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ABSTRACT

Linux kernel configuration is critical for system performance, security, and adapt-
ability. However, its vast configuration space, comprising over 17,000 configuration
options, renders manual tuning both time-consuming and prone to errors. Existing
methods largely rely on static heuristics or limited semantic rules, which struggle
to capture complex configuration dependencies or adapt across diverse workloads.
We introduce ICMOS, a framework that integrates large language models (LLMs)
with a heterogeneous knowledge graph of kernel configuration concepts (OSKC-
KG). By grounding LLM reasoning in structured semantics, ICMOS supports
context-aware mining of configuration concepts and agentic concept evolution
in response to new requirements and kernel updates. We evaluate ICMOS on
configuration QA tasks and diverse real-world workloads, including databases,
web servers, in-memory caches, and system benchmarks. ICMOS consistently
outperforms LL.M-only baselines, delivering higher accuracy, faster optimization,
and robust system performance. Notably, it halves optimization time, reduces tail
latency by 58.1%, and more than doubles configuration success rates. These results
demonstrate that ICMOS provides a scalable and reliable framework for grounding
LLM reasoning in structured semantics, thereby advancing kernel configuration
understanding and optimization.

1 INTRODUCTION

Operating System Kernel Configuration (OSKC) refers to the process of selecting, understanding,
and optimizing the configuration items that determine the kernel’s behavior and structure. This
process is critical to achieving system performance, security, and compatibility (Figure[I)). However,
modern Linux kernels (Torvalds & Contributors} 2025) comprise over 17,000 options with intricate
dependencies, forming an intractably large configuration space that renders manual tuning infeasible.
This complexity has spurred various automated solutions; however, existing approaches, such as
Kmax (Gazzillol [2019), rely mainly on static heuristics or manual analysis, fail to capture semantic
dependencies, and lack generalization across diverse hardware and workloads.

Although recent work has explored the use of large language models (LLMs), such as GPT-4 (OpenAl
et al.,|2023)), and LLM-based frameworks like AutoOS (Chen et al.,[2024) for kernel configuration
optimization, several key challenges remain. First, configuration options often lack well-defined
semantics, making it difficult for both human experts and LLMs to accurately infer their system-level
implications. Second, LLMs are prone to hallucination (Xu et al., [2024), often producing invalid or
suboptimal suggestions due to inadequate knowledge of the specific domain. Third, both rule-based
and LLM-driven approaches exhibit significant inefficiencies. For instance, AutoOS demands 1 to 2
hours per optimization iteration and often fails to compile due to configuration conflicts.

To address these challenges, we propose ICMOS, a novel framework that synergizes LLMs with a
heterogeneous knowledge graph for incremental concept mining in kernel configuration spaces. By
combining the linguistic comprehension capabilities of LLMs with knowledge graphs’ structured
constraint modeling, ICMOS achieves configuration-aware reasoning, automatic semantic concept
mining, and continuous evolution of mappings between configurations and concepts. Specifically,
the foundation of ICMOS is OSKC-KG, a heterogeneous graph representation that systematically
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Figure 1: Overview of OSKC: (Left) Linux kernel space and configurations, (Middle) user-centric
OSKC tasks, (Right) LLM hallucination challenges.

models kernel configuration spaces through: a Configuration Graph that models the hierarchical and
dependency structures of kernel configuration items and a Concept Taxonomy Graph that captures
the evolving functional semantics of configurations. Building upon this representation, ICMOS
operates through a two-phase process: (1) LLM-KG Synergy Mining, Where the LLM traverses the
configuration graph via structured context reasoning to mine functional semantics of configuration
items and establish mappings to the concept taxonomy graph; (2) Agentic Concept Evolution,
where the LLM agent dynamically incorporates user requirements or emerging kernel functions
through concept-oriented agentic reasoning. Furthermore, our framework supports human-in-the-loop
verification to ensure the correctness, interpretability, and functional relevance of mined concepts.

To validate ICMOS’s ability to ground LLM reasoning in structured semantics, we further introduce
a suite of downstream OSKC Understanding Tasks, including retrieval QA and performance tuning
across both system-level metrics (e.g., CPU computation, file I/O) and application-level workloads
(e.g., databases, web servers, in-memory caches). We evaluate ICMOS on these tasks and find that
it consistently outperforms LLM-only baselines, achieving substantial gains in accuracy, system
performance, and optimization efficiency. Notably, it reduces optimization time by nearly half, more
than doubles the configuration success rate, and cuts tail latency by up to 58.1% across representative
workloads, underscoring its practicality and reliability.

To summarize our contributions:

1. We present ICMOS, the novel framework that integrates large language models with
a heterogeneous knowledge graph (OSKC-KG) for kernel configuration. This enables
structured, configuration-aware reasoning beyond heuristic or LLM-only approaches.

2. We introduce incremental concept mining, a novel approach that systematically extracts,
organizes, and evolves the semantic concepts of kernel configuration options, establishing a
dynamic and extensible concept taxonomy of OSKC semantics.

3. We design a two-phase process that combines LLM-KG synergy mining for context-aware
semantic mapping and agentic concept evolution for adapting to user requirements and
emerging kernel features, with human-in-the-loop verification for correctness and inter-
pretability.

4. We establish a benchmark of OSKC Understanding Tasks and empirically demonstrate that

ICMOS delivers substantial improvements in efficiency and performance over LLM-only
baselines across real-world scenarios.
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Figure 2: Overview of the ICMOS framework, which integrates OSKC-KG, LLM-KG synergy
mining, and agentic concept evolution with human-in-the-loop verification.

2 ICMOS FRAMEWORK

We formalize the OSKC challenge as structuring configuration items, associating them with functional
semantics, and enabling generalization to downstream tasks such as semantic QA and performance
tuning. To address this, we propose ICMOS, an incremental concept mining framework that bridges
raw kernel configuration options with high-level functional semantics through three synergistic
components: (i) OSKC-KG, a heterogeneous knowledge graph unifying configuration structures
and functional semantics; (ii)) LLM-KG synergy concept mining, for automated, constraint-aware
alignment of configuration options to semantic concepts; and (iii) Agentic concept evolution, enabling
dynamic adaptation of semantics via concept-driven reasoning. The entire pipeline is reinforced by
human-in-the-loop verification to ensure semantic correctness and interpretability (see Figure 2).

2.1 OSKC CONCEPT KNOWLEDGE GRAPH

To bridge raw kernel configuration options with high-level functional semantics, we construct the
OSKC-KG, a heterogeneous knowledge graph formally defined as Goskc = (V, R, T). It integrates
two subgraphs:

Configuration Graph. The configuration graph captures structural and logical dependencies
among Linux kernel options. Its nodes represent represent configuration entities (e.g., menu, config,
menuconfig, choice), while its edges encode hierarchical structure (SUB_OPTION), dependency
constraints (DEPENDS), and enforced implications (SELECTS). We automatically construct this graph
by parsing the official Linux kernel’s Kconfig files using Kconfiglib (Rouberg et al.,[2018)), yielding
a scalable representation of hierarchical and dependency structures across kernel versions. Details of
parsing, node extraction, and relation definitions are provided in the Appendix [B.1.1]

Concept Taxonomy Graph. Modern kernel configuration options are often encoded in cryptic or
hardware-specific identifiers, making semantic interpretation difficult for both human developers and
LLMs. For example, the option ATA_ACPI appears obscure in isolation, yet its source description
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reveals associations with both Power Management and Storage Support. Such latent semantics are
essential for managing and optimizing large-scale configuration profiles. To address this challenge, we
construct a hierarchical Concept Taxonomy Graph that systematically organizes kernel configurations’
functional semantics. The taxonomy is seeded with expert-defined coarse-grained domains (e.g.,
Security Features, Performance, Hardware Support) and dynamically expanded via LLM-guided fine-
grained concept mining (see following paragraph). This hybrid construction ensures both semantic
coverage and extensibility, providing an interpretable space for aligning raw configuration items with
high-level abstractions. An illustrative subset is shown in Table[I] while formal definitions and the
complete construction process are included in Appendix [B.1.2]

Unified Representation. Crucially, OSKC-KG is not a simple juxtaposition of the two subgraphs.
Instead, LLM-guided concept mining leverages structured information from the configuration graph
to infer functional semantics, dynamically expanding the taxonomy and establishing cross-subgraph
mapping relations. These mappings unify the two subgraphs into a coherent heterogeneous knowledge
graph that supports interpretable reasoning and downstream tasks.

