
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ICMOS: INCREMENTAL CONCEPT MINING FOR OS
KERNEL CONFIGURATION VIA LLMS AGENTIC REA-
SONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Linux kernel configuration is critical for system performance, security, and adapt-
ability. However, its vast configuration space, comprising over 17,000 configuration
options, renders manual tuning both time-consuming and prone to errors. Existing
methods largely rely on static heuristics or limited semantic rules, which struggle
to capture complex configuration dependencies or adapt across diverse workloads.
We introduce ICMOS, a framework that integrates large language models (LLMs)
with a heterogeneous knowledge graph of kernel configuration concepts (OSKC-
KG). By grounding LLM reasoning in structured semantics, ICMOS supports
context-aware mining of configuration concepts and agentic concept evolution
in response to new requirements and kernel updates. We evaluate ICMOS on
configuration QA tasks and diverse real-world workloads, including databases,
web servers, in-memory caches, and system benchmarks. ICMOS consistently
outperforms LLM-only baselines, delivering higher accuracy, faster optimization,
and robust system performance. Notably, it halves optimization time, reduces tail
latency by 58.1%, and more than doubles configuration success rates. These results
demonstrate that ICMOS provides a scalable and reliable framework for grounding
LLM reasoning in structured semantics, thereby advancing kernel configuration
understanding and optimization.

1 INTRODUCTION

Operating System Kernel Configuration (OSKC) refers to the process of selecting, understanding,
and optimizing the configuration items that determine the kernel’s behavior and structure. This
process is critical to achieving system performance, security, and compatibility (Figure 1). However,
modern Linux kernels (Torvalds & Contributors, 2025) comprise over 17,000 options with intricate
dependencies, forming an intractably large configuration space that renders manual tuning infeasible.
This complexity has spurred various automated solutions; however, existing approaches, such as
Kmax (Gazzillo, 2019), rely mainly on static heuristics or manual analysis, fail to capture semantic
dependencies, and lack generalization across diverse hardware and workloads.

Although recent work has explored the use of large language models (LLMs), such as GPT-4 (OpenAI
et al., 2023), and LLM-based frameworks like AutoOS (Chen et al., 2024) for kernel configuration
optimization, several key challenges remain. First, configuration options often lack well-defined
semantics, making it difficult for both human experts and LLMs to accurately infer their system-level
implications. Second, LLMs are prone to hallucination (Xu et al., 2024), often producing invalid or
suboptimal suggestions due to inadequate knowledge of the specific domain. Third, both rule-based
and LLM-driven approaches exhibit significant inefficiencies. For instance, AutoOS demands 1 to 2
hours per optimization iteration and often fails to compile due to configuration conflicts.

To address these challenges, we propose ICMOS, a novel framework that synergizes LLMs with a
heterogeneous knowledge graph for incremental concept mining in kernel configuration spaces. By
combining the linguistic comprehension capabilities of LLMs with knowledge graphs’ structured
constraint modeling, ICMOS achieves configuration-aware reasoning, automatic semantic concept
mining, and continuous evolution of mappings between configurations and concepts. Specifically,
the foundation of ICMOS is OSKC-KG, a heterogeneous graph representation that systematically

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of OSKC: (Left) Linux kernel space and configurations, (Middle) user-centric
OSKC tasks, (Right) LLM hallucination challenges.

models kernel configuration spaces through: a Configuration Graph that models the hierarchical and
dependency structures of kernel configuration items and a Concept Taxonomy Graph that captures
the evolving functional semantics of configurations. Building upon this representation, ICMOS
operates through a two-phase process: (1) LLM-KG Synergy Mining, Where the LLM traverses the
configuration graph via structured context reasoning to mine functional semantics of configuration
items and establish mappings to the concept taxonomy graph; (2) Agentic Concept Evolution,
where the LLM agent dynamically incorporates user requirements or emerging kernel functions
through concept-oriented agentic reasoning. Furthermore, our framework supports human-in-the-loop
verification to ensure the correctness, interpretability, and functional relevance of mined concepts.

To validate ICMOS’s ability to ground LLM reasoning in structured semantics, we further introduce
a suite of downstream OSKC Understanding Tasks, including retrieval QA and performance tuning
across both system-level metrics (e.g., CPU computation, file I/O) and application-level workloads
(e.g., databases, web servers, in-memory caches). We evaluate ICMOS on these tasks and find that
it consistently outperforms LLM-only baselines, achieving substantial gains in accuracy, system
performance, and optimization efficiency. Notably, it reduces optimization time by nearly half, more
than doubles the configuration success rate, and cuts tail latency by up to 58.1% across representative
workloads, underscoring its practicality and reliability.

To summarize our contributions:

1. We present ICMOS, the novel framework that integrates large language models with
a heterogeneous knowledge graph (OSKC-KG) for kernel configuration. This enables
structured, configuration-aware reasoning beyond heuristic or LLM-only approaches.

2. We introduce incremental concept mining, a novel approach that systematically extracts,
organizes, and evolves the semantic concepts of kernel configuration options, establishing a
dynamic and extensible concept taxonomy of OSKC semantics.

3. We design a two-phase process that combines LLM-KG synergy mining for context-aware
semantic mapping and agentic concept evolution for adapting to user requirements and
emerging kernel features, with human-in-the-loop verification for correctness and inter-
pretability.

4. We establish a benchmark of OSKC Understanding Tasks and empirically demonstrate that
ICMOS delivers substantial improvements in efficiency and performance over LLM-only
baselines across real-world scenarios.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the ICMOS framework, which integrates OSKC-KG, LLM-KG synergy
mining, and agentic concept evolution with human-in-the-loop verification.

2 ICMOS FRAMEWORK

We formalize the OSKC challenge as structuring configuration items, associating them with functional
semantics, and enabling generalization to downstream tasks such as semantic QA and performance
tuning. To address this, we propose ICMOS, an incremental concept mining framework that bridges
raw kernel configuration options with high-level functional semantics through three synergistic
components: (i) OSKC-KG, a heterogeneous knowledge graph unifying configuration structures
and functional semantics; (ii) LLM-KG synergy concept mining, for automated, constraint-aware
alignment of configuration options to semantic concepts; and (iii) Agentic concept evolution, enabling
dynamic adaptation of semantics via concept-driven reasoning. The entire pipeline is reinforced by
human-in-the-loop verification to ensure semantic correctness and interpretability (see Figure 2).

2.1 OSKC CONCEPT KNOWLEDGE GRAPH

To bridge raw kernel configuration options with high-level functional semantics, we construct the
OSKC-KG, a heterogeneous knowledge graph formally defined as GOSKC = (V,R, T). It integrates
two subgraphs:

Configuration Graph. The configuration graph captures structural and logical dependencies
among Linux kernel options. Its nodes represent represent configuration entities (e.g., menu, config,
menuconfig, choice), while its edges encode hierarchical structure (SUB_OPTION), dependency
constraints (DEPENDS), and enforced implications (SELECTS). We automatically construct this graph
by parsing the official Linux kernel’s Kconfig files using Kconfiglib (Rouberg et al., 2018), yielding
a scalable representation of hierarchical and dependency structures across kernel versions. Details of
parsing, node extraction, and relation definitions are provided in the Appendix B.1.1.

Concept Taxonomy Graph. Modern kernel configuration options are often encoded in cryptic or
hardware-specific identifiers, making semantic interpretation difficult for both human developers and
LLMs. For example, the option ATA_ACPI appears obscure in isolation, yet its source description

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

reveals associations with both Power Management and Storage Support. Such latent semantics are
essential for managing and optimizing large-scale configuration profiles. To address this challenge, we
construct a hierarchical Concept Taxonomy Graph that systematically organizes kernel configurations’
functional semantics. The taxonomy is seeded with expert-defined coarse-grained domains (e.g.,
Security Features, Performance, Hardware Support) and dynamically expanded via LLM-guided fine-
grained concept mining (see following paragraph). This hybrid construction ensures both semantic
coverage and extensibility, providing an interpretable space for aligning raw configuration items with
high-level abstractions. An illustrative subset is shown in Table 1, while formal definitions and the
complete construction process are included in Appendix B.1.2.

