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Abstract

Bi-level optimization, especially the gradient-based category, has been widely used in the
deep learning community including hyperparameter optimization and meta-knowledge ex-
traction. Bi-level optimization embeds one problem within another and the gradient-based
category solves the outer-level task by computing the hypergradient, which is much more ef-
ficient than classical methods such as the evolutionary algorithm. In this survey, we first give
a formal definition of the gradient-based bi-level optimization. Next, we delineate criteria
to determine if a research problem is apt for bi-level optimization and provide a practi-
cal guide on structuring such problems into a bi-level optimization framework, a feature
particularly beneficial for those new to this domain. More specifically, there are two for-
mulations: the single-task formulation to optimize hyperparameters such as regularization
parameters and the distilled data, and the multi-task formulation to extract meta-knowledge
such as the model initialization. With a bi-level formulation, we then discuss four bi-level
optimization solvers to update the outer variable including explicit gradient update, proxy
update, implicit function update, and closed-form update. Finally, we wrap up the survey
by highlighting two prospective future directions: (1) Effecctive Data Optimization for Sci-
ence examined through the lens of task formulation. (2) Accurate Explicit Proxy Update
analyzed from an optimization standpoint.

1 Introduction

With the fast development of deep learning, bi-level optimization is drawing lots of research attention due
to the nested problem structure in many deep learning problems, including hyperparameter optimization
(Rendle, [2012; (Chen et al.l 2019; [Liu et all |2019) and meta-knowledge extraction (Finn et all 2017). The
bi-level optimization problem is a special kind of optimization problem where one problem is embedded
within another and can be traced to two domains: one is from game theory where the leader and the follower
compete on quantity in the Stackelberg game (Von Stackelbergl [2010); another one is from mathematical
programming where the inner level problem serves as a constraint on the outer level problem (Bracken
& McGill, [1973)). Especially, compared with classical methods (Sinha et al., 2017)) which require strict
mathematical properties or can not scale to large datasets, the efficient gradient descent methods provide a
promising solution to the complicated bi-level optimization problem and thus are widely adopted in much
deep learning research work to optimize hyperparameters in the single-task formulation (Bertinetto et al.|
2019 [Hu et al.| |2019; Liu et al., 2019; Rendle| |2012; [Chen et al., [2019; Ma et al.| |2020; [Zhang et al., 2023} [Li
et al.} 2022)) or extract meta-knowledge in the multi-task formulation (Finn et al., 2017; |Andrychowicz et al.,
2016; |Chen et al., [2023b; |Zhong et al., [2022; |Chi et al.l 2021; 2022; [Wu et al.| 2022; |Chen et al., |2022c).

In this survey, we mainly focus on gradient-based bi-level optimization regarding deep neural networks with
an explicitly defined objective function. This survey aims to guide researchers on their research problems
involving bi-level optimization. We first define notations and give a formal definition of gradient-based bi-level
optimization in Section [2] We then propose a new taxonomy in terms of task formulation in Section [3] and
methods to compute the hypergradient of the outer variable in Section [d] This taxonomy provides guidance
to researchers on the criteria and procedures to formulate a task as a bi-level optimization problem and how
to solve this problem. Last, we conclude the survey with two promising future directions in Section
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2 Definition

Table 1: Key notations used in this paper.

Notations Descriptions
x; Input of data point indexed by i
Y; Label of data point indexed by i
D/Dirain/Dyar | Supervised/Training/Validation dataset
|D| Number of samples in the dataset D
6/0 Inner learnable variable
¢/ P Outer learnable variable
0" (o) Best response of 6 given ¢
10,0, x;,y;) Loss on the 4, data point x;,y;
1(0,z;,y;) Loss on data x;,y; without ¢
L(6,¢,D) Loss on the whole dataset D
L£(6,D) Loss on dataset D without ¢
L£i"(0,¢,D) Inner level loss on dataset D
L0, ¢, D) Outer level loss on dataset D
dfl;m Hypergradient regarding ¢
n Inner level learning rate
M Number of inner level tasks
Q(0, ¢) Regularization parameterized by ¢
OPT Some optimizer like Adam
Dreai/Dsyn Real/Synthetic dataset
p(+) Product price in the market
Ci(¢)/Cr(0) Cost of leader and follower
D Predicted atom-atom distances
prrf /DIt Pretraining/finetuning data
E Some equation constraint
Ay Regularization strength parameter
e/T Some small positive constant
P, Proxy network parameterized by o
T Number of iterations in optimization

In this section, we define the gradient-based bi-level optimization, which focuses on neural networks with an
explicit objective function. For convenience, we list notations and their descriptions in Table [T}

Assume there is a dataset D = {(x;, y;)} under the supervised learning setting where @; and y; represent
the ¢th input and corresponding label, respectively. Besides, Diyqin and D, represent the training set and
the validation set, respectively. We use 8 € R? (© for matrix form) to parameterize the inner learnable
variable which often refers to the model parameters and use ¢ € R™ (@ for matrix form) to parameterize
the outer learnable variable including the hyperparameters and the meta knowledge. In this paper, the
hyperparameters are not limited to the regularization and the learning rate but refer to any knowledge in
a single task formulation, as we will illustrate more detailedly in Section [3] Denote the loss function on
(z;,y:) as 1(0,x;,y;), which refers to a certain format of objectives depending on the tasks such as Cross-
Entropy loss or Mean Square Error (MSE) loss. Note that in some cases we use [(0, ¢, x;,y;), which is an
equivalent variant of 1(0,x;,y;) under this setting. This is because the outer learnable parameters ¢ can
be hyperparameters like the learning rate when calculating 1(0, x;,y;) and is thus not explicitly represented.
We then use £(60, ¢, D) or L(0,D) to denote the loss over the dataset D, and represent the inner level loss
and the outer level loss as £7(0, ¢, D) and L£L°%(0, ¢, D), respectively. Generally, the inner level loss is
computed on the training dataset D" and the outer level loss is assessed on the validation dataset DV,
We use 7 to represent the learning rate adopted by the inner-level optimization. Employing these notations,
we present the mathematical expression for the bi-level optimization problem as follows:



Under review as submission to TMLR

¢" = wrgmin L0 (), ¢)- (1)
st. 0%(¢p) = argmin L(6, ¢). (2)
6

The inner level problem in Eq. serves as a constraint and builds the relation between the ¢ and 6. Here
we use the arg min form in Eq. but note that the inner level task can be extended to some equation
constraints as we will further illustrate in Section [3] In the nature of neural networks, one can use gradient

descent to estimate 8*(¢). The outer level problem acts as the main optimization problem and computes

the hypergradient dfl;m to update the outer variable ¢ by leveraging the relation built in Eq. ,

dﬁout B acout aa(d)) acout 5
dp 00 0o op - 3)

This is called gradient-based bi-level optimization. When extended to the multi-task scenario to extract
meta-knowledge on M different tasks, the above formulation can be rewritten as:

M
¢ = arg(;nin D LNO (D), @) (4)
i=1
st. 07 (¢p) = argmin £I"(0, ¢). (5)
0

Here ¢ symbolizes the meta-knowledge, denoting the knowledge that spans across multiple tasks, exemplified
by aspects such as the model initialization.

3 Task Formulation

The classification of bi-level optimization task formulation into single-task and multi-task types, as portrayed
in Figure [1} hinges on the kind of knowledge we are aiming to learn (Franceschi et al. [2018). The single-
task formulation focuses on the learning of hyperparameters within a single task, while the multi-task
formulation is oriented towards the acquisition of meta-knowledge. These two formulations are expounded

upon in Sections [3.1] and respectively.

3.1 Single-task formulation

The single-task formulation applies bi-level optimization on a single task and aims to learn hyperparameters
for the task. Note that in this paper, the meaning of hyperparameter is not limited to its traditional meaning
like regularization but has a broader meaning, referring to all single-task knowledge.