Table 1: Part of Hierarchical Concept Taxonomy

Expert-defined Coarse Concepts LLM-mined
Top-level Sub-level Fine-grained Concepts
Core Subsystem Filesystem, Networking Flash Filesystem, Wireless
Security Features ~ Access Control, Cryptography Process Signal Control
Hardware Support Storage, Peripheral SCSI, Bus Support
Performance Memory, I/O Optimization PMD, DMA Optimization

LLM-KG Synergy Concept Mining. To bridge the configuration graph with the concept taxonomy
graph and incrementally mine fine-grained functional semantics, we propose an LLM-KG synergy
mining process. The core mechanism leverages a traversal of the configuration graph to extract rich
contextual signals, including structural dependencies and natural language descriptions, and enables
the LLM to predict appropriate semantic concepts. This process establishes interpretable mappings
between configuration items and concepts while dynamically enriching the concept taxonomy.

We adopt a Hierarchical Hybrid Traversal (HHT) strategy to provide structure-aware context for
the LLM. First, a global breadth-first search (BFS) identifies branching nodes (menu, menuconfig,
choice) and assigns depth levels. Second, local depth-first search (DFS) collects descendant config
nodes into branch units, enriched with two key contexts: (1) a parent state encoding high-level intent
from ancestors, and (2) a sibling state aggregating peer semantics for contrastive reasoning. This
structured context enables the LLM to produce coherent, taxonomy-aligned concept mappings.

The semantic mapping set is defined as:

M gce;vt X chg7 (1)
where Ce,; is the extended concept taxonomy (expert-defined and LLM-mined), and V., s, is the set
of configuration nodes. Each mapping is further annotated with a confidence score, rationale, and
hierarchical insertion rule (see Appendix [B.2|for details). For each configuration node v € Vs, we
retrieve structured context from the configuration graph to guide the semantic alignment:

’Cv :{Pv7DvaP€aSZ}7 (2)
comprising: (1) the hierarchical path P,, (2) the configuration node description D,,, (3) the parent
state Py, and (4) the sibling state Sy. This context enables the LLM to perform grounded, consistent
reasoning by leveraging structural dependencies, mitigating hallucination and ambiguity.

Given the context K, the LLM predicts a set of relevant concepts from C.,:. The top predictions,
filtered by a confidence threshold 6, are used to establish RELATED_TO mappings between the configu-
ration item and its functional concepts. Simultaneously, any newly discovered concepts are integrated
into the taxonomy via SUB_CATEGORY relations. All outputs support optional human-in-the-loop
validation to ensure semantic accuracy and practical utility. This closed-loop process enables the
OSKC-KG to evolve coherently, aligning low-level configurations with high-level semantics in a
structured and interpretable manner. Detailed prompt templates and reasoning traces, along with
illustrative mined concept examples, are provided in Appendix [B.3]and Appendix
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2.2 CONCEPT-ORIENTED AGENTIC REASONING

While the synergy mining process aligns configuration items with fine-grained concepts by leveraging
the structured semantics of OSKC-KG, real-world requirements and kernel evolution continuously
introduce new functionalities, such as workload-specific goals (e.g., MySQL latency optimization,
secure container isolation) and kernel features (e.g., advanced scheduling or eBPF integration). To
preserve semantic completeness and adaptability, ICMOS enables the incremental integration of
emerging concepts into OSKC-KG.

We propose Concept-oriented Agentic Reasoning, a framework that leverages LLM agents to extend
both the taxonomy C.; and the semantic mappings M. The process exploits three components of
OSKC-KG: the configuration graph, the concept taxonomy, and their mappings, within a structured
agentic pipeline.

Agentic Reasoning Process. Given a new concept Cey, the agent executes a structured four-stage
pipeline: perception, navigation, retrieval, and reasoning (as illustrated in Figure [2). First, the
agent reformulates Cl.,, into a query prompt and performs guided traversal over Ce,; to identify
semantically related branches. The result is a candidate set of related concepts 7yejaed- Using the
existing mapping M, the agent retrieves the associated configurations:

Vena = |J {0l Ty) e M}, 3)

T € Trelated
which induces a subgraph Geonig C Ve sq representing the relevant configuration space.

The agent then performs retrieval-augmented reasoning over Geonfig, leveraging metadata such as help
texts, dependency constraints, and selection rules. This produces an increment of semantic mappings:

Mnew = {(’U, CneWa 5,7") | v E Vcand}7 (4)

where s € [0, 1] is a confidence score and r denotes the rationale. Finally, the integration of Cley into
the taxonomy is guided by semantic alignment and subject to human-in-the-loop validation. If Cyeyw
is belongs to an existing branch, it is inserted via a SUB_CATEGORY relation; otherwise, it is added as
a new root-level concept. The mapping set is then updated as M < M U M ey-

2.3 HUMAN-IN-THE-LOOP VERIFICATION

To ensure the reliability of the semantic mapping M and the evolving concept taxonomy Cex, We
incorporate a human-in-the-loop verification mechanism that enables domain experts to examine the
generated concept assignments by inspecting the associated confidence scores and reasoning traces,
and subsequently validate their semantic correctness.

This verification process supports both global refinement of the taxonomy (e.g., merging overlapping
concepts or adjusting hierarchical structures) and local validation of individual configuration-to-
concept mappings. Furthermore, the refined concepts and mappings undergo downstream task-driven
validation (Section [3)), where experts assess their semantic validity and effectiveness in real-world
scenarios, such as configuration optimization and retrieval QA.

3 OSKC UNDERSTANDING TASKS

To evaluate the effectiveness of ICMOS and the semantic quality of OSKC-KG, we introduce a suite
of downstream OSKC Understanding Tasks. These tasks evaluate the interpretability and operational
utility of our framework within realistic system deployment contexts.

Formally, given a natural-language query ¢ (e.g., a configuration question or optimization goal), the
task is to return either (i) a semantic interpretation .4, or (ii) a relevant configuration set K, C K.
We consider two representative settings:

* Configuration Retrieval QA: Given a question (e.g., “Which options relate to process
scheduling?”), retrieve the relevant configuration items and their associated semantic expla-
nations from OSKC-KG.



Under review as a conference paper at ICLR 2026

* Intelligent Configuration Optimization: Given a performance target, generate an opti-
mized configuration set that improves system-level or application-level performance, while
respecting kernel dependency constraints.

Together, these tasks form a benchmark for kernel configuration understanding, covering both
symbolic reasoning and performance-driven optimization. We validate results through human-in-the-
loop evaluation and quantitative comparison against baselines.

4 EXPERIMENT

We validate ICMOS on the OSKC Understanding Tasks (Section [3), benchmarking against LLM-only
and heuristic baselines. We first present the experimental setup and OSKC-KG characterization,
followed by evaluations on Configuration Retrieval QA and Intelligent Configuration Optimization.