Unified Representation. Crucially, OSKC-KG is not a simple juxtaposition of the two subgraphs.
Instead, LLM-guided concept mining leverages structured information from the configuration graph
to infer functional semantics, dynamically expanding the taxonomy and establishing cross-subgraph
mapping relations. These mappings unify the two subgraphs into a coherent heterogeneous knowledge
graph that supports interpretable reasoning and downstream tasks.

Table 1: Part of Hierarchical Concept Taxonomy

Expert-defined Coarse Concepts LLM-mined

Top-level Sub-level Fine-grained Concepts

Core Subsystem Filesystem, Networking Flash Filesystem, Wireless
Security Features Access Control, Cryptography Process Signal Control
Hardware Support Storage, Peripheral SCSI, Bus Support

Performance Memory, I/O Optimization PMD, DMA Optimization

LLM-KG Synergy Concept Mining. To bridge the configuration graph with the concept taxonomy
graph and incrementally mine fine-grained functional semantics, we propose an LLM-KG synergy
mining process. The core mechanism leverages a traversal of the configuration graph to extract rich
contextual signals, including structural dependencies and natural language descriptions, and enables
the LLM to predict appropriate semantic concepts. This process establishes interpretable mappings
between configuration items and concepts while dynamically enriching the concept taxonomy.

We adopt a Hierarchical Hybrid Traversal (HHT) strategy to provide structure-aware context for
the LLM. First, a global breadth-first search (BFS) identifies branching nodes (menu, menuconfig,
choice) and assigns depth levels. Second, local depth-first search (DFS) collects descendant config
nodes into branch units, enriched with two key contexts: (1) a parent state encoding high-level intent
from ancestors, and (2) a sibling state aggregating peer semantics for contrastive reasoning. This
structured context enables the LLM to produce coherent, taxonomy-aligned concept mappings.

The semantic mapping set is defined as:
M⊆ Cext × Vcfg, (1)

where Cext is the extended concept taxonomy (expert-defined and LLM-mined), and Vcfg is the set
of configuration nodes. Each mapping is further annotated with a confidence score, rationale, and
hierarchical insertion rule (see Appendix B.2 for details). For each configuration node v ∈ Vcfg , we
retrieve structured context from the configuration graph to guide the semantic alignment:

Kv = {Pv,Dv, Pℓ, Sℓ}, (2)
comprising: (1) the hierarchical path Pv, (2) the configuration node description Dv, (3) the parent
state Pℓ, and (4) the sibling state Sℓ. This context enables the LLM to perform grounded, consistent
reasoning by leveraging structural dependencies, mitigating hallucination and ambiguity.

Given the context Kv, the LLM predicts a set of relevant concepts from Cext. The top predictions,
filtered by a confidence threshold θ, are used to establish RELATED_TO mappings between the configu-
ration item and its functional concepts. Simultaneously, any newly discovered concepts are integrated
into the taxonomy via SUB_CATEGORY relations. All outputs support optional human-in-the-loop
validation to ensure semantic accuracy and practical utility. This closed-loop process enables the
OSKC-KG to evolve coherently, aligning low-level configurations with high-level semantics in a
structured and interpretable manner. Detailed prompt templates and reasoning traces, along with
illustrative mined concept examples, are provided in Appendix B.3 and Appendix B.4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.2 CONCEPT-ORIENTED AGENTIC REASONING

While the synergy mining process aligns configuration items with fine-grained concepts by leveraging
the structured semantics of OSKC-KG, real-world requirements and kernel evolution continuously
introduce new functionalities, such as workload-specific goals (e.g., MySQL latency optimization,
secure container isolation) and kernel features (e.g., advanced scheduling or eBPF integration). To
preserve semantic completeness and adaptability, ICMOS enables the incremental integration of
emerging concepts into OSKC-KG.

We propose Concept-oriented Agentic Reasoning, a framework that leverages LLM agents to extend
both the taxonomy Cext and the semantic mappingsM. The process exploits three components of
OSKC-KG: the configuration graph, the concept taxonomy, and their mappings, within a structured
agentic pipeline.

Agentic Reasoning Process. Given a new concept Cnew, the agent executes a structured four-stage
pipeline: perception, navigation, retrieval, and reasoning (as illustrated in Figure 2). First, the
agent reformulates Cnew into a query prompt and performs guided traversal over Cext to identify
semantically related branches. The result is a candidate set of related concepts Trelated. Using the
existing mappingM, the agent retrieves the associated configurations:

Vcand =
⋃

Tj∈Trelated

{v | (v, Tj) ∈M} , (3)

which induces a subgraph Gconfig ⊆ Vcfg representing the relevant configuration space.

The agent then performs retrieval-augmented reasoning over Gconfig, leveraging metadata such as help
texts, dependency constraints, and selection rules. This produces an increment of semantic mappings:

Mnew = {(v, Cnew, s, r) | v ∈ Vcand}, (4)

where s ∈ [0, 1] is a confidence score and r denotes the rationale. Finally, the integration of Cnew into
the taxonomy is guided by semantic alignment and subject to human-in-the-loop validation. If Cnew
is belongs to an existing branch, it is inserted via a SUB_CATEGORY relation; otherwise, it is added as
a new root-level concept. The mapping set is then updated asM←M∪Mnew.

2.3 HUMAN-IN-THE-LOOP VERIFICATION

To ensure the reliability of the semantic mappingM and the evolving concept taxonomy Cext, we
incorporate a human-in-the-loop verification mechanism that enables domain experts to examine the
generated concept assignments by inspecting the associated confidence scores and reasoning traces,
and subsequently validate their semantic correctness.

This verification process supports both global refinement of the taxonomy (e.g., merging overlapping
concepts or adjusting hierarchical structures) and local validation of individual configuration-to-
concept mappings. Furthermore, the refined concepts and mappings undergo downstream task-driven
validation (Section 3), where experts assess their semantic validity and effectiveness in real-world
scenarios, such as configuration optimization and retrieval QA.

3 OSKC UNDERSTANDING TASKS

To evaluate the effectiveness of ICMOS and the semantic quality of OSKC-KG, we introduce a suite
of downstream OSKC Understanding Tasks. These tasks evaluate the interpretability and operational
utility of our framework within realistic system deployment contexts.

Formally, given a natural-language query q (e.g., a configuration question or optimization goal), the
task is to return either (i) a semantic interpretation Aq, or (ii) a relevant configuration set Kq ⊆ K.
We consider two representative settings:

• Configuration Retrieval QA: Given a question (e.g., “Which options relate to process
scheduling?”), retrieve the relevant configuration items and their associated semantic expla-
nations from OSKC-KG.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Intelligent Configuration Optimization: Given a performance target, generate an opti-
mized configuration set that improves system-level or application-level performance, while
respecting kernel dependency constraints.

Together, these tasks form a benchmark for kernel configuration understanding, covering both
symbolic reasoning and performance-driven optimization. We validate results through human-in-the-
loop evaluation and quantitative comparison against baselines.

4 EXPERIMENT

We validate ICMOS on the OSKC Understanding Tasks (Section 3), benchmarking against LLM-only
and heuristic baselines. We first present the experimental setup and OSKC-KG characterization,
followed by evaluations on Configuration Retrieval QA and Intelligent Configuration Optimization.