A particular single-task problem can be deemed suitable for bi-level optimization if it meets two criteria.
Firstly, it has a main optimization problem guiding the optimization of the outer variable. Secondly, a
constraint exists between the inner and outer variables such that a differentiable relationship between these
variables can be established. To elaborate, our first step is to identify the inner variable, denoted as 8, and the
outer variable, ¢. Next, we identify the main optimization component which optimizes the hyperparameters,
which acts as the outer level problem. Finally, the inner level problem is framed by recognizing the constraint
between these two variables, which further enables us to establish a differentiable relationship between them.

(1) A notable situation is when the constraint and the main optimization problem use different mathematical
formulas, implying that they optimize entirely different problems. In these scenarios, the constraint typically
arises organically, and its identification becomes straightforward. Examples include the energy constraint
present in topology design (Christiansen et al.l 2001) or the bio-chemical constraint in protein representation
learning (Chen et al. [2022b). Conversely, when the main optimization problem and the constraint share
the same mathematical formula, the formula needs to be broken down into two levels. This breakdown is
usually accomplished by considering data variations between training and validation sets. The inner level,
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Figure 1: Summary of gradient-based bi-level optimization.

typically represented by the training loss, functions as the constraint in this setting (Franceschi et al.l 2018]).
This comprises the first criterion for our evaluation. (2) In some cases, the main optimization problem might
not, directly contain the outer variable. In such cases, the connection built at the inner level is utilized.
This situation poses a challenge in formulating the outer level task, thereby leading us to introduce a second

criterion. This second criterion classifies works based on whether the calculation of the hypergradient relies
dLomt(0* () ALt (0" (¢),4)
d¢p d¢ ’

exclusively on the established inner level connection, , Or not

To sum up, we consider the following four cases and discuss the corresponding examples for better illustration:

e 1). £ and L% share the same mathematical formula and the hypergradient only comes from the
inner level connection 6(¢);

e 2). L™ and L share the same mathematical formula and the hypergradient comes from both the
inner level connection (¢) and the outer level objective explicitly;

e 3). £ and L% have different mathematical formulas and the hypergradient only comes from the
inner level connection 6(¢);

e 4). £ and L£°“! have different mathematical formulas and the hypergradient comes from both the
inner level connection 6(¢) and the outer level objective explicitly;

3.1.1 Same formula without explicit outer level hypergradient

In instances where the inner and outer levels utilize the same mathematical formula, the objective of the
task is the optimization of a single goal, viewed from two distinct perspectives. The outer variable often
describes some aspects of the training process besides model parameters. The outer variable does not
manifest explicitly in the main optimization problem, leading to a lack of explicit hypergradient at the outer
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Table 2: Same formula without explicit outer level hypergradient.

Work  Inner Var 6 Outer Var ¢ Inner Level Problem as Constraint Outer Level Problem as Main Opt
(@) Model params Regularization 607(¢) = argming >, , ep, ., U0 i, y;) +Q0.0) argming > ., cp, , (O (D) zi,y;)
(b)  Model params  Learning r'ate ) 0*((;15) = OPT(0, ¢, %) arg r.nin¢ E(m“yi)epw 1(9*£¢)7 zi,Y;)
(c) Model params  Perturbation 0" (¢) = argming, E(E::UL)EDLNMM 10,z + ¢;.y,)- arg min, E(z,,yj)EDml —1(07(9), zj,y;)
(d)  Model params  Distilled data 0:(d>) = arg n?ing Z(d’wyi)eDayn 1(0,,,Y:) arg mi.n¢, Z(wj,yj)ebmz 10" (9), xj,y;)
(e)  Model params Data label 0" (¢) = arg ming z(ﬁm‘bl)epwmn 1(0,x;, ;) arg min Z(m_i,yJ)EDU 1(07(9),x5,y;)
(f)  Model params  Sample weight 0" (¢) = argming 3, 1o1epyan Pil(0: Ty i) argming 30, o ep,, (O (@) i, y:)

. 3 * .
arg min E : l(e (¢)7 Zi, yz)
¢ (23,Y:)EDyar
Outer level

xplicit form in loss; N
; agmin > 10.3,y,)+ 20, ¢)

regularization, etc, 0
/ (2i:Y:)€Dyyrain \
. J
¢ Inner level 9*(¢>
\[ \/
No explicit form in 0L(0, Dirain)

o = OPT(0
loss; learning rate, etc. (¢) (6,9, 00 )

- J

Figure 2: Model—related outer variables.

dz: oLt 00(¢) "

level. In this case, the hypergradient of is computed through the inner level connection as “z5— 56
Depending on the specific implications of gi), outer variables can be divided into two categories: model- related
outer variables and data-related outer variables.

Model-related. Model-related outer variables often describe the model optimization process, including (a)
regularization parameters (Franceschi et all [2018), (b) learning rate (Franceschi et all [2017)), etc, which are
more common compared with data-related ones.

(a) Regularization is an essential component to avoid overfitting in machine learning models. However,
identifying an effective regularization term is a challenging task, primarily because each evaluation of a single
regularization term necessitates training the entire model. A model trained with a suitable regularization
term is expected to produce a low error rate on the validation set. This observation leads
to approach the selection of regularization as a bi-level optimization problem to enable direct
and efficient optimization. As illustrated in Table a), the inner level loss on the training set acts as a
constraint, establishing a differentiable connection between the model parameters 6 and the regularization
term. The outer level loss on the validation set forms the main optimization problem, aimed at optimizing
the regularization through the inner level connection. In this context, (6, ¢) denotes the regularization
term parameterized by ¢ on 6. An example of a simple case is the L2 regularization, where Q(0, ¢) = ¢|0|>.

In the outer level loss, the regularization term is considered as zero, making it the same as the inner level
loss in mathematical form. When dealing with high dimensionalities, traditional methods such as random
search and bayesian optimization can prove inadequate. In contrast, the bi-level optimization framework
offers an efficient approach to directly update high-dimensional hyperparameters, such as regularization, as
demonstrated by [Rendle| (2012)), |Chen et al.| (2019), and [Lorraine et al.| (2020)).

(b) Contrary to regularization parameters, which are explicitly present in the loss objective, some model-
related outer variables exist only within the optimization process. The distinction between these two
categories of variables is listed in Figure 2] One example of such a variable is the learning rate, as dis-
cussed by |[Franceschi et al. (2017). The approach to optimize the learning rate, as demonstrated in Ta-
ble (b)7 resembles the regularization optimization process in the bi-level optimization context. The key
difference lies in the way the differentiable connection is constructed. This connection is established by
0" (¢) = OPT(0, ¢, W). Here, OPT represents an optimization process aimed at minimizing the
training loss, which acts as the constraint. A simple case can be represented by a one-step Stochastic Gra-
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dient Descent (SGD), written as " (¢p) = 0 — qﬁ%. In this equation, the outer variable ¢ represents
the learning rate n. Though the inner level problem is represented through the perspective of an optimizer,
fundamentally it is still the same math objective being optimized as in the outer level loss. This learning
rate-learning procedure exhibits some similarities to meta-learned optimization, which we will discuss further

in Section B.2.2

Data-related. Transitioning from the discussion on model-related outer variables, we now turn our attention
to data-related variables. As illustrated in Figure |3] either the data point (x;,y;) itself or its associated
weights can be treated as the outer variable. These can be updated via bi-level optimization across a
spectrum of research areas. This includes (c¢) adversarial attack, (d) data distillation, (e) label learning, and
(f) sample reweighting, among others.