4.1 EXPERIMENTAL SETUP AND METRICS

Setup. We construct OSKC-KG from the Linux 6.x kernel series (versions 6.1-6.15) and implement
ICMOS with DeepSeek-V3-0324 (DeepSeek-Al et al.,[2024) as the core LLM. All data are stored
in Neo4j (Neo4j Team) 2025) to support efficient traversal, retrieval, and expansion. Optimization
experiments are conducted on a virtual machine running Ubuntu 24.04 (Linux 6.8, aarch64) with 4
CPU cores and 4 GB RAM.

Metrics. We adopt task-specific metrics: (i) Configuration Retrieval QA: tag-level Recall,
F1, Top-3 Accuracy, and option-level Exact Match Rate. (ii) Intelligent Configuration Op-
timization: UnixBench scores (Lucas, 2015) (CPU, memory, I/O, scheduling) for system-level
evaluation, and application-level throughput and latency (e.g., Apache, MySQL, Redis), mea-
sured with ApacheBench (Apache Software Foundation, [2013)), sysbench (Kopytov, 2023), and
memtier_benchmark (Redis Labs| 2024). We further report tuning efficiency (optimization time per
cycle) and conflict-free success rate.

4.2 OSKC-KG CHARACTERIZATION

The constructed OSKC-KG comprises 18,927

nodes and 145’191 eflges (Table [2), covering Table 2: OSKC-KG Scale and Coverage Statistics
17,624 configuration items and 1,303 semantic

concepts. Notably, 96.5% Qf conﬁg.uratlons are Type Comnt %
semantically annotated, with each item associ-

. . . Nodes (Total: 18,927)
gted Wlth an average O.f 3.9iconcepts (}ncludlpg Config/ Menuconfig 17042 913
inherited ones), reflecting high semantic density. Concept Nodes 1303 68
This broad coverage, semantic richness, and ex- Menu / Choice Nodes 82 19
tensibility, establish OSKC-KG as a scalable Edges (Total: 145,191)

. . . DEPENDS 47244 326
foundat.lor% f0§ downstream reasoning, retneyal, SELECTS 13919 96
and optimization. The end-to-end construction SUB_OPTION 17455 12,0
of OSKC-KG required approximately 25 hours SUB_CATEGORY 1370 0.9

; . RELATED_TO 65203  44.9
(graph construction: 1h; concept mining: 16h;
expert validation: 8h). These costs are domi- Mapping

C . . Mapped Configs/Menuconfigs 16,630/ 17,242 96.5
nated by the initial build; subsequent updates Avg. Tags per Config 39 -

(e.g., new kernel versions or user requirements)
are incremental and incur minimal overhead for
extraction and verification. Further statistics and the schema overview are provided in Appendix [B.3]

4.3 CONFIGURATION RETRIEVAL QA

To evaluate whether OSKC-KG enhances semantic retrieval for kernel configurations, we construct
a curated evaluation set of 100 expert-annotated QA pairs, covering two key tasks: (i) Concept
Understanding and (ii) Configuration Selection (see Appendix [C|for details). As shown in Table[3]
OSKC-KG augmentation substantially outperforms the LLM-only baseline: concept recall increases
from 66.7% to 88.9%, concept F1 improves by 16.2 percentage points (from 49.2% to 65.4%),
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and exact match accuracy for configuration selection rises from 58.7% to 86.9%. These gains
demonstrate that structured semantic grounding not only improves retrieval fidelity but also enhances
interpretability by aligning model outputs with domain concepts.

Table 3: Performance on Kernel Configuration QA with and without OSKC-KG Augmentation

Metric LLM-only LLM + OSKC-KG
Concept Understanding

Tag Recall 66.7% 88.9%

Tag F1 49.2% 65.4%

Top-3 Accuracy 46.3% 75.9%

Configuration Selection

Exact Match Rate 58.7% 86.9%
Span-level F1 85.9% 96.0%

4.4 INTELLIGENT CONFIGURATION OPTIMIZATION

We evaluate ICMOS in practical, deployment-oriented settings, examining both performance gains
and reliability under kernel constraints. To ensure that the produced configurations are feasible and
deployable, we augment LLM reasoning with a Conflict-Aware Validation Mechanism (detailed in
Appendix [D) that enforces dependency, selection, default-value, and visibility constraints derived
from OSKC-KG, thereby preventing infeasible or mutually conflicting option sets.

We assess optimization along two complementary dimensions: (i) System-level performance, mea-
suring CPU, memory, I/O, and scheduling efficiency using UnixBench; and (ii) Application-specific
tuning, evaluating end-to-end performance for representative workloads (web servers, databases,
in-memory caches) under high-concurrency benchmarks. This separation enables us to capture both
micro-level efficiency and macro-level workload adaptability of the resulting configurations.

Comparison Setup. We compare three strategies: (i) Default: the official Linux configuration;
(ii) AutoOS: LLM-only optimization without external knowledge; (iii) ICMOS (ours): the full
concept-oriented agentic reasoning pipeline (Section [2.2), augmented with OSKC-KG retrieval and a
conflict-aware validation mechanism to ensure semantic grounding and feasibility. All evaluations
follow the metrics defined in Section 4.1l

Table 4: UnixBench Results: Baseline vs. AutoOS (LLM-only) vs. ICMOS. (Changes are relative to
Baseline. Higher is better for all metrics.)

Test Case Baseline AutoOS ICMOS
Dhrystone 2 8335.2 8391.1 (+0.7%) 8449.8 (+1.4%)
Whetstone 1586.3 1611.7 (+1.6%) 1626.9 (+2.6%)
Execl Throughput 22479 2389.8 (+6.3%) 2401.0 (+6.8%)
File Copy 1024b 4873.6 5121.4 (+5.1%) 5177.6 (+6.2%)
File Copy 256b 3279.1 3339.5 (+1.8%) 3384.3 (+3.2%)
File Copy 4096b 8164.2 92314 (+13.1%)  10152.8 (+24.4%)
Pipe Throughput 21774 1963.4 (-9.8%) 2302.8 (+5.8%)
Context Switch 78.8 86.7 (+10.0%) 84.4 (+7.1%)
Process Creation 733.0 810.1 (+10.5%) 873.8 (+19.2%)
Shell Scripts (1) 4826.4 5183.9 (+7.4%) 5266.6 (+9.1%)
Shell Scripts (8) 10161.7 9933.7 (-2.2%) 10385.2 (+2.2%)
System Call 1056.2 1093.3 (+3.5%) 1099.7 (+4.1%)
Index Score 2287.6 2348.4 (+2.7%) 2432.1 (+6.3%)

System-Level Performance. As shown in Table f] ICMOS consistently improves all twelve
UnixBench metrics, achieving +6.3% overall gains versus +2.7% for AutoOS, and up to +24.4% in file
I/0 and +19.2% in process creation. Unlike AutoOS, which occasionally introduces regressions due
to uninformed configuration choices, ICMOS maintains stability by leveraging structural knowledge
and conflict validation. A representative set of system-level optimization recommendations generated
by ICMOS is shown in Appendix [E]
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Table 5: Application-Specific Performance: Baseline vs. AutoOS (LLM-only) vs. ICMOS
across Web Servers (Apache/Nginx), Databases (MySQL/PostgreSQL), and In-Memory Caches
(Redis/Memcached). Evaluated with ApacheBench, sysbench, and memtier_benchmark. (%1 =
improvement over Baseline, Throughput: higher better; Latency: lower better.)

