55)

By synthesizing Inequalities 53, 54, and 55, we arrive at the following result, with probability at least 1− δ:

TV (p̂i+1, p0)

≲
i∑

k=0

Ai−k

(
n
− s

2s+2d

i−k

√
log(i/δ) + n

− 2s+d
4s+4d

i−k

)
,

(56)

where Ai = 1, Ai−k =
∑i

j=i−k+1 β
i−k+1
j Aj for 1 ≤ k ≤ i.

I. Extensions
In this section, we present some extensions of our analyses.

I.1. Extension to Normalizing Flows

For Normalizing flows, we follow the setting in Yang (2022). The theorem is extended as follows:

Theorem I.1. Assuming the second moment of pi is finite for all i, we set the base distribution to be the unit Gaussian
N . Let the velocity field be modeled by V , which belongs to H(Rd+1,Rd), a space of functions representable as fa(x) =
Eρ(w,b)

[
a(w, b) σ(w · x+ b)], where ρ ∈ P (Rd+1) is a fixed parameter distribution and a ∈ L2(ρ,Rd) is a parameter

function. Let GVi
denote the flow map defined as GVi

(xi(0)) = xi(1),
d
dτ xi(τ) = Vi(xi(τ), τ), and let the reverse-time

flow map for τ ∈ [0, 1] be defined as FVi(xi(1), τ) = xi(τ),
d
dτ xi(τ) = Vi(xi(τ), τ). Assuming all the flow-induced
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norm of optimal V ∗
i satisfies ∥V ∗

i ∥F = exp ∥V ∗
i ∥H ≤ R. Let ni be the number of training samples obtained from the

distribution pi. Then with probability at least 1− δ, we establish that:

TV (pθi+1
, p0) ≲

i∑
k=0

Ai−k

(
n
− 1

4

i−kR
√

1 +R2 log
1
4
i

δ

)
,

where Ai = 1, Ai−k =
∑i

j=i−k+1 β
i−k+1
j Aj for 1 ≤ k ≤ i.

Proof of Theorem I.1. Using the triangle inequality for the TV distance, we can infer the following:

TV (pθi+1
, p0) ≤ TV (pθi+1

, pi) + TV (pi, p0).

For the second term, TV (pi, p0), considering the definition of TV distance as 1
2

∫
|pi(x)− p0(x)| dx, and given pi(x) =

β1
i pθ1(x) + · · ·+ βi

ipθi(x) + αip0(x), we can infer:

TV (pθi+1 , p0) ≤ TV (pθi+1 , pi) + βi
iTV (pθi , p0) + βi−1

i TV (pθi−1 , p0) + · · ·+ β1
i TV (pθ1 , p0). (57)

Next, let’s focus on the first term, TV (pθi+1 , pi). Utilizing Pinsker’s inequality, we derive:

TV (pθi+1
, pi) ≤

√
1

2
KL(pi∥pθi+1

). (58)

Following the framework established by Yang (2022), we establish bounds for the KL term. Let L be the population loss
defined as:

L(Vi) =

∫∫ 1

0

Tr
[
∇Vi(xi(τ), τ)

]
dτ +

1

2
∥xi(0)∥2dpi(xi(1))

xi(τ) := Gτ (G
−1(xi(1)) (59)

In addition, let L(ni) and V
(ni)
i be the corresponding empirical loss and the output. It follows that:

L
(
V

(ni)
i

)
≤ L(ni)

(
V

(ni)
i

)
+ sup

∥Vi∥F≤R

L(Vi)− L(ni)(Vi)

≤ L(ni) (V ∗
i ) + sup

∥Vi∥F≤R

L(Vi)− L(ni)(Vi)

≤ L (V ∗
i ) + 2 sup

∥Vi∥F≤R

L(Vi)− L(ni)(Vi)

Then, we obtain the following:

sup
∥Vi∥F≤R

L(Vi)− L(ni)(Vi)

≤ sup
∥Vi∥F≤R

∫∫ 1

0

Tr [∇Vi (FVi
(xi(τ), τ) , τ)] dτd (pi − pi) (x)