4.1 EXPERIMENTAL SETUP AND METRICS

Setup. We construct OSKC-KG from the Linux 6.x kernel series (versions 6.1–6.15) and implement
ICMOS with DeepSeek-V3-0324 (DeepSeek-AI et al., 2024) as the core LLM. All data are stored
in Neo4j (Neo4j Team, 2025) to support efficient traversal, retrieval, and expansion. Optimization
experiments are conducted on a virtual machine running Ubuntu 24.04 (Linux 6.8, aarch64) with 4
CPU cores and 4 GB RAM.

Metrics. We adopt task-specific metrics: (i) Configuration Retrieval QA: tag-level Recall,
F1, Top-3 Accuracy, and option-level Exact Match Rate. (ii) Intelligent Configuration Op-
timization: UnixBench scores (Lucas, 2015) (CPU, memory, I/O, scheduling) for system-level
evaluation, and application-level throughput and latency (e.g., Apache, MySQL, Redis), mea-
sured with ApacheBench (Apache Software Foundation, 2013), sysbench (Kopytov, 2023), and
memtier_benchmark (Redis Labs, 2024). We further report tuning efficiency (optimization time per
cycle) and conflict-free success rate.

4.2 OSKC-KG CHARACTERIZATION

Table 2: OSKC-KG Scale and Coverage Statistics

Type Count %

Nodes (Total: 18,927)
Config / Menuconfig 17,242 91.3
Concept Nodes 1,303 6.8
Menu / Choice Nodes 382 1.9

Edges (Total: 145,191)
DEPENDS 47,244 32.6
SELECTS 13,919 9.6
SUB_OPTION 17,455 12.0
SUB_CATEGORY 1,370 0.9
RELATED_TO 65,203 44.9

Mapping
Mapped Configs/Menuconfigs 16,630 / 17,242 96.5
Avg. Tags per Config 3.9 –

The constructed OSKC-KG comprises 18,927
nodes and 145,191 edges (Table 2), covering
17,624 configuration items and 1,303 semantic
concepts. Notably, 96.5% of configurations are
semantically annotated, with each item associ-
ated with an average of 3.9 concepts (including
inherited ones), reflecting high semantic density.
This broad coverage, semantic richness, and ex-
tensibility, establish OSKC-KG as a scalable
foundation for downstream reasoning, retrieval,
and optimization. The end-to-end construction
of OSKC-KG required approximately 25 hours
(graph construction: 1h; concept mining: 16h;
expert validation: 8h). These costs are domi-
nated by the initial build; subsequent updates
(e.g., new kernel versions or user requirements)
are incremental and incur minimal overhead for
extraction and verification. Further statistics and the schema overview are provided in Appendix B.5.

4.3 CONFIGURATION RETRIEVAL QA

To evaluate whether OSKC-KG enhances semantic retrieval for kernel configurations, we construct
a curated evaluation set of 100 expert-annotated QA pairs, covering two key tasks: (i) Concept
Understanding and (ii) Configuration Selection (see Appendix C for details). As shown in Table 3,
OSKC-KG augmentation substantially outperforms the LLM-only baseline: concept recall increases
from 66.7% to 88.9%, concept F1 improves by 16.2 percentage points (from 49.2% to 65.4%),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and exact match accuracy for configuration selection rises from 58.7% to 86.9%. These gains
demonstrate that structured semantic grounding not only improves retrieval fidelity but also enhances
interpretability by aligning model outputs with domain concepts.

Table 3: Performance on Kernel Configuration QA with and without OSKC-KG Augmentation

Metric LLM-only LLM + OSKC-KG

Concept Understanding

Tag Recall 66.7% 88.9%
Tag F1 49.2% 65.4%
Top-3 Accuracy 46.3% 75.9%

Configuration Selection

Exact Match Rate 58.7% 86.9%
Span-level F1 85.9% 96.0%

4.4 INTELLIGENT CONFIGURATION OPTIMIZATION

We evaluate ICMOS in practical, deployment-oriented settings, examining both performance gains
and reliability under kernel constraints. To ensure that the produced configurations are feasible and
deployable, we augment LLM reasoning with a Conflict-Aware Validation Mechanism (detailed in
Appendix D) that enforces dependency, selection, default-value, and visibility constraints derived
from OSKC-KG, thereby preventing infeasible or mutually conflicting option sets.

We assess optimization along two complementary dimensions: (i) System-level performance, mea-
suring CPU, memory, I/O, and scheduling efficiency using UnixBench; and (ii) Application-specific
tuning, evaluating end-to-end performance for representative workloads (web servers, databases,
in-memory caches) under high-concurrency benchmarks. This separation enables us to capture both
micro-level efficiency and macro-level workload adaptability of the resulting configurations.

Comparison Setup. We compare three strategies: (i) Default: the official Linux configuration;
(ii) AutoOS: LLM-only optimization without external knowledge; (iii) ICMOS (ours): the full
concept-oriented agentic reasoning pipeline (Section 2.2), augmented with OSKC-KG retrieval and a
conflict-aware validation mechanism to ensure semantic grounding and feasibility. All evaluations
follow the metrics defined in Section 4.1.

Table 4: UnixBench Results: Baseline vs. AutoOS (LLM-only) vs. ICMOS. (Changes are relative to
Baseline. Higher is better for all metrics.)

Test Case Baseline AutoOS ICMOS

Dhrystone 2 8335.2 8391.1 (+0.7%) 8449.8 (+1.4%)
Whetstone 1586.3 1611.7 (+1.6%) 1626.9 (+2.6%)
Execl Throughput 2247.9 2389.8 (+6.3%) 2401.0 (+6.8%)
File Copy 1024b 4873.6 5121.4 (+5.1%) 5177.6 (+6.2%)
File Copy 256b 3279.1 3339.5 (+1.8%) 3384.3 (+3.2%)
File Copy 4096b 8164.2 9231.4 (+13.1%) 10152.8 (+24.4%)
Pipe Throughput 2177.4 1963.4 (-9.8%) 2302.8 (+5.8%)
Context Switch 78.8 86.7 (+10.0%) 84.4 (+7.1%)
Process Creation 733.0 810.1 (+10.5%) 873.8 (+19.2%)
Shell Scripts (1) 4826.4 5183.9 (+7.4%) 5266.6 (+9.1%)
Shell Scripts (8) 10161.7 9933.7 (-2.2%) 10385.2 (+2.2%)
System Call 1056.2 1093.3 (+3.5%) 1099.7 (+4.1%)

Index Score 2287.6 2348.4 (+2.7%) 2432.1 (+6.3%)

System-Level Performance. As shown in Table 4, ICMOS consistently improves all twelve
UnixBench metrics, achieving +6.3% overall gains versus +2.7% for AutoOS, and up to +24.4% in file
I/O and +19.2% in process creation. Unlike AutoOS, which occasionally introduces regressions due
to uninformed configuration choices, ICMOS maintains stability by leveraging structural knowledge
and conflict validation. A representative set of system-level optimization recommendations generated
by ICMOS is shown in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Application-Specific Performance: Baseline vs. AutoOS (LLM-only) vs. ICMOS
across Web Servers (Apache/Nginx), Databases (MySQL/PostgreSQL), and In-Memory Caches
(Redis/Memcached). Evaluated with ApacheBench, sysbench, and memtier_benchmark. (%↑ =
improvement over Baseline, Throughput: higher better; Latency: lower better.)