(¢) Adversarial attacks represent an effort to identify data perturbations, denoted as ¢, that lead the model
to perform poorly on the validation set. This concept is further elucidated in Table c), showcasing how it
forms a bi-level optimization problem (Biggio et al., [2012; |[Yuan & Wul [2021). In this context, ¢; signifies
the perturbation added to the sample ;. The inner level acts as a constraint, creating a differentiable
connection between these perturbations ¢, and the model parameters 8. This connection is achieved by
minimizing the training loss. Concurrently, the outer level updates the perturbation ¢ by maximizing the
validation loss. Through this, we can effectively pinpoint adversarial attacks, represented by ¢,. The outer
level loss, with zero perturbation, can be viewed as being the same mathmatical form as the inner level loss.

(d) Data distillation techniques (Wang et al.| 2018} [Lei & Taol [2023)) aim to encapsulate the knowledge from
a large training dataset into a significantly smaller one for the purpose of compression. This objective is
accomplished by training a model on the smaller dataset and expecting it to deliver strong performance on the
larger one, an approach that aligns with the framework of a bi-level optimization problem as demonstrated
in Table (d) Within this context, Dyeq is the dataset consisting of real data, whereas Dy, is the dataset
made up of synthesized data. The inner level establishes the connection between the i** data point ¢;
and the model parameters € by minimizing the training loss. Simultaneously, the outer optimization level
updates the synthesized ¢ to ensure effective performance on the real data, serving as the main optimization
component. Intriguingly, Nguyen et al| (2020) leverage the correspondence between infinitely-wide neural
networks and kernels to achieve remarkable results in data distillation. Furthermore, the concept of data
distillation has been effectively applied to black-box optimization, as demonstrated by |Chen et al.| (2022a))
and |Chen et al| (2023a)), yielding impressive outcomes.

(e) Label learning strategies, such as those proposed by |Algan & Ulusoy| (2021)) and [Wu et al|(2021])), consider
the label y; as an outer variable that is parameterized by ¢. Distinct from data distillation methods, label
learning strategies do not endeavor to reduce the size of the dataset. The principal aim of this learning
approach is to learn cleaner labels that can enhance model performance under label noise, with the guidance
of a clean dataset. This process can be conceptualized as a bi-level optimization problem as laid out in
Table 2| (e), where the main optimization task is to optimize the label against the validation loss.

(f) Several studies (Ren et al., 2018; |Hu et al. 2019)
have put forth the idea of assigning an instance
weight ¢; to each data point (x;,y;) to enhance
the model’s training process. These instance weights
can be considered as outer variables and learned un-
der the guidance of an unbiased validation set. As
Noisy/syn dataset depicted in Table [2] the methodology of instance

¢ Y- label ﬁ 0(¢) reweighting shares similarities with label learning
methods and can be encapsulated within a bi-level

Clean/real dataset

Outer level

x :input

w : weight optimization framework. The initial work by
(2019)) considers each instance weight as a
Figure 3: Data-related outer variables. learnable parameter, which however posed scalabil-

ity challenges for large datasets. To circumvent this
issue, subsequent works (Shu et al., 2019)) devise an alternative solution - a weighting network. This network
is designed to parameterize instance weights, wherein the input is the instance loss, and the output becomes
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Table 3: Same formula with explicit outer level hypergradient.

Work  Inner Var 6 Outer Var ¢ Inner Level Problem as Constraint Outer Level Problem as Main Opt
(2) Follower unit ~ Leader unit 0*(¢) = argmin, p(¢ + 0)0 — Cr(0) argming p(¢ + 0%(4))¢ — Ci(d)
(h)  Model params Network arch  6"(¢) = argming Z(m%yi)EDwam 1(0,¢,z;,y;) argmin, Z(mwa)EDval 1(07(h), b, xj,y,)
(i)  Model params  Perturbation O"(®) = argming L(O, ®) argming L(O(®), P)

. Follower's best response@ .
/ ‘ \ Leader producesgb products. / I \

Leader Follower
¢" = argmaxp(d+ 0" (9))o — Ci(9) s.t. 0%(¢) =argmaxp(p + 0)0 — C¢(0)
o 0

Figure 4: Stackelberg game as bi-level optimization.

the instance weight, enhancing scalability for large datasets. This innovative approach has been further
employed by , who parameterize the atom distance in a molecular structure using a message
passing neural network, a mechanism designed to encapsulate graph information effectively. It is crucial to
note that efficient optimization is closely tied to the effective parameterization of high-dimensional hyperpa-
rameters. Achieving this involves the use of a meticulously designed neural network/input that caters to the
demands of the specific problem at hand, ensuring both efficiency and accuracy in the optimization process.

3.1.2 Same formula with explicit outer level hypergradient

In instances where the inner and outer levels of the optimization share the same mathematical objective, it
is possible for the hypergradient to be derived directly from the outer level. However, such instances are
relatively infrequent compared to the previously discussed scenarios. We surmise that this is likely because,
in most cases, the outer variable can be directly updated along with the inner variable, either through
alternate or joint optimization, without resorting to the more complex approach of bi-level optimization.

(g) In the context of a Stackelberg game (Von Stackelberg, [2010), there are two competing entities - a
leading company and a following company, as depicted in Figure [} These companies compute with each
other over the production quantities, where the leader produces ¢ units and the follower produces 6 units.
The combined price of their output can be expressed as p(¢ + 6). The cost functions for the leader and
the follower are denoted as Cj(¢) and Cy(8) respectively. The resulting profits for the leader and follower
can then be calculated as p(¢ + )¢ — Ci(¢) and p(¢ + )0 — Cr(9). In the Stackelberg game scenario, it is
assumed that the leader is aware of the follower’s best response. This situation can be aptly framed as a
bi-level optimization problem, as detailed in Table g). Importantly, the leader cannot directly optimize ¢
at the outer level without taking into account the differentiable constraint imposed at the inner level. This
interdependence validates the necessity for the bi-level optimization framework.

(h) The task of searching for an optimal neural net-
work architecture within a defined search space is a
critical determinant of the performance of that task.
m\ | B As a neural network architecture can be considered a
/ Z ¢;Blocki() type of hyperparameter, it appears logical to model
¢ the search process as a bi-level optimization prob-

=0 lem to enable effective updates, as discussed in Sec-

tion [B.1.1] However, this task is not straightforward

as the network architecture is non-differentiable and

Figure 5: Continuous relaxation of the neural archi-
tecture in DARTS.
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Table 4: Different formulas without explicit hypergradient.

Work  Inner Var 6 Outer Var ¢ Inner Level Problem as Constraint  Outer Level Problem as Main Opt
G3) Conformation Atom distance 07 (¢) = argming L (0, D) arg ming, £°(6(¢))
(k) Model params Pretrain hyperparams — 6*(¢) = argming £™(6, ¢, Dp,+) arg ming £ (6 (¢), ¢, Dy+)
0] System state Topology design 0*(¢) = argming L(6, ¢) arg ming, £ (6" (¢))
(m) Layer output Model params ) 6=E@0,¢,x) arg min,, Lo(0(), z,y)
(n) Layer output Model params 0(t) =E0(l),p,t), 6(0) =806 argming L (6(t, $), x, y)

cannot be directly optimized using gradient meth-

ods. To address this, [Liu et al| (2019) suggest a

continuous relaxation of the architecture represen-
tation, parameterized by ¢ as depicted in Figure and update ¢ to pinpoint superior neural network
architectures. This scenario can be framed as a bi-level optimization problem as elaborated in Table h).
Here, the inner level loss on the training set serves as a constraint and builds a differentiable relationship
between the model parameters € and the network architectures. At the same time, the outer level loss on the
validation set constitutes the main optimization problem, aiming to optimize the network architectures. As
there is no ground truth for neural architectures, the outer variable ¢ cannot be viewed as a constant as in
instance weighting cases (Shu et al., [2019; |Chen et al.,|2021). Therefore, it is necessary to explicitly update
the neural architectures within the context of the outer level loss. It’s worth noting that the first-order
DARTS method treats 8*(¢) as 0, independent of ¢. In this scenario, bi-level optimization simplifies to
alternate optimization. As a result, the performance of the first-order DARTS is typically inferior compared
to the original second-order DARTS. It’s notable that the conversion of discrete variables to continuous
ones holds significant importance in gradient-based bi-level optimization as it offers an efficient method to
adjust discrete parameters. This technique finds its application in earlier label learning methodologies, as
demonstrated in the works by (Algan & Ulusoyl [2021; [Wu et al., [2021). In these cases, discrete one-hot la-
bels are morphed into soft labels for optimization. However, in such instances, the conversion to continuous
forms isn’t as crucial as in our present context, owing to the existence of alternate methods like instance
reweighting for managing label noise.