Metri Apache Nginx
etric

Baseline AutoOS (%7T)  ICMOS (%71) Baseline AutoOS (%7T)  ICMOS (%71)
Time Taken for Tests (s) 0.235 0.232,+1.3% 0.228,+3.0% 0.268 0.257,+4.1% 0.253,+5.6%
Requests per Second (req/s) 42,490 43,095+1.4%  43,816,+3.1% 37,324 38916,44.3%  39,449,+5.7%
Time per Request (ms) 2.354 2.320,+1.4% 2.282,+3.1% 2.679 2.570,+4.1% 2.534,+5.4%
Transfer Rate (KB/sec) 454,155 460,614,+1.4%  468,332,+3.1% 397,881 413,555,+3.9%  420,533,+5.7%
Max Request Time (Total, ms) 13 19,-46.2% 17.5,-34.6% 12 20,-66.7% 11,+8.3%
Metric MySQL PostgreSQL

Baseline AutoOS (%T)  ICMOS (%71) Baseline AutoOS (%1T)  ICMOS (%71)
Transactions per Second (TPS)  1,919.5 1,952.241.7%  1,996.9,+44.0%  556.2 560.4,+0.8%, 617.1,+11.0%
Queries per Second (QPS) 39,502 40,191,+1.7%  41,058,+3.9% 11,489 11,570,0.7% 12,744,+10.9 %
Average Latency (ms) 52.08 51.20,+1.7% 50.06,+3.9% 53.92 53.71,+0.4% 47.96,+11.1%
95th Percentile Latency (ms) 111.67 112.00,40.3%  104.84,46.1%  24.83 22.28,+10.3%  18.28,+26.4%
Metric Redis Memcached

Baseline AutoOS (%7T) ICMOS (%71) Baseline AutoOS (%7) ICMOS (%71)

Total Throughput (ops/sec) 257,552 267,080,+3.7%  270,841,+4.0% 447,110 461,583,43.2%  484,847,+8.4%
Average Latency (ms) 1.56 1.50,+3.7% 1.48,+4.6 % 0.90 0.88,+2.8% 0.88,+2.9%
P50 Latency (ms) 1.46 1.40,+4.2% 1.49,-1.1% 0.57 0.60,-4.7% 0.52,+8.4%
P99 Latency (ms) 3.31 3.28,-1.0% 3.07,+7.3% 3.97 3.73,+5.9% 3.96,+0.1%
P99.9 Latency (ms) 11.92 18.18,-52.4% 4.99,+58.1% 5.92 6.82,-5.1% 6.91,-16.8%
Throughput (KB/sec) 74,833 77,601 (-3.7%)  78,694,+5.2% 130,286 134,504,43.2%  137,616,+5.6%

Application-Specific Tuning.  Across six real-world workloads (Table[3)), ICMOS yields substantial
benefits, reducing tail latency by up to 58.1% and improving throughput by as much as 11.0%. For
example, PostgreSQL achieves 26.4% lower P95 latency alongside notable QPS gains (+10.9%). In
contrast, AutoOS often degrades performance (e.g., increased Nginx request time), highlighting the
robustness of ICMOS across diverse workloads.

Efficiency and Reliability. As summarized in Table[6] ICMOS reduces optimization time by 50%
(39 min vs. 82 min per cycle) and increases configuration success rate from 29% to 76%, while
nearly eliminating compilation/boot failures. These results confirm that conflict-aware reasoning not
only enhances performance but also ensures reliable and deployable configurations.

Table 6: Optimization Efficiency and Reliability: AutoOS vs. ICMOS. Improvements (Imp.%) are
computed relative to AutoOS; lower is better for time and conflicts, higher is better for success rate.

Metric AutoOS ICMOS Imp. (%)
Average Optimization Time per Cycle 82 minutes 39 minutes 47.6 %
Average Conflicts per Iteration 4.5 1.4 68.9%
Configuration Success Rate 29% 76% 162.1%

4.5 ABLATION STUDY

While Sections [4.3H4.4] conclusively demonstrate that augmenting LLMs with OSKC-KG yields
significant gains over the LLM-only AutoOS baseline, we now isolate the contribution of conceptual
completeness in the taxonomy.

Specifically, we design a concept masking experiment: we randomly remove 30% of mid- and
leaf-level nodes from the taxonomy, along with their edges and mappings, simulating scenarios with
partial semantic coverage. This directly limits the contextual guidance available to the LLM agent
during optimization.

As reported in Table[7] the masked variant (ICMOS-Masked) still outperforms the LLM-only baseline,
reflecting the robustness of our agentic reasoning process. However, it consistently underperforms
the full ICMOS model, particularly in benchmarks requiring fine-grained semantic differentiation.
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Table 7: Ablation: Impact of concept masking on UnixBench performance. ICMOS-Masked removes
30% of mid- and leaf-level concepts and their mappings.

Test Case Baseline  AutoOS ICMOS Masked ICMOS
Dhrystone 2 8335.2 8391.1 8444.2 8449.8
Whetstone 1586.3 1611.7 1607.8 1626.9
Execl Throughput 22479 2389.8 2378.4 2401.0
File Copy 1024b 4873.6 5121.4 5120.6 5177.6
File Copy 256b 3279.1 3339.5 33427 3384.3
File Copy 4096b 8164.2 9231.4 8893.0 10152.8
Pipe Throughput 2177.4 1963.4 2200.8 2302.8
Context Switch 78.8 86.7 80.5 84.4
Process Creation 733.0 810.1 755.5 873.8
Shell Scripts (1) 4826.4 5183.9 4669.6 5266.6
Shell Scripts (8) 10161.7 9933.7 10268.3 10385.2
System Call 1056.2 1093.3 1063.7 1099.7
Index Score 2287.6 2348.4 2376.4 2432.1

These results indicate that a complete concept taxonomy substantially improves contextual reasoning
and optimization effectiveness, and that structured semantic knowledge is essential for unlocking the
full potential of LLM-guided kernel tuning.

To further illustrate the practical utility of ICMOS, we conduct a case study on workload-specific
optimization (details in Appendix [F).

5 RELATED WORK

Traditional Kernel Configuration. Early kernel configuration (OSKC) optimization methods rely
on static analyses and heuristics over Kconfig files. Representative tools such as Kmax (Gazzillo,
2019) validate configuration constraints, while learning-based systems like VConf (Rao et al.|[2009)
and DeepPerf (Ha & Zhang|, 2019) employ probabilistic models and deep networks to predict
performance or reduce kernel size. More recent transfer learning approaches (Herzog et al.| 2021}
Martin et al) 2021) improve generalization across hardware but remain data-intensive and lack
semantic interpretability. Although Hou et al. (Pengpeng et al.,[2021)) propose a visual multi-label
graph for configuration understanding, this approach depends on manual curation and lacks scalability.

LLM-based Configuration Optimization. LLM-driven systems such as AutoOS (Chen et al.|
2024) explore kernel tuning via prompt-based reasoning and generation. While effective for initial
exploration, these methods often lack deep semantic grounding of configuration options, leading to
ad hoc heuristics, hallucination risks, and limited interpretability.

Structured Knowledge and Agent-based Reasoning. To improve factuality, retrieval-augmented
generation (RAG) (Lewis et al,2020) and its graph extensions (e.g., GraphRAG (Han et al.| 2024))
leverage structured knowledge to guide LLM reasoning. Similarly, agent frameworks such as
ReAct (Yao et al., 2022)) and SWE-agent (Yang et al., 2024)) combine reasoning with tool use for
autonomous decision-making. However, existing approaches rarely incorporate structured semantics
in system-level domains such as OS kernel configuration. Our work bridges this gap by integrating
LLM agents with a domain-specific knowledge graph, enabling semantically grounded, configuration-
aware reasoning for kernel optimization.