Metric Apache Nginx

Baseline AutoOS (%↑) ICMOS (%↑) Baseline AutoOS (%↑) ICMOS (%↑)

Time Taken for Tests (s) 0.235 0.232,+1.3% 0.228,+3.0% 0.268 0.257,+4.1% 0.253,+5.6%
Requests per Second (req/s) 42,490 43,095,+1.4% 43,816,+3.1% 37,324 38,916,+4.3% 39,449,+5.7%
Time per Request (ms) 2.354 2.320,+1.4% 2.282,+3.1% 2.679 2.570,+4.1% 2.534,+5.4%
Transfer Rate (KB/sec) 454,155 460,614,+1.4% 468,332,+3.1% 397,881 413,555,+3.9% 420,533,+5.7%
Max Request Time (Total, ms) 13 19,-46.2% 17.5,-34.6% 12 20,-66.7% 11,+8.3%

Metric MySQL PostgreSQL

Baseline AutoOS (%↑) ICMOS (%↑) Baseline AutoOS (%↑) ICMOS (%↑)

Transactions per Second (TPS) 1,919.5 1,952.2,+1.7% 1,996.9,+4.0% 556.2 560.4,+0.8%, 617.1,+11.0%
Queries per Second (QPS) 39,502 40,191,+1.7% 41,058,+3.9% 11,489 11,570,0.7% 12,744,+10.9%
Average Latency (ms) 52.08 51.20,+1.7% 50.06,+3.9% 53.92 53.71,+0.4% 47.96,+11.1%
95th Percentile Latency (ms) 111.67 112.00,+0.3% 104.84,+6.1% 24.83 22.28,+10.3% 18.28,+26.4%

Metric Redis Memcached

Baseline AutoOS (%↑) ICMOS (%↑) Baseline AutoOS (%↑) ICMOS (%↑)

Total Throughput (ops/sec) 257,552 267,080,+3.7% 270,841,+4.0% 447,110 461,583,+3.2% 484,847,+8.4%
Average Latency (ms) 1.56 1.50,+3.7% 1.48,+4.6% 0.90 0.88,+2.8% 0.88,+2.9%
P50 Latency (ms) 1.46 1.40,+4.2% 1.49,-1.1% 0.57 0.60,-4.7% 0.52,+8.4%
P99 Latency (ms) 3.31 3.28,-1.0% 3.07,+7.3% 3.97 3.73,+5.9% 3.96,+0.1%
P99.9 Latency (ms) 11.92 18.18,-52.4% 4.99,+58.1% 5.92 6.82,-5.1% 6.91,-16.8%
Throughput (KB/sec) 74,833 77,601 (-3.7%) 78,694,+5.2% 130,286 134,504,+3.2% 137,616,+5.6%

Application-Specific Tuning. Across six real-world workloads (Table 5), ICMOS yields substantial
benefits, reducing tail latency by up to 58.1% and improving throughput by as much as 11.0%. For
example, PostgreSQL achieves 26.4% lower P95 latency alongside notable QPS gains (+10.9%). In
contrast, AutoOS often degrades performance (e.g., increased Nginx request time), highlighting the
robustness of ICMOS across diverse workloads.

Efficiency and Reliability. As summarized in Table 6, ICMOS reduces optimization time by 50%
(39 min vs. 82 min per cycle) and increases configuration success rate from 29% to 76%, while
nearly eliminating compilation/boot failures. These results confirm that conflict-aware reasoning not
only enhances performance but also ensures reliable and deployable configurations.

Table 6: Optimization Efficiency and Reliability: AutoOS vs. ICMOS. Improvements (Imp.%) are
computed relative to AutoOS; lower is better for time and conflicts, higher is better for success rate.

Metric AutoOS ICMOS Imp. (%)

Average Optimization Time per Cycle 82 minutes 39 minutes 47.6%
Average Conflicts per Iteration 4.5 1.4 68.9%
Configuration Success Rate 29% 76% 162.1%

4.5 ABLATION STUDY

While Sections 4.3–4.4 conclusively demonstrate that augmenting LLMs with OSKC-KG yields
significant gains over the LLM-only AutoOS baseline, we now isolate the contribution of conceptual
completeness in the taxonomy.

Specifically, we design a concept masking experiment: we randomly remove 30% of mid- and
leaf-level nodes from the taxonomy, along with their edges and mappings, simulating scenarios with
partial semantic coverage. This directly limits the contextual guidance available to the LLM agent
during optimization.

As reported in Table 7, the masked variant (ICMOS-Masked) still outperforms the LLM-only baseline,
reflecting the robustness of our agentic reasoning process. However, it consistently underperforms
the full ICMOS model, particularly in benchmarks requiring fine-grained semantic differentiation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Ablation: Impact of concept masking on UnixBench performance. ICMOS-Masked removes
30% of mid- and leaf-level concepts and their mappings.

Test Case Baseline AutoOS ICMOS Masked ICMOS

Dhrystone 2 8335.2 8391.1 8444.2 8449.8
Whetstone 1586.3 1611.7 1607.8 1626.9
Execl Throughput 2247.9 2389.8 2378.4 2401.0
File Copy 1024b 4873.6 5121.4 5120.6 5177.6
File Copy 256b 3279.1 3339.5 3342.7 3384.3
File Copy 4096b 8164.2 9231.4 8893.0 10152.8
Pipe Throughput 2177.4 1963.4 2200.8 2302.8
Context Switch 78.8 86.7 80.5 84.4
Process Creation 733.0 810.1 755.5 873.8
Shell Scripts (1) 4826.4 5183.9 4669.6 5266.6
Shell Scripts (8) 10161.7 9933.7 10268.3 10385.2
System Call 1056.2 1093.3 1063.7 1099.7

Index Score 2287.6 2348.4 2376.4 2432.1

These results indicate that a complete concept taxonomy substantially improves contextual reasoning
and optimization effectiveness, and that structured semantic knowledge is essential for unlocking the
full potential of LLM-guided kernel tuning.

To further illustrate the practical utility of ICMOS, we conduct a case study on workload-specific
optimization (details in Appendix F).

5 RELATED WORK

Traditional Kernel Configuration. Early kernel configuration (OSKC) optimization methods rely
on static analyses and heuristics over Kconfig files. Representative tools such as Kmax (Gazzillo,
2019) validate configuration constraints, while learning-based systems like VConf (Rao et al., 2009)
and DeepPerf (Ha & Zhang, 2019) employ probabilistic models and deep networks to predict
performance or reduce kernel size. More recent transfer learning approaches (Herzog et al., 2021;
Martin et al., 2021) improve generalization across hardware but remain data-intensive and lack
semantic interpretability. Although Hou et al. (Pengpeng et al., 2021) propose a visual multi-label
graph for configuration understanding, this approach depends on manual curation and lacks scalability.

LLM-based Configuration Optimization. LLM-driven systems such as AutoOS (Chen et al.,
2024) explore kernel tuning via prompt-based reasoning and generation. While effective for initial
exploration, these methods often lack deep semantic grounding of configuration options, leading to
ad hoc heuristics, hallucination risks, and limited interpretability.

Structured Knowledge and Agent-based Reasoning. To improve factuality, retrieval-augmented
generation (RAG) (Lewis et al., 2020) and its graph extensions (e.g., GraphRAG (Han et al., 2024))
leverage structured knowledge to guide LLM reasoning. Similarly, agent frameworks such as
ReAct (Yao et al., 2022) and SWE-agent (Yang et al., 2024) combine reasoning with tool use for
autonomous decision-making. However, existing approaches rarely incorporate structured semantics
in system-level domains such as OS kernel configuration. Our work bridges this gap by integrating
LLM agents with a domain-specific knowledge graph, enabling semantically grounded, configuration-
aware reasoning for kernel optimization.