(i) Dictionary learning methods (Mairal et al.,|2010) also belong to this category. These methods aim to find
the sparse code ® € R4*P and the dictionary ® € R™*¢ to reconstruct the noise measurements Y € R™*P.
Note that p represents the dataset size, d represents the dictionary size and m represents the feature size of
the dictionary feature. The loss function can be written as:

. 1
arg win £(©, @) = |80 — Y| +7]©)). (6)

In this context, v is a regularization parameter. Rather than employing a slow alternate optimization over
© and ®, which ignores their explicit relationship (that a given dictionary ® should determine the sparse
code @), this can be effectively formulated as a bi-level problem, as detailed in Table [3| (i). This approach
significantly enhances the rate of convergence.

3.1.3 Different formulas without explicit hypergradient

Generally, the inner and outer level objectives share a similar mathematical structure, with the validation set
used to gauge the performance of the model parameters. However, there are instances where the inner and
outer level objectives differ substantially due to their respective optimization of entirely distinct problems.

(j) The study by (2021) exemplifies such a case. In this research, the prediction of molecular
conformation is divided into two levels, each addressing a distinct problem. The inner level problem aims to

construct the molecular conformation with the predicted atom distances by leveraging the physical constraint
and the outer level problem aims to align the molecular conformation with the ground truth conformations,
functioning as the main optimization component. As explicated in Table j), this setup forms a bi-level
optimization problem where £/ and £°%* denote the reconstruction and alignment losses, respectively. Here,
D signifies the predicted atom distances, parameterized by ¢, while the inner variable, @, represents the
predicted molecular conformation. The culmination of this process is a finely-tuned neural network capable
of accurately predicting atoms’ distances.
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Table 5: Different formulas without explicit hypergradient.

Work  Inner Var 6 Outer Var ¢ Inner Level Problem as Constraint Outer Level Problem as Main Opt
(0)  Model params  Surrogate loss params 87 (¢) = argming £(0, ¢, D'"*")  argmin,, L°"(L(6, DY), L7(0%(p), ¢, D))
(p) Seq params Struc params 0" (¢) = argming L(6, ¢) arg ming LU0 (p), D)
(k) Pretraining is a crucial strategy in
Outer level: Finetuning on th fields such as computer vision and nat-
- ural language processing, where identi-
Pretraining Pretrained o (¢) fying the right pretraining hyperparam-
hyper-parameters. model.

eters can significantly improve the per-
W formance on downstream tasks. [Raghul
propose an approach to opti-
mize pretraining hyperparameters based

Figure 6: Pretraining and finetuning as bi-level optimization. on downstream task performance.

This process of pretraining and fine-
tuning can be effectively represented as a bi-level optimization problem, as illustrated in Table k). In
this context, D, and Dy, denote the pretraining and fine-tuning datasets, respectively. At the inner level,
the loss on the pretraining set serves as a constraint and establishes a differentiable connection between the
model parameters and the pretraining hyperparameters. The aim at this level is to minimize the pretraining
loss. At the outer level, the focus is on optimizing the pretraining hyperparameters by minimizing the loss
on the fine-tuning set. This is the main optimization task, and it leverages the differentiable connection es-
tablished at the inner level. In this way, the pretraining hyperparameters can be effectively tuned to enhance
downstream task performances.

(1) The design of a topology that minimizes system cost is an important problem in science (Christiansen|
let all 2001; Zehnder et al. 2021). In the context of topology design, the system reaches an equilibrium
state, denoted by 0" (¢), once a topology ¢ is provided. This equilibrium state is achieved by minimizing the
energy function £(0, ¢). Following this, the system cost can be calculated as £°“*(6*(¢)). This process
can be articulated as a bi-level optimization problem, as detailed in Table [4] (I). The incorporation of an
energy constraint also proves valuable in better simulating soft-body physics (Rojas et al., [2021)).

This concept extends to implicit layers, which encompass (m) Deep Equilibrium Models (DEQ) (Bai et al.
and (n) Neural Ordinary Differential Equations (NeuralODE) (Chen et al., 2018). Both models entail
an equation constraint. DEQ enhances the effectiveness of neural network (NN) representation € with
input « by employing an infinite-depth layer E. This is expressed as 8 = E(0, ¢, x), which establishes a
relationship between the equilibrium point @ and the model parameters ¢. Subsequently, the supervised
loss is utilized to update the model parameters ¢ via this relationship, thus forming a bi-level optimization
problem, as described in Table[d] (m). NeuralODE follows a similar structure as displayed in Table[d] (n). The
sole difference resides in the equation constraint applied in this context, which is an Ordinary Differential

Equation: 6(t) = E(0(t), ¢,t).

3.1.4 Different formulas with explicit hypergradient

In situations where the inner and outer level objectives are distinct from each other, some scenarios feature
a tangible hypergradient. Such cases include (o) learning the surrogate loss function (Grabocka et al., 2019)
and (p) protein representation learning (Chen et al., [2022b]), among others.

(o) In machine learning, proxies of misclassification rate such as cross-entropy are often used to approximate
actual losses, primarily due to their non-differentiable and discontinuous nature. To bridge this gap, a study
by (Grabocka et al. (2019) introduces a surrogate neural network for accurate approximation of these true
losses. This process involves a bi-level optimization formulation, as outlined in Table 0). The inner level
focuses on minimizing the surrogate loss £;,, by optimizing model parameters @, while the outer level refines
the surrogate loss ¢ to resemble the true loss £. The main objective here is to minimize the distance
between the true loss £ and the surrogate loss £ through the outer level optimization process. This
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method facilitates the effective and virtual minimization of any non-differentiable and non-decomposable
loss function, such as the misclassification rate.

(p) Protein pretraining plays a pivotal role in facilitating downstream tasks, and incorporating bio-chemical
constraints into the learning process can enhance its performance. In this context, the protein modeling
neural network deals with two types of information: sequential representation parameterized by € and
structural representation parameterized by ¢. The study by |Chen et al.| (2022b)) utilizes the bio-chemical
constraint that every protein sequence is associated with a particular protein structure, and formulates
protein pretraining as a bi-level optimization problem, as detailed in Table p). As seen, the inner level
establishes the connection between the sequential and structural information by minimizing the negative
mutual information loss, £, acting as the biochemical constraint. Simultaneously, the outer level refines the
structural parameters by minimizing the pretraining loss, £°%, serving as the main optimization component.
Overall, this pretraining scheme bolsters the performance of protein representation learning.

3.2 Multi-task formulation

Multi-task formulation, in contrast to single-task formulation, seeks to extract meta-knowledge spanning
across various tasks. While the choice of hyperparameters in a single-task formulation is broad and diverse
as we illustrate in Section [3.1] in the context of multi-task formulation, the choice of meta-knowledge tends
to be more constrained, making its formulation relatively straightforward. Primarily, two types of meta-
knowledge are embodied by the outer variable in multi-task formulation: model initialization and optimizer,
which we will elaborate upon in the following subsections.