6 CONCLUSION

We presented ICMOS, a novel framework that grounds LLM reasoning in the structured semantics
of OSKC-KG to enable scalable, interpretable kernel configuration. By unifying configuration
structure with dynamic concept taxonomies, ICMOS supports incremental concept mining and
agentic evolution. Experiments demonstrate consistent gains over LLM-only baselines in both
retrieval and optimization tasks, improving semantic fidelity, system performance, and reliability.
Looking ahead, we will extend ICMOS to broader kernel versions and heterogeneous environments,
further advancing knowledge-driven system automation.
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ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. Our study focuses on operating system kernel
configuration and optimization using knowledge graphs and large language models. It does not
involve human subjects, sensitive personal data, or proprietary/confidential information. All data
used for constructing OSKC-KG are derived from publicly available Linux kernel sources (Torvalds
& Contributors| [2025)), and the experimental environments are fully reproducible. We believe that
the proposed methods pose no foreseeable risks of harm, bias, or misuse, and that they contribute
positively to advancing system-level optimization and interpretability research.

REPRODUCIBILITY STATEMENT

‘We have taken multiple steps to ensure the reproducibility of our work.

* Code and Framework. The implementation of ICMOS, including data preprocessing, OSKC-KG
construction, and evaluation pipelines, is provided as anonymized supplementary material and will
be fully open-sourced upon acceptance.

» Data. The expert-annotated QA dataset used in Section [4.3| along with processing scripts, is
included in the supplementary material and will also be released publicly after acceptance.

* Experiments. Experimental setup (hardware, software, benchmarks) and evaluation metrics are
provided in Sectiond] Hyperparameters, prompts, and additional results (including ablation and
case studies) are reported in Appendix [E]and Appendix [F}

* Theoretical and Algorithmic Details. Formal definitions and algorithmic procedures (e.g.,
semantic mapping, traversal strategy, and agentic reasoning) are presented in Sections 2.2]
with more detailed explanations and extended discussions provided in Appendix [B]

Together, these resources provide sufficient detail for independent reproduction of both our methodol-
ogy and results.
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A LLM USAGE DISCLOSURE

In accordance with ICLR 2026 submission policies, we disclose the usage of large language models
(LLMs) in the preparation of this paper. LLMs (e.g., ChatGPT) were used solely as a writing aid for
language polishing and grammar refinement. They were not involved in research conception, method-
ology design, implementation, or experimental evaluation. Specifically, LLMs were occasionally
used to improve readability in the Abstract and Introduction sections, without altering the technical
content. All ideas, methods, analyses, and results presented in this paper are entirely the work of the
authors.

B OSKC-KG CONSTRUCTION DETAILS

B.1 FORMAL DEFINITION OF OSKC-KG

The OSKC-KG is formally defined as a heterogeneous knowledge graph:

Goske = (V, R, T) %)
where:
-V = Vigg U Vioncept: the union of nodes from the configuration graph and concept taxonomy graph;

- R = Rt U Reoneept U Rmap: includes intra-subgraph relations (e.g., DEPENDS, SUB_CATEGORY) and
inter-subgraph mapping relations (e.g., RELATED_TO);

-T C VxR xV: the set of all valid triples in the graph, where each triple (h, r,t) denotes a semantic
or structural relationship from the head entity & to the tail entity ¢ under the type of relation r.

This unified representation enables semantic alignment between raw configuration options and
high-level functional concepts, facilitating downstream tasks such as configuration recommendation,
retrieval QA, and intelligent optimization.

B.1.1 CONFIGURATION GRAPH

To systematically model the structural and semantic complexity of Linux kernel configurations,
including hierarchical organization, logical dependencies, and inter-option associations, we propose
a structured representation called the Configuration Graph Gegy = (Vetg, Ecty). The Configuration
Graph is formally defined as:

gcfg = (‘/;fga Rcfga chg) (6)

where:
-Vitg denotes the set of configuration entities
- R, contains intra-configuration relations (e.g., DEPENDS, SELECTS)

-Tegg © Vigg X Regg X Vg Tepresents valid triples derived from kernel source semantics.

Corpus Source The construction of the Configuration Graph is grounded in the official Linux
kernel source, primarily the distributed set of Kconfig files. Each Kconfig file declaratively defines
a collection of configuration options, including their types, default values, help descriptions, logical
dependencies (e.g., depends on, select), and their hierarchical organization into menu or menucon-
fig. (Kconfig structure in Figure[T)). We use a static analysis tool Kconfiglib as the core parser and
build a data processing pipeline on top of it, enabling consistent extraction of configuration items
(e.g., config, menu) and their interdependencies across different Linux kernel versions. This pipeline
processes Kconfig files to generate structured metadata, which serves as the foundational data for
constructing the configuration graph.

Node Extraction Building upon the structured metadata obtained from Kconfig parsing, we
systematically identify the configuration entities to construct the node set Vi¢,. Each node v € Vg,
represents a distinct configuration element with preserved semantic attributes (e.g., type, default
value, help text). We define four primary node types:
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» menu: Hierarchical containers grouping related options (e.g., Device Drivers).

* config: A basic configurable option (e.g., CONFIG_RTC_LIB).

* menuconfig: High-level toggles that expose subordinate options (e.g., CONFIG_ATA —
CONFIG_ATA_ACPI).

e choice: Mutually exclusive groups (e.g., CONFIG_HZ timer frequency, where only one
option like CONFIG_HZ_10@0 can be selected).

These node types are automatically recognized and extracted via our custom-built data pipeline,
ensuring scalability across different Linux kernel versions.

Relation Extraction Based on the syntactic and semantic patterns in Kconfig files, we formally
define three core relation types (denoted as R.t,) which model structural and logical dependencies
between the configuration nodes:

* SUB_OPTION: Captures parent-child relationships in menu structures (e.g., menu or
menuconfig — config).

* DEPENDS: Encodes logical constraints from depends on clauses (e.g., CONFIG_ATA_ACPI
depends on CONFIG_ACPI).

e SELECTS: Enforced implications via select clauses (e.g., CONFIG_ATA_ACPI forces
CONFIG_PATA_TIMINGS)

These relationships are automatically extracted during the Kconfig parsing phase, preserving the
complete constraint semantics from the original configuration system.

The configuration graph provides a structured representation of kernel configuration items and
their interdependencies, enabling precise modeling of hierarchical organization, logical constraints,
and semantic associations. This modular design further supports dynamic evolution with new
configuration nodes across kernel versions.

B.1.2 CONCEPT TAXONOMY GRAPH

Modern kernel configuration options often encode low-level mechanisms using cryptic or hardware-
specific identifiers, which makes semantic interpretation challenging for both human developers
and LLMs. For instance, the option ATA_ACPI may seem obscure in isolation, but its description
(e.g., help text) reveals associations with both Power Management and Storage Support. These latent
semantics are essential to effectively manage, understand, and optimize configuration profiles at
scale.

To address this problem, we construct an extensible Concept Taxonomy Graph Geoneept =
(Vconcept, Econcepl), which organizes functional semantics into a hierarchical structure. This graph
serves as a semantic backbone for aligning raw configuration options with high-level interpretable
functional concepts (Example in Table [I)).

Formal Definition. The Concept Taxonomy Graph is formally defined as a directed acyclic graph:
gconcept = (V;oncepta Rconcepla Tconcept) (7)

where:

- Veoncept: the set of semantic concept nodes, organized into a hierarchical structure from coarse-
grained domains to fine-grained functionalities;

- Reoncept = {SUB_CATEGORY}: the set of relations that denote parent-child relationships in the
hierarchical taxonomy.

- Teoncept € Veoncept X Reoncept X Veoncept: the set of valid triples representing parent-child entities and
relationships in the graph.

This formalization supports multi-level semantic reasoning and enables seamless alignment with
configuration items through mapping relations.

13
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Graph Construction The Concept Taxonomy Graph is constructed based on a hybrid approach
combining expert knowledge and LLM-guided refinement. It consists of two primary components:

* Concept Nodes (Vioncept): Represent semantic units at varying levels of abstraction, rang-
ing from high-level domains (e.g., Security Features, Cryptography) to fine-grained
functionalities (e.g., Process Signal Control).