6 CONCLUSION

We presented ICMOS, a novel framework that grounds LLM reasoning in the structured semantics
of OSKC-KG to enable scalable, interpretable kernel configuration. By unifying configuration
structure with dynamic concept taxonomies, ICMOS supports incremental concept mining and
agentic evolution. Experiments demonstrate consistent gains over LLM-only baselines in both
retrieval and optimization tasks, improving semantic fidelity, system performance, and reliability.
Looking ahead, we will extend ICMOS to broader kernel versions and heterogeneous environments,
further advancing knowledge-driven system automation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. Our study focuses on operating system kernel
configuration and optimization using knowledge graphs and large language models. It does not
involve human subjects, sensitive personal data, or proprietary/confidential information. All data
used for constructing OSKC-KG are derived from publicly available Linux kernel sources (Torvalds
& Contributors, 2025), and the experimental environments are fully reproducible. We believe that
the proposed methods pose no foreseeable risks of harm, bias, or misuse, and that they contribute
positively to advancing system-level optimization and interpretability research.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work.

• Code and Framework. The implementation of ICMOS, including data preprocessing, OSKC-KG
construction, and evaluation pipelines, is provided as anonymized supplementary material and will
be fully open-sourced upon acceptance.

• Data. The expert-annotated QA dataset used in Section 4.3, along with processing scripts, is
included in the supplementary material and will also be released publicly after acceptance.

• Experiments. Experimental setup (hardware, software, benchmarks) and evaluation metrics are
provided in Section 4. Hyperparameters, prompts, and additional results (including ablation and
case studies) are reported in Appendix E and Appendix F.

• Theoretical and Algorithmic Details. Formal definitions and algorithmic procedures (e.g.,
semantic mapping, traversal strategy, and agentic reasoning) are presented in Sections 2.1–2.2,
with more detailed explanations and extended discussions provided in Appendix B.

Together, these resources provide sufficient detail for independent reproduction of both our methodol-
ogy and results.

REFERENCES

Apache Software Foundation. ApacheBench: Apache HTTP Server Benchmarking Tool, 2013. URL
https://httpd.apache.org/docs/2.4/programs/ab.html. Version 2.3.

Huilai Chen, Yuanbo Wen, Limin Cheng, Shouxu Kuang, Yumeng Liu, Weijia Li, Ling Li, Rui
Zhang, Xinkai Song, Wei Li, Qi Guo, and Yunji Chen. Autoos: Make your os more powerful by
exploiting large language models. In International Conference on Machine Learning, 2024. URL
https://api.semanticscholar.org/CorpusID:272330334.

DeepSeek-AI, A. Liu, B. Feng, and et al. Deepseek-v3 technical report. ArXiv, abs/2412.19437,
2024. URL https://api.semanticscholar.org/CorpusID:275118643.

Paul Gazzillo. kmax, 2019. URL https://github.com/paulgazz/kmax. Accessed: 2025-05-23.

Huong Ha and Hongyu Zhang. Deepperf: Performance prediction for configurable software with
deep sparse neural network. 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), pp. 1095–1106, 2019. URL https://api.semanticscholar.org/CorpusID:
174800638.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh M. Halap-
panavar, Ryan A. Rossi, Subhabrata Mukherjee, and et al. Retrieval-augmented generation with
graphs (graphrag). ArXiv, abs/2501.00309, 2024. URL https://api.semanticscholar.org/
CorpusID:275212839.

Benedict Herzog, Fabian Hügel, Stefan Reif, Timo Hönig, and Wolfgang Schröder-Preikschat.
Automated selection of energy-efficient operating system configurations. Proceedings of the
Twelfth ACM International Conference on Future Energy Systems, 2021. URL https://api.
semanticscholar.org/CorpusID:235599326.

10

https://httpd.apache.org/docs/2.4/programs/ab.html
https://api.semanticscholar.org/CorpusID:272330334
https://api.semanticscholar.org/CorpusID:275118643
https://github.com/paulgazz/kmax
https://api.semanticscholar.org/CorpusID:174800638
https://api.semanticscholar.org/CorpusID:174800638
https://api.semanticscholar.org/CorpusID:275212839
https://api.semanticscholar.org/CorpusID:275212839
https://api.semanticscholar.org/CorpusID:235599326
https://api.semanticscholar.org/CorpusID:235599326

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexey Kopytov. Sysbench. GitHub repository, 2023. URL https://github.com/akopytov/
sysbench. Release 1.0.20.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kuttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks. ArXiv, abs/2005.11401, 2020.
URL https://api.semanticscholar.org/CorpusID:218869575.

Kevin D. Lucas. byte-unixbench. https://github.com/kdlucas/byte-unixbench, 2015.

Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc Jézéquel, and
Djamel Eddine Khelladi. Transfer learning across variants and versions: The case of linux
kernel size. IEEE Transactions on Software Engineering, 48:4274–4290, 2021. URL https:
//api.semanticscholar.org/CorpusID:244221454.

Neo4j Team. Neo4j graph database. https://neo4j.com/, 2025. Accessed: 2025-05-27; Commu-
nity Edition.

OpenAI, J. Achiam, S. Adler, and et al. Gpt-4 technical report. Technical report, OpenAI, 2023.
URL https://api.semanticscholar.org/CorpusID:257532815.

Hou Pengpeng, Zhang Heng, Wu Yanjun, Yu Jiageng, Tai-Rong Yang, and Miao Yuxia. Kernel con-
figuration infographic based on multi-label and its application. Journal of Computer Research and
Development, 58:651, 2021. URL https://api.semanticscholar.org/CorpusID:233853847.

Jia Rao, Xiangping Bu, Chengzhong Xu, Le Yi Wang, and Gang George Yin. Vconf: a reinforcement
learning approach to virtual machines auto-configuration. In International Conference on Automa-
tion and Computing, 2009. URL https://api.semanticscholar.org/CorpusID:10310945.

Redis Labs. memtier_benchmark: NoSQL Redis and Memcache Traffic Generation and Benchmarking
Tool, 2024. URL https://github.com/RedisLabs/memtier_benchmark. Version 2.1.4.

Erik Rouberg et al. Kconfiglib: A flexible python kconfig implementation. https://github.com/
ulfalizer/Kconfiglib, 2018. Accessed: 2025-05-16.

Linus Torvalds and Contributors. Linux kernel. https://github.com/torvalds/linux, 2025.
Initial release 1991, ongoing development 1991–2025.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation
of large language models. ArXiv, abs/2401.11817, 2024. URL https://api.semanticscholar.
org/CorpusID:267069207.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Adriano Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software en-
gineering. ArXiv, abs/2405.15793, 2024. URL https://api.semanticscholar.org/CorpusID:
270063685.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629, 2022. URL
https://api.semanticscholar.org/CorpusID:252762395.

11

https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://api.semanticscholar.org/CorpusID:218869575
https://github.com/kdlucas/byte-unixbench
https://api.semanticscholar.org/CorpusID:244221454
https://api.semanticscholar.org/CorpusID:244221454
https://neo4j.com/
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:233853847
https://api.semanticscholar.org/CorpusID:10310945
https://github.com/RedisLabs/memtier_benchmark
https://github.com/ulfalizer/Kconfiglib
https://github.com/ulfalizer/Kconfiglib
https://github.com/torvalds/linux
https://api.semanticscholar.org/CorpusID:267069207
https://api.semanticscholar.org/CorpusID:267069207
https://api.semanticscholar.org/CorpusID:270063685
https://api.semanticscholar.org/CorpusID:270063685
https://api.semanticscholar.org/CorpusID:252762395

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

In accordance with ICLR 2026 submission policies, we disclose the usage of large language models
(LLMs) in the preparation of this paper. LLMs (e.g., ChatGPT) were used solely as a writing aid for
language polishing and grammar refinement. They were not involved in research conception, method-
ology design, implementation, or experimental evaluation. Specifically, LLMs were occasionally
used to improve readability in the Abstract and Introduction sections, without altering the technical
content. All ideas, methods, analyses, and results presented in this paper are entirely the work of the
authors.