3.2.1 Model initialization

The first kind of meta-knowledge is model initialization, which is useful in the data-scarce scenario
let al., 2022; Liu et al., 2020; Li et al) 2017). The work (Finn et al., 2017) proposes Model-Agnostic Meta-
Learning (MAML) to train the parameters of the model across a family of tasks to generate a good model
initialization. A good model initialization means a few steps on this initialization reach a good solution.
Given a model initialization ¢, the model parameters fine-tuned on the task i after a gradient descent step
can be written as:

aﬁzn (¢7 Dfmi”)
n———="

: (7)

The updated model parameters are expected to perform well on the validation set:

M
& = mgmin Y £7(8,(¢). Di"). ®
¢ o
st. 0;(¢p) = argmin LI"(¢p, DI"*™). 9)
0

This forms a bi-level optimization problem as shown in Figure [l MAML is applicable to a wide range of
learning tasks including classification, regression, etc.

A single initialization may not be able to generalize to all tasks and thus some research work pro-
pose to learn different initialization for different tasks. The method (Vuorio et al) 2019) modu-
lates the initialization according to the task mode and adapts quickly by gradient updates. The
approach (Yao et al) [2019) clusters tasks hierarchically and adapts the initialization according to
the cluster. According to the task formulation, maybe only part of the model parameters need to
be updated, which can save much memory considering millions of parameters for the model. The
work (Lee et al| [2019) fixes the user embedding and item embedding and only updates the inter-
action parameters in the meta-learned phase. The method (Rusu et all [2018) proposes to map
the high dimensional parameter space to a low-dimensional latent where they can perform MAML.

10
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Besides, some analyses (Zou et all 2021) are
also proposed for choosing the inner loop learn-
ing rate. Last but not least, domain knowledge
such as biological prior can
also be incorporated into the MAML model-
n8£§”(¢7 Dirain) ing where they propose a region localization

Outer Level

M

arg min Z [,U'“’t(e,;((ﬁ), D,}’“l)
=1

01(¢) = o ’ network to customize the initialization to each
______ assay. [Tack et al| (2022) adapt the temporal
Inner Level oL (6, Dirain) ensemble of the meta-learner to generate the
0)/(¢) = — M DTN target model. [Hiller et al. (2022) develop a

¢ novel method to increase adaptation speed in-
spired by preconditioning. |Guan et al. (2022)
analyze modern meta-learning algorithms and
give a detailed analysis of stability.

Figure 7: Illustration of MAML.

3.2.2 Optimizer

Another kind of meta-knowledge across tasks is an optimizer. Previous optimizers such as Adam are designed
by hand and may be sub-optimal. The work (Andrychowicz et all [2016)) proposes to learn an optimizer
for a family of tasks. As shown in Figure |8 the learned optimizer is parameterized by ¢ where an LSTM
takes the state as input and outputs the update. In this way, for the i;, task, the model parameters 0 are
connected with the optimizer parameters via:

6;.,(¢) =6, + gi (). (10)

[91(6). 4] = OPT(VgiLi, b, ). (11)

Here OPT denotes the learned LSTM optimizer and h represents the hidden state. The optimizer is updated
to improve the validation performance over a horizon T, and this can be written as:

T

¢ =arg (;ninzﬁout(@i(d)), vat)- (12)

t=1

Overall, this can be formulated as a bi-level optimization problem where the inner level builds the connection
between the model parameters 8 and the optimizer parameters ¢ by minimizing the training loss, and the
outer level updates the optimizer by minimizing the validation loss. Formally, the formulation of bi-level
optimization across a family of M tasks can be written as:

M T
¢* = argd{ninz Z Lout (01(‘15)) f)al)' (13)
=1 t=1
st 051(d) = 0; +gi(9); [9:(#), hi 1] = OPT(VeiLi, by, b). (14)

To optimize millions of parameters, the LSTM is designed to be coordinatewise, which means
every parameter shares the same LSTM. This greatly alleviates the computational burden.
Besides, some preprocessing and postprocessing

0, 9 0, 0, D 041 techniques are proposed to rescale the inputs and
the outputs of LSTM into a normal range. One
t key challenge of learning to optimize is the general-
ization to longer horizons or unseen optimizees and

many research works try to mitigate this challenge.

t i1 The work (Metz et all 2019) proposes to use an
MLP layer instead of an LSTM to parameterize the
Figure 8: LSTM optimizer. optimizer and smooth the loss scope by dynamic

gradient reweighting.

Optimizer
ht—2
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The approach (Wichrowska et al.,[2017)) proposes a hierarchical RNN formed by three RNN layers that could
communicate from bottom to up and this hierarchical design achieves better generalization. The work (Lv!
et all 2017) proposes training tricks such as random scaling to improve the generalization. Besides the
above, some work (Knyazev et al., [2021)) (Kang et al., |2021)) proposes to directly predict parameters, which
can be seen as a specially learned optimizer without any gradient update.

Recent works also try to incorporate the existing optimizer into the optimizer learning, which can
leverage both the existing prior and the learning capacity. The key is to replace the constant (i.e.
scalar/vector /matrix) in the existing optimizer with learnable parameters. HyperAdam (Wang et al., [2019)
learns the combination weights and decay rates according to the task. The method (Gregor & LeCunl [2010)
first writes the ISTA as a recurrent formula and then parameterizes the coefficients as the outer variable.
The approach (Shu et al.,[2020) designs a Meta-LR-Schedule-Net which takes the loss value and the state as
input and outputs the learning rate for the current iteration. The work (Ravi & Larochelle, [2016) proposes
to parameterize the weight coefficient and the learning rate.

Besides the model initialization and the parameterized optimizer, there is some other meta-knowledge like
the loss function learning (Gao et al., [2022)). They propose to learn a generic loss function to train a robust
DNN model that can perform well on out-of-distribution tasks. Given a parametric loss function as the outer
variable ¢, the inner level yields the optimized model parameters 6(¢) by minimizing the training loss on
the source domain. Then a good parametric loss can be identified by minimizing the validation loss on the
target domain. The above process formulates a bi-level optimization problem, which is given by

N
o* :arg;ninZE"“t(H*(¢), i) (15)
1=1
M
st. 0°(¢) =argmin Y L™(0,¢, D}, ;) (16)
L —

Here £°“ is a loss function to measure the performance on target domains and N, and M represent the
number of target domain and source domain tasks, respectively. They further propose to compute the
hyper-gradient by leveraging the implicit function theorem.

4 Optimization
Gradient-based bi-level optimization requires the hypergradient computation of dfl:;t in the outer level. The

hypergradient dfl;ut can be unrolled via the chain rule as:

d,CO“t B 8£out 60(¢) acout
ib ~ 00 o0¢ o (17)

8%(;’) often involves second-order gradient computation and thus are resource demanding. There are

generally four types of methods to calculate a%(f): explicit gradient update in Section explicit proxy

update in Section [I.2] implicit function update in Section [£.3] and closed-form method in Section [£.4] where
the previous three are approximation methods for general functions with the difference in how to build the
connection between 6 and ¢ and the last one is an accurate method for certain functions. Subsequent to
these detailed descriptions, a comprehensive analysis comparing their time and space complexities will be
carried out in Section A

Here

4.1 Explicit gradient update

The explicit gradient update is the most straight-forward one which approximates @ via some optimizer
directly:
0, = OPT(6;_1,¢), t=1,---T. (18)

Here T denotes the number of iterations, 8 represents the model parameters and other optimization variables
like momentum, OPT represents the optimization algorithm like SGD, and ¢ denotes the outer variable in

12
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the training process. Note that when OPT is the SGD optimizer and only one gradient descent step is
considered, Eq. becomes

8[:171(97 ¢7 rDtrm'n)

0 =60— 19
() n 50T (19)
In this case, we can compute the hypergradient as:
80(¢) 32£i"(9, ¢7 Dtrain)
= . 20
o6 T 00 04 (20)

This process often requires the second-order gradient computation. In some cases, the first-order approxi-
mation can be adopted to replace the second-order gradient in (Liu et al., 2019; [Finn et al.| 2017} |Nichol
et al., 2018]). Besides, |[Liu et al.| (2019) uses the finite difference approximation technique to compute the
second-order gradient efficiently.