* SUB_CATEGORY Relations (Fconcept): Directed edges that denote hierarchical specialization
between concepts, enabling multi-level reasoning.

These components are populated through a two-stage process:

Stage 1: Expert-Defined Coarse-Grained Concepts.
We begin with a set of high-level functional domains, defined by kernel experts based
on their analysis of the Linux kernel documentation and subsystem organization (e.g.,
Security Features, Cryptography). These categories form the coarse-grained nodes of
the taxonomy and capture key functional dimensions (Table[T).

Stage 2: LLM-Guided Fine-Grained Expansion.
Building upon this expert-defined coarse-grained hierarchy, we guide LLM to incrementally
discover and integrate fine-grained concepts. Each new concept is automatically mapped
to the taxonomy via LLM-recommended hierarchical paths using SUB_CATEGORY relations,
ensuring both semantic coherence and hierarchical consistency.

The Concept Taxonomy Graph is constructed through a hybrid approach combining expert-defined
coarse-grained domains with LLM-guided fine-grained expansion. Its hierarchical structure not only
captures multi-level functional semantics but also supports dynamic evolution as new functionalities
emerge.

This structured yet extensible schema ensures both interpretability and scalability in modeling kernel
functionality, laying the groundwork for semantic alignment with configuration items and supporting
various downstream reasoning tasks.

B.2 LLM-KG SYNERGY CONCEPT MINING

B.2.1 MAPPING FORMALIZATION
To bridge the semantic gap between the Configuration Graph and the Concept Taxonomy Graph, we
formalize the semantic mapping M as:

M g Cext X chg X [Oa 1] X Rtrace X Hinsert (8)
where:

- Cext = Veoncept U {fi j}: the extended concept set, combining manually expert-defined coarse-grained
concepts and fine-grained sub-concepts f;; generated through LLM-guided mining;

- Vetg: the set of configuration nodes from the Configuration Graph;
- [0, 1]: confidence scores derived from LLM outputs;
- Rirace: @ set of reasoning traces or rationales that justify each mapping decision.

- Hiner = {h | h = (fij, SUB_LCATEGORY, ¢), fi; € {fij},c € Cex}: a set of hierarchical insertion
relations that define how new concepts are integrated into the taxonomy.

Each mapping (¢, v, s, 7, h) € M represents an association between a configuration node v and a
concept c, assigned a confidence score s and supported by a reasoning trace r. The hierarchical
relation i € Hipgere further specifies where the new concept should be placed within the Concept
Taxonomy Graph (Prompt shown in Figure [3). It typically takes the form of a SUB_CATEGORY link to
a concept already present in Cex, Whether that concept was defined by experts or previously mined
through LLM inference.

This mechanism enables both semantic alignment with configuration items and structural expansion
of the Concept Taxonomy Graph. The mapping is initialized as M < (), with the expert-defined
taxonomy preloaded into the LLM prompt to bootstrap the semantic mining process.
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B.2.2 TRAVERSAL STRATEGY

To enable context-aware semantic reasoning over the deep and intricate Configuration Graph (with
over 17K nodes spanning 9 nested levels, as detailed in Section [4.2)), we propose a two-phase
traversal strategy called Hierarchical Hybrid Traversal (HHT). This strategy not only defines an
efficient exploration order but also embeds structural priors that guide LLM-based concept mining
and mapping. The strategy consists of two complementary phases:

Global Layer-wise Enumeration. We first perform a breadth-first search (BFS) from the configu-
ration root (the top-level Linux kernel configuration entry point) to identify all structural
branching points (menu, menuconfig, choice), assigning each a depth level ¢. This global
enumeration establishes a hierarchical encoding that serves as the foundation for localized,
structure-aware reasoning in subsequent phases.

Local Branch-wise Expansion. For each branch identified in the global phase, we perform a local
depth-first search (DFS) to collect its descendant config nodes, forming a Branch Unit.
Each unit is enriched with two types of contextual information:
- Parent State (Py): captures the semantic context inherited from the parent node at level /,
representing high-level configuration intent;
- Sibling State (Sy): aggregates shared semantics among sibling nodes, providing contrastive
cues for fine-grained concept differentiation.

This dual-state representation enables localized, structure-aware LLM reasoning, allowing the model
to build upon previously analyzed concepts while maintaining coherence within the taxonomy.

The HHT traversal strategy provides both a structured exploration mechanism and a semantic context
framework. By maintaining parent and sibling states throughout the graph, it supports incremental
concept mining, where newly discovered concepts are refined based on previously mapped concepts
and their hierarchical placements. This design ensures that the knowledge graph evolves coherently,
preserving semantic alignment and structural integrity during LLM-driven expansion.

B.2.3 CONCEPT MINING VIA LLM-KG SYNERGY

We formulate the concept mining process as a node-wise semantic alignment task, guided by the
traversal structure introduced in HHT. At each configuration item v € Vg, the LLM generates
candidate concept associations by utilizing both the Configuration Graph structure and dynamically
updated contextual priors.

Our goal is to construct mappings within the extended concept space Ceyx, defined as: M C Cex X
Vetg X [0,1] X Rigace X Hinserr(Def. in Equation , where each mapping reflects not only the
functional intent of the configuration but also the hierarchical position of concepts within the Concept
Taxonomy Graph. To achieve this objective, we further define a structured knowledge context for
each configuration node v:

KUZ{PU7Dv7PZ7SE} (9)
Where:

* P,: Hierarchical path from configuration root to node v, encoding structural position information;
* D,: Node-level semantic description (e.g., help text), providing explicit semantic cues;

* Py: Parent branch’s semantic state derived from LLM analysis;

» Syt Aggregated semantics of the sibling nodes in the branch unit, supporting contrastive reasoning.

Given /C,,, the LLM predicts a set of candidate concepts:
Cy = {c¢ € Cext | LLM-conf(c | k) > 6} (10)

where § = 0.65 serves as a confidence threshold to filter low-quality predictions. The resulting
mappings associate each configuration item with a set of predicted concepts, along with corresponding
confidence scores and rationales explaining the associations. Additionally, the LLM generates
recommended hierarchical insertion paths, which are encoded as SUB_CATEGORY relations to facilitate
seamless integration into the Concept Taxonomy Graph.

The validated mappings are then incorporated into the global mapping set M after human-in-the-
loop validation (Section [2.3), and corresponding RELATED_TO relations are established between
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configuration items v € V., and their associated concepts ¢ € Ceq. This process enriches the
heterogeneous graph system with interpretable semantic links.

This LLM-KG synergy concept mining process establishes interpretable mappings between configu-
ration items and functional concepts, guided by structural priors from the Configuration Graph. It not
only identifies semantically meaningful concepts but also integrates them into the Concept Taxonomy
Graph through hierarchical insertion paths.

B.3 PROMPT AND REASONING TRACE

To enhance transparency and reproducibility of the LLM-KG Synergy Concept Mining process (Sec-
tion 2.I), we provide representative examples of the prompts given to the LLM and the corresponding
reasoning traces it produced.

Figure [3] shows an example prompt designed for extracting functional semantics from a kernel
configuration option. The prompt incorporates structured context from the configuration graph and
domain-specific metadata, guiding the LLM to infer candidate concepts with confidence scores.

Prompt

System Prompt

You are a Linux kernel configuration expert.

Your goal is to help build a **consistent, human-readable, and hierarchical** concept taxonomy to support understanding
and navigation of kernel configs.