B OSKC-KG CONSTRUCTION DETAILS

B.1 FORMAL DEFINITION OF OSKC-KG

The OSKC-KG is formally defined as a heterogeneous knowledge graph:

Goskc = (V,R, T) (5)

where:

- V = Vcfg ∪ Vconcept: the union of nodes from the configuration graph and concept taxonomy graph;

-R = Rcfg ∪Rconcept ∪Rmap: includes intra-subgraph relations (e.g., DEPENDS, SUB_CATEGORY) and
inter-subgraph mapping relations (e.g., RELATED_TO);

- T ⊆ V×R×V : the set of all valid triples in the graph, where each triple (h, r, t) denotes a semantic
or structural relationship from the head entity h to the tail entity t under the type of relation r.

This unified representation enables semantic alignment between raw configuration options and
high-level functional concepts, facilitating downstream tasks such as configuration recommendation,
retrieval QA, and intelligent optimization.

B.1.1 CONFIGURATION GRAPH

To systematically model the structural and semantic complexity of Linux kernel configurations,
including hierarchical organization, logical dependencies, and inter-option associations, we propose
a structured representation called the Configuration Graph Gcfg = (Vcfg, Ecfg). The Configuration
Graph is formally defined as:

Gcfg = (Vcfg, Rcfg, Tcfg) (6)

where:

-Vcfg denotes the set of configuration entities

-Rcfg contains intra-configuration relations (e.g., DEPENDS, SELECTS)

-Tcfg ⊆ Vcfg ×Rcfg × Vcfg represents valid triples derived from kernel source semantics.

Corpus Source The construction of the Configuration Graph is grounded in the official Linux
kernel source, primarily the distributed set of Kconfig files. Each Kconfig file declaratively defines
a collection of configuration options, including their types, default values, help descriptions, logical
dependencies (e.g., depends on, select), and their hierarchical organization into menu or menucon-
fig. (Kconfig structure in Figure 1). We use a static analysis tool Kconfiglib as the core parser and
build a data processing pipeline on top of it, enabling consistent extraction of configuration items
(e.g., config, menu) and their interdependencies across different Linux kernel versions. This pipeline
processes Kconfig files to generate structured metadata, which serves as the foundational data for
constructing the configuration graph.

Node Extraction Building upon the structured metadata obtained from Kconfig parsing, we
systematically identify the configuration entities to construct the node set Vcfg. Each node v ∈ Vcfg
represents a distinct configuration element with preserved semantic attributes (e.g., type, default
value, help text). We define four primary node types:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• menu: Hierarchical containers grouping related options (e.g., Device Drivers).
• config: A basic configurable option (e.g., CONFIG_RTC_LIB).
• menuconfig: High-level toggles that expose subordinate options (e.g., CONFIG_ATA →
CONFIG_ATA_ACPI).

• choice: Mutually exclusive groups (e.g., CONFIG_HZ timer frequency, where only one
option like CONFIG_HZ_100 can be selected).

These node types are automatically recognized and extracted via our custom-built data pipeline,
ensuring scalability across different Linux kernel versions.

Relation Extraction Based on the syntactic and semantic patterns in Kconfig files, we formally
define three core relation types (denoted as Rcfg) which model structural and logical dependencies
between the configuration nodes:

• SUB_OPTION: Captures parent-child relationships in menu structures (e.g., menu or
menuconfig→ config).

• DEPENDS: Encodes logical constraints from depends on clauses (e.g., CONFIG_ATA_ACPI
depends on CONFIG_ACPI).

• SELECTS: Enforced implications via select clauses (e.g., CONFIG_ATA_ACPI forces
CONFIG_PATA_TIMINGS)

These relationships are automatically extracted during the Kconfig parsing phase, preserving the
complete constraint semantics from the original configuration system.

The configuration graph provides a structured representation of kernel configuration items and
their interdependencies, enabling precise modeling of hierarchical organization, logical constraints,
and semantic associations. This modular design further supports dynamic evolution with new
configuration nodes across kernel versions.

B.1.2 CONCEPT TAXONOMY GRAPH

Modern kernel configuration options often encode low-level mechanisms using cryptic or hardware-
specific identifiers, which makes semantic interpretation challenging for both human developers
and LLMs. For instance, the option ATA_ACPI may seem obscure in isolation, but its description
(e.g., help text) reveals associations with both Power Management and Storage Support. These latent
semantics are essential to effectively manage, understand, and optimize configuration profiles at
scale.

To address this problem, we construct an extensible Concept Taxonomy Graph Gconcept =
(Vconcept, Econcept), which organizes functional semantics into a hierarchical structure. This graph
serves as a semantic backbone for aligning raw configuration options with high-level interpretable
functional concepts (Example in Table 1).

Formal Definition. The Concept Taxonomy Graph is formally defined as a directed acyclic graph:

Gconcept = (Vconcept, Rconcept, Tconcept) (7)

where:

- Vconcept: the set of semantic concept nodes, organized into a hierarchical structure from coarse-
grained domains to fine-grained functionalities;

- Rconcept = {SUB_CATEGORY}: the set of relations that denote parent-child relationships in the
hierarchical taxonomy.

- Tconcept ⊆ Vconcept ×Rconcept × Vconcept: the set of valid triples representing parent-child entities and
relationships in the graph.

This formalization supports multi-level semantic reasoning and enables seamless alignment with
configuration items through mapping relations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Graph Construction The Concept Taxonomy Graph is constructed based on a hybrid approach
combining expert knowledge and LLM-guided refinement. It consists of two primary components:

• Concept Nodes (Vconcept): Represent semantic units at varying levels of abstraction, rang-
ing from high-level domains (e.g., Security Features, Cryptography) to fine-grained
functionalities (e.g., Process Signal Control).

• SUB_CATEGORY Relations (Rconcept): Directed edges that denote hierarchical specialization
between concepts, enabling multi-level reasoning.

These components are populated through a two-stage process:

Stage 1: Expert-Defined Coarse-Grained Concepts.
We begin with a set of high-level functional domains, defined by kernel experts based
on their analysis of the Linux kernel documentation and subsystem organization (e.g.,
Security Features, Cryptography). These categories form the coarse-grained nodes of
the taxonomy and capture key functional dimensions (Table 1).

Stage 2: LLM-Guided Fine-Grained Expansion.
Building upon this expert-defined coarse-grained hierarchy, we guide LLM to incrementally
discover and integrate fine-grained concepts. Each new concept is automatically mapped
to the taxonomy via LLM-recommended hierarchical paths using SUB_CATEGORY relations,
ensuring both semantic coherence and hierarchical consistency.

The Concept Taxonomy Graph is constructed through a hybrid approach combining expert-defined
coarse-grained domains with LLM-guided fine-grained expansion. Its hierarchical structure not only
captures multi-level functional semantics but also supports dynamic evolution as new functionalities
emerge.

This structured yet extensible schema ensures both interpretability and scalability in modeling kernel
functionality, laying the groundwork for semantic alignment with configuration items and supporting
various downstream reasoning tasks.

B.2 LLM-KG SYNERGY CONCEPT MINING

B.2.1 MAPPING FORMALIZATION

To bridge the semantic gap between the Configuration Graph and the Concept Taxonomy Graph, we
formalize the semantic mappingM as:

M⊆ Cext × Vcfg × [0, 1]×Rtrace ×Hinsert (8)

where:

- Cext = Vconcept ∪{fij}: the extended concept set, combining manually expert-defined coarse-grained
concepts and fine-grained sub-concepts fij generated through LLM-guided mining;

- Vcfg: the set of configuration nodes from the Configuration Graph;

- [0, 1]: confidence scores derived from LLM outputs;

-Rtrace: a set of reasoning traces or rationales that justify each mapping decision.