+ sup
∥Vi∥F≤R

∫∫ 1

0

1

2
∥FVi

(x, 1)∥2 d (pi − pi) (x) (60)

Let A and B represent the two terms as random variables. Employing the techniques elucidated in [Ma et al. (2019),
Theorem 2.11] and [Han et al. (2021), Theorem 3.3] to bound the Rademacher complexity of flow-induced functions, we
can obtain:

E[A] ≲
R
√
ni

E
[

max
1≤j≤ni

∥∥∥xj
i

∥∥∥] ≲ R2

√
ni

E[B] ≲
R2

√
ni

E
[

max
1≤j≤ni

∥∥∥xj
i

∥∥∥2] ≲ R4

√
ni
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Furthermore, concerning the variances A− E[A] and B − E[B], we can employ the extension of McDiarmid’s inequality to
sub-Gaussian random variables (Kontorovich, 2014), to demonstrate that, with a probability of 1− δ,

A− E[A] ≲
R2
√
log 1/δ

√
ni

. B − E[B] ≲
R4
√
log 1/δ

√
ni

Combining these inequalities, we induce that:

KL(pi∥pθi+1
) ≲

R2(1 +R2)
√
log 1/δ

√
ni

Utilizing Pinsker’s inequality, we derive:

TV (pθi+1
, pi) ≲ n

− 1
4

i R
√
1 +R2 log

1
4
1

δ
. (61)

Upon substituting the above equation into Equation 57, we obtain:

TV (pθi+1
, p0) ≲ n

− 1
4

i R
√
1 +R2 log

1
4
1

δ
+ βi

iTV (pθi , p0) + · · ·+ β1
i TV (pθ1 , p0). (62)

Analogous to the proof analysis process of Theorem 5.4, we can derive the following through recursive methods, with
probability at least 1− δ:

TV (pθi+1
, p0) ≲

i∑
k=0

Ai−k

(
n
− 1

4

i−kR
√

1 +R2 log
1
4
i

δ

)
,

where Ai = 1, Ai−k =
∑i

j=i−k+1 β
i−k+1
j Aj for 1 ≤ k ≤ i.

Remark I.2. Extension to Transformer Models. Exploring the theoretical extension of this work to transformer models
trained within a self-consumption loop presents significant challenges. Firstly, characterizing the generalization error of
transformers at each generation is essential. It’s worth noting that this task is particularly challenging due to the complexity
of the training data, which consists of a mixture of data from different distributions. Furthermore, delving into how this
error compounds with each generation poses an even more complex scenario. Investigating this intricate situation remains a
subject for future work, requiring further exploration.

J. Experiments
In this section, we present some experimental results. Specifically, we trained a diffusion model on the MNIST dataset.
Consistent with previous works (Alemohammad et al., 2023; Bertrand et al., 2023), we employed the FID score as a metric
to evaluate model performance. We trained multiple generations under two scenarios: 1) a 1:1 ratio of real and synthetic
data, and 2) fully synthetic data. This allowed us to investigate the impact of the number of training generations, the total
number of training samples, and the presence of real data on model performance, as detailed in the table below:

Dataset gen01 gen02 gen03 gen04
syn10k 120.99 156.77 165.04 180.23
syn15k 55.46 137.45 151.95 157.62
syn20k 24.44 46.78 61.14 78.77
mix10k 58.94 117.73 137.62 136.39
mix15k 55.69 66.93 69.63 75.91
mix20k 20.05 31.92 37.36 36.13

We observed that our experimental findings closely aligned with the theoretical results derived in the paper. When the
number of training samples and the mix in the training set remained constant, the model performance deteriorated as the
number of training generations increased. However, increasing the number of training samples and incorporating real data
both led to improved model performance.

In addition, we fixed the amount of real data at 9K samples and varied the number of synthetic samples to 13K, 15K, 17K,
and 20K. The experimental results are as follows:
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Dataset syn 13k syn 15k syn 17k syn 20k
real 9k 74.95 87.15 33.50 28.39

These findings corroborate the theoretical predictions in Remark 4.11, where we indicate that the TV distance first exhibits
an ascent and then declines beyond a threshold point as synthetic data expands while real data remains fixed.

28