OLI™ (8T, DIHN) LI (0 ¢, D)
0

2 rin train out
92L™(, p, DIrain) gLout 55 | 1)

007 d¢p 06 2¢

where 6% = 6 + e%. This avoids the expensive computational cost of the Hessian matrix. Further-
more, the work (Deleu et al., |2022|) proposes to adopt infinitely small gradient steps to solve the inner level
task, which leads to a continuous-time bi-level optimization solver:

da(t) aﬁin(e, ¢’ Dtrain)

= T . (22)

In this way, the final output is the solution of an ODE. One great advantage of this formulation is making
the fixed and discrete number of gradient steps the length of the trajectory, which serves as a continuous
variable and is also learnable. This work also proposes to use forward mode differentiation to compute the
hypergradient where the memory does not scale with the length of the trajectory. A similar continuous
bi-level solver is used in |Yuan & Wul (2021)).

Generally speaking, the update is not limited to one step nor SGD optimizer, which makes the hypergradient
computation process complicated. There are generally two modes (Franceschi et al., [2017) to compute the
hypergradient: forward mode and reverse mode.

Forward mode. Forward mode methods apply the chain rule to the composite functions:

d8, _ JOPT(6—1,¢) d8,— , DOPT(8;1,9)

7t 23
do 00:_1 do 0o (23)
Then the matrics are defined as:
de, OOPT(6¢, @) 0OPT(6¢, @)
Zy=—, Aj=——"- B =————""". 24
t dd) ) t aet ) t 6¢t ( )
Thus the Eq. can be written as:
Zt = AtZt—l + Bt—l- (25)
In this way, Zr can be written as:
Zp=ApZr_1+Br_y (26)
T T
=S (1 498 (27)
t=1 s=t+1

which yields the final hypergradient.
Reverse mode. The reverse mode approach originates from Lagrangian optimization. The Lagrangian of
bi-level problems can be formulated as:

T

L(0,¢,7) = L7 (67) + > 7, (OPT(8;-1,¢) — ). (28)

t=1
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The main calculation of partial derivatives can be presented as follows:

L0, p,7)

:7t+1At+1_7t7 te{]., ,T—].} (29)
00,
0L(0, ¢, oLeut
IL (8, ¢, o
(&157) = Z’YtBt- (31)
t=1

Upon setting the partial derivatives in Eq. and Eq. to zero, we can deduce the values of ~,. Incor-
porating this solution with Eq. , we find:

T

OL(0,¢p,y)  ILoM S
= E | I A,)B;. 32
o 90 t:l(s:t+1 s) B (32)

It can be seen that the reverse mode produces the same solution as the forward mode. Works by
let al| (2019); |[Luketina et al.| (2016]) suggest disregarding long-term dependencies to increase efficiency.

4.2 Explicit proxy update

Besides using explicit gradient update to solve the inner level task, a more direct way (MacKay et al., [2019;
[Bae & Grossel [2020; [Lorraine & Duvenaud, 2018) is to fit a proxy network P,(-) which takes the outer
variable as input and outputs the inner variable,

0" = Pa(®). (33)

There are two ways to train the proxy: global and local. The global way aims to learn a proxy for all ¢ by
minimizing £ (P, (), ¢, DI"%") for all ¢ against o while the local way minimizes L7 (P, (), ¢, DITe")
against a for a neighborhood of ¢.

A special case (Bohdal et al. [2021) is to design the proxy as a weighted average of the perturbed inner
variable. This work adopts an evolutionary algorithm to obtain an approximate solution for 8. By perturbing
0 to 0y for K times, they compute the training losses as {l;(¢)}< | where lx(p) = L"(0), ¢, D). Then
the weights for each perturbed loss are,

wy,wsa, -+ ,wg = softmax([—1; (@), —la(d), - - - , 1k (P)]/7), (34)

where 7 > 0 is a hyperparameter. Last, the proxy is obtained as

0" = w101 + w01 + - +wkbk. (35)

Compared with explicit gradient update methods, these proxy methods can adopt deep learning modules
to directly build the relationship between the inner variable and the outer variable. Thus these methods
generally require less memory while are less accurate due to the rough approximation brought by the deep
learning module.

4.3 Implicit function update

The hypergradient computation of the explicit gradient update methods relies on the path taken at the
inner level, while the implicit function update makes use of the implicit function theorem to derive a more
accurate hypergradient without vanishing gradients or memory constraints issues. First, the derivate of the
inner level is set as zero:

9L(0, P)

A 0. (36)
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Then according to the implicit function theorem, we have:

0%L(0,9) 00(¢)  OL2(8, )

=0. 37
00"06 09 90" o¢ (37)
At last, we can compute the hypergradient as:
00(¢) _ *L(6(¢). ¢),_19L%(0,9)
- _( T ) T . (38)
ey 06' 00 90" 9¢

Take iIMAML (Rajeswaran et al)|2019) as an example. To keep the dependency between the model param-
eters 8 and the meta parameters ¢, IMAML proposes a constraint on the inner level task:

: , A
0i(¢) = argmin L3"(6,D;"""™) + T || ¢ — ] (39)
o

The regularization strength A controls the strength of the prior ¢ relative to the dataset. The iMAML
bi-level optimization task can be formulated as:

M
¢* =argmin Yy L7(6,(¢),D;). (40)
¢ =
st. 0;(¢p) = argmin L£I"(6, DI"*™) 4 %H(ﬁ — 0|2 i=1,---,M. (41)
0

The hyper-gradient can be computed as:

dei (¢) l 62 E”L (Oia Dtrain)

_ —1

which is independent of the inner level optimization path. In this case, the hypergradient can be computed as

the solution g to a linear system oL i;gﬁ’ggmm) = B%Zj't . More specifically, g can be seen as the approximate
solution to the following optimization problem:
10%Lm(0 aLout (0
argminw ' (I + —#)w - wT#. (43)
w A 00'06 00

Conjugate gradient methods can be applied to solve this problem where only Hessian-vector products are
computed and the hessian matrix is not explicitly formed. This efficient algorithm is also used in HOAG (Pe-
dregosay, [2016]) to compute the hypergradient. Besides the linear system way to compute hypergradient, the
work in [Lorraine et al.|(2020) proposes to unroll the above term into the Neumann Series:

2 pin inf 2 pin
(8/.1 (9))_122(1_8/5 (0)

44
90" 00 00" 00 ) (44)

=0

9°L(6(9).¢)

20T 00 s contractive. This

The first 4, steps’ result are used to approximate the computation if I —
can avoid the expensive computation of the inverse Hessian.