- Hinsert = {h | h = (fij , SUB_CATEGORY, c), fij ∈ {fij}, c ∈ Cext}: a set of hierarchical insertion
relations that define how new concepts are integrated into the taxonomy.

Each mapping (c, v, s, r, h) ∈ M represents an association between a configuration node v and a
concept c, assigned a confidence score s and supported by a reasoning trace r. The hierarchical
relation h ∈ Hinsert further specifies where the new concept should be placed within the Concept
Taxonomy Graph (Prompt shown in Figure 3). It typically takes the form of a SUB_CATEGORY link to
a concept already present in Cext, whether that concept was defined by experts or previously mined
through LLM inference.

This mechanism enables both semantic alignment with configuration items and structural expansion
of the Concept Taxonomy Graph. The mapping is initialized asM ← ∅, with the expert-defined
taxonomy preloaded into the LLM prompt to bootstrap the semantic mining process.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2.2 TRAVERSAL STRATEGY

To enable context-aware semantic reasoning over the deep and intricate Configuration Graph (with
over 17K nodes spanning 9 nested levels, as detailed in Section 4.2), we propose a two-phase
traversal strategy called Hierarchical Hybrid Traversal (HHT). This strategy not only defines an
efficient exploration order but also embeds structural priors that guide LLM-based concept mining
and mapping. The strategy consists of two complementary phases:

Global Layer-wise Enumeration. We first perform a breadth-first search (BFS) from the configu-
ration root (the top-level Linux kernel configuration entry point) to identify all structural
branching points (menu, menuconfig, choice), assigning each a depth level ℓ. This global
enumeration establishes a hierarchical encoding that serves as the foundation for localized,
structure-aware reasoning in subsequent phases.

Local Branch-wise Expansion. For each branch identified in the global phase, we perform a local
depth-first search (DFS) to collect its descendant config nodes, forming a Branch Unit.
Each unit is enriched with two types of contextual information:
- Parent State (Pℓ): captures the semantic context inherited from the parent node at level ℓ,
representing high-level configuration intent;
- Sibling State (Sℓ): aggregates shared semantics among sibling nodes, providing contrastive
cues for fine-grained concept differentiation.

This dual-state representation enables localized, structure-aware LLM reasoning, allowing the model
to build upon previously analyzed concepts while maintaining coherence within the taxonomy.

The HHT traversal strategy provides both a structured exploration mechanism and a semantic context
framework. By maintaining parent and sibling states throughout the graph, it supports incremental
concept mining, where newly discovered concepts are refined based on previously mapped concepts
and their hierarchical placements. This design ensures that the knowledge graph evolves coherently,
preserving semantic alignment and structural integrity during LLM-driven expansion.

B.2.3 CONCEPT MINING VIA LLM-KG SYNERGY

We formulate the concept mining process as a node-wise semantic alignment task, guided by the
traversal structure introduced in HHT. At each configuration item v ∈ Vcfg, the LLM generates
candidate concept associations by utilizing both the Configuration Graph structure and dynamically
updated contextual priors.

Our goal is to construct mappings within the extended concept space Cext, defined as:M⊆ Cext ×
Vcfg × [0, 1] × Rtrace × Hinsert(Def. in Equation 8), where each mapping reflects not only the
functional intent of the configuration but also the hierarchical position of concepts within the Concept
Taxonomy Graph. To achieve this objective, we further define a structured knowledge context for
each configuration node v:

Kv = {Pv,Dv, Pℓ, Sℓ} (9)
Where:

• Pv: Hierarchical path from configuration root to node v, encoding structural position information;
• Dv: Node-level semantic description (e.g., help text), providing explicit semantic cues;
• Pℓ: Parent branch’s semantic state derived from LLM analysis;
• Sℓ: Aggregated semantics of the sibling nodes in the branch unit, supporting contrastive reasoning.

Given Kv , the LLM predicts a set of candidate concepts:

Cv = {c ∈ Cext |LLM-conf(c | Kv) ≥ θ} (10)

where θ = 0.65 serves as a confidence threshold to filter low-quality predictions. The resulting
mappings associate each configuration item with a set of predicted concepts, along with corresponding
confidence scores and rationales explaining the associations. Additionally, the LLM generates
recommended hierarchical insertion paths, which are encoded as SUB_CATEGORY relations to facilitate
seamless integration into the Concept Taxonomy Graph.

The validated mappings are then incorporated into the global mapping setM after human-in-the-
loop validation (Section 2.3), and corresponding RELATED_TO relations are established between

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

configuration items v ∈ Vcfg and their associated concepts c ∈ Cext. This process enriches the
heterogeneous graph system with interpretable semantic links.

This LLM-KG synergy concept mining process establishes interpretable mappings between configu-
ration items and functional concepts, guided by structural priors from the Configuration Graph. It not
only identifies semantically meaningful concepts but also integrates them into the Concept Taxonomy
Graph through hierarchical insertion paths.

B.3 PROMPT AND REASONING TRACE

To enhance transparency and reproducibility of the LLM-KG Synergy Concept Mining process (Sec-
tion 2.1), we provide representative examples of the prompts given to the LLM and the corresponding
reasoning traces it produced.

Figure 3 shows an example prompt designed for extracting functional semantics from a kernel
configuration option. The prompt incorporates structured context from the configuration graph and
domain-specific metadata, guiding the LLM to infer candidate concepts with confidence scores.

Figure 3: Prompt for LLM-KG Synergy concept mining.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 4: LLM reasoning output for concept mining.

Figure 4 illustrates the reasoning trace generated by the LLM in response to this prompt. The trace
includes intermediate steps, justifications, and the final mapping decision, which are then verified and
integrated into the evolving concept taxonomy (Appendix B.4).

Together, these examples demonstrate how ICMOS leverages prompt engineering and structured
reasoning to produce interpretable and verifiable mappings from configuration items to semantic
concepts.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 CONCEPT TAXONOMY

We construct an expert-defined taxonomy of kernel configuration concepts, organized into eight
high-level categories with corresponding subcategories (Table 8). This taxonomy serves as the seed
structure for OSKC-KG and can be extended through incremental concept mining.

Table 8: Expert-defined Concept Taxonomy

Category Subcategories

Core Subsystem Hotplug, Schedule, Power Management, Debugging, Virtualization, Containerization, Swap, Filesystem, Network-
ing, Logging & Tracing, Cgroup, Hugepage

Kernel Mechanisms Tracing, Isolation Mechanisms, Namespaces

Security Features Access Control, Integrity & Verification, Sandboxing & Isolation, Cryptography

Hardware Support CPU Support, GPU & Display Support, Storage Support, Network Adapters Support, Peripheral Support, Multime-
dia Support, Embedded & SoC Support, Power & Thermal Management

Performance CPU Optimization, Memory Optimization, Disk Optimization, Network Optimization, Latency Optimization,
Energy Efficiency Optimization, Real-Time Optimization, I/O Optimization

Build & Boot Bootloader Support, Initramfs, Compression

Compatibility Legacy Support, POSIX Compliance

To illustrate the process of incremental concept mining, we provide an example for the Hotplug
category under the Core Subsystem. Figure 5 shows a partial view of the mined subcategories, which
were automatically extracted and refined through ICMOS. This example demonstrates how ICMOS
extends the expert-defined taxonomy with finer-grained semantic concepts, such as CPU hotplug,
memory hotplug, and Device hotplug. The complete multi-level taxonomy, including all mined
concepts, will be released as part of our open-source OSKC-KG to facilitate reproducibility and
future research.