Mining Prompt
Your task is to propose **0—5 general-purpose concepts** for the following kernel configuration item,
based on the following information:
Instructions:
1. **Inheritance and Specialization**:
— Prioritize inheriting from the parent node's concept(s)(If existing), by reusing or specializing them into a more fine—
grained subcategory.
— Example: If parent concept is "Memory Management’, child config may be labeled *Swap’ or "Hugepage'.
— Ensure the new concept remains within the same conceptual branch.
2. **Sjbling Alignment (Optional)**:
- If sibling configs already have concepts, consider **reusing or generalizing** from them when applicable.
- Keep concept usage consistent among related configs.
3. **Relevance and Generalization**:
- Propose concepts that reflect **real functional meaning** (e.g., kernel features, subsystems, hardware usage,
performance domains).
- Avoid overly narrow, hardware-specific, or ad hoc tags (e.g., *x86_special_irq’, "ath10k_debug_flag’).
- Instead, generalize (e.g., ‘Interrupt Handling", *Wireless Debugging’).
4. **Hierarchy Fit**:
— All suggested concepts must map to the **existing concept hierarchy** (’suggested_concept_path’) provided below.
— Do **not create new concept categories** beyond the existing hierarchy.
5. **Confidence Score**:
- Assign a “confidence’ value (0.0—1.0) for each concept:
- "> 0.85": Strong match (clear functional + hierarchical fit)
- "0.6—0.85": Moderate confidence
- "< 0.6": Weak — avoid unless no better alternatives
Reference concept hierarchy:
{predefined_taxonomy}

Optional parent analysis and sibling status:
{contextual_status}

Configuration Information:

{configuration, help text}

Rules:

Output Format:

Return a list of relevant concepts or '[I' if nothing suitable applies.
Output Format:

[

"concept_name": "suggested_concept”,
: "parent1 —> parent2 —> suggested_concept",
: "Explain why this concept fits the configuration",
"confidence": "Confidence score, following standards"

Figure 3: Prompt for LLM-KG Synergy concept mining.
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Output Example

"BLK_RQ_ALLOC_TIME":
[

"label_name": "Storage Support",
: "Hardware Support —> Storage Support”,

: "Inherits from parent node labels which strongly emphasize storage-
related functionality. This config item deals with block request allocation timing, which
is a core storage subsystem mechanism.",

"confidence™ 0.85

>

"label_name": "I/O Optimization",
: "Performance —> I/O Optimization”,

: "Alignment with sibling configurations (BLK_ICQ,
BLK_DEV_BSG_COMMON) that share I/O performance characteristics. The allocation
timing optimization fits within the performance domain.",

"confidence™ 0.8
}
1

1

Figure 4: LLM reasoning output for concept mining.

Figure [ illustrates the reasoning trace generated by the LLM in response to this prompt. The trace
includes intermediate steps, justifications, and the final mapping decision, which are then verified and
integrated into the evolving concept taxonomy (Appendix [B.4).

Together, these examples demonstrate how ICMOS leverages prompt engineering and structured
reasoning to produce interpretable and verifiable mappings from configuration items to semantic
concepts.
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B.4 CONCEPT TAXONOMY

We construct an expert-defined taxonomy of kernel configuration concepts, organized into eight
high-level categories with corresponding subcategories (Table [8). This taxonomy serves as the seed
structure for OSKC-KG and can be extended through incremental concept mining.

Table 8: Expert-defined Concept Taxonomy

Category Subcategories

Core Subsystem Hotplug, Schedule, Power Management, Debugging, Virtualization, Containerization, Swap, Filesystem, Network-
ing, Logging & Tracing, Cgroup, Hugepage

Kernel Mechanisms Tracing, Isolation Mechanisms, Namespaces

Security Features Access Control, Integrity & Verification, Sandboxing & Isolation, Cryptography

Hardware Support CPU Support, GPU & Display Support, Storage Support, Network Adapters Support, Peripheral Support, Multime-
dia Support, Embedded & SoC Support, Power & Thermal Management

Performance CPU Optimization, Memory Optimization, Disk Optimization, Network Optimization, Latency Optimization,
Energy Efficiency Optimization, Real-Time Optimization, I/O Optimization

Build & Boot Bootloader Support, Initramfs, Compression

Compatibility Legacy Support, POSIX Compliance

To illustrate the process of incremental concept mining, we provide an example for the Hotplug
category under the Core Subsystem. Figure [5|shows a partial view of the mined subcategories, which
were automatically extracted and refined through ICMOS. This example demonstrates how ICMOS
extends the expert-defined taxonomy with finer-grained semantic concepts, such as CPU hotplug,
memory hotplug, and Device hotplug. The complete multi-level taxonomy, including all mined
concepts, will be released as part of our open-source OSKC-KG to facilitate reproducibility and
future research.

Core Subsystem
Hotplug

CPU Hotplug
Core Online/Offline Control
Thermal-Aware CPU Hotplug
Virtual CPU Hotplug

Memory Hotplug
Dynamic Memory Region Allocation
Memory Online/Offline Validation
Persistent Memory Hotplug

Device Hotplug
PCle Device Hotplug
USB Device Hotplug
Storage Device Hotplug

Hotplug Event Handling
Event Notification Mechanism
Driver Adaptation for Hotplug
Resource Reallocation on Hotplug

Figure 5: Example of mined concepts
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B.5 OSKC-KG STATISTICS OVERVIEW

OSKC-KG
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Figure 6: OSKC-KG: Node-Relation Graph Schema

Based on our ICMOS framework, we build a comprehensive knowledge graph OSKC-KG that
captures the rich semantics of kernel configurations while supporting extensibility and interoperability.
Figure[6]illustrates the node-relation schema of OSKC-KG.

Implementation Details We implement the ICMOS framework using DeepSeek-V3-0324 as the
core LLM, selected for its strong performance in technical domain reasoning and multilingual support.
We use a custom prompting strategy to extract semantic mappings (see Figure[3]for prompt templates).
The resulting knowledge graph is stored in Neo4j, leveraging its native graph storage and query
capabilities for efficient traversal, semantic retrieval, and dynamic expansion.

OSKC-KG Statistics To ensure broad applicability and reflect both stability and evolution trends,
we construct the OSKC-KG by analyzing the evolving Linux 6.x kernel series (versions 6.1-6.15),
covering 17,624 representative configuration options from a broader pool of 16,725-18,315 version-
specific variants. This range captures both stability and evolution trends across recent kernels,
ensuring broad applicability.

By integrating these with a taxonomy of 1,303 fine-grained semantic concepts via LLM-KG syn-
ergy mining, we obtain a graph comprising 18,927 nodes and 145,191 edges. Notably, 96.5% of
configuration items are annotated with hierarchical semantic concepts, and each item is associated
with an average of 3.9 concepts, including those inherited from parent nodes across multiple levels.
These results highlight the scalability and expressiveness of OSKC-KG, laying a strong foundation
for downstream reasoning, retrieval, and optimization tasks. The complete statistics are reported in
Table 2

Furthermore, our framework supports dynamic evolution: new configuration items can be seamlessly
integrated into the graph under appropriate menu paths, while emerging functional semantics can
be incrementally added to the concept taxonomy. These characteristics, namely extensive coverage,
semantic richness, and structural extensibility, establish OSKC-KG as a robust foundation for
intelligent reasoning over complex kernel configuration spaces.
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C CONFIGURATION QA DATASET

To enable reproducible evaluation of semantic retrieval performance, we construct a human-annotated
ground truth dataset comprising 100 QA pairs, curated by Linux kernel domain experts. The dataset
is designed to evaluate two core capabilities:

1. Concept Understanding: Given a configuration item (e.g., CONFIG_BFQ_GROUP_IOSCHED),
predict its associated high-level semantic concepts (e.g., “I/O Optimization”, “Scheduler”).
2. Configuration Selection: Given a functional intent (e.g., “Improve file I/O performance”),
select the most relevant configuration options from a provided candidate list.
To facilitate future research and ensure full reproducibility, we plan to open-source this QA dataset,
along with the complete OSKC-KG and our evaluation scripts, upon paper acceptance.