4.4 Closed-form update

While the above three methods provide an approximate solution for general loss functions, we here consider
deriving a closed-form connection between 6 and ¢ from

0(¢) = argmin L™(0, ¢, D", (45)
]

which is only applicable for some special cases. |Bertinetto et al. (2019)) propose ridge regression as part of
its internal model for closed-form solutions. Assume a linear predictor f parameterized by 6 is considered
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as the final layer of a CNN parameterized by ¢. Asume the input X € R"*P and the output Y € R™*°
where n represents the number of data points and d,o represents the input dimension and the output
dimension, respectively. Denote the CNN as ¢(X): RP — R® and then the predictor’s output is ¢(X)0
where ¢(X) € R"*¢ and 0 € R¢*°. The 4y, inner level optimization task can be written as:

0i(¢) = arg min l¢(X )0 — Y| + A[0]>. (46)
where M\ controls the strength of L? regularization. The closed form solution is 6;(¢p) =

o(X;) T (p(X)p(X;)T + M)~1Y,. To sum up, to extract meta-knowledge ¢ in the feature extractor, we
have the bi-level optimization formulation as:

M
¢ = arg min > LoH0i(9), DY). (47)
i=1
st 0i(¢) = (X)) (P X)P(X)T +A) Y0 =1,---, M. (48)

Applying Newton’s method to logistic regression, yields a series of weighted least squares (or ridge regression)
problems. This is also a closed-form solution but requires a few steps.

Another special case is to assume the model to be wide enough. Recent work (Jacot et al., 2018;
build the correspondence between the NNGP kernel and the Bayesian Neural Network and the
correspondence between the NTK kernel and the gradient trained Neural Network with MSE loss. In this
case, the inner level can have a closed-form solution. The works (Nguyen et al., [2020; [Yuan & Wul 2021)
treat the data as the outer variable for data distillation and adversarial attack tasks respectively, which yield
better-distilled samples and adversarial attacks. These algorithms can be achieved by NTK tool
easily. The approach (Dukler et all [2021)) treats the instance weights as the outer variable and
assumes the pretrained model with linear representation to yield a closed-form solution for the inner level
task. Besides assuming the inner level as ridge regression and least squares, some works (Ghadimi & Wang},
[2018; [Yang et all 2021)) also assume the inner level loss function is strongly convex and propose effective
algorithms to better solve the bi-level optimization problem.

4.5 Comparative Analysis.

This subsection delves %nto a comparative analysis of the time and space complexity involved in computing
the hypergradient ds 7 - in Eq.. We will evaluate the following four methods for this purpose, with a
summary provided in Table [f] for reference.

Explicit gradient update. Denote the time of computing Eq. as ¢(d,m). Following the approach
(Franceschi et all,[2017)), the product between the Jacobian matrix in Eq. and any vector can be computed
within a time complexity of O(c(d, m)). In the context of the forward mode for explicit gradient update
(termed explicit gradient forward), the time complexity becomes O(T'me(d, m)). This is because it requires
T iterations, and each iteration involves m Jacobian-vector products. The space complexity for the forward
mode is O(d + m), as the inner variable € can be overwritten in each iteration. Contrastingly, for the
reverse mode (termed explicit gradient reverse), the time complexity is O(T'¢(d, m)) since it involves only
one Jacobian-vector product per iteration. However, the space complexity increases to O(T'd + m), as the
inner variable cannot be overwritten. In summary, the explicit gradient forward and explicit gradient reverse
methods offer a trade-off between time and space complexities: the former minimizes memory usage at the
cost of increased computation time, whereas the latter accelerates computation at the expense of memory.

Explicit proxy update. The implementation of this method necessitates the training and utilization of
a proxy network. The space complexity is O(d + m) as it maintains both the inner variable and the outer
variable. Let ¢(d, m) represent the time required to train the proxy network, and i(d, m) denote the inference
time. The time complexity is O(t(d, m) + i(d, m)). While it’s challenging to draw direct comparisons with
other methods due to the potential variations in proxy network designs, this method is generally considered
to be both time- and space-efficient. However, this comes at the expense of solution accuracy. Often,
the explicit proxy update method may not perform as well as other methods because the proxy network
0" = P,(¢) may not accurately approximate the relation between the inner variable and the outer variable.
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Table 6: Comparison on time and space complexity.

Method Time Space
Explicit gradient forward O(Tme(d, m)) O(d+m)
Explicit gradient reverse O(Te(d, m)) O(Td +m)
Explicit proxy update t(d,m) +i(d,m) O(d+m)
Implicit function update  O((Km + T)c(d,m)) O(d+m)
Closed-form update O(N?) O(N?)

Implicit function update. The implicit function update method capitalizes on the implicit function
theorem to calculate the hypergradient. Solutions are often approximated through conjugate gradient or
Neumann series methods. Given a K-step approximation, the time complexity is O((Km + T)c(d, m)), as
each step involves m matrix-vector products and the whole process is followed by a T-step gradient descent
The space complexity is O(d + m).

In practical scenarios, the implicit function update and explicit gradient update methods often yield more
precise solutions compared to the explicit proxy update. The latter, while less accurate, is often utilized
for its efficiency advantage. As established by [Lorraine et al. (2020)), the solutions obtained by the implicit
function update can be viewed as the limit of the explicit gradient update as the number of iterations T’
approaches infinity. This insight bridges these two methods. Moreover, |Grazzi et al| (2020) demonstrated
that both the implicit function update and explicit gradient update methods converge linearly under certain
conditions, with the former typically converging at a faster rate. As detailed in Table 6] the time complexity
of the implicit function update is O((K'm + T)c(d, m)). Compared to the explicit gradient forward’s time
complexity of O(Tme(d,m)), the implicit function update method can be more time-efficient when the
approximation step K is smaller than 7" and the hyperparameter dimension m is large. It’s worth noting
that|Lorraine et al.| (2020) demonstrate the application of the implicit function update method for optimizing
millions of hyperparameters, proving the efficiency of implicit function update. When considering the trade-
off between time and memory efficiency, as illustrated in Table [f] the implicit function update is generally
more memory-efficient than the reverse mode of the explicit gradient update but somewhat less time-efficient.
This analysis serves to guide the choice of method by considering specific requirements of the task at hand,
balancing both time and space efficiencies.

Compared to the implicit function update method, the explicit gradient update method is more prevalently
employed within the research community, particularly for optimizing hyperparameters such as learning sam-
ple weights (Ren et al) |2018; [Hu et all |2019; Wang et al., 2020; [Shu et al., 2019). This preference is
especially pronounced within the deep learning community, which often leans towards the explicit gradient
update method. Several reasons can explain this inclination: (1). The popularity of the explicit gradient
update method was propelled by seminal works that used influence functions to study the impact of a train-
ing point on prediction outcomes (Koh & Liang] [2017). This method was then widely adopted in subsequent
research, particularly in works focusing on learning sample weights (Ren et al., 2018; [Hu et al. [2019; [Wang]
let al.l 2020; [Shu et all 2019). (2). The explicit gradient update method’s appeal lies in its intuitiveness and
straightforwardness within the context of deep learning. It can also offer interpretability in certain scenarios.
For instance, during sample reweighting, samples with gradients similar to the gradient on the validation
set are reweighted to be high 2019). In contrast, the implicit function update method, while
potent, is more complex, relying on optimization techniques such as the conjugate gradient method and
Neumann series for approximation. (3). Lastly, the explicit gradient update method benefits from advanced
deep learning libraries like higher (Grefenstette et al., [2019), designed explicitly for calculating the explicit
gradient update. This tool offers substantial support, making the explicit gradient update method more
accessible and efficient to implement, contributing to its prevalence.