Figure 5: Example of mined concepts

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 OSKC-KG STATISTICS OVERVIEW

Figure 6: OSKC-KG: Node-Relation Graph Schema

Based on our ICMOS framework, we build a comprehensive knowledge graph OSKC-KG that
captures the rich semantics of kernel configurations while supporting extensibility and interoperability.
Figure 6 illustrates the node-relation schema of OSKC-KG.

Implementation Details We implement the ICMOS framework using DeepSeek-V3-0324 as the
core LLM, selected for its strong performance in technical domain reasoning and multilingual support.
We use a custom prompting strategy to extract semantic mappings (see Figure 3 for prompt templates).
The resulting knowledge graph is stored in Neo4j, leveraging its native graph storage and query
capabilities for efficient traversal, semantic retrieval, and dynamic expansion.

OSKC-KG Statistics To ensure broad applicability and reflect both stability and evolution trends,
we construct the OSKC-KG by analyzing the evolving Linux 6.x kernel series (versions 6.1–6.15),
covering 17,624 representative configuration options from a broader pool of 16,725–18,315 version-
specific variants. This range captures both stability and evolution trends across recent kernels,
ensuring broad applicability.

By integrating these with a taxonomy of 1,303 fine-grained semantic concepts via LLM-KG syn-
ergy mining, we obtain a graph comprising 18,927 nodes and 145,191 edges. Notably, 96.5% of
configuration items are annotated with hierarchical semantic concepts, and each item is associated
with an average of 3.9 concepts, including those inherited from parent nodes across multiple levels.
These results highlight the scalability and expressiveness of OSKC-KG, laying a strong foundation
for downstream reasoning, retrieval, and optimization tasks. The complete statistics are reported in
Table 2.

Furthermore, our framework supports dynamic evolution: new configuration items can be seamlessly
integrated into the graph under appropriate menu paths, while emerging functional semantics can
be incrementally added to the concept taxonomy. These characteristics, namely extensive coverage,
semantic richness, and structural extensibility, establish OSKC-KG as a robust foundation for
intelligent reasoning over complex kernel configuration spaces.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C CONFIGURATION QA DATASET

To enable reproducible evaluation of semantic retrieval performance, we construct a human-annotated
ground truth dataset comprising 100 QA pairs, curated by Linux kernel domain experts. The dataset
is designed to evaluate two core capabilities:

1. Concept Understanding: Given a configuration item (e.g., CONFIG_BFQ_GROUP_IOSCHED),
predict its associated high-level semantic concepts (e.g., “I/O Optimization”, “Scheduler”).

2. Configuration Selection: Given a functional intent (e.g., “Improve file I/O performance”),
select the most relevant configuration options from a provided candidate list.

To facilitate future research and ensure full reproducibility, we plan to open-source this QA dataset,
along with the complete OSKC-KG and our evaluation scripts, upon paper acceptance.

Illustrative examples for both QA types are provided in Figure 7. We use this dataset to quantitatively
compare the performance of the LLM-only baseline and the OSKC-KG augmented pipeline, as
reported in Section 4.3.

Figure 7: QA Dataset Example

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D CONFLICT-AWARE VALIDATION MECHANISM

To enhance the reliability of intelligent configuration optimization guided by the LLM agent, we
introduce a Conflict-Aware Validation Mechanism that augments the reasoning layer with additional
symbolic constraints from OSKC-KG.

Beyond semantic relevance, the LLM agent is guided to infer about feasibility by incorporating
configuration-level structural and behavioral priors, including:

• Dependency and Selection Constraints: (depends on, selects) to ensure compatibility
across configuration items.

• Default Values and Value Types: to support informed value prediction and avoid invalid
assignments.

• Visibility and Activation Conditions: to filter out invisible or context-clashing configurations.

These constraints are encoded into the prompt during reasoning. Additionally, we require the LLM
agent to filter out configuration items that could impact operating system boot or compilation.

This mechanism avoids generating infeasible or conflicting configuration suggestions, improves
assignment recommendations for optimization objectives (e.g., File I/O, MySQL Latency), and
ensures that all recommended configurations are semantically meaningful and practically deployable.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E AGENTIC REASONING PROMPTS AND OPTIMIZATION OUTPUTS

To complement Section 2.2 and Section 4.4, we provide illustrative examples of the prompts used for
concept-oriented agentic reasoning and the resulting configuration optimization outputs.

Figure 8 shows a representative prompt template used to guide the LLM agent in generating opti-
mization suggestions for candidate configuration parameters. The prompt incorporates structured
context from OSKC-KG to constrain the LLM’s output and reduce hallucinations.

Figure 8: File I/O Case Study

Figure 9 illustrates the configuration recommendations generated by ICMOS for optimizing the file
I/O benchmark. It displays the relevant kernel configurations and their recommended optimized
values, which are subsequently validated through expert inspection and benchmarking.

These examples serve two purposes: (i) to demonstrate the interpretability and traceability of the
agentic reasoning process, and (ii) to illustrate how optimization recommendations are generated and
linked back to semantic concepts in OSKC-KG. A more detailed discussion of these results and their
implications is provided in the Case Study (Appendix F).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: File I/O Case Study

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F CASE STUDY

Figure 10: File I/O Case Study

To further illustrate the effectiveness and interpretability of our framework, we present a case study
focusing on kernel File I/O performance optimization. Given the optimization goal of improving I/O
efficiency, ICMOS invokes the LLM Agent to interpret the intent and perform structured reasoning
over the Concept Taxonomy Graph. Starting from the root node, the agent progressively identifies
semantically relevant concepts (e.g., I/O Optimization, Swap). Taking I/O Optimization as an example,
the agent retrieves the corresponding configuration subgraph via the RELATED_TO mappings (See the
Figure 10). Within this subgraph, the LLM agent performs knowledge-augmented reasoning over the
configuration space to generate interpretable and effective configuration optimization suggestions.

Through this reasoning process, the LLM agent recommends two key configuration options: CONFIG
_BFQ_GROUP_IOSCHED=y, CONFIG_BLK_DEV_THROTTLING=y, which activate the BFQ I/O scheduler
with group-aware control and enable I/O bandwidth throttling, respectively. These settings improve
I/O responsiveness under concurrent workloads and help stabilize throughput across multiple tasks. In
contrast, AutoOS fails to surface these options due to its lack of structured concept reasoning. It either
omits I/O-related tunings or recommends unrelated parameters, leading to suboptimal performance
improvements.

This case demonstrates the strength of ICMOS in leveraging semantic knowledge to perform goal-
directed configuration traversal and generate more relevant, high-impact recommendations. Notably,
the decision process is fully traceable, each configuration is backed by a concept linkage and a
reasoning path, enhancing both transparency and trust in system tuning.

24

	Introduction
	ICMOS Framework
	OSKC Concept Knowledge Graph
	Concept-oriented Agentic Reasoning
	Human-in-the-Loop Verification

	OSKC Understanding Tasks
	Experiment
	Experimental Setup and Metrics
	OSKC-KG Characterization
	Configuration Retrieval QA
	Intelligent Configuration Optimization
	Ablation Study

	Related Work
	Conclusion
	LLM Usage Disclosure
	OSKC-KG Construction Details
	Formal Definition of OSKC-KG
	Configuration Graph
	Concept Taxonomy Graph

	LLM-KG Synergy Concept Mining
	Mapping Formalization
	Traversal Strategy
	Concept Mining via LLM-KG Synergy

	Prompt and Reasoning Trace
	Concept Taxonomy
	OSKC-KG Statistics Overview

	Configuration QA Dataset
	Conflict-Aware Validation Mechanism
	Agentic Reasoning Prompts and Optimization Outputs
	Case Study