Ilustrative examples for both QA types are provided in Figure[7] We use this dataset to quantitatively
compare the performance of the LLM-only baseline and the OSKC-KG augmented pipeline, as
reported in Section

Type: Concept Understanding

Question : "According to the {concept taxonomy}, which
functional concepts does the CONFIG_CFS_BANDWIDTH
configuration option involve?"

Answer :["Resource Control", "Fair Scheduler"]

Type: Configuration Selection

Question : "Which kernel configuration options directly
relate to containerization technologies and namespace
isolation mechanisms? "

Options : ["CONFIG_TIME_NS", "CONFIG_KCMP",
"CONFIG_PID_NS", "CONFIG_UTS_NS"]

Answer : ["CONFIG_TIME_NS", "CONFIG_PID_NS",
"CONFIG_UTS_NS"]

Figure 7: QA Dataset Example
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D CONFLICT-AWARE VALIDATION MECHANISM

To enhance the reliability of intelligent configuration optimization guided by the LLM agent, we
introduce a Conflict-Aware Validation Mechanism that augments the reasoning layer with additional
symbolic constraints from OSKC-KG.

Beyond semantic relevance, the LLM agent is guided to infer about feasibility by incorporating
configuration-level structural and behavioral priors, including:

* Dependency and Selection Constraints: (depends on, selects) to ensure compatibility
across configuration items.

* Default Values and Value Types: to support informed value prediction and avoid invalid
assignments.

* Visibility and Activation Conditions: to filter out invisible or context-clashing configurations.
These constraints are encoded into the prompt during reasoning. Additionally, we require the LLM
agent to filter out configuration items that could impact operating system boot or compilation.

This mechanism avoids generating infeasible or conflicting configuration suggestions, improves
assignment recommendations for optimization objectives (e.g., File I/O, MySQL Latency), and
ensures that all recommended configurations are semantically meaningful and practically deployable.
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E AGENTIC REASONING PROMPTS AND OPTIMIZATION OUTPUTS

To complement Section and Section [4.4] we provide illustrative examples of the prompts used for
concept-oriented agentic reasoning and the resulting configuration optimization outputs.

Figure [§]shows a representative prompt template used to guide the LLM agent in generating opti-
mization suggestions for candidate configuration parameters. The prompt incorporates structured
context from OSKC-KG to constrain the LLM’s output and reduce hallucinations.

Performance Optimization prompt
As a Linux kernel performance optimization expert.

Your task is to analyze a given kernel configuration item and determine whether it should be adjusted to better support
**{target}** performance optimization**
Given configuration item comes with its metadata (value type, default value, help text, depends on info, select configs),

Follow the steps below carefully:

1. **Understand the Configuration**:
- Identify the configuration **value type** and its **default value**.
— Analyze the core functionality of each configuration item based on knowledge of kernel subsystems and config help
information.
- Consider the impact of potential dependency and selection configuration items.
2. **Optimization Decision**:
- Check if the **default value** is already optimal for “{target}.
- If it's **suboptimal**, suggest a **new value** and explain the reason **internally (not in the output)**.
- If the config is **essential for boot or system stability**, skip it by returning *{}".
Exclusion Criteria:
Return *{}* if **any** of the following apply:
- It is **unrelated** to *{target}" performance.
— It is **critical for system boot, init, or core stability**.
- It must remain at its default to **avoid build failures**.

Output Format:
Only output a JSON object, where the key is the config name, and the value is the new recommended setting.

If optimized:
Example Output:
{

"CONFIG_NAME": "recommended_value"

Only return the JSON object. No additional explanations.
Below are the configuration information:
{config_info}

Figure 8: File I/O Case Study

Figure [9]illustrates the configuration recommendations generated by ICMOS for optimizing the file
I/0 benchmark. It displays the relevant kernel configurations and their recommended optimized
values, which are subsequently validated through expert inspection and benchmarking.

These examples serve two purposes: (i) to demonstrate the interpretability and traceability of the
agentic reasoning process, and (ii) to illustrate how optimization recommendations are generated and
linked back to semantic concepts in OSKC-KG. A more detailed discussion of these results and their
implications is provided in the Case Study (Appendix [F).
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“CONFIG_CACHEFILES": "y",
"CONFIG_CACHEFILES_ONDEMAND": "y",
“CONFIG_FSCACHE": "y",
“CONFIG_FSCACHE_STATS": "n",
"CONFIG_NETFS_SUPPORT": "y",
“CONFIG_JFFS2_FS": "y",
"CONFIG_JFFS2_FS_WRITEBUFFER": "y",
"CONFIG_UBIFS_FS_LZO": "y",
“CONFIG_UBIFS_FS_ZSTD": "y",
“CONFIG_NFS_FSCACHE": "y",

"CONFIG_SQUASHFS_CHOICE_DECOMP_BY_MOUNT": "y“,

"CONFIG_SQUASHFS_ZSTD": "y",
"CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS": "16",
"CONFIG_SCSI_SYM53CBXX_MMIO": “y",
"CONFIG_LZ4_COMPRESS": "y",
"CONFIG_LZ4_DECOMPRESS": "y",
"CONFIG_ZSWAP_COMPRESSOR_DEFAULT_LZ4": "y",
"CONFIG_ZSWAP_ZPOOL_DEFAULT_ZSMALLOC": "y",
"CONFIG_CIFS_SMB_DIRECT": "y",
"CONFIG_CIFS": "y",

"CONFIG_RDMA": "y",

ECONRIGEEZESHESE: Sy

"CONFIG_NO_HZ_FULL": "y",

"CONFIG_HZ_l@ee@": "y",
"CONFIG_BFQ_GROUP_IOSCHED": "y",
"CONFIG_BLK_CGROUP": "y",
"CONFIG_BLK_CGROUP_IOCOST": "y",
"CONFIG_BLK_CGROUP_IOLATENCY"
"CONFIG_BLK_CGROUP_IOPRIO": "y",
"CONFIG_BLK_DEV_THROTTLING": 'y"

¥

Figure 9: File I/O Case Study
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F CASE STUDY

Target: Optimize the performance of File 1/O
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Figure 10: File I/O Case Study

To further illustrate the effectiveness and interpretability of our framework, we present a case study
focusing on kernel File I/0 performance optimization. Given the optimization goal of improving I/O
efficiency, ICMOS invokes the LLM Agent to interpret the intent and perform structured reasoning
over the Concept Taxonomy Graph. Starting from the root node, the agent progressively identifies
semantically relevant concepts (e.g., I/O Optimization, Swap). Taking I/O Optimization as an example,
the agent retrieves the corresponding configuration subgraph via the RELATED_TO mappings (See the
Figure[T0). Within this subgraph, the LLM agent performs knowledge-augmented reasoning over the
configuration space to generate interpretable and effective configuration optimization suggestions.

Through this reasoning process, the LLM agent recommends two key configuration options: CONFIG
_BFQ_GROUP_IOSCHED=y, CONFIG_BLK_DEV_THROTTLING=y, which activate the BFQ I/O scheduler
with group-aware control and enable I/O bandwidth throttling, respectively. These settings improve
I/O responsiveness under concurrent workloads and help stabilize throughput across multiple tasks. In
contrast, AutoOS fails to surface these options due to its lack of structured concept reasoning. It either
omits I/O-related tunings or recommends unrelated parameters, leading to suboptimal performance
improvements.

This case demonstrates the strength of ICMOS in leveraging semantic knowledge to perform goal-
directed configuration traversal and generate more relevant, high-impact recommendations. Notably,
the decision process is fully traceable, each configuration is backed by a concept linkage and a
reasoning path, enhancing both transparency and trust in system tuning.
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