Closed-form update. The closed-form update method is specifically designed for certain problems where
a closed-form solution for the inner level problem can be obtained. Contrary to the other methods, this
one yields an exact hypergradient. The most time-consuming aspect of this method is the inverse matrix
computation, which results in a time complexity of O(n?), where n denotes the dataset size. The space
complexity stands at O(n?).
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Distinguishing between optimizing data and other hyperparameters, we observe divergent preferences in the
community regarding the suitable method for each task. For hyperparameters like regularization (Franceschi
, the explicit gradient update method is the common choice. This method provides an optimal
balance between computational efficiency and solution precision, a crucial consideration for online model
training where real-time updates are essential. Its strength lies in its ability to iteratively and efficiently
fine-tune hyperparameters, thereby significantly enhancing the model’s performance during the training
phase. Conversely, the optimization of data, such as data distillation (Nguyen et all 2020), generally em-
ploys the closed-form kernel method. This method may be computationally intensive, leading to perceived
inefficiencies, but it delivers highly precise solutions, a quality that is integral in the context of data op-
timization. In scenarios like data distillation, the output is often used for offline tasks such as continual
learning. The computation burden of the closed-form method, therefore, becomes less of a concern because
the optimization is carried out once and the solution can be reused indefinitely. This singular computation
for lasting usage offsets the computational inefficiency, making it a viable choice for data optimization tasks.

5 Conclusion and Future Directions

Bi-level optimization embeds one problem within another and the gradient-based category solves the outer
level task via gradient descent methods. We first discuss how to formulate a research problem from a bi-level
optimization perspective. There are two formulations: the single-task formulation to optimize hyperparam-
eters and the multi-task formulation to extract meta-knowledge. Further, we discuss four possible ways
to compute the hypergradient in the outer level, including explicit gradient update, proxy update, implicit
function update, and closed-form update. This could serve as a good guide for researchers on applying
gradient-based bi-level optimization.

As we conclude our survey, we spotlight two promising future directions: (1) Effecctive Data Optimization
for Science from a task formulation perspective corresponding to Section (2) Accurate Ezplicit Proxy
Update from an optimization perspective corresponding to Section

5.1 Future Direction 1: Effecctive Data Optimization for Science

Depending on the nature of the data, this domain can be primarily divided into three areas: tuning parameter
optimization, design optimization, and feature optimization. Here, we elaborate on how bi-level optimization
acts as a potent tool to optimize these categories of data, aiding in solving scientific problems.

Tuning parameter optimization. In the scientific domain, a common problem is to find a design - be it a
protein, a material, a robot, or a DNA sequence - that optimizes a specific black-box objective function such
as a protein property score (Trabucco et al. [2022)). This process often trains a proxy model using collected
pairs of designs and scores along with certain tuning parameters, and the trained proxy guides the design
search in evolutionary algorithms or reinforcement learning (Angermueller et al., [2019).
Parameter tuning via bi-level optimization has emerged as a promising approach to achieve data-specific
optimization and can enhance the local accuracy of the proxy model around the current point in the search
space. This could potentially revolutionize the design search process, making it more effective and targeted.
Such optimization can be achieved by locally sampling data points from the collected design-score pairs or
by using pseudo-labelers to label neighboring samples. As mentioned in Section we envision utilizing
a clean validation set to fine-tune these data-specific parameters via bi-level optimization. This approach
offers promising prospects in identifying reliable portions of locally sampled data, thereby improving the
local accuracy of the proxy model, and providing a more effective direction to the search process. As we
move forward, the nuances of these techniques will be refined and expanded, offering greater possibilities in
design optimization tasks.

Design optimization. A paradigm shift in approaching scientific problems could be to focus on directly
optimizing the design, instead of tuning parameters to enhance proxy model performance. Data distillation
through bi-level optimization, could serve as a pivotal strategy in this context. This technique extracts
extensive knowledge from large datasets into distilled samples, a process which has been found to retain
features corresponding to the labels associated with the distilled samples (Wang et all 2018} [Lei & Taol
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. Taking inspiration from these findings, certain studies assign a predefined high score to an initial
design and distill knowledge from the training set into the design (Chen et al.| [2022a};|2023al)). This procedure
results in a design with high-scoring features, essentially creating a desirable final candidate. As we look
towards the future of gradient-based bi-level optimization, two intriguing directions arise from this research
line. Firstly, employing foundational models specific to fields such as materials science, alongside advanced
data distillation techniques (Lei & Tao, [2023)), could substantially improve distillation performance. This
would enable more accurate high-scoring features to be incorporated into the design. Secondly, analyzing
the distilled high-scoring sample to extract patterns and potential rules presents another exciting prospect.
Armed with this derived knowledge, it may be possible to create high-scoring designs or to integrate this
understanding into our modelling process, paving the way for more insightful and accurate predictions.

Feature optimization. Another pivotal area in science is feature optimization, which aims to improve
the learning of data features. This optimization process is intertwined with scientific constraints, which
can be effectively incorporated as the inner level task in bi-level optimization. These constraints generally
include geometric and biochemical constraints. Geometric constraints stem from the physical or spatial
characteristics of a system. An example of leveraging these constraints can be seen in the work
. Here, the process of molecular conformation prediction is decomposed into two levels, with the
geometric constraint between molecular conformation and predicted atom distances being the inner level
task. By utilizing this constraint, the trained neural network can produce atom distance features that are
more compatible with the actual molecular structure. Biochemical constraints are rooted in the chemical and
biological principles that govern a system. These constraints have been utilized by |Chen et al|(2022b)), where
the inherent correspondence between the sequential and structural representations of a protein is used as the
biochemical constraint. The task of maximizing mutual information is formulated as the inner level task,
which allows the Graph Neural Network (GNN) to output protein structural features with higher accuracy.
Moving forward, feature optimization is set to play an increasingly important role in enhancing the learning
of data features by leveraging inherent scientific constraints within a bi-level optimization framework.

5.2  Future Direction 2: Accurate Explicit Proxy Update

Beyond the potential identified in the first future direction, another significant area of exploration centers
around constructing a more accurate proxy in explicit proxy update. This promises to yield a more accurate
computation of hypergradients efficiently. One viable strategy is to employ a more interpretable construction
of the proxy network, 8 = P,(¢). For example, |[Bohdal et al.|(2021]) design a proxy by utilizing a weighted
average of the perturbed inner variable, a process that offers interpretability and improved accuracy.

Moreover, we underline the connection between model-based optimization (Trabucco et al}|{2022)) and explicit
proxy update, in the context of computing the inner variable from the outer variable using gradient methods.
Specifically, the explicit proxy update aims to discover a proxy network that maps the outer variable to the
inner variable. This mapping bears a resemblance to the trained model in model-based optimization, which
maps the input design (e.g., a robot) to its property (e.g., robot speed). Consequently, recent advancements
in model-based optimization can potentially enhance the performance of explicit proxy update. Here, we
discuss some directions that are not exhaustive:

Modeling Priors. In model-based optimization, integrating various modeling priors, such as smooth-
ness (Yu et al] [2021)), is critical for model performance. Analogously, these priors could be integrated into
the training of the proxy network, leading to more precise prediction from the outer to the inner variable.

Importance Sampling. Model-based optimization utilizes data gathered during the optimization process,
and the model might not be accurate for the neighborhood of the current optimization point. A technique
used in model-based optimization (Fannjiang & Listgarten| 2020)) involves employing importance sampling
to retrain the model, based on input distribution. This approach could be adapted to the training of proxy
neural network on the already gathered outer-inner variable pairs.

Reverse Mapping. Some works in model-based optimization (Fannjiang & Listgarten| [2020; |Chan et al.|
2021)) suggest using a reverse mapping for predicting the input design from the property score using generative
modeling techniques. By maintaining consistency between the forward mapping (i.e., the model prediction
process) and the reverse mapping, the model’s accuracy is significantly enhanced. A parallel strategy can be
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applied in explicit proxy updates where the introduction of a reverse mapping to predict the outer variable
from the inner variable could improve the accuracy of the proxy by ensuring consistency.

Efficient Sampling. Training the proxy neural network involves sampling the outer variable and computing
the corresponding inner variable, which can be computationally expensive. Utilizing the acquisition function,
as seen in model-based optimization (Trabucco et al.,[2022)), to decide the next batch for sampling may prove
to be an efficient solution to this challenge.
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